1
|
Hardman D, Hennig K, Martins IB, Roman W, Gomes ER, Bernabeu MO. Quantitative measurement of morphometric indicators of skeletal muscle cell behaviour and quality. J R Soc Interface 2025; 22:20240634. [PMID: 40233801 PMCID: PMC11999735 DOI: 10.1098/rsif.2024.0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
In vitro culturing of effective human-induced pluripotent stem cell-derived skeletal muscle cells (hiPSC-SMCs) has proven to be challenging. Progress is hindered by the limited range of metrics applied to assess experimental success. We present a semi-automated workflow for segmenting, tracking and quantifying migration and fusion behaviour in live and static images of myoblast and myotube cells. Workflow outputs are validated against manually labelled images and the metrics applied to images from case studies of in vitro cultures of primary mouse muscle cells under varying culture media conditions, mouse primary cells undergoing optogenetic stimulation and hiPSC-SMC. We show culture media-dependent differences in cell fusion dynamics and increased acetylcholine receptors in myonuclei under optogenetic stimulation. We show that myoblasts have greater persistence and proliferation in primary mouse cells than hiPSC, and cell-cell fusion occurred earlier but at a steadier rate in primary mouse cells.
Collapse
Affiliation(s)
- David Hardman
- Centre for Medical Informatics, The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Katharina Hennig
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Inês Belo Martins
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - William Roman
- Australian Regenerative Medicine Institute, Clayton, Victoria, Australia
- Victoria Node, European Molecular Biology Laboratory, Clayton, Victoria, Australia
| | - Edgar R. Gomes
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| |
Collapse
|
2
|
von Saucken VE, Windner SE, Armetta G, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. J Cell Biol 2025; 224:e202404052. [PMID: 39475469 PMCID: PMC11530350 DOI: 10.1083/jcb.202404052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (size scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show that local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Biochemistry, Cell and Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanna Armetta
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Sun C, Swoboda CO, Morales FM, Calvo C, Petrany MJ, Parameswaran S, VonHandorf A, Weirauch MT, Lepper C, Millay DP. Lineage tracing of nuclei in skeletal myofibers uncovers distinct transcripts and interplay between myonuclear populations. Nat Commun 2024; 15:9372. [PMID: 39477931 PMCID: PMC11526147 DOI: 10.1038/s41467-024-53510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Multinucleated skeletal muscle cells need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in cells that already harbor hundreds of nuclei. Here we utilize nuclear RNA-sequencing approaches and develop a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.
Collapse
Affiliation(s)
- Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fabian Montecino Morales
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cristofer Calvo
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
5
|
Dugdale HF, Levy Y, Jungbluth H, Oldfors A, Ochala J. Aberrant myonuclear domains and impaired myofiber contractility despite marked hypertrophy in MYMK-related, Carey-Fineman-Ziter Syndrome. Acta Neuropathol Commun 2024; 12:80. [PMID: 38790073 PMCID: PMC11127446 DOI: 10.1186/s40478-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
Carey Fineman Ziter Syndrome (CFZS) is a rare autosomal recessive disease caused by mutations in the MYMK locus which encodes the protein, myomaker. Myomaker is essential for fusion and concurrent myonuclei donation of muscle progenitors during growth and development. Strikingly, in humans, MYMK mutations appear to prompt myofiber hypertrophy but paradoxically, induce generalised muscle weakness. As the underlying cellular mechanisms remain unexplored, the present study aimed to gain insights by combining myofiber deep-phenotyping and proteomic profiling. Hence, we isolated individual muscle fibers from CFZS patients and performed mechanical, 3D morphological and proteomic analyses. Myofibers from CFZS patients were ~ 4x larger than controls and possessed ~ 2x more myonuclei than those from healthy subjects, leading to disproportionally larger myonuclear domain volumes. These greater myonuclear domain sizes were accompanied by smaller intrinsic cellular force generating-capacities in myofibers from CFZS patients than in control muscle cells. Our complementary proteomic analyses indicated remodelling in 233 proteins particularly those associated with cellular respiration. Overall, our findings suggest that myomaker is somewhat functional in CFZS patients, but the associated nuclear accretion may ultimately lead to non-functional hypertrophy and altered energy-related mechanisms in CFZS patients. All of these are likely contributors of the muscle weakness experienced by CFZS patients.
Collapse
Affiliation(s)
- Hannah F Dugdale
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yotam Levy
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Heinz Jungbluth
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Julien Ochala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Poukalov KK, Valero MC, Muscato DR, Adams LM, Chun H, Lee YI, Andrade NS, Zeier Z, Sweeney HL, Wang ET. Myospreader improves gene editing in skeletal muscle by myonuclear propagation. Proc Natl Acad Sci U S A 2024; 121:e2321438121. [PMID: 38687782 PMCID: PMC11087771 DOI: 10.1073/pnas.2321438121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Successful CRISPR/Cas9-based gene editing in skeletal muscle is dependent on efficient propagation of Cas9 to all myonuclei in the myofiber. However, nuclear-targeted gene therapy cargos are strongly restricted to their myonuclear domain of origin. By screening nuclear localization signals and nuclear export signals, we identify "Myospreader," a combination of short peptide sequences that promotes myonuclear propagation. Appending Myospreader to Cas9 enhances protein stability and myonuclear propagation in myoblasts and myofibers. AAV-delivered Myospreader dCas9 better inhibits transcription of toxic RNA in a myotonic dystrophy mouse model. Furthermore, Myospreader Cas9 achieves higher rates of gene editing in CRISPR reporter and Duchenne muscular dystrophy mouse models. Myospreader reveals design principles relevant to all nuclear-targeted gene therapies and highlights the importance of the spatial dimension in therapeutic development.
Collapse
Affiliation(s)
- Kiril K. Poukalov
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - M. Carmen Valero
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Derek R. Muscato
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Leanne M. Adams
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Heejae Chun
- Department of Pharmacology, University of Florida, Gainesville, FL32610
- Myology Institute, University of Florida, Gainesville, FL32610
| | - Young il Lee
- Department of Pharmacology, University of Florida, Gainesville, FL32610
- Myology Institute, University of Florida, Gainesville, FL32610
| | - Nadja S. Andrade
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL33136
| | - Zane Zeier
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL33136
| | - H. Lee Sweeney
- Department of Pharmacology, University of Florida, Gainesville, FL32610
- Myology Institute, University of Florida, Gainesville, FL32610
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL32610
- Center for NeuroGenetics, University of Florida, Gainesville, FL32610
- Genetics Institute, University of Florida, Gainesville, FL32610
- Myology Institute, University of Florida, Gainesville, FL32610
| |
Collapse
|
7
|
von Saucken VE, Windner SE, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588944. [PMID: 38645063 PMCID: PMC11030338 DOI: 10.1101/2024.04.10.588944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that then positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065 USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065 USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
8
|
Cisterna B, Malatesta M. Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging. Int J Mol Sci 2024; 25:1833. [PMID: 38339110 PMCID: PMC10855217 DOI: 10.3390/ijms25031833] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Aging is accompanied by a progressive loss of skeletal muscle mass and strength. The mechanisms underlying this phenomenon are certainly multifactorial and still remain to be fully elucidated. Changes in the cell nucleus structure and function have been considered among the possible contributing causes. This review offers an overview of the current knowledge on skeletal muscle nuclei in aging, focusing on the impairment of nuclear pathways potentially involved in age-related muscle decline. In skeletal muscle two types of cells are present: fiber cells, constituting the contractile muscle mass and containing hundreds of myonuclei, and the satellite cells, i.e., the myogenic mononuclear stem cells occurring at the periphery of the fibers and responsible for muscle growth and repair. Research conducted on different experimental models and with different methodological approaches demonstrated that both the myonuclei and satellite cell nuclei of aged skeletal muscles undergo several structural and molecular alterations, affecting chromatin organization, gene expression, and transcriptional and post-transcriptional activities. These alterations play a key role in the impairment of muscle fiber homeostasis and regeneration, thus contributing to the age-related decrease in skeletal muscle mass and function.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
9
|
Sun C, Swoboda CO, Petrany MJ, Parameswaran S, VonHandorf A, Weirauch MT, Lepper C, Millay DP. Lineage tracing of newly accrued nuclei in skeletal myofibers uncovers distinct transcripts and interplay between nuclear populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554609. [PMID: 37662191 PMCID: PMC10473681 DOI: 10.1101/2023.08.24.554609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Multinucleated skeletal muscle cells have an obligatory need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in syncytial cells that already harbor hundreds of nuclei. To begin to answer this long-standing question, we utilized nuclear RNA-sequencing approaches and developed a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.
Collapse
Affiliation(s)
- Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O. Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J. Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T. Weirauch
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Hansson KA, Eftestøl E. Scaling of nuclear numbers and their spatial arrangement in skeletal muscle cell size regulation. Mol Biol Cell 2023; 34:pe3. [PMID: 37339435 PMCID: PMC10398882 DOI: 10.1091/mbc.e22-09-0424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 06/22/2023] Open
Abstract
Many cells display considerable functional plasticity and depend on the regulation of numerous organelles and macromolecules for their maintenance. In large cells, organelles also need to be carefully distributed to supply the cell with essential resources and regulate intracellular activities. Having multiple copies of the largest eukaryotic organelle, the nucleus, epitomizes the importance of scaling gene products to large cytoplasmic volumes in skeletal muscle fibers. Scaling of intracellular constituents within mammalian muscle fibers is, however, poorly understood, but according to the myonuclear domain hypothesis, a single nucleus supports a finite amount of cytoplasm and is thus postulated to act autonomously, causing the nuclear number to be commensurate with fiber volume. In addition, the orderly peripheral distribution of myonuclei is a hallmark of normal cell physiology, as nuclear mispositioning is associated with impaired muscle function. Because underlying structures of complex cell behaviors are commonly formalized by scaling laws and thus emphasize emerging principles of size regulation, the work presented herein offers more of a unified conceptual platform based on principles from physics, chemistry, geometry, and biology to explore cell size-dependent correlations of the largest mammalian cell by means of scaling.
Collapse
Affiliation(s)
- Kenth-Arne Hansson
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, 2624 Lillehammer, Norway
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
11
|
Bagley JR, Denes LT, McCarthy JJ, Wang ET, Murach KA. The myonuclear domain in adult skeletal muscle fibres: past, present and future. J Physiol 2023; 601:723-741. [PMID: 36629254 PMCID: PMC9931674 DOI: 10.1113/jp283658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.
Collapse
Affiliation(s)
- James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | | | - John J. McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, Florida
- Myology Institute, University of Florida
- Genetics Institute, University of Florida
| | - Kevin A. Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
- Cell and Molecular Biology Graduate Program, University of Arkansas
| |
Collapse
|
12
|
Abstract
Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.
Collapse
Affiliation(s)
- Jorel R. Padilla
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S. Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
13
|
Rahmati M, McCarthy JJ, Malakoutinia F. Myonuclear permanence in skeletal muscle memory: a systematic review and meta-analysis of human and animal studies. J Cachexia Sarcopenia Muscle 2022; 13:2276-2297. [PMID: 35961635 PMCID: PMC9530508 DOI: 10.1002/jcsm.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Fatemeh Malakoutinia
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| |
Collapse
|
14
|
Burkart V, Kowalski K, Aldag-Niebling D, Beck J, Frick DA, Holler T, Radocaj A, Piep B, Zeug A, Hilfiker-Kleiner D, dos Remedios CG, van der Velden J, Montag J, Kraft T. Transcriptional bursts and heterogeneity among cardiomyocytes in hypertrophic cardiomyopathy. Front Cardiovasc Med 2022; 9:987889. [PMID: 36082122 PMCID: PMC9445301 DOI: 10.3389/fcvm.2022.987889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Transcriptional bursting is a common expression mode for most genes where independent transcription of alleles leads to different ratios of allelic mRNA from cell to cell. Here we investigated burst-like transcription and its consequences in cardiac tissue from Hypertrophic Cardiomyopathy (HCM) patients with heterozygous mutations in the sarcomeric proteins cardiac myosin binding protein C (cMyBP-C, MYBPC3) and cardiac troponin I (cTnI, TNNI3). Using fluorescence in situ hybridization (RNA-FISH) we found that both, MYBPC3 and TNNI3 are transcribed burst-like. Along with that, we show unequal allelic ratios of TNNI3-mRNA among single cardiomyocytes and unequally distributed wildtype cMyBP-C protein across tissue sections from heterozygous HCM-patients. The mutations led to opposing functional alterations, namely increasing (cMyBP-Cc.927−2A>G) or decreasing (cTnIR145W) calcium sensitivity. Regardless, all patients revealed highly variable calcium-dependent force generation between individual cardiomyocytes, indicating contractile imbalance, which appears widespread in HCM-patients. Altogether, we provide strong evidence that burst-like transcription of sarcomeric genes can lead to an allelic mosaic among neighboring cardiomyocytes at mRNA and protein level. In HCM-patients, this presumably induces the observed contractile imbalance among individual cardiomyocytes and promotes HCM-development.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Valentin Burkart
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - David Aldag-Niebling
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Julia Beck
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Dirk Alexander Frick
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Holler
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Ante Radocaj
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Institute for Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | | | - Cristobal G. dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- *Correspondence: Judith Montag
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Nadkarni AV, Heald R. Reconstitution of muscle cell microtubule organization in vitro. Cytoskeleton (Hoboken) 2022; 78:492-502. [PMID: 35666041 DOI: 10.1002/cm.21710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Skeletal muscle differentiation occurs as muscle precursor cells (myoblasts) elongate and fuse to form multinucleated syncytial myotubes in which the highly-organized actomyosin sarcomeres of muscle fibers assemble. Although less well characterized, the microtubule cytoskeleton also undergoes dramatic rearrangement during myogenesis. The centrosome-nucleated microtubule array found in myoblasts is lost as the nuclear membrane acquires microtubule nucleating activity and microtubules emerge from multiple sites in the cell, eventually rearranging into a grid-like pattern in myotubes. In order to characterize perinuclear microtubule organization using a biochemically tractable system, we isolated nuclei from mouse C2C12 skeletal muscle cells during the course of differentiation and incubated them in cytoplasmic extracts prepared from eggs of the frog Xenopus laevis. Whereas centrosomes associated with myoblast nuclei gave rise to radial microtubule arrays in extracts, myotube nuclei produced a sun-like pattern with microtubules transiently nucleating from the entire nuclear envelope. Perinuclear microtubule growth was suppressed by inhibition of Aurora A kinase or by degradation of RNA, treatments that also inhibited microtubule growth from sperm centrosomes. Myotube nuclei displayed microtubule motor-based movements leading to their separation, as occurs in myotubes. This in vitro assay therefore recapitulates key features of microtubule organization and nuclear movement observed during muscle cell differentiation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ambika V Nadkarni
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Rebecca Heald
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
16
|
Buckley KH, Nestor-Kalinoski AL, Pizza FX. Positional Context of Myonuclear Transcription During Injury-Induced Muscle Regeneration. Front Physiol 2022; 13:845504. [PMID: 35492593 PMCID: PMC9040890 DOI: 10.3389/fphys.2022.845504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 01/31/2023] Open
Abstract
Fundamental aspects underlying downstream processes of skeletal muscle regeneration, such as myonuclear positioning and transcription are poorly understood. This investigation begins to address deficiencies in knowledge by examining the kinetics of myonuclear accretion, positioning, and global transcription during injury-induced muscle regeneration in mice. We demonstrate that myonuclear accretion plateaus within 7 days of an injury and that the majority (∼70%) of myonuclei are centrally aligned in linear arrays (nuclear chains) throughout the course of regeneration. Relatively few myonuclei were found in a peripheral position (∼20%) or clustered (∼10%) together during regeneration. Importantly, transcriptional activity of individual myonuclei in nuclear chains was high, and greater than that of peripheral or clustered myonuclei. Transcription occurring primarily in nuclear chains elevated the collective transcriptional activity of regenerating myofibers during the later stage of regeneration. Importantly, the number of myonuclei in chains and their transcriptional activity were statistically correlated with an increase in myofiber size during regeneration. Our findings demonstrate the positional context of transcription during regeneration and highlight the importance of centralized nuclear chains in facilitating hypertrophy of regenerating myofibers after injury.
Collapse
Affiliation(s)
- Kole H. Buckley
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH, United States
| | | | - Francis X. Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
17
|
Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat Commun 2021; 12:6079. [PMID: 34707124 PMCID: PMC8551216 DOI: 10.1038/s41467-021-26383-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.
Collapse
|
18
|
Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021; 35:e21893. [PMID: 34480776 PMCID: PMC9293230 DOI: 10.1096/fj.202101096r] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
19
|
Morgan J, Muntoni F. Changes in Myonuclear Number During Postnatal Growth -Implications for AAV Gene Therapy for Muscular Dystrophy. J Neuromuscul Dis 2021; 8:S317-S324. [PMID: 34334413 PMCID: PMC8673494 DOI: 10.3233/jnd-210683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult skeletal muscle is a relatively stable tissue, as the multinucleated muscle fibres contain post-mitotic myonuclei. During early postnatal life, muscle growth occurs by the addition of skeletal muscle stem cells (satellite cells) or their progeny to growing muscle fibres. In Duchenne muscular dystrophy, which we shall use as an example of muscular dystrophies, the muscle fibres lack dystrophin and undergo necrosis. Satellite-cell mediated regeneration occurs, to repair and replace the necrotic muscle fibres, but as the regenerated muscle fibres still lack dystrophin, they undergo further cycles of degeneration and regeneration.AAV gene therapy is a promising approach for treating Duchenne muscular dystrophy. But for a single dose of, for example, AAV coding for dystrophin, to be effective, the treated myonuclei must persist, produce sufficient dystrophin and a sufficient number of nuclei must be targeted. This latter point is crucial as AAV vector remains episomal and does not replicate in dividing cells. Here, we describe and compare the growth of skeletal muscle in rodents and in humans and discuss the evidence that myofibre necrosis and regeneration leads to the loss of viral genomes within skeletal muscle. In addition, muscle growth is expected to lead to the dilution of the transduced nuclei especially in case of very early intervention, but it is not clear if growth could result in insufficient dystrophin to prevent muscle fibre breakdown. This should be the focus of future studies.
Collapse
Affiliation(s)
- Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
20
|
Battey E, Furrer R, Ross J, Handschin C, Ochala J, Stroud MJ. PGC-1α regulates myonuclear accretion after moderate endurance training. J Cell Physiol 2021; 237:696-705. [PMID: 34322871 DOI: 10.1002/jcp.30539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022]
Abstract
The transcriptional demands of skeletal muscle fibres are high and require hundreds of nuclei (myonuclei) to produce specialised contractile machinery and multiple mitochondria along their length. Each myonucleus spatially regulates gene expression in a finite volume of cytoplasm, termed the myonuclear domain (MND), which positively correlates with fibre cross-sectional area (CSA). Endurance training triggers adaptive responses in skeletal muscle, including myonuclear accretion, decreased MND sizes and increased expression of the transcription co-activator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Previous work has shown that overexpression of PGC-1α in skeletal muscle regulates mitochondrial biogenesis, myonuclear accretion and MND volume. However, whether PGC-1α is critical for these processes in adaptation to endurance training remained unclear. To test this, we evaluated myonuclear distribution and organisation in endurance-trained wild-type mice and mice lacking PGC-1α in skeletal muscle (PGC-1α mKO). Here, we show a differential myonuclear accretion response to endurance training that is governed by PGC-1α and is dependent on muscle fibre size. The positive relationship of MND size and muscle fibre CSA trended towards a stronger correlation in PGC-1a mKO versus control after endurance training, suggesting that myonuclear accretion was slightly affected with increasing fibre CSA in PGC-1α mKO. However, in larger fibres, the relationship between MND and CSA was significantly altered in trained versus sedentary PGC-1α mKO, suggesting that PGC-1α is critical for myonuclear accretion in these fibres. Accordingly, there was a negative correlation between the nuclear number and CSA, suggesting that in larger fibres myonuclear numbers fail to scale with CSA. Our findings suggest that PGC-1α is an important contributor to myonuclear accretion following moderate-intensity endurance training. This may contribute to the adaptive response to endurance training by enabling a sufficient rate of transcription of genes required for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Edmund Battey
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Jacob Ross
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Julien Ochala
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.,Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, UK.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Stroud
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
21
|
Pinheiro H, Pimentel MR, Sequeira C, Oliveira LM, Pezzarossa A, Roman W, Gomes ER. mRNA distribution in skeletal muscle is associated with mRNA size. J Cell Sci 2021; 134:jcs256388. [PMID: 34297126 PMCID: PMC7611476 DOI: 10.1242/jcs.256388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle myofibers are large and elongated cells with multiple and evenly distributed nuclei. Nuclear distribution suggests that each nucleus influences a specific compartment within the myofiber and implies a functional role for nuclear positioning. Compartmentalization of specific mRNAs and proteins has been reported at the neuromuscular and myotendinous junctions, but mRNA distribution in non-specialized regions of the myofibers remains largely unexplored. We report that the bulk of mRNAs are enriched around the nucleus of origin and that this perinuclear accumulation depends on recently transcribed mRNAs. Surprisingly, mRNAs encoding large proteins - giant mRNAs - are spread throughout the cell and do not exhibit perinuclear accumulation. Furthermore, by expressing exogenous transcripts with different sizes we found that size contributes to mRNA spreading independently of mRNA sequence. Both these mRNA distribution patterns depend on microtubules and are independent of nuclear dispersion, mRNA expression level and stability, and the characteristics of the encoded protein. Thus, we propose that mRNA distribution in non-specialized regions of skeletal muscle is size selective to ensure cellular compartmentalization and simultaneous long-range distribution of giant mRNAs.
Collapse
Affiliation(s)
- Helena Pinheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mafalda Ramos Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Catarina Sequeira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luís Manuel Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - William Roman
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Edgar R. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
22
|
Ausems CRM, van Engelen BGM, van Bokhoven H, Wansink DG. Systemic cell therapy for muscular dystrophies : The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy. Stem Cell Rev Rep 2021; 17:878-899. [PMID: 33349909 PMCID: PMC8166694 DOI: 10.1007/s12015-020-10100-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
The intrinsic regenerative capacity of skeletal muscle makes it an excellent target for cell therapy. However, the potential of muscle tissue to renew is typically exhausted and insufficient in muscular dystrophies (MDs), a large group of heterogeneous genetic disorders showing progressive loss of skeletal muscle fibers. Cell therapy for MDs has to rely on suppletion with donor cells with high myogenic regenerative capacity. Here, we provide an overview on stem cell lineages employed for strategies in MDs, with a focus on adult stem cells and progenitor cells resident in skeletal muscle. In the early days, the potential of myoblasts and satellite cells was explored, but after disappointing clinical results the field moved to other muscle progenitor cells, each with its own advantages and disadvantages. Most recently, mesoangioblasts and pericytes have been pursued for muscle cell therapy, leading to a handful of preclinical studies and a clinical trial. The current status of (pre)clinical work for the most common forms of MD illustrates the existing challenges and bottlenecks. Besides the intrinsic properties of transplantable cells, we discuss issues relating to cell expansion and cell viability after transplantation, optimal dosage, and route and timing of administration. Since MDs are genetic conditions, autologous cell therapy and gene therapy will need to go hand-in-hand, bringing in additional complications. Finally, we discuss determinants for optimization of future clinical trials for muscle cell therapy. Joined research efforts bring hope that effective therapies for MDs are on the horizon to fulfil the unmet clinical need in patients.
Collapse
Affiliation(s)
- C Rosanne M Ausems
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| | - Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Prasad V, Millay DP. Skeletal muscle fibers count on nuclear numbers for growth. Semin Cell Dev Biol 2021; 119:3-10. [PMID: 33972174 DOI: 10.1016/j.semcdb.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle cells are noteworthy for their syncytial nature, with each myofiber accumulating hundreds or thousands of nuclei derived from resident muscle stem cells (MuSCs). These nuclei are accrued through cell fusion, which is controlled by the two essential fusogens Myomaker and Myomerger that are transiently expressed within the myogenic lineage. While the absolute requirement of fusion for muscle development has been known for decades, the underlying need for the magnitude of multinucleation in muscle remains mysterious. Possible advantages of multinucleation include the potential it affords for transcriptional diversity within these massive cells, and as a means of increasing DNA content to support optimal cell size and function. In this article, we review recent advances that elucidate the relationship between myonuclear numbers and establishment of myofiber size, and discuss how this new information refines our understanding of the concept of myonuclear domains (MND), the cytoplasmic volumes that each resident myonucleus can support. Finally, we explore the potential consequences and costs of multinucleation and its impacts on myonuclear transcriptional reserve capacity, growth potential, myofiber size regulation, and muscle adaptability. We anticipate this report will not only serve to highlight the latest advances in the basic biology of syncytial muscle cells but also provide information to help design the next generation of therapeutic strategies to maintain muscle mass and function.
Collapse
Affiliation(s)
- Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
24
|
Snijders T, Holwerda AM, van Loon LJC, Verdijk LB. Myonuclear content and domain size in small versus larger muscle fibres in response to 12 weeks of resistance exercise training in older adults. Acta Physiol (Oxf) 2021; 231:e13599. [PMID: 33314750 PMCID: PMC8047909 DOI: 10.1111/apha.13599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
AIM To assess the relation between muscle fibre hypertrophy and myonuclear accretion in relatively small and large muscle fibre size clusters following prolonged resistance exercise training in older adults. METHODS Muscle biopsies were collected before and after 12 weeks of resistance exercise training in 40 healthy, older men (70 ± 3 years). All muscle fibres were ordered by size and categorized in four muscle fibre size clusters: 'Small': 2000-3999 µm2 , 'Moderate': 4000-5999 µm2 , 'Large': 6000-7999 µm2 and 'Largest': 8000-9999 µm2 . Changes in muscle fibre size cluster distribution were related to changes in muscle fibre size, myonuclear content and myonuclear domain size. RESULTS With training, the percentage of muscle fibres decreased in the Small (from 23 ± 12 to 17 ± 14%, P < .01) and increased in the Largest (from 11 ± 8 to 15 ± 10%, P < .01) muscle fibre size clusters. The decline in the percentage of Small muscle fibres was accompanied by an increase in overall myonuclear domain size (r = -.466, P = .002) and myonuclear content (r = -.390, P = .013). In contrast, the increase in the percentage of the Largest muscle fibres was accompanied by an overall increase in myonuclear content (r = .616, P < .001), but not in domain size. CONCLUSION Prolonged resistance-type exercise training induces a decline in the percentage of small as well as an increase in the percentage of the largest muscle fibres in older adults. Whereas the change in the percentage of small fibres is best predicted by an increase in overall myonuclear domain size, the change in the percentage of the largest fibres is associated with an overall increase in myonuclear content.
Collapse
Affiliation(s)
- Tim Snijders
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Andy M. Holwerda
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Luc J. C. van Loon
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Lex B. Verdijk
- Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
25
|
Using nuclear envelope mutations to explore age-related skeletal muscle weakness. Clin Sci (Lond) 2020; 134:2177-2187. [PMID: 32844998 PMCID: PMC7450176 DOI: 10.1042/cs20190066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle weakness is an important determinant of age-related declines in independence and quality of life but its causes remain unclear. Accelerated ageing syndromes such as Hutchinson-Gilford Progerin Syndrome, caused by mutations in genes encoding nuclear envelope proteins, have been extensively studied to aid our understanding of the normal biological ageing process. Like several other pathologies associated with genetic defects to nuclear envelope proteins including Emery-Dreifuss muscular dystrophy, Limb-Girdle muscular dystrophy and congenital muscular dystrophy, these disorders can lead to severe muscle dysfunction. Here, we first describe the structure and function of nuclear envelope proteins, and then review the mechanisms by which mutations in genes encoding nuclear envelope proteins induce premature ageing diseases and muscle pathologies. In doing so, we highlight the potential importance of such genes in processes leading to skeletal muscle weakness in old age.
Collapse
|
26
|
Kim M, Franke V, Brandt B, Lowenstein ED, Schöwel V, Spuler S, Akalin A, Birchmeier C. Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal muscle cells. Nat Commun 2020; 11:6375. [PMID: 33311457 PMCID: PMC7732842 DOI: 10.1038/s41467-020-20064-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
Syncytial skeletal muscle cells contain hundreds of nuclei in a shared cytoplasm. We investigated nuclear heterogeneity and transcriptional dynamics in the uninjured and regenerating muscle using single-nucleus RNA-sequencing (snRNAseq) of isolated nuclei from muscle fibers. This revealed distinct nuclear subtypes unrelated to fiber type diversity, previously unknown subtypes as well as the expected ones at the neuromuscular and myotendinous junctions. In fibers of the Mdx dystrophy mouse model, distinct subtypes emerged, among them nuclei expressing a repair signature that were also abundant in the muscle of dystrophy patients, and a nuclear population associated with necrotic fibers. Finally, modifications of our approach revealed the compartmentalization in the rare and specialized muscle spindle. Our data identifies nuclear compartments of the myofiber and defines a molecular roadmap for their functional analyses; the data can be freely explored on the MyoExplorer server ( https://shiny.mdc-berlin.de/MyoExplorer/ ).
Collapse
Affiliation(s)
- Minchul Kim
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Vedran Franke
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Bettina Brandt
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Elijah D Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Verena Schöwel
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
27
|
Hansson KA, Eftestøl E, Bruusgaard JC, Juvkam I, Cramer AW, Malthe-Sørenssen A, Millay DP, Gundersen K. Myonuclear content regulates cell size with similar scaling properties in mice and humans. Nat Commun 2020; 11:6288. [PMID: 33293572 PMCID: PMC7722898 DOI: 10.1038/s41467-020-20057-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Muscle fibers are the largest cells in the body, and one of its few syncytia. Individual cell sizes are variable and adaptable, but what governs cell size has been unclear. We find that muscle fibers are DNA scarce compared to other cells, and that the nuclear number (N) adheres to the relationship N = aVb where V is the cytoplasmic volume. N invariably scales sublinearly to V (b < 1), making larger cells even more DNA scarce. N scales linearly to cell surface in adult humans, in adult and developing mice, and in mice with genetically reduced N, but in the latter the relationship eventually fails when they reach adulthood with extremely large myonuclear domains. Another exception is denervation-atrophy where nuclei are not eliminated. In conclusion, scaling exponents are remarkably similar across species, developmental stages and experimental conditions, suggesting an underlying scaling law where DNA-content functions as a limiter of muscle cell size.
Collapse
Affiliation(s)
- Kenth-Arne Hansson
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Inga Juvkam
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alyssa W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Anders Malthe-Sørenssen
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | | |
Collapse
|
28
|
Cramer AAW, Prasad V, Eftestøl E, Song T, Hansson KA, Dugdale HF, Sadayappan S, Ochala J, Gundersen K, Millay DP. Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nat Commun 2020; 11:6287. [PMID: 33293533 PMCID: PMC7722938 DOI: 10.1038/s41467-020-20058-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian cells exhibit remarkable diversity in cell size, but the factors that regulate establishment and maintenance of these sizes remain poorly understood. This is especially true for skeletal muscle, comprised of syncytial myofibers that each accrue hundreds of nuclei during development. Here, we directly explore the assumed causal relationship between multinucleation and establishment of normal size through titration of myonuclear numbers during mouse neonatal development. Three independent mouse models, where myonuclear numbers were reduced by 75, 55, or 25%, led to the discovery that myonuclei possess a reserve capacity to support larger functional cytoplasmic volumes in developing myofibers. Surprisingly, the results revealed an inverse relationship between nuclei numbers and reserve capacity. We propose that as myonuclear numbers increase, the range of transcriptional return on a per nuclear basis in myofibers diminishes, which accounts for both the absolute reliance developing myofibers have on nuclear accrual to establish size, and the limits of adaptability in adult skeletal muscle.
Collapse
Affiliation(s)
- Alyssa A W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Einar Eftestøl
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Kenth-Arne Hansson
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity (CINPLA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hannah F Dugdale
- Center of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Julien Ochala
- Center of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Randall Center for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, UK
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
29
|
Skuk D, Tremblay JP. Human Muscle Precursor Cells Form Human-Derived Myofibers in Skeletal Muscles of Nonhuman Primates: A Potential New Preclinical Setting to Test Myogenic Cells of Human Origin for Cell Therapy of Myopathies. J Neuropathol Exp Neurol 2020; 79:1265-1275. [PMID: 33094339 DOI: 10.1093/jnen/nlaa110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study aimed to verify if human myogenic cells could participate in muscle regeneration in macaques. This experimental setting would grant researchers a model that could better evaluate the effects of cell therapies in myopathies with a better translation to human patients. Human muscle precursor cells (MPCs) were cultured in vitro and transduced with ß-galactosidase. The cells were subsequently injected into 1-cm3 muscle regions of 6 macaques immunosuppressed with tacrolimus and dexamethasone. Allogeneic ß-galactosidase+ MPCs were injected in other regions as positive controls. Some cell-grafted regions were electroporated to induce extensive muscle regeneration. MPC-grafted regions were sampled 1 month later and analyzed by histology. There were ß-galactosidase+ myofibers in both the regions grafted with human and macaque MPCs. Electroporation increased the engraftment of human MPCs in the same way as in macaque allografts. The histological analysis (hematoxylin and eosin, CD8, and CD4 immunodetection) demonstrated an absence of cellular rejection in most MPC-grafted regions, as well as minimal lymphocytic infiltration in the regions transplanted with human MPCs in the individual with the lowest tacrolimus levels. Circulating de novo anti-donor antibodies were not detected. In conclusion, we report the successful engraftment of human myogenic cells in macaques, which was possible using tacrolimus-based immunosuppression.
Collapse
Affiliation(s)
- Daniel Skuk
- From the Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Quebec, QC, Canada
| | - Jacques P Tremblay
- From the Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Quebec, QC, Canada
| |
Collapse
|
30
|
Murach KA, Mobley CB, Zdunek CJ, Frick KK, Jones SR, McCarthy JJ, Peterson CA, Dungan CM. Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. J Cachexia Sarcopenia Muscle 2020; 11:1705-1722. [PMID: 32881361 PMCID: PMC7749570 DOI: 10.1002/jcsm.12617] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the context of mass regulation, 'muscle memory' can be defined as long-lasting cellular adaptations to hypertrophic exercise training that persist during detraining-induced atrophy and may facilitate future adaptation. The cellular basis of muscle memory is not clearly defined but may be related to myonuclear number and/or epigenetic changes within muscle fibres. METHODS Utilizing progressive weighted wheel running (PoWeR), a novel murine exercise training model, we explored myonuclear dynamics and skeletal muscle miRNA levels with training and detraining utilizing immunohistochemistry, single fibre myonuclear analysis, and quantitative analysis of miRNAs. We also used a genetically inducible mouse model of fluorescent myonuclear labelling to study myonuclear adaptations early during exercise. RESULTS In the soleus, oxidative type 2a fibres were larger after 2 months of PoWeR (P = 0.02), but muscle fibre size and myonuclear number did not return to untrained levels after 6 months of detraining. Soleus type 1 fibres were not larger after PoWeR but had significantly more myonuclei, as well as central nuclei (P < 0.0001), the latter from satellite cell-derived or resident myonuclei, appearing early during training and remaining with detraining. In the gastrocnemius muscle, oxidative type 2a fibres of the deep region were larger and contained more myonuclei after PoWeR (P < 0.003), both of which returned to untrained levels after detraining. In the gastrocnemius and plantaris, two muscles where myonuclear number was comparable with untrained levels after 6 months of detraining, myonuclei were significantly elongated with detraining (P < 0.0001). In the gastrocnemius, miR-1 was lower with training and remained lower after detraining (P < 0.002). CONCLUSIONS This study found that (i) myonuclei gained during hypertrophy are lost with detraining across muscles, even in oxidative fibres; (ii) complete reversal of muscle adaptations, including myonuclear number, to untrained levels occurs within 6 months in the plantaris and gastrocnemius; (iii) the murine soleus is resistant to detraining; (iv) myonuclear accretion occurs early with wheel running and can be uncoupled from muscle fibre hypertrophy; (v) resident (non-satellite cell-derived) myonuclei can adopt a central location; (vi) myonuclei change shape with training and detraining; and (vii) miR-1 levels may reflect a memory of previous adaptation that facilitates future growth.
Collapse
Affiliation(s)
- Kevin A. Murach
- Department of Physical TherapyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - C. Brooks Mobley
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | | | | | | | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Charlotte A. Peterson
- Department of Physical TherapyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Cory M. Dungan
- Department of Physical TherapyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
31
|
Chemello F, Wang Z, Li H, McAnally JR, Liu N, Bassel-Duby R, Olson EN. Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2020; 117:29691-29701. [PMID: 33148801 PMCID: PMC7703557 DOI: 10.1073/pnas.2018391117] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disorder characterized by cycles of degeneration and regeneration of multinucleated myofibers and pathological activation of a variety of other muscle-associated cell types. The extent to which different nuclei within the shared cytoplasm of a myofiber may display transcriptional diversity and whether individual nuclei within a multinucleated myofiber might respond differentially to DMD pathogenesis is unknown. Similarly, the potential transcriptional diversity among nonmuscle cell types within dystrophic muscle has not been explored. Here, we describe the creation of a mouse model of DMD caused by deletion of exon 51 of the dystrophin gene, which represents a prevalent disease-causing mutation in humans. To understand the transcriptional abnormalities and heterogeneity associated with myofiber nuclei, as well as other mononucleated cell types that contribute to the muscle pathology associated with DMD, we performed single-nucleus transcriptomics of skeletal muscle of mice with dystrophin exon 51 deletion. Our results reveal distinctive and previously unrecognized myonuclear subtypes within dystrophic myofibers and uncover degenerative and regenerative transcriptional pathways underlying DMD pathogenesis. Our findings provide insights into the molecular underpinnings of DMD, controlled by the transcriptional activity of different types of muscle and nonmuscle nuclei.
Collapse
Affiliation(s)
- Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhaoning Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John R McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
32
|
Chemoradiation impairs myofiber hypertrophic growth in a pediatric tumor model. Sci Rep 2020; 10:19501. [PMID: 33177579 PMCID: PMC7659015 DOI: 10.1038/s41598-020-75913-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
Pediatric cancer treatment often involves chemotherapy and radiation, where off-target effects can include skeletal muscle decline. The effect of such treatments on juvenile skeletal muscle growth has yet to be investigated. We employed a small animal irradiator to administer fractionated hindlimb irradiation to juvenile mice bearing implanted rhabdomyosarcoma (RMS) tumors. Hindlimb-targeted irradiation (3 × 8.2 Gy) of 4-week-old mice successfully eliminated RMS tumors implanted one week prior. After establishment of this preclinical model, a cohort of tumor-bearing mice were injected with the chemotherapeutic drug, vincristine, alone or in combination with fractionated irradiation (5 × 4.8 Gy). Single myofiber analysis of fast-contracting extensor digitorum longus (EDL) and slow-contracting soleus (SOL) muscles was conducted 3 weeks post-treatment. Although a reduction in myofiber size was apparent, EDL and SOL myonuclear number were differentially affected by juvenile irradiation and/or vincristine treatment. In contrast, a decrease in myonuclear domain (myofiber volume/myonucleus) was observed regardless of muscle or treatment. Thus, inhibition of myofiber hypertrophic growth is a consistent feature of pediatric cancer treatment.
Collapse
|
33
|
Computational Assessment of Transport Distances in Living Skeletal Muscle Fibers Studied In Situ. Biophys J 2020; 119:2166-2178. [PMID: 33121941 DOI: 10.1016/j.bpj.2020.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022] Open
Abstract
Transport distances in skeletal muscle fibers are mitigated by these cells having multiple nuclei. We have studied mouse living slow (soleus) and fast (extensor digitorum longus) muscle fibers in situ and determined cellular dimensions and the positions of all the nuclei within fiber segments. We modeled the effect of placing nuclei optimally and randomly using the nuclei as the origin of a transportation network. It appeared that an equidistant positioning of nuclei minimizes transport distances along the surface for both muscles. In the soleus muscle, however, which were richer in nuclei, positioning of nuclei to reduce transport distances to the cytoplasm were of less importance, and these fibers exhibit a pattern not statistically different from a random positioning of nuclei. We also simulated transport times for myoglobin and found that they were remarkably similar between the two muscles despite differences in nuclear patterning and distances. Together, these results highlight the importance of spatially distributed nuclei to minimize transport distances to the surface when nuclear density is low, whereas it appears that the distribution are of less importance at higher nuclear densities.
Collapse
|
34
|
Manhart A, Azevedo M, Baylies M, Mogilner A. Reverse-engineering forces responsible for dynamic clustering and spreading of multiple nuclei in developing muscle cells. Mol Biol Cell 2020; 31:1802-1814. [PMID: 32129712 PMCID: PMC7521854 DOI: 10.1091/mbc.e19-12-0711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
How cells position their organelles is a fundamental biological question. During Drosophila embryonic muscle development, multiple nuclei transition from being clustered together to splitting into two smaller clusters to spreading along the myotube’s length. Perturbations of microtubules and motor proteins disrupt this sequence of events. These perturbations do not allow intuiting which molecular forces govern the nuclear positioning; we therefore used computational screening to reverse-engineer and identify these forces. The screen reveals three models. Two suggest that the initial clustering is due to nuclear repulsion from the cell poles, while the third, most robust, model poses that this clustering is due to a short-ranged internuclear attraction. All three models suggest that the nuclear spreading is due to long-ranged internuclear repulsion. We test the robust model quantitatively by comparing it with data from perturbed muscle cells. We also test the model using agent-based simulations with elastic dynamic microtubules and molecular motors. The model predicts that, in longer mammalian myotubes with a large number of nuclei, the spreading stage would be preceded by segregation of the nuclei into a large number of clusters, proportional to the myotube length, with a small average number of nuclei per cluster.
Collapse
Affiliation(s)
- Angelika Manhart
- Mathematics Department, University College London, London WC1H 0AY, UK
| | - Mafalda Azevedo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, 4050 Porto, Portugal
| | - Mary Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Alex Mogilner
- Courant Institute for Mathematical Sciences and Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
35
|
Martin RA, Buckley KH, Mankowski DC, Riley BM, Sidwell AN, Douglas SL, Worth RG, Pizza FX. Myogenic Cell Expression of Intercellular Adhesion Molecule-1 Contributes to Muscle Regeneration after Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2039-2055. [PMID: 32650005 DOI: 10.1016/j.ajpath.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
Abstract
This study investigated intercellular adhesion molecule-1 (ICAM-1), a membrane protein that mediates cell-to-cell adhesion and communication, as a mechanism through which the inflammatory response facilitates muscle regeneration after injury. Toxin-induced muscle injury to tibialis anterior muscles of wild-type mice caused ICAM-1 to be expressed by a population of satellite cells/myoblasts and myofibers. Myogenic cell expression of ICAM-1 contributed to the restoration of muscle structure after injury, as regenerating myofibers were more abundant and myofiber size was larger for wild-type compared with Icam1-/- mice during 28 days of recovery. Contrastingly, restoration of muscle function after injury was similar between the genotypes. ICAM-1 facilitated the restoration of muscle structure after injury through mechanisms involving the regulation of myofiber branching, protein synthesis, and the organization of nuclei within myofibers after myogenic cell fusion. These findings provide support for a paradigm in which ICAM-1 expressed by myogenic cells after muscle injury augments their adhesive and fusogenic properties, which, in turn, facilitates regenerative and hypertrophic processes that restore structure to injured muscle.
Collapse
Affiliation(s)
- Ryan A Martin
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Kole H Buckley
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Drew C Mankowski
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Benjamin M Riley
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Alena N Sidwell
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Stephanie L Douglas
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| | - Randall G Worth
- Department of Medical Microbiology and Immunology, The University of Toledo, Toledo, Ohio
| | - Francis X Pizza
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio.
| |
Collapse
|
36
|
Snijders T, Aussieker T, Holwerda A, Parise G, Loon LJC, Verdijk LB. The concept of skeletal muscle memory: Evidence from animal and human studies. Acta Physiol (Oxf) 2020; 229:e13465. [PMID: 32175681 PMCID: PMC7317456 DOI: 10.1111/apha.13465] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Within the current paradigm of the myonuclear domain theory, it is postulated that a linear relationship exists between muscle fibre size and myonuclear content. The myonuclear domain is kept (relatively) constant by adding additional nuclei (supplied by muscle satellite cells) during muscle fibre hypertrophy and nuclear loss (by apoptosis) during muscle fibre atrophy. However, data from recent animal studies suggest that myonuclei that are added to support muscle fibre hypertrophy are not lost within various muscle atrophy models. Such myonuclear permanence has been suggested to constitute a mechanism allowing the muscle fibre to (re)grow more efficiently during retraining, a phenomenon referred to as "muscle memory." The concept of "muscle memory by myonuclear permanence" has mainly been based on data attained from rodent experimental models. Whether the postulated mechanism also holds true in humans remains largely ambiguous. Nevertheless, there are several studies in humans that provide evidence to potentially support or contradict (parts of) the muscle memory hypothesis. The goal of the present review was to discuss the evidence for the existence of "muscle memory" in both animal and human models of muscle fibre hypertrophy as well as atrophy. Furthermore, to provide additional insight in the potential presence of muscle memory by myonuclear permanence in humans, we present new data on previously performed exercise training studies. Finally, suggestions for future research are provided to establish whether muscle memory really exists in humans.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Thorben Aussieker
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Andy Holwerda
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Gianni Parise
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences McMaster University Hamilton ON Canada
| | - Luc J. C. Loon
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | | |
Collapse
|
37
|
Hromowyk KJ, Talbot JC, Martin BL, Janssen PML, Amacher SL. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev Biol 2020; 462:85-100. [PMID: 32165147 PMCID: PMC7225055 DOI: 10.1016/j.ydbio.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fusion occurs during development, growth, and regeneration. To investigate how muscle fusion compares among different muscle cell types and developmental stages, we studied muscle cell fusion over time in wild-type, myomaker (mymk), and jam2a mutant zebrafish. Using live imaging, we show that embryonic myoblast elongation and fusion correlate tightly with slow muscle cell migration. In wild-type embryos, only fast muscle fibers are multinucleate, consistent with previous work showing that the cell fusion regulator gene mymk is specifically expressed throughout the embryonic fast muscle domain. However, by 3 weeks post-fertilization, slow muscle fibers also become multinucleate. At this late-larval stage, mymk is not expressed in muscle fibers, but is expressed in small cells near muscle fibers. Although previous work showed that both mymk and jam2a are required for embryonic fast muscle cell fusion, we observe that muscle force and function is almost normal in mymk and jam2a mutant embryos, despite the lack of fast muscle multinucleation. We show that genetic requirements change post-embryonically, with jam2a becoming much less important by late-larval stages and mymk now required for muscle fusion and growth in both fast and slow muscle cell types. Correspondingly, adult mymk mutants perform poorly in sprint and endurance tests compared to wild-type and jam2a mutants. We show that adult mymk mutant muscle contains small mononucleate myofibers with average myonuclear domain size equivalent to that in wild type adults. The mymk mutant fibers have decreased Laminin expression and increased numbers of Pax7-positive cells, suggesting that impaired fiber growth and active regeneration contribute to the muscle phenotype. Our findings identify several aspects of muscle fusion that change with time in slow and fast fibers as zebrafish develop beyond embryonic stages.
Collapse
Affiliation(s)
- Kimberly J Hromowyk
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jared C Talbot
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA.
| | - Brit L Martin
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
38
|
van Westering TLE, Lomonosova Y, Coenen-Stass AML, Betts CA, Bhomra A, Hulsker M, Clark LE, McClorey G, Aartsma-Rus A, van Putten M, Wood MJA, Roberts TC. Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology. J Cachexia Sarcopenia Muscle 2020; 11:578-593. [PMID: 31849191 PMCID: PMC7113513 DOI: 10.1002/jcsm.12506] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by genetic loss of dystrophin protein. Extracellular microRNAs (ex-miRNAs) are putative, minimally invasive biomarkers of DMD. Specific ex-miRNAs (e.g. miR-1, miR-133a, miR-206, and miR-483) are highly up-regulated in the serum of DMD patients and dystrophic animal models and are restored to wild-type levels following exon skipping-mediated dystrophin rescue in mdx mice. As such, ex-miRNAs are promising pharmacodynamic biomarkers of exon skipping efficacy. Here, we aimed to determine the degree to which ex-miRNA levels reflect the underlying level of dystrophin protein expression in dystrophic muscle. METHODS Candidate ex-miRNA biomarker levels were investigated in mdx mice in which dystrophin was restored with peptide-PMO (PPMO) exon skipping conjugates and in mdx-XistΔhs mice that express variable amounts of dystrophin from birth as a consequence of skewed X-chromosome inactivation. miRNA profiling was performed in mdx-XistΔhs mice using the FirePlex methodology and key results validated by small RNA TaqMan RT-qPCR. The muscles from each animal model were further characterized by dystrophin western blot and immunofluorescence staining. RESULTS The restoration of ex-myomiR abundance observed following PPMO treatment was not recapitulated in the high dystrophin-expressing mdx-XistΔhs group, despite these animals expressing similar amounts of total dystrophin protein (~37% of wild-type levels). Instead, ex-miRNAs were present at high levels in mdx-XistΔhs mice regardless of dystrophin expression. PPMO-treated muscles exhibited a uniform pattern of dystrophin localization and were devoid of regenerating fibres, whereas mdx-XistΔhs muscles showed non-homogeneous dystrophin staining and sporadic regenerating foci. CONCLUSIONS Uniform dystrophin expression is required to prevent ex-miRNA release, stabilize myofiber turnover, and attenuate pathology in dystrophic muscle.
Collapse
Affiliation(s)
- Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Yulia Lomonosova
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Anna M L Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Amarjit Bhomra
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Margriet Hulsker
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lucy E Clark
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA, USA
| |
Collapse
|
39
|
Displaced Myonuclei in Cancer Cachexia Suggest Altered Innervation. Int J Mol Sci 2020; 21:ijms21031092. [PMID: 32041358 PMCID: PMC7038037 DOI: 10.3390/ijms21031092] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
An idiopathic myopathy characterized by central nuclei in muscle fibers, a hallmark of muscle regeneration, has been observed in cancer patients. In cancer cachexia skeletal muscle is incapable of regeneration, consequently, this observation remains unaccounted for. In C26-tumor bearing, cachectic mice, we observed muscle fibers with central nuclei in the absence of molecular markers of bona fide regeneration. These clustered, non-peripheral nuclei were present in NCAM-expressing muscle fibers. Since NCAM expression is upregulated in denervated myofibers, we searched for additional makers of denervation, including AchRs, MUSK, and HDAC. This last one being also consistently upregulated in cachectic muscles, correlated with an increase of central myonuclei. This held true in the musculature of patients suffering from gastrointestinal cancer, where a progressive increase in the number of central myonuclei was observed in weight stable and in cachectic patients, compared to healthy subjects. Based on all of the above, the presence of central myonuclei in cancer patients and animal models of cachexia is consistent with motor neuron loss or NMJ perturbation and could underlie a previously neglected phenomenon of denervation, rather than representing myofiber damage and regeneration in cachexia. Similarly to aging, denervation-dependent myofiber atrophy could contribute to muscle wasting in cancer cachexia.
Collapse
|
40
|
Suzuki H, Yoshikawa Y, Tsujimoto H, Kitaura T, Muraoka I. Clenbuterol accelerates recovery after immobilization-induced atrophy of rat hindlimb muscle. Acta Histochem 2020; 122:151453. [PMID: 31761272 DOI: 10.1016/j.acthis.2019.151453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 01/11/2023]
Abstract
Using immunohistochemistry, we investigated whether daily administration of clenbuterol (CLE; 1 mg/kg body weight per day) accelerates recovery after casted immobilization(IMM)-induced atrophy of fast-twitch plantaris and slow-twitch soleus muscles. Adult male Sprague-Dawley rats were assigned to the control (CON), casted immobilization (IMM), casted immobilization following recovery control (RCON), and casted immobilization following recovery with CLE administration (RCLE) groups. Casted immobilization and recovery periods were 9 and 14days, respectively. Rats of the CON group were subjected to the experiment simultaneously with the IMM group. Nine days of immobilization induced muscle fiber atrophy, which was greater in the soleus muscle than in the plantaris muscle. After the 2-week recovery period, the cross-sectional areas of each fiber type in both muscles were higher in the RCON group than in the IMM group. The cross-sectional areas of each fiber type in both muscles in the RCLE group were larger than those in the RCON group. The myonuclear number of each fiber type of the plantaris muscle in the RCON and RCLE groups was higher than that in the CON group. In contrast, the myonuclear number per fiber of the soleus muscle was not affected by hindlimb immobilization, reloading, and clenbuterol administration regardless of muscle fiber type. These results suggest that CLE accelerates the recovery of atrophied plantaris and soleus muscles fibers and that their mechanisms of responses to CLE in both muscles may be different during recovery period after muscle atrophy.
Collapse
Affiliation(s)
- Hideki Suzuki
- Department of Health and Physical Education, Aichi University of Education, Kariya, Japan.
| | | | | | | | - Isao Muraoka
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
41
|
Karlsen A, Bechshøft RL, Malmgaard‐Clausen NM, Andersen JL, Schjerling P, Kjaer M, Mackey AL. Lack of muscle fibre hypertrophy, myonuclear addition, and satellite cell pool expansion with resistance training in 83-94-year-old men and women. Acta Physiol (Oxf) 2019; 227:e13271. [PMID: 30828982 DOI: 10.1111/apha.13271] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
AIMS To examine satellite cell and myonuclear content in very old (≥83 years) individuals, and the response to heavy resistance training. METHODS A group of very old men and women (Old, 83-94 years, n = 29) was randomized to 12 weeks of heavy resistance training or untrained controls. A group of young men who did not resistance train (Young, 19-27 years, n = 9) were included for comparison. RESULTS Compared to young men, prior to training the old men had smaller type II fibres (-38%, P < 0.001), lower satellite cell content (-52%, P < 0.001), smaller myonuclear domain (-30%, P < 0.001), and a trend for lower myonuclear content (-13%, P = 0.09). Old women were significantly different from old men for these parameters, except for satellite cell content. Resistance training had no effect on these parameters in these old men and women. Fibre-size specific analysis showed strong correlations between fibre size and myonuclei per fibre and between fibre size and myonuclear domain for both fibre types (r = 0.94-0.99, P < 0.0001). In contrast, muscle fibre perimeter per myonucleus seemed to be constant across the range in fibre size, particularly in type I fibres (r = -0.31, P = 0.17). CONCLUSIONS The present data demonstrate that type II fibre size, satellite cell content and myonuclear domain is significantly smaller in very old men compared to young men, while myonuclear content is less affected. These parameters were not improved with heavy resistance training at the most advanced stage of ageing.
Collapse
Affiliation(s)
- Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Rasmus L. Bechshøft
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
| | - Nikolaj M. Malmgaard‐Clausen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
| | - Jesper L. Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
42
|
Landim-Vieira M, Schipper JM, Pinto JR, Chase PB. Cardiomyocyte nuclearity and ploidy: when is double trouble? J Muscle Res Cell Motil 2019; 41:329-340. [PMID: 31317457 DOI: 10.1007/s10974-019-09545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023]
Abstract
Considerable effort has gone into investigating mechanisms that underlie the developmental transition in which mammalian cardiomyocytes (CMs) switch from being able to proliferate during development, to essentially having lost that ability at maturity. This problem is interesting not only for scientific curiosity, but also for its clinical relevance because controlling the ability of mature CMs to replicate would provide a much-needed approach for restoring cardiac function in damaged hearts. In this review, we focus on the propensity of mature mammalian CMs to be multinucleated and polyploid, and the extent to which this may be necessary for normal physiology yet possibly disadvantageous in some circumstances. In this context, we explore whether the concept of the myonuclear domain (MND) in multinucleated skeletal muscle fibers might apply to cardiomyocytes, and whether cardio-MND size might be related to the transition of CMs to become multinuclear. Nuclei in CMs are almost certainly integrators of not only biochemical, but also-because of their central location within the myofibrils-mechanical information, and this multimodal, integrative function in adult CMs-involving molecules that have been extensively studied along with newly identified possibilities-could influence both gene expression as well as replication of the genome and the nuclei themselves.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Joslyn M Schipper
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.,Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA. .,Department of Biological Science, Florida State University, Biology Unit One Room 206, 81 Chieftain Way, Tallahassee, FL, 32306-4370, USA.
| |
Collapse
|
43
|
Nuclear Scaling Is Coordinated among Individual Nuclei in Multinucleated Muscle Fibers. Dev Cell 2019; 49:48-62.e3. [PMID: 30905770 DOI: 10.1016/j.devcel.2019.02.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/28/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022]
Abstract
Optimal cell performance depends on cell size and the appropriate relative size, i.e., scaling, of the nucleus. How nuclear scaling is regulated and contributes to cell function is poorly understood, especially in skeletal muscle fibers, which are among the largest cells, containing hundreds of nuclei. Here, we present a Drosophila in vivo system to analyze nuclear scaling in whole multinucleated muscle fibers, genetically manipulate individual components, and assess muscle function. Despite precise global coordination, we find that individual nuclei within a myofiber establish different local scaling relationships by adjusting their size and synthetic activity in correlation with positional or spatial cues. While myonuclei exhibit compensatory potential, even minor changes in global nuclear size scaling correlate with reduced muscle function. Our study provides the first comprehensive approach to unraveling the intrinsic regulation of size in multinucleated muscle fibers. These insights to muscle cell biology will accelerate the development of interventions for muscle diseases.
Collapse
|
44
|
Yoon N, Chu V, Gould M, Zhang M. Spatial and temporal changes in myogenic protein expression by the microenvironment after freeze injury. J Anat 2019; 234:359-367. [PMID: 30657171 DOI: 10.1111/joa.12925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle has the remarkable capability to regenerate itself following injury. Adult myogenic stem cells (MSCs) are responsible for the repair and regeneration, and their activity is controlled by intrinsic and extrinsic factors. The aim of this study was to examine and compare the expression levels of Pax3, Pax7, MRF and p38 proteins during the course of regeneration and in different areas of the focal freeze-lesion damaged adult rat TA muscle. Using the focal freeze injury model, immunohistochemistry, laser-capture micro-dissection and Western blot analysis were performed. The results show that (1) in the severely damaged area, the focal freeze-lesion injury significantly activated Pax7 and myogenin expression within 7 days and down-regulated Pax3, MyoD and Myf-5 within 1 or 3 days, and (2) the level of the p38 protein was strongly and transiently up-regulated in the whole muscle on day 7 following injury, whereas the level of the pp38 protein was down-regulated within 3 days in the severely damaged and non-damaged areas. These findings indicate that the temporal (e.g. the time course of regeneration) and spatial (e.g. three zones created by the focal freeze-lesion) cues in a regenerating muscle have a significant impact on the activity of the adult MSCs.
Collapse
Affiliation(s)
- Nara Yoon
- Anatomy Department, University of Otago, Dunedin, New Zealand
| | - Vivian Chu
- Anatomy Department, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Anatomy Department, University of Otago, Dunedin, New Zealand
| | - Ming Zhang
- Anatomy Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
45
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 PMCID: PMC6442923 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 953] [Impact Index Per Article: 158.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
46
|
Gundersen K, Bruusgaard JC, Egner IM, Eftestøl E, Bengtsen M. Muscle memory: virtues of your youth? J Physiol 2018; 596:4289-4290. [PMID: 30145845 DOI: 10.1113/jp276354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- K Gundersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - J C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - I M Egner
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - E Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - M Bengtsen
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Lee H, Kim K, Kim B, Shin J, Rajan S, Wu J, Chen X, Brown MD, Lee S, Park JY. A cellular mechanism of muscle memory facilitates mitochondrial remodelling following resistance training. J Physiol 2018; 596:4413-4426. [PMID: 30099751 DOI: 10.1113/jp275308] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Referring to the muscle memory theory, previously trained muscles acquire strength and volume much faster than naive muscles. Using extreme experimental models such as synergist ablation or steroid administration, previous studies have demonstrated that the number of nuclei increases when a muscle becomes enlarged, which serves as a cellular muscle memory mechanism for the muscle. In the present study, we found that, when rats were subjected to physiologically relevant resistance training, the number of myonuclei increased and was retained during a long-term detraining period. The acquired myonuclei were related to a greater degree of muscle hypertrophic and mitochondrial biogenesis processes following subsequent hypertrophic conditions. Our data suggest a cellular mechanism supporting the notion that exposing young muscles to resistance training would help to restore age-related muscle loss coupled with mitochondrial dysfunction in later life. ABSTRACT Muscle hypertrophy induced by resistance training is accompanied by an increase in the number of myonuclei. The acquired myonuclei are viewed as a cellular component of muscle memory by which muscle enlargement is promoted during a re-training period. In the present study, we investigated the effect of exercise preconditioning on mitochondrial remodelling induced by resistance training. Sprague-Dawley rats were divided into four groups: untrained control, training, pre-training or re-training. The training groups were subjected to weight loaded-ladder climbing exercise training. Myonuclear numbers were significantly greater (up to 20%) in all trained muscles compared to untrained controls. Muscle mass was significantly higher in the re-training group compared to the training group (∼2-fold increase). Mitochondrial content, mitochondrial biogenesis gene expression levels and mitochondrial DNA copy numbers were significantly higher in re-trained muscles compared to the others. Oxidative myofibres (type I) were significantly increased only in the re-trained muscles. Furthermore, in vitro studies using insulin-like growth factor-1-treated L6 rat myotubes demonstrated that myotubes with a higher myonuclear number confer greater expression levels of both mitochondrial and nuclear genes encoding for constitutive and regulatory mitochondrial proteins, which also showed a greater mitochondrial respiratory function. These data suggest that myonuclei acquired from previous training facilitate mitochondrial biogenesis in response to subsequent retraining by (at least in part) enhancing cross-talk between mitochondria and myonuclei in the pre-conditioned myofibres.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, PA, USA.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,School of Sports and Health Science, Kyungsung University, Busan, South Korea.,Mechanical & Molecular Myology Lab, Department of Rehabilitation Medicine and College of Medicine, Seoul National University, Bundang Hospital, Seongnam, South Korea
| | - Kijeong Kim
- School of Exercise and Sport Science, University of Ulsan, Ulsan, South Korea
| | - Boa Kim
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, PA, USA.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Junchul Shin
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, PA, USA.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jingwei Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, USA
| | - Xiongwen Chen
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | | | - Sukho Lee
- Department of Counseling, Health and Kinesiology, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Joon-Young Park
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, PA, USA.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
48
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
49
|
Mechanical positioning of multiple nuclei in muscle cells. PLoS Comput Biol 2018; 14:e1006208. [PMID: 29889846 PMCID: PMC6013246 DOI: 10.1371/journal.pcbi.1006208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/21/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022] Open
Abstract
Many types of large cells have multiple nuclei. In skeletal muscle fibers, the nuclei are distributed along the cell to maximize their internuclear distances. This myonuclear positioning is crucial for cell function. Although microtubules, microtubule associated proteins, and motors have been implicated, mechanisms responsible for myonuclear positioning remain unclear. We used a combination of rough interacting particle and detailed agent-based modeling to examine computationally the hypothesis that a force balance generated by microtubules positions the muscle nuclei. Rather than assuming the nature and identity of the forces, we simulated various types of forces between the pairs of nuclei and between the nuclei and cell boundary to position the myonuclei according to the laws of mechanics. We started with a large number of potential interacting particle models and computationally screened these models for their ability to fit biological data on nuclear positions in hundreds of Drosophila larval muscle cells. This reverse engineering approach resulted in a small number of feasible models, the one with the best fit suggests that the nuclei repel each other and the cell boundary with forces that decrease with distance. The model makes nontrivial predictions about the increased nuclear density near the cell poles, the zigzag patterns of the nuclear positions in wider cells, and about correlations between the cell width and elongated nuclear shapes, all of which we confirm by image analysis of the biological data. We support the predictions of the interacting particle model with simulations of an agent-based mechanical model. Taken together, our data suggest that microtubules growing from nuclear envelopes push on the neighboring nuclei and the cell boundaries, which is sufficient to establish the nearly-uniform nuclear spreading observed in muscle fibers. How the cell organizes its interior is one of the fundamental biological questions, but the principles of organelles’ positioning remains largely unclear. In this study we use computational modeling and image analysis to elucidate mechanisms of positioning of multiple nuclei in muscle cells. We start with the general hypothesis, supported by published data, that a force balance generated by microtubule asters growing from the nuclei envelopes are responsible for pushing or pulling neighboring nuclei and cell boundaries, and that these forces position the nuclei. Instead of assuming what these forces are, we computationally screen all possible forces by comparing predictions of hundreds simple mechanical models to experimentally measured nuclear positions and shapes in hundreds of Drosophila muscle cells. This screening results in the model, according to which microtubules from one nucleus push away both neighboring nuclei and cell boundaries. We also perform detailed stochastic simulations of the only surviving model with individual growing, pushing and bending microtubules. This model predicts subtle features of nuclear patterns, all of which we confirm experimentally. Our study sheds light on general principles of organelle positioning.
Collapse
|
50
|
Murach KA, Englund DA, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Myonuclear Domain Flexibility Challenges Rigid Assumptions on Satellite Cell Contribution to Skeletal Muscle Fiber Hypertrophy. Front Physiol 2018; 9:635. [PMID: 29896117 PMCID: PMC5986879 DOI: 10.3389/fphys.2018.00635] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Satellite cell-mediated myonuclear accretion is thought to be required for skeletal muscle fiber hypertrophy, and even drive hypertrophy by preceding growth. Recent studies in humans and rodents provide evidence that challenge this axiom. Specifically, Type 2 muscle fibers reliably demonstrate a substantial capacity to hypertrophy in the absence of myonuclear accretion, challenging the notion of a tightly regulated myonuclear domain (i.e., area that each myonucleus transcriptionally governs). In fact, a “myonuclear domain ceiling”, or upper limit of transcriptional output per nucleus to support hypertrophy, has yet to be identified. Satellite cells respond to muscle damage, and also play an important role in extracellular matrix remodeling during loading-induced hypertrophy. We postulate that robust satellite cell activation and proliferation in response to mechanical loading is largely for these purposes. Future work will aim to elucidate the mechanisms by which Type 2 fibers can hypertrophy without additional myonuclei, the extent to which Type 1 fibers can grow without myonuclear accretion, and whether a true myonuclear domain ceiling exists.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Davis A Englund
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - John J McCarthy
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Charlotte A Peterson
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|