1
|
Wu Q, Zhang J, Jiang M, Yin J, Wang L, Chen R, Sui Z. Studies on the regulation of E3 ubiquitin ligase APC3 and its interacting proteins on the tetraspore formation and release in Gracilariopsis lemaneiformis (Rhodophyta). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112488. [PMID: 40169068 DOI: 10.1016/j.plantsci.2025.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/23/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
E3 ubiquitin ligases play significant roles in development of high plants and animals. We recently found that E3 ubiquitin ligase APC3, the subunit of the anaphase promoting complex/cyclosome, was involved in tetraspore formation and release in Gracilariopsis lemaneiformis, an economically important red alga. GlAPC3 showed opposite expression pattern in low-fertility cultivar 981 and high-fertility strain WLP during the process of tetraspore formation and release, up-regulated in 981 and down-regulated in WLP. Five proteins related to chromosome segregation, SMC3, NUF2, APC2, APC8 and APC10, were detected to interact with APC3, which were all located in the nucleus. NUF2 and CDC20 were the substrates of APC3, combined with Lysine-11, Lysine-48 and Lysine-63 of ubiquitin chains containing two or four ubiquitin. The key amino acids for ubiquitination of APC3 covered 474th Aspartate, 502nd tyrosine and 506th leucine, any mutation of which resulted in a loss of ubiquitination. During the process of tetraspore formation and release, SMC3 was significantly up-regulated only in 981, low number of tetraspore release. NUF2 and APC2 were significantly down-regulated only in WLP, with high frequency and large amount of tetraspores release. The data provided that APC3, SMC3 and NUF2 might be the key gene affecting the fertility of Gp. lemaneiformis. The study helps to explore the regulation mechanism of APC3 with SMC3 and NUF2 by the process of chromatids segregation in regulating tetraspore formation and release of Gp. lemaneiformis.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; Hainan Provincial Academy of Marine Fisheries and Aquaculture, Haikou 570100, China
| | - Jingyu Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Min Jiang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Jingru Yin
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Lu Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Rui Chen
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
2
|
Arimura Y, Konishi HA, Funabiki H. MagIC-Cryo-EM, structural determination on magnetic beads for scarce macromolecules in heterogeneous samples. eLife 2025; 13:RP103486. [PMID: 40390365 PMCID: PMC12092007 DOI: 10.7554/elife.103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025] Open
Abstract
Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to <0.0005 mg/mL. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that excludes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of nucleoplasmin NPM2 co-isolated with the linker histone H1.8 and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Hide A Konishi
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
3
|
Zhou KD, Wang YJ, Ma PY, Fang SY, Ma W. Balance of polo-like kinase Plo1 and monopolar attachment protein 1 (Moa1) regulates fission yeast meiosis. Int J Biol Macromol 2025; 307:142189. [PMID: 40112985 DOI: 10.1016/j.ijbiomac.2025.142189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
During meiosis, diploid germ cells undergo two successive rounds of chromosome segregation requiring key changes that sister chromatids co-orient in meiosis I and bi-orient in meiosis II. The kinetochore protein MEIKIN/Moa1 is restricted to meiosis I, has the function to properly co-orient sister kinetochores and maintain pericentrometic cohesion. However, the mechanisms governing the Moa1 activity throughout meiosis remain elusive in Schizosaccharomyces pombe. Here, we demonstrate that fission yeast Moa1 is degraded by the APC/C at anaphase I and blocking Moa1 degradation has no effect on cohesin protection and chromosome segregation during meiosis. Blocking Moa1 degradation can be prevented by the elimination of kinetochore Plo1. Conversely, the removal of Plo1 from the kinetochore, which leads to chromosome mis-segregation, can be reversed by maintaining kinetochore Moa1 levels. Therefore, we have observed a feedback relationship between reduced Plo1 enrichment at kinetochores and inhibited Moa1 degradation.
Collapse
Affiliation(s)
- Kang-Di Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu-Jia Wang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Pei-Yan Ma
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shao-Yang Fang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Wetherall B, Bulmer D, Sarginson A, Thomas C, Madgwick S. SGO2 does not play an essential role in separase inhibition during meiosis I in mouse oocytes. PLoS Biol 2025; 23:e3003131. [PMID: 40267054 PMCID: PMC12017502 DOI: 10.1371/journal.pbio.3003131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
During meiosis I in oocytes, anaphase is triggered by deactivation of cyclin B1-CDK1 and activation of separase. Active separase plays an essential role in cleaving cohesin rings that hold homologous chromosomes together. Critically, separase must be inhibited until all chromosomes are aligned and the cell is prepared for anaphase I. Inhibition can be mediated through the binding of separase to either securin or cyclin B1-CDK1. The relative contribution of each inhibitory pathway varies depending on cell type. Recently, shugoshin-2 (SGO2) has also been shown to inhibit separase in mitotic cells. Here, we used a separase biosensor and perturbed the three inhibitory pathways during meiosis I in mouse oocytes. We show that inhibition mediated by either securin or cyclin B1-CDK1, but not SGO2, is independently sufficient to suppress separase activity. However, when both the securin and cyclin B1-CDK1 inhibitory pathways are perturbed together, separase activity begins prematurely, resulting in gross segregation defects. Furthermore, we characterized SGO2 destruction dynamics and concluded that it is not an essential separase inhibitor in mouse oocytes. The existence of multiple separase inhibitory pathways highlights the critical importance of tightly regulated separase activity during this unique and challenging cell division.
Collapse
Affiliation(s)
- Benjamin Wetherall
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - David Bulmer
- Bioimaging Unit, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Alexandra Sarginson
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Christopher Thomas
- IBDM—Institut de Biologie du Développement de Marseille, CNRS—UMR 7288, Aix-Marseille Université, Marseille, France
| | - Suzanne Madgwick
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
5
|
Cho Y, Song DG, Kim SN, Kim YK. CARM1 S217 phosphorylation by CDK1 in late G2 phase facilitates mitotic entry. Cell Death Dis 2025; 16:202. [PMID: 40133267 PMCID: PMC11937338 DOI: 10.1038/s41419-025-07533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/15/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
The coactivator-associated arginine methyltransferase 1 (CARM1) functions as an epigenetic writer, however, its role in mitosis remains poorly understood. In this study, we identified CARM1 as a novel substrate of cyclin-dependent kinase 1 (CDK1) and revealed its novel function as a scaffold that regulates CDK1 stability. During interphase, CARM1 acts as an adaptor in the Cullin-1-mediated CDK1 degradation process, limiting nuclear levels of CDK1. In late G2 phase, the CDK1/Cyclin B1 complex translocates to the nucleus, where it phosphorylates the S217 residue of CARM1. This phosphorylation not only inhibits CARM1's enzymatic activity but also facilitates its translocation to the cytoplasm, leading to the loss of its scaffolding function. Consequently, the CDK1/Cyclin B1 complex resides for longer in the nucleus and initiates mitosis. In addition, depletion or inhibition of CARM1 facilitates entry into mitosis, resulting in accelerated cell growth. Overall, our findings expand the cellular functions of CARM1 beyond its enzymatic activity.
Collapse
Affiliation(s)
- Yena Cho
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Dae-Geun Song
- Natural Products Research Institute, KIST Gangneung, Gangneung, 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, KIST Gangneung, Gangneung, 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Yong Kee Kim
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
6
|
Zhang X, Wang G, Zhang P, Chen C, Zhang J, Bian Y, Liu M, Niu C, Sun F, Wang Y, Liu G, Wang Z, Ma F, Bao Z. Plant cell-cycle regulators control the nuclear environment for viral pathogenesis. Cell Host Microbe 2025; 33:420-435.e14. [PMID: 40043702 DOI: 10.1016/j.chom.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025]
Abstract
The proper regulation of cell-cycle regulators is curial for both viral replication and host-plant adaptive growth during the viral pathogenesis. Mechanisms on reorchestrating RETINOBLASTOMA-RELATED 1 (RBR1), repressor of E2F transcription factor, and downstream genes in host-virus interactions are unclear. Here, we discover that anaphase-promoting complex/cyclosome (APC/C) E3 ligase activator cell division cycle 20 (CDC20) in tomato binds RBR1 or mediates cyclin D1 depletion to preserve RBR1-E2F complexes, while geminivirus or crinivirus repurposes APC/CCDC20 activities to liberate E2Fs in two ways: activating APC/CCDC20 to deplete RBR1 or blocking APC/CCDC20 to stimulate cyclin-D1-mediated RBR1 depletion. The liberated E2Fs activate DNA polymerase or heat shock protein 70 gene transcription to favor virus propagation. The improper disruption of RBR1-E2F complexes via hijacking APC/CCDC20 causes the host growth repression. We uncover a scenario in which the virus co-opts host APC/CCDC20 to reprogram RBR1-E2F complex to favor its propagation while dampening host vitality.
Collapse
Affiliation(s)
- Xu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Ge Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Peng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chunyan Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Jiucheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yumei Bian
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Minmin Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chenxu Niu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fengze Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yahui Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Genzhong Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Zhimin Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fangfang Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China.
| | - Zhilong Bao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China.
| |
Collapse
|
7
|
Enenkel C, Ernst OP. Proteasome dynamics in response to metabolic changes. Front Cell Dev Biol 2025; 13:1523382. [PMID: 40099196 PMCID: PMC11911490 DOI: 10.3389/fcell.2025.1523382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Proteasomes, essential protease complexes in protein homeostasis, adapt to metabolic changes through intracellular movements. As the executive arm of the ubiquitin-proteasome system, they selectively degrade poly-ubiquitinated proteins in an ATP-dependent process. The primary proteasome configuration involved in this degradation is the 26S proteasome, which is composed of a proteolytically active core particle flanked by two regulatory particles. In metabolically active cells, such as proliferating yeast and mammalian cancer cells, 26S proteasomes are predominantly nuclear and actively engaged in protein degradation. However, during nutrient deprivation or stress-induced quiescence, proteasome localization changes. In quiescent yeast, proteasomes initially accumulate at the nuclear envelope. During prolonged quiescence with decreased ATP levels, proteasomes exit the nucleus and are sequestered into cytoplasmic membraneless organelles, so-called proteasome storage granules (PSGs). In mammalian cells, starvation and stress trigger formation of membraneless organelles containing proteasomes and poly-ubiquitinated substrates. The proteasome condensates are motile, reversible, and contribute to stress resistance and improved fitness during aging. Proteasome condensation may involve liquid-liquid phase separation, a mechanism underlying the assembly of membraneless organelles.
Collapse
Affiliation(s)
- Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Oliver P. Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Zippo A, Beyes S. Molecular mechanisms altering cell identity in cancer. Oncogene 2025:10.1038/s41388-025-03314-2. [PMID: 40011573 DOI: 10.1038/s41388-025-03314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Intrinsic and extrinsic factors influence cancer cell identity throughout its lifespan. During tumor progression and metastasis formation, cancer cells are exposed to different environmental stimuli, resulting in a stepwise cellular reprogramming. Similar stepwise changes of cell identity have been shown as a major consequence of cancer treatment, as cells are exposed to extracellular stress that can result in the establishment of subpopulations exhibiting different epigenetic and transcriptional patterns, indicating a rapid adaptation mechanism of cellular identity by extrinsic stress factors. Both mechanisms, tumor progression-mediated changes and therapy response, rely on signaling pathways affecting the epigenetic and subsequent transcriptional landscape, which equip the cells with mechanisms for survival and tumor progression. These non-genetic alterations are propagated to the daughter cells, indicating a need for successful information propagation and transfer to the daughter generations, thereby allowing for a stepwise adaptation to environmental cues. However, the exact mechanisms how these cell identity changes are occurring, which context-specific mechanisms are behind and how this can be exploited for future therapeutic interventions is not yet fully understood and exploited. In this review, we discuss the current knowledge on cell identity maintenance mechanisms intra- and intergenerational in development and disease and how these mechanisms are altered in cancer. We will as well address how cancer treatment might target these properties.
Collapse
Affiliation(s)
- Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Sven Beyes
- Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany.
| |
Collapse
|
9
|
Suiter CC, Calderon D, Lee DS, Chiu M, Jain S, Chardon FM, Lee C, Daza RM, Trapnell C, Zheng N, Shendure J. Combinatorial mapping of E3 ubiquitin ligases to their target substrates. Mol Cell 2025; 85:829-842.e6. [PMID: 39919746 PMCID: PMC11845296 DOI: 10.1016/j.molcel.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
E3 ubiquitin ligases (E3s) confer specificity of protein degradation through ubiquitination of substrate proteins. Yet, the vast majority of the >600 human E3s have no known substrates. To identify proteolytic E3-substrate pairs at scale, we developed combinatorial mapping of E3 targets (COMET), a framework for testing the role of many E3s in degrading many candidate substrates within a single experiment. We applied COMET to SCF ubiquitin ligase subunits that mediate degradation of target substrates (6,716 F-box-ORF [open reading frame] combinations) and E3s that degrade short-lived transcription factors (TFs) (26,028 E3-TF combinations). Our data suggest that many E3-substrate relationships are complex rather than 1:1 associations. Finally, we leverage deep learning to predict the structural basis of E3-substrate interactions and probe the strengths and limits of such models. Looking forward, we consider the practicality of transposing this framework, i.e., computational structural prediction of all possible E3-substrate interactions, followed by multiplex experimental validation.
Collapse
Affiliation(s)
- Chase C Suiter
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA.
| | - Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David S Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Melodie Chiu
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Shruti Jain
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Florence M Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Jay Shendure
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Weng F, Jin X, Ragunathan S, Huang S, Kane T, Stoeckel M, Wang Y. Prenylation-dependent membrane localization of a deubiquitinating enzyme and its role in regulating G protein-mediated signaling in yeast. J Biol Chem 2025; 301:108180. [PMID: 39798877 PMCID: PMC11847538 DOI: 10.1016/j.jbc.2025.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Miy1 is a highly conserved deubiquitinating enzyme in yeast with MINDY1 as its human homolog. Miy1 is known to act on K48-linked polyubiquitin chain, but its biological function is unknown. Miy1 has a putative prenylation site, suggesting it as a membrane-associated protein that may contribute to the regulation of cell signaling. Here, we demonstrate that Miy1 is localized in the plasma membrane and nuclear periphery. Mutating the putative prenylation site in Miy1 or disrupting the farnesyltransferase activity impairs its localization. Consistent with a role of Miy1 in regulating the ubiquitination status of membrane proteins, the miy1Δ mutants exhibit a higher level of ubiquitinated conjugates at the plasma membrane. To examine a role of Miy1 in regulating cell signaling across plasma membrane, we focused on the pheromone response, as both Ste2, the receptor for mating pheromone, and Gpa1, the cognate Gα protein of Ste2, are well known to be regulated by ubiquitination. We find that Miy1 interacts with Gpa1, regulates its level of ubiquitination and abundance. Pheromone-induced MAP kinase Fus3 activation is also altered in the MIY1-disrupted mutants. The findings demonstrate that Miy1 is a membrane-associated deubiquitinating enzyme and a regulator of G protein-mediated signaling.
Collapse
Affiliation(s)
- Fangli Weng
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Xin Jin
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Sindhu Ragunathan
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Shan Huang
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Thomas Kane
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Matthew Stoeckel
- Department of Biology, Saint Louis University, St Louis, Missouri, USA
| | - Yuqi Wang
- Department of Biology, Saint Louis University, St Louis, Missouri, USA.
| |
Collapse
|
11
|
Shen J, Li J, Shen Q, Hou J, Zhang C, Bai H, Ai X, Su Y, Wang Z, Zhang Y, Xu B, Hao J, Wang P, Zhang Q, Ye AY, Li Z, Feng T, Li L, Qi F, Wang Q, Sun Y, Liu C, Xi X, Yan L, Hong H, Chen Y, Xie X, Xie J, Liu X, Du R, Plebani R, Zhang L, Zhou D, Church G, Si L. Proteolysis-targeting influenza vaccine strains induce broad-spectrum immunity and in vivo protection. Nat Microbiol 2025; 10:431-447. [PMID: 39815008 DOI: 10.1038/s41564-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses. PROTAR viruses were engineered to be attenuated by the ubiquitin-proteasome system, which mediates viral protein degradation in conventional host cells, but allows efficient replication in engineered cell lines for large-scale manufacturing. Depending on the degron-E3 ligase pairs, viruses showed varying degrees of attenuation. In animal models, PROTAR viruses were highly attenuated and elicited robust, broad, strain-dependent humoral, mucosal and cellular immunity. In addition, they provided cross-reactive protection against homologous and heterologous viral challenges. This study provides a systematic approach for developing safe and effective vaccines, with potential applications in designing live attenuated vaccines against other pathogens.
Collapse
Affiliation(s)
- Jinying Shen
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Li
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Quan Shen
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jihuan Hou
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunhe Zhang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiqing Bai
- Xellar Biosystems, Boston, MA, USA
- Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xiaoni Ai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yinlei Su
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zihao Wang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yunfei Zhang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Beibei Xu
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiawei Hao
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping Wang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Adam Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Zhen Li
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Tang Feng
- West China Hospital, Sichuan University, Chengdu, China
| | - Le Li
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Qi
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qikai Wang
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yacong Sun
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengyao Liu
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuetong Xi
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Yan
- Beijing Daxiang Biotech, Beijing, China
| | | | - Yuting Chen
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Xie
- Xellar Biosystems, Boston, MA, USA
- Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Jing Xie
- West China Hospital, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruikun Du
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Roberto Plebani
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Longlong Si
- State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Hegde AN, Timm LE, Sivley CJ, Ramiyaramcharankarthic S, Lowrimore OJ, Hendrix BJ, Grozdanov TG, Anderson WJ. Ubiquitin-Proteasome-Mediated Protein Degradation and Disorders of the Central Nervous System. Int J Mol Sci 2025; 26:966. [PMID: 39940735 PMCID: PMC11817509 DOI: 10.3390/ijms26030966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Ubiquitin-proteasome-mediated proteolysis post-translationally regulates the amounts of many proteins that are critical for the normal physiology of the central nervous system. Research carried out over the last several years has revealed a role for components of the ubiquitin-proteasome pathway (UPP) in many neurodegenerative diseases such as Parkinson's disease and Huntington's disease. Studies have also shown a role for the UPP in mental disorders such as schizophrenia and autism. Even though dysregulation of protein degradation by the UPP is a contributory factor to the pathology underlying many nervous system disorders, the association between the components of the UPP and these diseases is far from simple. In this review, we discuss the connections between the UPP and some of the major mental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashok N. Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA; (L.E.T.); (C.J.S.); (S.R.); (O.J.L.); (B.J.H.); (T.G.G.); (W.J.A.)
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
14
|
Simonini S. Regulation of cell cycle in plant gametes: when is the right time to divide? Development 2025; 152:dev204217. [PMID: 39831611 PMCID: PMC11829769 DOI: 10.1242/dev.204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cell division is a fundamental process shared across diverse life forms, from yeast to humans and plants. Multicellular organisms reproduce through the formation of specialized types of cells, the gametes, which at maturity enter a quiescent state that can last decades. At the point of fertilization, signalling lifts the quiescent state and triggers cell cycle reactivation. Studying how the cell cycle is regulated during plant gamete development and fertilization is challenging, and decades of research have provided valuable, yet sometimes contradictory, insights. This Review summarizes the current understanding of plant cell cycle regulation, gamete development, quiescence, and fertilization-triggered reactivation.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH8008, Zurich, Switzerland
| |
Collapse
|
15
|
Shah S, Shi CM, Elgizawy KK, Yan WH, Wu G, Wang XP, Yang FL. E3 Siah ubiquitin ligase regulates dichotomous spermatogenesis in Sitotroga cerealella. Front Cell Dev Biol 2025; 12:1507725. [PMID: 39866841 PMCID: PMC11759277 DOI: 10.3389/fcell.2024.1507725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Spermatogenesis in Lepidoptera holds significant importance due to its unique process of dichotomous spermatogenesis, yielding eupyrene and apyrene spermatozoa through a complex molecular mechanism. While E3 ubiquitin ligases are known to play vital roles in spermatogenesis across various processes, their functions in dichotomous spermatogenesis remain less known. We utilized the RNAi, biochemical and microscopic procedures to unravel the function of ScE3 Siah in dichotomous spermatogenesis of adult Sitotroga cerealella. In S. cerealella E3 ligase Siah predominantly expressed in adult tissues. Knockdown of ScE3 Siah leads to disruptions in testes and sperm morphology, affecting the structure of eupyrene and apyrene sperm bundles and causing defective ultrastructure in eupyrene sperm. This disruption results in a reduction in the number of dichotomous sperms and significantly reduces their motility. Moreover, ScE3 Siah knockdown inhibits the transfer and motility of dichotomous sperm, impacting spermatophore formation in females and ultimately reducing egg production. Understanding the role of ScE3 Siah is not only crucial for comprehending the complex processes involved in dichotomous spermatogenesis and fertilization but also provides an avenue for sustainable pest control management.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chun-Mei Shi
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Egypt
| | - Wen-Han Yan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gang Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
16
|
Torghabe SY, Alavi P, Rostami S, Davies NM, Kesharwani P, Karav S, Sahebkar A. Modulation of the ubiquitin-proteasome system by curcumin: Therapeutic implications in cancer. Pathol Res Pract 2025; 265:155741. [PMID: 39612810 DOI: 10.1016/j.prp.2024.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
By the ubiquitin-proteasomes, cellular proteins are structurally degraded and turnover. Many essential functions and regulations of cells are regulated and controlled by these proteins. Recent studies indicated that many cancer types have been associated with aberrations in the ubiquitination pathway, which involves three enzymatic steps. Dietary phytochemicals have been identified as having the potential to inhibit carcinogenesis recently. As part of this group of phytochemicals, curcumin can play a crucial role in suppressing carcinogenesis by changing many reactions affected by the ubiquitin-proteasome pathway. Due to its ability to change some biological processes such as NF-κB, inhibit some cyclins, and induce apoptosis, it can be used as a drug in cancer treatment.
Collapse
Affiliation(s)
- Shima Yahoo Torghabe
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Parisa Alavi
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Rostami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Science and Culture University, Tehran, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Stukey GJ, Han GS, Carman GM. Architecture and function of yeast phosphatidate phosphatase Pah1 domains/regions. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159547. [PMID: 39103045 PMCID: PMC11586075 DOI: 10.1016/j.bbalip.2024.159547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, provides a direct precursor for the synthesis of the storage lipid triacylglycerol and the membrane phospholipids phosphatidylcholine and phosphatidylethanolamine. The enzyme controlling the key phospholipid PA also plays a crucial role in diverse aspects of lipid metabolism and cell physiology. PA phosphatase is a peripheral membrane enzyme that is composed of multiple domains/regions required for its catalytic function and subcellular localization. In this review, we discuss the domains/regions of PA phosphatase from the yeast Saccharomyces cerevisiae with reference to the homologous enzyme from mammalian cells.
Collapse
Affiliation(s)
- Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
18
|
Höfler A, Yu J, Yang J, Zhang Z, Chang L, McLaughlin SH, Grime GW, Garman EF, Boland A, Barford D. Cryo-EM structures of apo-APC/C and APC/C CDH1:EMI1 complexes provide insights into APC/C regulation. Nat Commun 2024; 15:10074. [PMID: 39567505 PMCID: PMC11579458 DOI: 10.1038/s41467-024-54398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
APC/C is a multi-subunit complex that functions as a master regulator of cell division. It controls progression through the cell cycle by timely marking mitotic cyclins and other cell cycle regulatory proteins for degradation. The APC/C itself is regulated by the sequential action of its coactivator subunits CDC20 and CDH1, post-translational modifications, and its inhibitory binding partners EMI1 and the mitotic checkpoint complex. In this study, we took advantage of developments in cryo-electron microscopy to determine the structures of human APC/CCDH1:EMI1 and apo-APC/C at 2.9 Å and 3.2 Å resolution, respectively, providing insights into the regulation of APC/C activity. The high-resolution maps allow the unambiguous assignment of an α-helix to the N-terminus of CDH1 (CDH1α1) in the APC/CCDH1:EMI1 ternary complex. We also identify a zinc-binding module in APC2 that confers structural stability to the complex, and we confirm the presence of zinc ions experimentally. Finally, due to the higher resolution and well defined density of these maps, we are able to build, aided by AlphaFold predictions, several intrinsically disordered regions in different APC/C subunits that likely play a role in proper APC/C assembly and regulation of its activity.
Collapse
Affiliation(s)
- Anna Höfler
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Jun Yu
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - Geoffrey W Grime
- Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Andreas Boland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
19
|
Kwon H, Joh JY, Hong KU. Human CKAP2L shows a cell cycle-dependent expression pattern and exhibits microtubule-stabilizing properties. FEBS Open Bio 2024; 14:1526-1539. [PMID: 39073037 PMCID: PMC11492392 DOI: 10.1002/2211-5463.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Cytoskeleton-associated protein 2-like (CKAP2L) is a paralogue of cytoskeleton-associated protein 2 (CKAP2). We characterized the expression pattern, subcellular localization, and microtubule-stabilizing properties of human CKAP2L. The levels of both CKAP2L transcript and protein were cell cycle phase-dependent, peaking during the G2/M phase and relatively high in certain human tissues, including testis, intestine, and spleen. CKAP2L protein was detectable in all human cancer cell lines we tested. CKAP2L localized to the mitotic spindle apparatus during mitosis, as reported previously. During interphase, however, CKAP2L localized mainly to the nucleus. Ectopic overexpression of CKAP2L resulted in 'microtubule bundling', and, consequently, an elevated CKAP2L level led to prolonged mitosis. These findings support the mitotic role of CKAP2L during the human cell cycle.
Collapse
Affiliation(s)
- Hyerim Kwon
- School of MedicineSungkyunkwan UniversitySuwonKorea
| | - Jonathan Y. Joh
- Department of Pharmacology & ToxicologyUniversity of Louisville School of MedicineKYUSA
| | - Kyung U. Hong
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMAUSA
| |
Collapse
|
20
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
21
|
Samuel VP, Moglad E, Afzal M, Kazmi I, Alzarea SI, Ali H, Almujri SS, Abida, Imran M, Gupta G, Chinni SV, Tiwari A. Exploring Ubiquitin-specific proteases as therapeutic targets in Glioblastoma. Pathol Res Pract 2024; 260:155443. [PMID: 38981348 DOI: 10.1016/j.prp.2024.155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.
Collapse
Affiliation(s)
- Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, the United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India.
| |
Collapse
|
22
|
Ostapenko D, Solomon MJ. APC Cdh1-mediated degradation of Cdh1 is necessary for faithful meiotic chromosome segregation in S. cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601619. [PMID: 39005361 PMCID: PMC11245022 DOI: 10.1101/2024.07.01.601619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) is a ubiquitin ligase that promotes the ubiquitination and subsequent degradation of numerous cell cycle regulators during mitosis and in G1. Proteins are recruited to the APC/C by activator proteins such as Cdh1. During the cell cycle, Cdh1 is subject to precise regulation so that substrates are not degraded prematurely. We have explored the regulation of Cdh1 during the developmental transition into meiosis and sporulation in the budding yeast S. cerevisiae. Transition to sporulation medium triggers the degradation of Cdh1. Cdh1 degradation is mediated by the APC/C itself in a "trans" mechanism in which one molecule of Cdh1 recruits a second molecule of Cdh1 to the APC/C for ubiquitination. Degradation requires an intact glucose-sensing SNF1 protein kinase complex (orthologous to the mammalian AMPK nutritional sensor), which directly phosphorylates Cdh1 on Ser-200 within an unstructured N-terminal region. In the absence of phosphorylation, expression of a Cdh1-S200A mutant is fully stabilized, leading to chromosome instability and loss of viability. We hypothesize that Cdh1 degradation is necessary for the preservation of cell cycle regulators and chromosome cohesion proteins between the reductional and equational meiotic divisions, which occur without the intervening Gap or S phases found in mitotic cell cycles.
Collapse
Affiliation(s)
- Denis Ostapenko
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114
| | - Mark J. Solomon
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114
| |
Collapse
|
23
|
Li M, Zhang M, Meng B, Miao L, Fan Y. Genome-Wide Identification and Evolutionary and Expression Analyses of the Cyclin B Gene Family in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1709. [PMID: 38931141 PMCID: PMC11207893 DOI: 10.3390/plants13121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclin B (CYCB) is a regulatory subunit of cyclin-dependent kinase (CDK), the concentration of which fluctuates to regulate cell cycle progression. Extensive studies have been performed on cyclins in numerous species, yet the evolutionary relationships and biological functions of the CYCB family genes in Brassica napus remain unclear. In this study, we identified 299 CYCB genes in 11 B. napus accessions. Phylogenetic analysis suggests that CYCB genes could be divided into three subfamilies in angiosperms and that the CYCB3 subfamily members may be a newer group that evolved in eudicots. The expansion of BnaCYCB genes underwent segmental duplication and purifying selection in genomes, and a number of drought-responsive and light-responsive cis-elements were found in their promoter regions. Additionally, expression analysis revealed that BnaCYCBs were strongly expressed in the developing seed and silique pericarp, as confirmed by the obviously reduced seed size of the mutant cycb3;1 in Arabidopsis thaliana compared with Col-0. This study provides a comprehensive evolutionary analysis of CYCB genes as well as insight into the biological function of CYCB genes in B. napus.
Collapse
Affiliation(s)
- Mingyue Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
- Hanhong College, Institute of Innovation and Entrepreneurship, Southwest University, Beibei, Chongqing 400715, China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Likai Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| |
Collapse
|
24
|
Condezo YB, Sainz-Urruela R, Gomez-H L, Salas-Lloret D, Felipe-Medina N, Bradley R, Wolff ID, Tanis S, Barbero JL, Sánchez-Martín M, de Rooij D, Hendriks IA, Nielsen ML, Gonzalez-Prieto R, Cohen PE, Pendas AM, Llano E. RNF212B E3 ligase is essential for crossover designation and maturation during male and female meiosis in the mouse. Proc Natl Acad Sci U S A 2024; 121:e2320995121. [PMID: 38865271 PMCID: PMC11194559 DOI: 10.1073/pnas.2320995121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.
Collapse
Affiliation(s)
- Yazmine B. Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Laura Gomez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Department of Totipotency, Max Planck Institute of Biochemistry, 82152Martinsried, Germany
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Rachel Bradley
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Ian D. Wolff
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Stephanie Tanis
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Jose Luis Barbero
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040Madrid, Spain
| | | | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht3584CM, The Netherlands
| | - Ivo A. Hendriks
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Michael L. Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Román Gonzalez-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Andalusian Center for Molecular Biology and Regenerative MedicineCentro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad-Pablo de Olavide, 41092Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012Sevilla, Spain
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Alberto M. Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Departamento de Fisiología, Universidad de Salamanca, 37007Salamanca, Spain
| |
Collapse
|
25
|
Liu S, Liu H, Gong C, Li G, Li Q, Pan Z, He X, Jiang Z, Li H, Zhang C. MiR-10b-5p Regulates Neuronal Autophagy and Apoptosis Induced by Spinal Cord Injury Through UBR7. Neuroscience 2024; 543:13-27. [PMID: 38382692 DOI: 10.1016/j.neuroscience.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
This study aimed to explore the effects of miR-10b-5p on autophagy and apoptosis in neuronal cells after spinal cord injury (SCI) and the molecular mechanism. Bioinformatics was used to analyze the differentially expressed miRNAs. The expression of related genes and proteins were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. Cell proliferation was detected by 5-ethynyl-2'-deoxyuridine (EdU), and apoptosis was detected by flow cytometry or terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL). Coimmunoprecipitation confirmed the interaction between UBR7 and Wnt1 or Beclin1. Autophagy was detected by the dansylcadaverine (MDC). The Basso Beattie Bresnahan (BBB) score was used to evaluate motor function, and hematoxylin-eosin (H&E) and Nissl staining were used to detect spinal cord tissue repair and neuronal changes. The result shows that the expression of miR-10b-5p was downregulated in the SCI models, and transfection of a miR-10b-5p mimic inhibited neuronal cell apoptosis. MiR-10b-5p negatively regulated the expression of UBR7, and the inhibitory effect of the miR-10b-5p mimic on neuronal cell apoptosis was reversed by overexpressing UBR7. In addition, UBR7 can regulate apoptosis by affecting the Wnt/β-catenin pathway by promoting Wnt1 ubiquitination. Treatment with the miR-10b-5p mimic effectively improved motor function, inhibited neuronal cell apoptosis, and promoted spinal cord tissue repair in SCI rats. Overall, miR-10b-5p can alleviate SCI by downregulating UBR7 expression, inhibiting Wnt/β-catenin signaling pathway ubiquitination to reduce neuronal apoptosis, or inhibiting Beclin 1 ubiquitination to promote autophagy.
Collapse
Affiliation(s)
- Shuangmei Liu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Huali Liu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Chunyan Gong
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Guiliang Li
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Qiaofen Li
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Zhipeng Pan
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Xiaona He
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Zhilv Jiang
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Heng Li
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing 655000, China
| | - Chunjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.
| |
Collapse
|
26
|
Shintomi K, Masahara-Negishi Y, Shima M, Tane S, Hirano T. Recombinant cyclin B-Cdk1-Suc1 capable of multi-site mitotic phosphorylation in vitro. PLoS One 2024; 19:e0299003. [PMID: 38527022 PMCID: PMC10962838 DOI: 10.1371/journal.pone.0299003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) complexed with cyclin B phosphorylates multiple sites on hundreds of proteins during mitosis. However, it is not fully understood how multi-site mitotic phosphorylation by cyclin B-Cdk1 controls the structures and functions of individual substrates. Here we develop an easy-to-use protocol to express recombinant vertebrate cyclin B and Cdk1 in insect cells from a single baculovirus vector and to purify their complexes with excellent homogeneity. A series of in-vitro assays demonstrate that the recombinant cyclin B-Cdk1 can efficiently and specifically phosphorylate the SP and TP motifs in substrates. The addition of Suc1 (a Cks1 homolog in fission yeast) accelerates multi-site phosphorylation of an artificial substrate containing TP motifs. Importantly, we show that mitosis-specific multi-subunit and multi-site phosphorylation of the condensin I complex can be recapitulated in vitro using recombinant cyclin B-Cdk1-Suc1. The materials and protocols described here will pave the way for dissecting the biochemical basis of critical mitotic processes that accompany Cdk1-mediated large-scale phosphorylation.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yuki Masahara-Negishi
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Masami Shima
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Shoji Tane
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
27
|
Szymański M, Bonowicz K, Antosik P, Jerka D, Głowacka M, Soroka M, Steinbrink K, Kleszczyński K, Gagat M. Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology. Cancers (Basel) 2024; 16:836. [PMID: 38398227 PMCID: PMC10886501 DOI: 10.3390/cancers16040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Endometriosis is a gynecological condition where endometrium-like tissue grows outside the uterus, posing challenges in understanding and treatment. This article delves into the deep cellular and molecular processes underlying endometriosis, with a focus on the crucial roles played by cyclins and cytoskeletal proteins in its pathogenesis, particularly in the context of Epithelial-Mesenchymal Transition (EMT). The investigation begins by examining the activities of cyclins, elucidating their diverse biological roles such as cell cycle control, proliferation, evasion of apoptosis, and angiogenesis among ectopic endometrial cells. A comprehensive analysis of cytoskeletal proteins follows, emphasizing their fundamental biological roles and their specific significance to endometriotic cell features. This review sheds light on the interconnected pathways through which cyclins and cytoskeletal proteins converge, contributing to the genesis and progression of endometriosis. Understanding these molecular complexities not only provides insight into the underlying causes of the disease but also holds promise for the development of specific therapeutic approaches, ushering in a new era in the management of this devastating disorder.
Collapse
Affiliation(s)
- Marcin Szymański
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland;
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Mariola Głowacka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Małgorzata Soroka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| |
Collapse
|
28
|
Hu H, Tan D, Luo T, Tong X, Han M, Shen J, Dai F. Cyclin B3 plays pleiotropic roles in female reproductive organogenesis and early embryogenesis in the silkworm, Bombyx mori. PEST MANAGEMENT SCIENCE 2024; 80:376-387. [PMID: 37698372 DOI: 10.1002/ps.7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND The reproductive system plays a crucial role in insect survival, reproduction and species specificity. Understanding the molecular mechanisms underlying reproductive organogenesis contributes to improving the efficiency of sterile insect technique marked by an eco-friendly pest management strategy. Lepidoptera is one of the largest orders of insects, most of which are major pests in agriculture and forestry. Our study aimed to screen the genes responsible for reproductive organogenesis and unravel the mechanism underlying female reproductive organ defects. RESULTS Morphological investigation of female reproductive organs showed a defective connection between oviductus geminus and oviductus communis on the second day of pupa (P2) in Speckled mutant silkworm. RNA_Seq identified a total of 18 049 transcripts that were expressed in the P2 female internal reproductive organs without ovary in Spc/+ compared to +Spc /+Spc . Differential expression analysis identified 312 up-regulated genes and 221 down-regulated genes in Spc/+. KEGG analysis identified 44 significantly enriched pathways. The results of qRT-PCR performed on 33 genes significantly matched the outcomes of the RNA_Seq. Dysfunction of Cyclin B3 resulted in a defective connection of the oviductus communis with the ovariole, dysfunction of oogenesis, and a petite body. Moreover, homozygous recessive lethality of Cyclin B3/Cyclin B3 occurred during early embryogenesis. CONCLUSION Our results suggest that Cyclin B3 is a pleiotropic functional gene that regulates early embryogenesis, oogenesis, development, and female reproductive organogenesis. These results showed that Cyclin B3 has significant effects on lepidopteran mortality, growth, and reproductive physiology, which might be considered a novel and potentially eco-friendly target for lepidopteran pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Duan Tan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Tianfu Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minjin Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
29
|
Cadena-Ramos AI, De-la-Peña C. Picky eaters: selective autophagy in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:364-384. [PMID: 37864806 DOI: 10.1111/tpj.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Autophagy, a fundamental cellular process, plays a vital role in maintaining cellular homeostasis by degrading damaged or unnecessary components. While selective autophagy has been extensively studied in animal cells, its significance in plant cells has only recently gained attention. In this review, we delve into the intriguing realm selective autophagy in plants, with specific focus on its involvement in nutrient recycling, organelle turnover, and stress response. Moreover, recent studies have unveiled the interesting interplay between selective autophagy and epigenetic mechanisms in plants, elucidating the significance of epigenetic regulation in modulating autophagy-related gene expression and finely tuning the selective autophagy process in plants. By synthesizing existing knowledge, this review highlights the emerging field of selective autophagy in plant cells, emphasizing its pivotal role in maintaining nutrient homeostasis, facilitating cellular adaptation, and shedding light on the epigenetic regulation that governs these processes. Our comprehensive study provides the way for a deeper understanding of the dynamic control of cellular responses to nutrient availability and stress conditions, opening new avenues for future research in this field of autophagy in plant physiology.
Collapse
Affiliation(s)
- Alexis I Cadena-Ramos
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34 Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34 Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| |
Collapse
|
30
|
Kitaoka M, Guilloux G, Heald R, Gibeaux R. Preparation of Xenopus borealis and Xenopus tropicalis Egg Extracts for Comparative Cell Biology and Evolutionary Studies. Methods Mol Biol 2024; 2740:169-185. [PMID: 38393476 DOI: 10.1007/978-1-0716-3557-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Cytoplasmic extracts prepared from eggs of the African clawed frog Xenopus laevis are extensively used to study various cellular events including the cell cycle, cytoskeleton dynamics, and cytoplasm organization, as well as the biology of membranous organelles and phase-separated non-membrane-bound structures. Recent development of extracts from eggs of other Xenopus allows interspecies comparisons that provide new insights into morphological and biological size variations and underlying mechanisms across evolution. Here, we describe methods to prepare cytoplasmic extracts from eggs of the allotetraploid Marsabit clawed frog, Xenopus borealis, and the diploid Western clawed frog, Xenopus tropicalis. We detail mixing and "hybrid" experiments that take advantage of the physiological but highly accessible nature of extracts to reveal the evolutionary relationships across species. These new developments create a robust and versatile toolbox to elucidate molecular, cell biological, and evolutionary questions in essential cellular processes.
Collapse
Affiliation(s)
- Maiko Kitaoka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Whitehead Institute of Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Gabriel Guilloux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France.
| |
Collapse
|
31
|
Nguyen TA, Heng JWJ, Ng YT, Sun R, Fisher S, Oguz G, Kaewsapsak P, Xue S, Reversade B, Ramasamy A, Eisenberg E, Tan MH. Deep transcriptome profiling reveals limited conservation of A-to-I RNA editing in Xenopus. BMC Biol 2023; 21:251. [PMID: 37946231 PMCID: PMC10636886 DOI: 10.1186/s12915-023-01756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Xenopus has served as a valuable model system for biomedical research over the past decades. Notably, ADAR was first detected in frog oocytes and embryos as an activity that unwinds RNA duplexes. However, the scope of A-to-I RNA editing by the ADAR enzymes in Xenopus remains underexplored. RESULTS Here, we identify millions of editing events in Xenopus with high accuracy and systematically map the editome across developmental stages, adult organs, and species. We report diverse spatiotemporal patterns of editing with deamination activity highest in early embryogenesis before zygotic genome activation and in the ovary. Strikingly, editing events are poorly conserved across different Xenopus species. Even sites that are detected in both X. laevis and X. tropicalis show largely divergent editing levels or developmental profiles. In protein-coding regions, only a small subset of sites that are found mostly in the brain are well conserved between frogs and mammals. CONCLUSIONS Collectively, our work provides fresh insights into ADAR activity in vertebrates and suggest that species-specific editing may play a role in each animal's unique physiology or environmental adaptation.
Collapse
Affiliation(s)
- Tram Anh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jia Wei Joel Heng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Yan Ting Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rui Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Shira Fisher
- Faculty of Life Sciences, The Mina and Everard Goodman, Bar-Ilan University, Ramat Gan, Israel
| | - Gokce Oguz
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Pornchai Kaewsapsak
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shifeng Xue
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Bruno Reversade
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medical Genetics, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Meng How Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
32
|
Shah S, Elgizawy KK, Wu MY, Yao H, Yan WH, Li Y, Wang XP, Wu G, Yang FL. Diallyl Trisulfide Causes Male Infertility with Oligoasthenoteratospermia in Sitotroga cerealella through the Ubiquitin-Proteasome Pathway. Cells 2023; 12:2507. [PMID: 37887351 PMCID: PMC10605923 DOI: 10.3390/cells12202507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Essential oils extracted from plant sources along with their biologically active components may have negative effects on insects. Diallyl trisulfide (DAT) is an active component of garlic essential oil, and it exhibits multi-targeted activity against many organisms. Previously we reported that DAT induces male infertility and leads to apyrene and eupyrene sperm dysfunction in Sitotroga cerealella. In this study, we conducted an analysis of testis-specific RNA-Seq data and identified 449 downregulated genes and 60 upregulated genes in the DAT group compared to the control group. The downregulated genes were significantly enriched in the ubiquitin-proteasome pathway. Furthermore, DAT caused a significant reduction in mRNA expression of proteasome regulatory subunit particles required for ATP-dependent degradation of ubiquitinated proteins as well as decreased the expression profile of proteasome core particles, including β1, β2, and β5. Sperm physiological analysis showed that DAT decreased the chymotrypsin-like activity of the 20S proteasome and formed aggresomes in spermatozoa. Overall, our findings suggest that DAT impairs the testis proteasome, ultimately causing male infertility characterized by oligoasthenoteratospermia due to disruption in sperm proteasome assembly in S. cerealella.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt;
| | - Meng-Ya Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Hucheng Yao
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wen-Han Yan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Yu Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Gang Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| |
Collapse
|
33
|
Qiu L, Jiang S, Zhou F, Huang J, Guo Y. Molecular cloning and characterization of a cyclin B gene on the ovarian maturation stage of black tiger shrimp (Penaeus monodon). Mol Biol Rep 2023; 50:S1-S8. [PMID: 17245552 DOI: 10.1007/s11033-006-9052-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
The techniques of homology cloning and anchored PCR were used to clone the cyclin B gene from black tiger shrimp. The full length cDNA of black tiger shrimp cyclin B (btscyclin B) contained a 5' untranslated region (UTR) of 102 bp, an ORF of 1,206 bp encoding a polypeptide of 401 amino acids with an estimated molecular mass of 45 kDa and a 3' UTR of 396 bp. The searches for protein sequence similarities with BLAST analysis indicated that the deduced amino acid sequence of btscyclin B was homological to the cyclin B of other species and even the mammalians. Two conserved signature sequences of cyclin B gene family were found in the btscyclin B deduced amino acid sequence. The temporal expressions of cyclin B gene in the different tissues, including liver, ovary, muscle, brain stomach, heart and intestine, were measured by RT-PCR. mRNA expression of cyclin B could be detected in liver, ovary, muscle, brain, stomach, heart and strongest in the ovary, but almost not be detected in the intestine. In ovarian maturation stages, the expression of btscyclin B was different. The result indicated that btscyclin B was constitutive expressed and played an important role in the cell division stage.
Collapse
Affiliation(s)
- Lihua Qiu
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China
| | - Shigui Jiang
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China.
| | - Falin Zhou
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China
| | - Jianhua Huang
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China
| | - Yihui Guo
- Biotechnology and aquiculture Laboratory, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingangxi Road, Guangzhou, 510300, P.R. China
| |
Collapse
|
34
|
Liu J, Zhang C. Xenopus cell-free extracts and their applications in cell biology study. BIOPHYSICS REPORTS 2023; 9:195-205. [PMID: 38516620 PMCID: PMC10951473 DOI: 10.52601/bpr.2023.230016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 03/23/2024] Open
Abstract
Xenopus has proven to be a remarkably versatile model organism in the realm of biological research for numerous years, owing to its straightforward maintenance in laboratory settings and its abundant provision of ample-sized oocytes, eggs, and embryos. The cell cycle of these oocytes, eggs, and early embryos exhibits synchrony, and extracts derived from these cells serve various research purposes. Many fundamental concepts in biochemistry, cell biology, and development have been elucidated through the use of cell-free extracts derived from Xenopus cells. Over the past few decades, a wide array of cell-free extracts has been prepared from oocytes, eggs, and early embryos of different Xenopus species at varying cell cycle stages. Each of these extracts possesses distinct characteristics. This review provides a concise overview of the Xenopus species employed in laboratory research, the diverse types of cell-free extracts available, and their respective properties. Furthermore, this review delves into the extensive investigation of spindle assembly in Xenopus egg extracts, underscoring the versatility and potency of these cell-free systems in the realm of cell biology.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Yan D, He Q, Pei L, Yang M, Huang L, Kong J, He W, Liu H, Xu S, Qin H, Lin T, Huang J. The APC/C E3 ligase subunit ANAPC11 mediates FOXO3 protein degradation to promote cell proliferation and lymph node metastasis in urothelial bladder cancer. Cell Death Dis 2023; 14:516. [PMID: 37573356 PMCID: PMC10423259 DOI: 10.1038/s41419-023-06000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/18/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
Urothelial bladder cancer (UBC) is one of the most prevalent malignancies worldwide, with striking tumor heterogeneity. Elucidating the molecular mechanisms that can be exploited for the treatment of aggressive UBC is a particularly relevant goal. Protein ubiquitination is a critical post-translational modification (PTM) that mediates the degradation of target protein via the proteasome. However, the roles of aberrant protein ubiquitination in UBC development and the underlying mechanisms by which it drives tumor progression remain unclear. In this study, taking advantage of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 9 technology, we identified the ubiquitin E3 ligase ANAPC11, a critical subunit of the anaphase-promoting complex/cyclosome (APC/C), as a potential oncogenic molecule in UBC cells. Our clinical analysis showed that elevated expression of ANAPC11 was significantly correlated with high T stage, positive lymph node (LN) metastasis, and poor outcomes in UBC patients. By employing a series of in vitro experiments, we demonstrated that ANAPC11 enhanced the proliferation and invasiveness of UBC cells, while knockout of ANAPC11 inhibited the growth and LN metastasis of UBC cells in vivo. By conducting immunoprecipitation coupled with mass spectrometry, we confirmed that ANAPC11 increased the ubiquitination level of the Forkhead transcription factor FOXO3. The resulting decrease in FOXO3 protein stability led to the downregulation of the cell cycle regulator p21 and decreased expression of GULP1, a downstream effector of androgen receptor signaling. Taken together, these findings indicated that ANAPC11 plays an oncogenic role in UBC by modulating FOXO3 protein degradation. The ANAPC11-FOXO3 regulatory axis might serve as a novel therapeutic target for UBC.
Collapse
Affiliation(s)
- Dong Yan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingqing He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Pei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meihua Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lifang Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shizhong Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haide Qin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Sengseng T, Okutsu T, Songnui A, Boonchuay J, Sakunrang C, Wonglapsuwan M. Molecular Markers of Ovarian Germ Cells of Banana Prawn ( Fenneropenaeus merguiensis). Curr Issues Mol Biol 2023; 45:5708-5724. [PMID: 37504276 PMCID: PMC10378296 DOI: 10.3390/cimb45070360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
The banana prawn (Fenneropenaeus merguiensis) is a valuable prawn in the worldwide market. However, cultivation of this species is limited owing to the difficulty in culture management and limited knowledge of reproduction. Therefore, we studied the gene expression and molecular mechanisms involved in oogenesis for elucidating ovarian germ cell development in banana prawns. The tissue-specific distribution of certain genes identified from previous transcriptome data showed that FmCyclinB, FmNanos, and nuclear autoantigenic sperm protein (FmNASP) were only expressed in gonads. The in situ hybridization (ISH) of these three genes showed different expression patterns throughout oogenesis. FmCyclinB was highly expressed in pre-vitellogenic oocytes. FmNanos was expressed at almost the same level during oogenesis but showed the most expression in late pre-vitellogenic stages. Based on the highest expression of FmCyclinB and FmNanos in mid pre-vitellogenic and late pre-vitellogenic oocytes, respectively, we suggested that FmNanos may suppress FmCyclinB expression before initiation of vitellogenesis. Meanwhile, FmNASP expression was detected only in pre-vitellogenesis. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) analysis of FmNASP expression was supported by FmNASP ISH analysis based on high expression of FmNASP in sub-adult ovaries, which contain most of pre-vitellogenic oocytes. In this study, we found three reliable ovarian markers for banana prawns and also found a dynamic change of molecular mechanism during the sub-stage of pre-vitellogenesis. We determined the expression levels of these genes involved in oogenesis. Our findings provide information for further studies on banana prawn reproduction which may assist in their cultivation.
Collapse
Affiliation(s)
- Tatiyavadee Sengseng
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Tomoyuki Okutsu
- Japan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Ibaraki, Japan
| | - Anida Songnui
- Trang Coastal Fisheries Research and Development Center, Department of Fisheries, Trang 92150, Thailand
| | - Jaruwan Boonchuay
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Chanida Sakunrang
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| |
Collapse
|
37
|
El Dika M, Dudka D, Kloc M, Kubiak JZ. CDC6 as a Key Inhibitory Regulator of CDK1 Activation Dynamics and the Timing of Mitotic Entry and Progression. BIOLOGY 2023; 12:855. [PMID: 37372141 DOI: 10.3390/biology12060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Timely mitosis is critically important for early embryo development. It is regulated by the activity of the conserved protein kinase CDK1. The dynamics of CDK1 activation must be precisely controlled to assure physiologic and timely entry into mitosis. Recently, a known S-phase regulator CDC6 emerged as a key player in mitotic CDK1 activation cascade in early embryonic divisions, operating together with Xic1 as a CDK1 inhibitor upstream of the Aurora A and PLK1, both CDK1 activators. Herein, we review the molecular mechanisms that underlie the control of mitotic timing, with special emphasis on how CDC6/Xic1 function impacts CDK1 regulatory network in the Xenopus system. We focus on the presence of two independent mechanisms inhibiting the dynamics of CDK1 activation, namely Wee1/Myt1- and CDC6/Xic1-dependent, and how they cooperate with CDK1-activating mechanisms. As a result, we propose a comprehensive model integrating CDC6/Xic1-dependent inhibition into the CDK1-activation cascade. The physiological dynamics of CDK1 activation appear to be controlled by the system of multiple inhibitors and activators, and their integrated modulation ensures concomitantly both the robustness and certain flexibility of the control of this process. Identification of multiple activators and inhibitors of CDK1 upon M-phase entry allows for a better understanding of why cells divide at a specific time and how the pathways involved in the timely regulation of cell division are all integrated to precisely tune the control of mitotic events.
Collapse
Affiliation(s)
- Mohammed El Dika
- Department of Biochemistry, Larner College of Medicine, UVM Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| |
Collapse
|
38
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
39
|
Zhu Z, Chen X, Guo A, Manzano T, Walsh PJ, Wills KM, Halliburton R, Radko-Juettner S, Carter RD, Partridge JF, Green DR, Zhang J, Roberts CWM. Mitotic bookmarking by SWI/SNF subunits. Nature 2023; 618:180-187. [PMID: 37225980 PMCID: PMC10303083 DOI: 10.1038/s41586-023-06085-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
For cells to initiate and sustain a differentiated state, it is necessary that a 'memory' of this state is transmitted through mitosis to the daughter cells1-3. Mammalian switch/sucrose non-fermentable (SWI/SNF) complexes (also known as Brg1/Brg-associated factors, or BAF) control cell identity by modulating chromatin architecture to regulate gene expression4-7, but whether they participate in cell fate memory is unclear. Here we provide evidence that subunits of SWI/SNF act as mitotic bookmarks to safeguard cell identity during cell division. The SWI/SNF core subunits SMARCE1 and SMARCB1 are displaced from enhancers but are bound to promoters during mitosis, and we show that this binding is required for appropriate reactivation of bound genes after mitotic exit. Ablation of SMARCE1 during a single mitosis in mouse embryonic stem cells is sufficient to disrupt gene expression, impair the occupancy of several established bookmarks at a subset of their targets and cause aberrant neural differentiation. Thus, SWI/SNF subunit SMARCE1 has a mitotic bookmarking role and is essential for heritable epigenetic fidelity during transcriptional reprogramming.
Collapse
Affiliation(s)
- Zhexin Zhu
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Xiaolong Chen
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ao Guo
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Trishabelle Manzano
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick J Walsh
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kendall M Wills
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca Halliburton
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sandi Radko-Juettner
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Raymond D Carter
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Janet F Partridge
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
40
|
Bai Y, Liu Z, Li Y, Zhao H, Lai C, Zhao S, Chen K, Luo C, Yang X, Wang F. Structural Mass Spectrometry Probes the Inhibitor-Induced Allosteric Activation of CDK12/CDK13-Cyclin K Dissociation. J Am Chem Soc 2023; 145:11477-11481. [PMID: 37207290 DOI: 10.1021/jacs.3c01697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rational design and development of effective inhibitors for cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) are largely dependent on the understanding of the dynamic inhibition conformations but are difficult to be achieved by conventional characterization tools. Herein, we integrate the structural mass spectrometry (MS) methods of lysine reactivity profiling (LRP) and native MS (nMS) to systematically interrogate both the dynamic molecular interactions and overall protein assembly of CDK12/CDK13-cyclin K (CycK) complexes under the modulation of small molecule inhibitors. The essential structure insights, including inhibitor binding pocket, binding strength, interfacial molecular details, and dynamic conformation changes, can be derived from the complementary results of LRP and nMS. We find the inhibitor SR-4835 binding can greatly destabilize the CDK12/CDK13-CycK interactions in an unusual allosteric activation way, thereby providing a novel alternative for the kinase activity inhibition. Our results underscore the great potential of LRP combination with nMS for the evaluation and rational design of effective kinase inhibitors at the molecular level.
Collapse
Affiliation(s)
- Yu Bai
- School of Pharmacy, China Medical University, Shenyang 110122, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanqing Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Zhou X, Fu C, Chen X. The role of ubiquitin pathway-mediated regulation of immune checkpoints in cancer immunotherapy. Cancer 2023; 129:1649-1661. [PMID: 36857206 DOI: 10.1002/cncr.34729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
With the continuous cognition of the relationship between tumor cells and tumor immune microenvironment, immunotherapy based on the immune checkpoint blockade has achieved great breakthroughs, led to improved clinical outcomes, and prolonged survival for cancer patients in recent years. Nevertheless, the de novo or acquired resistance to immunotherapy has greatly counteracted the efficacy, leading to a 20%-40% overall response rate. Thus, further in-depth understanding of the regulation of the tumor microenvironment and antitumor immunity is urgently warranted. Ubiquitination-mediated protein degradation plays vital roles in protein stabilization, activation, and dynamics as well as in cellular homeostasis modulation. The dysregulated ubiquitination and deubiquitination are closely related to the changes in physiological and pathological processes, which subsequently result in a variety of diseases including cancer. In this review, the authors first summarize the current knowledge about the involvement of the ubiquitin-proteasome system in tumor development with the ubiquitin conjugation-regulated stability of p53, phosphatase and tensin homolog, and Myc protein as examples, then dissect the potential implications of ubiquitination-mediated immune checkpoints degradation in tumor microenvironment and immune responses, and finally discuss the effects of therapeutically targeting the ubiquitin-proteasome pathway on immunotherapy, with the goal of providing deep insights into the exploitation of more precise and effective combinational therapy against cancer.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Chengxiao Fu
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xisha Chen
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
43
|
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chem Biol 2023; 4:146-164. [PMID: 36794018 PMCID: PMC9906319 DOI: 10.1039/d2cb00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of the cyclin-dependent kinase family is frequently noted in a number of diseases identifying them as potential targets for drug development. However, current CDK inhibitors lack specificity owing to the high sequence and structural conservation of the ATP binding cleft across family members, highlighting the necessity of finding novel modes of CDK inhibition. The wealth of structural information regarding CDK assemblies and inhibitor complexes derived from X-ray crystallographic studies has been recently complemented through the use of cryo-electron microscopy. These recent advances have provided insights into the functional roles and regulatory mechanisms of CDKs and their interaction partners. This review explores the conformational malleability of the CDK subunit, the importance of SLiM recognition sites in CDK complexes, the progress made in chemically induced CDK degradation and how these studies can contribute to CDK inhibitor design. Additionally, fragment-based drug discovery can be utilised to identify small molecules that bind to allosteric sites on the CDK surface employing interactions which mimic those of native protein-protein interactions. These recent structural advances in CDK inhibitor mechanisms and in chemical probes which do not occupy the orthosteric ATP binding site can provide important insights for targeted CDK therapies.
Collapse
Affiliation(s)
- Ian Hope
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jessica E Watt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
44
|
Cassidy K, Zhao H. Redefining the Scope of Targeted Protein Degradation: Translational Opportunities in Hijacking the Autophagy-Lysosome Pathway. Biochemistry 2023; 62:580-587. [PMID: 34569233 DOI: 10.1021/acs.biochem.1c00330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The advent of multi-specific targeted protein degradation (TPD) therapies has made it possible to drug targets that have long been considered to be inaccessible. For this reason, the foremost TPD modalities - molecular glues and proteolysis targeting chimeras (PROTACs) -have been widely adopted and developed in therapeutic programs across the pharmaceutical and biotechnology industries. While there are many clear advantages to these two approaches, there are also blind spots. Specifically, PROTACs and molecular glues are inherently mechanistically analogous in that targets of both are degraded via the 26s proteasome; however, not all disease-relevant targets are suitable for ubiquitin proteasome system (UPS)-mediated degradation. The alternative mammalian protein degradation pathway, the autophagy-lysosome system (or ALS), is capable of degrading targets that elude the UPS such as long-lived proteins, insoluble protein aggregates, and even abnormal organelles. Emerging TPD strategies- such as ATTEC, AUTAC, and LYTAC- take advantage of the substrate diversity of the ALS to greatly expand the clinical utility of TPD. In this Perspective, we will discuss the array of current TPD modalities, with a focus on critical evaluation of these novel ALS-mediated degradation techniques.
Collapse
Affiliation(s)
- Katelyn Cassidy
- Discovery Biology, BioPharmaceuticals R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Heng Zhao
- Discovery Biology, BioPharmaceuticals R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
45
|
Abdelbaki A, Ascanelli C, Okoye CN, Akman HB, Janson G, Min M, Marcozzi C, Hagting A, Grant R, De Luca M, Asteriti IA, Guarguaglini G, Paiardini A, Lindon C. Revisiting degron motifs in human AURKA required for its targeting by APC/C FZR1. Life Sci Alliance 2023; 6:6/2/e202201372. [PMID: 36450448 PMCID: PMC9713472 DOI: 10.26508/lsa.202201372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Cynthia N Okoye
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giacomo Janson
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Mingwei Min
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Chiara Marcozzi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anja Hagting
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Maria De Luca
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Di Stazio M, Zanus C, Faletra F, Pesaresi A, Ziccardi I, Morgan A, Girotto G, Costa P, Carrozzi M, d’Adamo AP, Musante L. Haploinsufficiency as a Foreground Pathomechanism of Poirer-Bienvenu Syndrome and Novel Insights Underlying the Phenotypic Continuum of CSNK2B-Associated Disorders. Genes (Basel) 2023; 14:genes14020250. [PMID: 36833176 PMCID: PMC9957394 DOI: 10.3390/genes14020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
CSNK2B encodes for the regulatory subunit of the casein kinase II, a serine/threonine kinase that is highly expressed in the brain and implicated in development, neuritogenesis, synaptic transmission and plasticity. De novo variants in this gene have been identified as the cause of the Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) characterized by seizures and variably impaired intellectual development. More than sixty mutations have been described so far. However, data clarifying their functional impact and the possible pathomechanism are still scarce. Recently, a subset of CSNK2B missense variants affecting the Asp32 in the KEN box-like domain were proposed as the cause of a new intellectual disability-craniodigital syndrome (IDCS). In this study, we combined predictive functional and structural analysis and in vitro experiments to investigate the effect of two CSNK2B mutations, p.Leu39Arg and p.Met132LeufsTer110, identified by WES in two children with POBINDS. Our data prove that loss of the CK2beta protein, due to the instability of mutant CSNK2B mRNA and protein, resulting in a reduced amount of CK2 complex and affecting its kinase activity, may underlie the POBINDS phenotype. In addition, the deep reverse phenotyping of the patient carrying p.Leu39Arg, with an analysis of the available literature for individuals with either POBINDS or IDCS and a mutation in the KEN box-like motif, might suggest the existence of a continuous spectrum of CSNK2B-associated phenotypes rather than a sharp distinction between them.
Collapse
Affiliation(s)
- Mariateresa Di Stazio
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Caterina Zanus
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Alessia Pesaresi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Ilaria Ziccardi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Paola Costa
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Marco Carrozzi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Adamo P. d’Adamo
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence:
| | - Luciana Musante
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| |
Collapse
|
47
|
Abstract
Post-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs. We aim to display the variety and breadth of known mechanisms of regulation as well as highlight common themes in PTM-regulated degrons to enhance potential for identifying novel drug targets where druggable targets are currently lacking.
Collapse
|
48
|
Leduc A, Huffman RG, Cantlon J, Khan S, Slavov N. Exploring functional protein covariation across single cells using nPOP. Genome Biol 2022; 23:261. [PMID: 36527135 PMCID: PMC9756690 DOI: 10.1186/s13059-022-02817-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Many biological processes, such as cell division cycle and drug resistance, are reflected in protein covariation across single cells. This covariation can be quantified and interpreted by single-cell mass spectrometry with sufficiently high throughput and accuracy. RESULTS Here, we describe nPOP, a method that enables simultaneous sample preparation of thousands of single cells, including lysing, digesting, and labeling individual cells in volumes of 8-20 nl. nPOP uses piezo acoustic dispensing to isolate individual cells in 300 pl volumes and performs all subsequent sample preparation steps in small droplets on a fluorocarbon-coated glass slide. Protein covariation analysis identifies cell cycle dynamics that are similar and dynamics that differ between cell types, even within subpopulations of melanoma cells delineated by markers for drug resistance priming. Melanoma cells expressing these markers accumulate in the G1 phase of the cell cycle, display distinct protein covariation across the cell cycle, accumulate glycogen, and have lower abundance of glycolytic enzymes. The non-primed melanoma cells exhibit gradients of protein abundance, suggesting transition states. Within this subpopulation, proteins functioning in oxidative phosphorylation covary with each other and inversely with proteins functioning in glycolysis. This protein covariation suggests divergent reliance on energy sources and its association with other biological functions. These results are validated by different mass spectrometry methods. CONCLUSIONS nPOP enables flexible, automated, and highly parallelized sample preparation for single-cell proteomics. This allows for quantifying protein covariation across thousands of single cells and revealing functionally concerted biological differences between closely related cell states. Support for nPOP is available at https://scp.slavovlab.net/nPOP .
Collapse
Affiliation(s)
- Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, 02115, USA.
| | - R Gray Huffman
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, 02115, USA
| | | | - Saad Khan
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, 02115, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
Lapresa R, Agulla J, Bolaños JP, Almeida A. APC/C-Cdh1-targeted substrates as potential therapies for Alzheimer's disease. Front Pharmacol 2022; 13:1086540. [PMID: 36588673 PMCID: PMC9794583 DOI: 10.3389/fphar.2022.1086540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the main cause of dementia in the elderly. The disease has a high impact on individuals and their families and represents a growing public health and socio-economic burden. Despite this, there is no effective treatment options to cure or modify the disease progression, highlighting the need to identify new therapeutic targets. Synapse dysfunction and loss are early pathological features of Alzheimer's disease, correlate with cognitive decline and proceed with neuronal death. In the last years, the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C) has emerged as a key regulator of synaptic plasticity and neuronal survival. To this end, the ligase binds Cdh1, its main activator in the brain. However, inactivation of the anaphase promoting complex/cyclosome-Cdh1 complex triggers dendrite disruption, synapse loss and neurodegeneration, leading to memory and learning impairment. Interestingly, oligomerized amyloid-β (Aβ) peptide, which is involved in Alzheimer's disease onset and progression, induces Cdh1 phosphorylation leading to anaphase promoting complex/cyclosome-Cdh1 complex disassembly and inactivation. This causes the aberrant accumulation of several anaphase promoting complex/cyclosome-Cdh1 targets in the damaged areas of Alzheimer's disease brains, including Rock2 and Cyclin B1. Here we review the function of anaphase promoting complex/cyclosome-Cdh1 dysregulation in the pathogenesis of Alzheimer's disease, paying particular attention in the neurotoxicity induced by its molecular targets. Understanding the role of anaphase promoting complex/cyclosome-Cdh1-targeted substrates in Alzheimer's disease may be useful in the development of new effective disease-modifying treatments for this neurological disorder.
Collapse
Affiliation(s)
- Rebeca Lapresa
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Jesus Agulla
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain,*Correspondence: Angeles Almeida,
| |
Collapse
|
50
|
Huynh M, Chang HY, Lisiero DN, Ong IM, Kashyap T, Callander NS, Miyamoto S. HAPLN1 confers multiple myeloma cell resistance to several classes of therapeutic drugs. PLoS One 2022; 17:e0274704. [PMID: 36480501 PMCID: PMC10045543 DOI: 10.1371/journal.pone.0274704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM), a malignant plasma cell infiltration of the bone marrow, is generally considered incurable: resistance to multiple therapeutic drugs inevitably arises from tumor cell-intrinsic and tumor microenvironment (TME)-mediated mechanisms. Here we report that the proteoglycan tandem repeat 1 (PTR1) domain of the TME matrix protein, hyaluronan and proteoglycan link protein 1 (HAPLN1), induces a host of cell survival genes in MM cells and variable resistance to different classes of clinical drugs, including certain proteasome inhibitors, steroids, immunomodulatory drugs, and DNA damaging agents, in several MM cell lines tested. Collectively, our study identifies HAPLN1 as an extracellular matrix factor that can simultaneously confer MM cell resistance to multiple therapeutic drugs.
Collapse
Affiliation(s)
- Mailee Huynh
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McArdle Laboratory for Cancer Research, Madison, WI, United States of America
| | - Hae Yeun Chang
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McArdle Laboratory for Cancer Research, Madison, WI, United States of America
| | - Dominique N. Lisiero
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McArdle Laboratory for Cancer Research, Madison, WI, United States of America
| | - Irene M. Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center (UWCCC), Madison, WI, United States of America
| | - Trinayan Kashyap
- Karyopharm Therapeutics, Inc., Newton, MA, United States of America
| | - Natalie S. Callander
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Shigeki Miyamoto
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McArdle Laboratory for Cancer Research, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center (UWCCC), Madison, WI, United States of America
| |
Collapse
|