1
|
Yamamura S, Horiguchi H, Kadomatsu T, Miyata K, Torigoe D, Suzuki T, Sato M, Araki K, Suzuki A, Fukushima S, Oike Y. Aging-Associated Mitochondrial Decline Accelerates Skin Aging and Obesity. J Invest Dermatol 2025:S0022-202X(25)00395-1. [PMID: 40210116 DOI: 10.1016/j.jid.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
Skin tissue, which consists of epidermal, dermal, and hypodermal cells, plays an important role in biological defense and physical appearance. External and internal stresses occurring with aging disrupt skin homeostasis, promoting the development of phenotypes associated with aging. Although many studies of skin aging focus on the dermis, potential epidermal changes have largely remained uncharacterized. In this study, we demonstrate that epidermal cells do not exhibit cellular senescence phenotypes with aging but instead show age-related decreases in mitochondrial number. We also found that mice lacking TFAM in epidermal cells exhibit delayed hair regrowth and impaired wound healing by middle age, resembling changes seen in skin of aged mice. Furthermore, middle-aged epidermis-specific TFAM-deficient mice exhibited obesity, suggesting that impaired fatty acid metabolism in epidermal cells resulting from mitochondrial decline may lead to obesity. These findings overall suggest that mitochondrial decline occurs as a primary event in epidermal aging and that antiaging strategies to enhance activity or number of epidermal mitochondria could antagonize both skin-aging phenotypes and age-related metabolic disease.
Collapse
Affiliation(s)
- Shuji Yamamura
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Torigoe
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Laboratory Animal Science, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Takehisa Suzuki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Developmental Genetics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
3
|
Du W, Verma A, Ye Q, Du W, Lin S, Yamanaka A, Klein OD, Hu JK. Myosin II mediates Shh signals to shape dental epithelia via control of cell adhesion and movement. PLoS Genet 2024; 20:e1011326. [PMID: 38857279 PMCID: PMC11192418 DOI: 10.1371/journal.pgen.1011326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/21/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Adya Verma
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Wen Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sandy Lin
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jimmy K. Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Kim U, Debnath R, Maiz JE, Rico J, Sinha S, Blanco MA, Chakrabarti R. ΔNp63 regulates MDSC survival and metabolism in triple-negative breast cancer. iScience 2024; 27:109366. [PMID: 38510127 PMCID: PMC10951988 DOI: 10.1016/j.isci.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) contributes greatly to mortality of breast cancer, demanding new targetable options. We have shown that TNBC patients have high ΔNp63 expression in tumors. However, the function of ΔNp63 in established TNBC is yet to be explored. In current studies, targeting ΔNp63 with inducible CRISPR knockout and Histone deacetylase inhibitor Quisinostat showed that ΔNp63 is important for tumor progression and metastasis in established tumors by promoting myeloid-derived suppressor cell (MDSC) survival through tumor necrosis factor alpha. Decreasing ΔNp63 levels are associated with decreased CD4+ and FOXP3+ T-cells but increased CD8+ T-cells. RNA sequencing analysis indicates that loss of ΔNp63 alters multiple MDSC properties such as lipid metabolism, chemotaxis, migration, and neutrophil degranulation besides survival. We further demonstrated that targeting ΔNp63 sensitizes chemotherapy. Overall, we showed that ΔNp63 reprograms the MDSC-mediated immunosuppressive functions in TNBC, highlighting the benefit of targeting ΔNp63 in chemotherapy-resistant TNBC.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier E. Maiz
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua Rico
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mario Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rumela Chakrabarti
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Maseda D, Manfredo-Vieira S, Payne AS. T cell and bacterial microbiota interaction at intestinal and skin epithelial interfaces. DISCOVERY IMMUNOLOGY 2023; 2:kyad024. [PMID: 38567051 PMCID: PMC10917213 DOI: 10.1093/discim/kyad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 04/04/2024]
Abstract
Graphical Abstract.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Johnson GL, Glasser MB, Charles JF, Duryea J, Lehoczky JA. En1 and Lmx1b do not recapitulate embryonic dorsal-ventral limb patterning functions during mouse digit tip regeneration. Cell Rep 2022; 41:111701. [PMID: 36417876 PMCID: PMC9727699 DOI: 10.1016/j.celrep.2022.111701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The mouse digit tip regenerates following amputation. How the regenerate is patterned is unknown, but a long-standing hypothesis proposes developmental patterning mechanisms are re-used during regeneration. The digit tip bone exhibits dorsal-ventral (DV) polarity, so we focus on En1 and Lmx1b, two factors necessary for DV patterning during limb development. We investigate whether they are re-expressed during regeneration in a developmental-like pattern and whether they direct DV morphology of the regenerate. We find that both En1 and Lmx1b are expressed in the regenerating digit tip epithelium and mesenchyme, respectively, but without DV polarity. Conditional genetics and quantitative analysis of digit tip bone morphology determine that genetic deletion of En1 or Lmx1b in adult digit tip regeneration modestly reduces bone regeneration but does not affect DV patterning. Collectively, our data suggest that, while En1 and Lmx1b are re-expressed during mouse digit tip regeneration, they do not define the DV axis during regeneration.
Collapse
Affiliation(s)
- Gemma L. Johnson
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Morgan B. Glasser
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Julia F. Charles
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jeffrey Duryea
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Lead contact,Correspondence:
| |
Collapse
|
7
|
May AJ, Mattingly AJ, Gaylord EA, Griffin N, Sudiwala S, Cruz-Pacheco N, Emmerson E, Mohabbat S, Nathan S, Sinada H, Lombaert IMA, Knox SM. Neuronal-epithelial cross-talk drives acinar specification via NRG1-ERBB3-mTORC2 signaling. Dev Cell 2022; 57:2550-2565.e5. [PMID: 36413949 PMCID: PMC9727910 DOI: 10.1016/j.devcel.2022.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Acinar cells are the principal secretory units of multiple exocrine organs. A single-cell, layered, lumenized acinus forms from a large cohort of epithelial progenitors that must initiate and coordinate three cellular programs of acinar specification, namely, lineage progression, secretion, and polarization. Despite this well-known outcome, the mechanism(s) that regulate these complex programs are unknown. Here, we demonstrate that neuronal-epithelial cross-talk drives acinar specification through neuregulin (NRG1)-ERBB3-mTORC2 signaling. Using single-cell and global RNA sequencing of developing murine salivary glands, we identified NRG1-ERBB3 to precisely overlap with acinar specification during gland development. Genetic deletion of Erbb3 prevented cell lineage progression and the establishment of lumenized, secretory acini. Conversely, NRG1 treatment of isolated epithelia was sufficient to recapitulate the development of secretory acini. Mechanistically, we found that NRG1-ERBB3 regulates each developmental program through an mTORC2 signaling pathway. Thus, we reveal that a neuronal-epithelial (NRG1/ERBB3/mTORC2) mechanism orchestrates the creation of functional acini.
Collapse
Affiliation(s)
- Alison J May
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Aaron J Mattingly
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Eliza A Gaylord
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Nathan Griffin
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sonia Sudiwala
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Noel Cruz-Pacheco
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Elaine Emmerson
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Seayar Mohabbat
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sara Nathan
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Hanan Sinada
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Isabelle M A Lombaert
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA.
| | - Sarah M Knox
- Program in Craniofacial Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Ramchatesingh B, Martínez Villarreal A, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F, Litvinov IV. The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. Int J Mol Sci 2022; 23:ijms232012622. [PMID: 36293471 PMCID: PMC9603842 DOI: 10.3390/ijms232012622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.
Collapse
Affiliation(s)
| | | | - Domenico Arcuri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - François Lagacé
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Samy Abu Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fadi Touma
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Faris Al-Badarin
- Faculté de Médicine, Université Laval, Québec, QC G1V 0V6, Canada
| | - Ivan V. Litvinov
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
9
|
Lucas R, Szklenar M, Mihály J, Szegedi A, Töröcsik D, Rühl R. Plasma Levels of Bioactive Vitamin D and A5 Ligands Positively Correlate with Clinical Atopic Dermatitis Markers. Dermatology 2022; 238:1076-1083. [PMID: 35609515 DOI: 10.1159/000524343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Over the past decade, several controversial studies described a relationship between vitamin D and atopic diseases. Low plasma vitamin D levels or even vitamin D deficiency was associated with an increased incidence of atopic disease, postulating that a higher dietary intake of vitamin D may be a beneficial strategy against atopic diseases such as atopic dermatitis (AD). OBJECTIVE Our aim was to determine the relationship between plasma 25-hydroxyvitamin D3 (25(OH)D3) levels, the levels of the ligand of the vitamin D receptor (VDR) heterodimerization partner as well as the retinoid X receptor (RXR) and the active vitamin A5 derivative 9-cis-13,14-dihydroretinoic acid (9CDHRA) and AD severity. METHODS/RESULTS Samples from AD patients (n = 20) and healthy volunteers (n = 20) were assessed. In our study, the frequently measured VDR ligand precursor 25(OH)D3 in addition to the VDR-ligand 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 9CDHRA displayed no different levels when compared with the plasma of AD patients and healthy volunteers. When performing further correlation studies focusing on AD patients, plasma 25(OH)D3 levels showed a negative correlation with eosinophils in blood (EOS) and SCORing Atopic Dermatitis (SCORAD) values, while 1,25(OH)2D3 and 9CDHRA levels correlated positively with plasma IgE, EOS, and SCORAD values. CONCLUSION In consequence, the metabolic activation of vitamin D from 25(OH)D3 towards 1,25(OH)2D3 as well as the co-liganding of the RXR by 9CDHRA may be an important signalling mechanism, an important marker for AD development and severity as well as the basis for novel nutritional and pharmaceutical AD treatment options.
Collapse
Affiliation(s)
- Renata Lucas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Johanna Mihály
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Töröcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Yu T, Cazares O, Tang AD, Kim HY, Wald T, Verma A, Liu Q, Barcellos-Hoff MH, Floor SN, Jung HS, Brooks AN, Klein OD. SRSF1 governs progenitor-specific alternative splicing to maintain adult epithelial tissue homeostasis and renewal. Dev Cell 2022; 57:624-637.e4. [PMID: 35202586 PMCID: PMC8974236 DOI: 10.1016/j.devcel.2022.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022]
Abstract
Alternative splicing generates distinct mRNA variants and is essential for development, homeostasis, and renewal. Proteins of the serine/arginine (SR)-rich splicing factor family are major splicing regulators that are broadly required for organ development as well as cell and organism viability. However, how these proteins support adult organ function remains largely unknown. Here, we used the continuously growing mouse incisor as a model to dissect the functions of the prototypical SR family protein SRSF1 during tissue homeostasis and renewal. We identified an SRSF1-governed alternative splicing network that is specifically required for dental proliferation and survival of progenitors but dispensable for the viability of differentiated cells. We also observed a similar progenitor-specific role of SRSF1 in the small intestinal epithelium, indicating a conserved function of SRSF1 across adult epithelial tissues. Thus, our findings define a regulatory mechanism by which SRSF1 specifically controls progenitor-specific alternative splicing events to support adult tissue homeostasis and renewal.
Collapse
Affiliation(s)
- Tingsheng Yu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Oscar Cazares
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alison D Tang
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Tomas Wald
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adya Verma
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qi Liu
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Bikle DD. Ligand-Independent Actions of the Vitamin D Receptor: More Questions Than Answers. JBMR Plus 2021; 5:e10578. [PMID: 34950833 PMCID: PMC8674770 DOI: 10.1002/jbm4.10578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Our predominant understanding of the actions of vitamin D involve binding of its ligand, 1,25(OH)D, to the vitamin D receptor (VDR), which for its genomic actions binds to discrete regions of its target genes called vitamin D response elements. However, chromatin immunoprecipitation‐sequencing (ChIP‐seq) studies have observed that the VDR can bind to many sites in the genome without its ligand. The number of such sites and how much they coincide with sites that also bind the liganded VDR vary from cell to cell, with the keratinocyte from the skin having the greatest overlap and the intestinal epithelial cell having the least. What is the purpose of the unliganded VDR? In this review, I will focus on two clear examples in which the unliganded VDR plays a role. The best example is that of hair follicle cycling. Hair follicle cycling does not need 1,25(OH)2D, and Vdr lacking the ability to bind 1,25(OH)2D can restore hair follicle cycling in mice otherwise lacking Vdr. This is not true for other functions of VDR such as intestinal calcium transport. Tumor formation in the skin after UVB radiation or the application of chemical carcinogens also appears to be at least partially independent of 1,25(OH)2D in that Vdr null mice develop such tumors after these challenges, but mice lacking Cyp27b1, the enzyme producing 1,25(OH)2D, do not. Examples in other tissues emerge when studies comparing Vdr null and Cyp27b1 null mice are compared, demonstrating a more severe phenotype with respect to bone mineral homeostasis in the Cyp27b1 null mouse, suggesting a repressor function for VDR. This review will examine potential mechanisms for these ligand‐independent actions of VDR, but as the title indicates, there are more questions than answers with respect to this role of VDR. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology University of California San Francisco, San Francisco VA Health Center San Francisco CA USA
| |
Collapse
|
12
|
Bamberger C, Pankow S, Yates JR. SMG1 and CDK12 Link ΔNp63α Phosphorylation to RNA Surveillance in Keratinocytes. J Proteome Res 2021; 20:5347-5358. [PMID: 34761935 PMCID: PMC10653645 DOI: 10.1021/acs.jproteome.1c00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor suppressor p53-like protein p63 is required for self-renewal of epidermal tissues. Loss of p63 or exposure to ultraviolet (UV) irradiation triggers terminal differentiation in keratinocytes. However, it remains unclear how p63 diverts epidermal cells from proliferation to terminal differentiation, thereby contributing to successful tissue self-renewal. Here, we used bottom-up proteomics to identify the proteome at the chromatin in normal human epidermal keratinocytes following UV irradiation and p63 depletion. We found that loss of p63 increased DNA damage and that UV irradiation recruited the cyclin-dependent kinase CDK12 and the serine/threonine protein kinase SMG1 to chromatin only in the presence of p63. A post-translational modification analysis of ΔNp63α with mass spectrometry revealed that phosphorylation of T357/S358 and S368 was dependent on SMG1, whereas CDK12 increased the phosphorylation of ΔNp63α at S66/S68 and S301. Indirect phosphorylation of ΔNp63α in the presence of SMG1 enabled ΔNp63α to bind to the tumor suppressor p53-specific DNA recognition sequence, whereas CDK12 rendered ΔNp63α less responsive to UV irradiation and was not required for specific DNA binding. CDK12 and SMG1 are known to regulate the transcription and splicing of RNAs and the decay of nonsense RNAs, respectively, and a subset of p63-specific protein-protein interactions at the chromatin also linked p63 to RNA transcription and decay. We observed that in the absence of p63, UV irradiation resulted in more ORF1p. ORF1p is the first protein product of the intronless non-LTR retrotransposon LINE-1, indicating a derailed surveillance of RNA processing and/or translation. Our results suggest that p63 phosphorylation and transcriptional activation might correspond to altered RNA processing and/or translation to protect proliferating keratinocytes from increased genotoxic stress.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Sandra Pankow
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - John R. Yates
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
13
|
Li MY, Flora P, Pu H, Bar C, Silva J, Cohen I, Galbo PM, Liu H, Yu X, Jin J, Koseki H, D'Orazio JA, Zheng D, Ezhkova E. UV-induced reduction in Polycomb repression promotes epidermal pigmentation. Dev Cell 2021; 56:2547-2561.e8. [PMID: 34473941 PMCID: PMC8521440 DOI: 10.1016/j.devcel.2021.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) radiation is a prime environmental stressor that our epidermis is exposed to on a daily basis. To avert UV-induced damage, epidermal stem cells (EpSCs) become pigmented via a process of heterotypic interaction between melanocytes and EpSCs; however, the molecular mechanisms of this interaction are not well understood. In this study, we show that the function of a key chromatin regulator, the Polycomb complex, was reduced upon UV exposure in human and mouse epidermis. Genetic ablation of key Polycomb subunits in murine EpSCs, mimicking depletion upon UV exposure, results in an increased number of epidermal melanocytes and subsequent epidermal pigmentation. Genome-wide transcriptional and chromatin studies show that Polycomb regulates the expression of UV-responsive genes and identifies type II collagen (COL2A1) as a critical secreted regulator of melanogenesis and epidermal pigmentation. Together, our findings show how UV exposure induces Polycomb-mediated changes in EpSCs to affect melanocyte behavior and promote epidermal pigmentation.
Collapse
Affiliation(s)
- Meng-Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Hong Pu
- The Markey Cancer Center, Department of Toxicology and Cancer Biology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS) 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; AMED-CREST, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - John A D'Orazio
- The Markey Cancer Center, Department of Toxicology and Cancer Biology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
14
|
Golden EJ, Larson ED, Shechtman LA, Trahan GD, Gaillard D, Fellin TJ, Scott JK, Jones KL, Barlow LA. Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function. eLife 2021; 10:64013. [PMID: 34009125 PMCID: PMC8172241 DOI: 10.7554/elife.64013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic taste bud primordia are specified as taste placodes on the tongue surface and differentiate into the first taste receptor cells (TRCs) at birth. Throughout adult life, TRCs are continually regenerated from epithelial progenitors. Sonic hedgehog (SHH) signaling regulates TRC development and renewal, repressing taste fate embryonically, but promoting TRC differentiation in adults. Here, using mouse models, we show TRC renewal initiates at birth and coincides with onset of SHHs pro-taste function. Using transcriptional profiling to explore molecular regulators of renewal, we identified Foxa1 and Foxa2 as potential SHH target genes in lingual progenitors at birth and show that SHH overexpression in vivo alters FoxA1 and FoxA2 expression relevant to taste buds. We further bioinformatically identify genes relevant to cell adhesion and cell locomotion likely regulated by FOXA1;FOXA2 and show that expression of these candidates is also altered by forced SHH expression. We present a new model where SHH promotes TRC differentiation by regulating changes in epithelial cell adhesion and migration.
Collapse
Affiliation(s)
- Erin J Golden
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Eric D Larson
- The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States.,Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - G Devon Trahan
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Timothy J Fellin
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jennifer K Scott
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
15
|
Tomizawa RR, Tabin CJ, Atsuta Y. In ovo electroporation of chicken limb bud ectoderm: Electroporation to chick limb ectoderm. Dev Dyn 2021; 251:1628-1638. [PMID: 33899315 DOI: 10.1002/dvdy.352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Deciphering how ectodermal tissues form, and how they maintain their integrity, is crucial for understanding epidermal development and pathogenesis. However, lack of simple and rapid gene manipulation techniques limits genetic studies to elucidate mechanisms underlying these events. RESULTS Here we describe an easy method for electroporation of chick limb bud ectoderm enabling gene manipulation during ectoderm development and wound healing. Taking advantage of a small parafilm well that constrains DNA plasmids locally and the fact that the limb ectoderm arises from a defined site, we target the limb ectoderm forming region by in ovo electroporation. This approach results in focal and efficient transgenesis of the limb ectodermal cells. Further, using a previously described Msx2 promoter, gene manipulation can be specifically targeted to the apical ectodermal ridge (AER), a signaling center regulating limb development. Using the electroporation technique to deliver a fluorescent marker into the embryonic limb ectoderm, we show its utility in performing time-lapse imaging during wound healing. This analysis revealed previously unrecognized dynamic remodeling of the actin cytoskeleton and lamellipodia formation at the edges of the wound. We find that the lamellipodia formation requires activity of Rac1 GTPase, suggesting its necessity for wound closure. CONCLUSION Our method is simple and easy. Thus, it would permit high throughput tests for gene function during limb ectodermal development and wound healing.
Collapse
Affiliation(s)
| | | | - Yuji Atsuta
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Saika A, Nagatake T, Hirata SI, Sawane K, Adachi J, Abe Y, Isoyama J, Morimoto S, Node E, Tiwari P, Hosomi K, Matsunaga A, Honda T, Tomonaga T, Arita M, Kabashima K, Kunisawa J. ω3 fatty acid metabolite, 12-hydroxyeicosapentaenoic acid, alleviates contact hypersensitivity by downregulation of CXCL1 and CXCL2 gene expression in keratinocytes via retinoid X receptor α. FASEB J 2021; 35:e21354. [PMID: 33749892 DOI: 10.1096/fj.202001687r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/11/2022]
Abstract
ω3 fatty acids show potent bioactivities via conversion into lipid mediators; therefore, metabolism of dietary lipids is a critical determinant in the properties of ω3 fatty acids in the control of allergic inflammatory diseases. However, metabolic progression of ω3 fatty acids in the skin and their roles in the regulation of skin inflammation remains to be clarified. In this study, we found that 12-hydroxyeicosapentaenoic acid (12-HEPE), which is a 12-lipoxygenase metabolite of eicosapentaenoic acid, was the prominent metabolite accumulated in the skin of mice fed ω3 fatty acid-rich linseed oil. Consistently, the gene expression levels of Alox12 and Alox12b, which encode proteins involved in the generation of 12-HEPE, were much higher in the skin than in the other tissues (eg, gut). We also found that the topical application of 12-HEPE inhibited the inflammation associated with contact hypersensitivity by inhibiting neutrophil infiltration into the skin. In human keratinocytes in vitro, 12-HEPE inhibited the expression of two genes encoding neutrophil chemoattractants, CXCL1 and CXCL2, via retinoid X receptor α. Together, the present results demonstrate that the metabolic progression of dietary ω3 fatty acids differs in different organs, and identify 12-HEPE as the dominant ω3 fatty acid metabolite in the skin.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - So-Ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Nippon Flour Mills Co., Ltd, Innovation Center, Atsugi, Japan
| | - Jun Adachi
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan.,Division of Molecular Diagnosis, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Eri Node
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Dermatology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, Tokyo, Japan.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
17
|
Leal AS, Reich LA, Moerland JA, Zhang D, Liby KT. Potential therapeutic uses of rexinoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:141-183. [PMID: 34099107 DOI: 10.1016/bs.apha.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lyndsey A Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jessica A Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Karen T Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
18
|
Xie G, Zhou Y, Tu X, Ye X, Xu L, Xiao Z, Wang Q, Wang X, Du M, Chen Z, Chi X, Zhang X, Xia J, Zhang X, Zhou Y, Li Z, Xie C, Sheng L, Zeng Z, Zhou H, Yin Z, Su Y, Xu Y, Zhang XK. Centrosomal Localization of RXRα Promotes PLK1 Activation and Mitotic Progression and Constitutes a Tumor Vulnerability. Dev Cell 2020; 55:707-722.e9. [PMID: 33321102 DOI: 10.1016/j.devcel.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Retinoid X receptor alpha (RXRα), a nuclear receptor of transcription factor, controls various physiological and pathological pathways including cellular growth, proliferation, differentiation, and apoptosis. Here, we report that RXRα is phosphorylated at its N-terminal A/B domain by cyclin-dependent kinase 1 (Cdk1) at the onset of mitosis, triggering its translocation to the centrosome, where phosphorylated-RXRα (p-RXRα) interacts with polo-like kinase 1 (PLK1) through its N-terminal A/B domain by a unique mechanism. The interaction promotes PLK1 activation, centrosome maturation, and mitotic progression. Levels of p-RXRα are abnormally elevated in cancer cell lines, during carcinogenesis in animals, and in clinical tumor tissues. An RXRα ligand XS060, which specifically inhibits p-RXRα/PLK1 interaction but not RXRα heterodimerization, promotes mitotic arrest and catastrophe in a tumor-specific manner. These findings unravel a transcription-independent action of RXRα at the centrosome during mitosis and identify p-RXRα as a tumor-specific vulnerability for developing mitotic drugs with improved therapeutic index.
Collapse
Affiliation(s)
- Guobin Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhijian Xiao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiqiang Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Mingxuan Du
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Xiaoli Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ji Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaowei Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Luoyan Sheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
19
|
Lu Z, Liu H, Fu W, Wang Y, Geng J, Wang Y, Yu X, Wang Q, Xu H, Sui D. 20(S)-Protopanaxadiol inhibits epithelial-mesenchymal transition by promoting retinoid X receptor alpha in human colorectal carcinoma cells. J Cell Mol Med 2020; 24:14349-14365. [PMID: 33128348 PMCID: PMC7754066 DOI: 10.1111/jcmm.16054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/27/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Colorectal carcinoma (CRC) recurrence is often accompanied by metastasis. Most metastasis undergo through epithelial‐mesenchymal transition (EMT). Studies showed that retinol X receptor alpha (RXRα) and 20(S)‐Protopanaxadiol (PPD) have anti‐tumour effects. However, the anti‐metastasis effect of 20(S)‐PPD and the effect of RXRα on EMT‐induced metastasis are few studies on. Therefore, the role of RXRα and 20(S)‐PPD in CRC cell metastasis remains to be fully elucidated. RXRα with clinicopathological characteristics and EMT‐related expression in clinical samples were examined. Then, RXRα and EMT level in SW480 and SW620 cells, overexpressed and silenced RXRα in SW620 cells and SW480 cells, respectively, were evaluated. Finally, 20(S)‐PPD effect on SW620 and SW480 cells was evaluated. The results showed that a lower RXRα expression in cancer tissues, and a moderate negative correlation between RXRα and N stage, and tended to higher level of EMT. SW480 and SW620 cells had the highest and lowest RXRα expression among four CRC cell lines. SW480 had lower EMT level than SW620. Furthermore, 20(S)‐PPD increased RXRα and inhibited EMT level in SW620 cell. Finally, 20(S)‐PPD cannot restore SW480 cells EMT level to normal when RXRα silencing. These findings suggest that 20(S)‐PPD may inhibit EMT process in CRC cells by regulating RXRα expression.
Collapse
Affiliation(s)
- Zeyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongyan Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jianan Geng
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yaozhen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Quan Wang
- Department of Gastrocolorectal Surgery, First Affiliated Hospital of Jilin University, Changchun, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
20
|
Developmental Phase Transitions in Spatial Organization of Spontaneous Activity in Postnatal Barrel Cortex Layer 4. J Neurosci 2020; 40:7637-7650. [PMID: 32887743 DOI: 10.1523/jneurosci.1116-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/27/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Spatially-organized spontaneous activity is a characteristic feature of developing mammalian sensory systems. However, the transitions of spontaneous-activity spatial organization during development and related mechanisms remain largely unknown. We reported previously that layer 4 (L4) glutamatergic neurons in the mouse barrel cortex exhibit spontaneous activity with a patchwork-type pattern at postnatal day (P)5, which is during barrel formation. In the current work, we revealed that spontaneous activity in mouse barrel-cortex L4 glutamatergic neurons exhibits at least three phases during the first two weeks of postnatal development. Phase I activity has a patchwork-type pattern and is observed not only at P5, but also P1, before barrel formation. Phase II is found at P9, by which time barrel formation is completed, and exhibits broadly synchronized activity across barrel borders. Phase III emerges around P11 when L4-neuron activity is desynchronized. The Phase I activity, but not Phase II or III activity, is blocked by thalamic inhibition, demonstrating that the Phase I to II transition is associated with loss of thalamic dependency. Dominant-negative (DN)-Rac1 expression in L4 neurons hampers the Phase II to III transition. It also suppresses developmental increases in spine density and excitatory synapses of L4 neurons in the second postnatal week, suggesting that Rac1-mediated synapse maturation could underlie the Phase II to III transition. Our findings revealed the presence of distinct mechanisms for Phase I to II and Phase II to III transition. They also highlighted the role of a small GTPase in the developmental desynchronization of cortical spontaneous activity.SIGNIFICANCE STATEMENT Developing neocortex exhibits spatially-organized spontaneous activity, which plays a critical role in cortical circuit development. The features of spontaneous-activity spatial organization and the mechanisms underlying its changes during development remain largely unknown. In the present study, using two-photon in vivo imaging, we revealed three phases (Phases I, II, and III) of spontaneous activity in barrel-cortex layer 4 (L4) glutamatergic neurons during the first two postnatal weeks. We also demonstrated the presence of distinct mechanisms underlying phase transitions. Phase I to II shift arose from the switch in the L4-neuron driving source, and Phase II to III transition relied on L4-neuron Rac1 activity. These results provide new insights into the principles of developmental transitions of neocortical spontaneous-activity spatial patterns.
Collapse
|
21
|
Lucas R, Mihály J, Gericke J, de Lera AR, Alvarez S, Veleczki Z, Törőcsik D, Rühl R. Topical Vitamin D Receptor Antagonist/Partial-Agonist Treatment Induces Epidermal Hyperproliferation via RARγ Signaling Pathways. Dermatology 2020; 237:197-203. [PMID: 32866959 DOI: 10.1159/000508334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/30/2020] [Indexed: 11/19/2022] Open
Abstract
Vitamin D and A derivatives are well-known endogenous substances responsible for skin homeostasis. In this study we topically treated shaved mouse skin with a vitamin D agonist (MC903) or vitamin D antagonist/partial agonist (ZK159222) and compared the changes with acetone (control treatment) treatment for 14 days. Topical treatment with ZK159222 resulted in increased expression of genes involved in retinoic acid synthesis, increased retinoic acid concentrations and increased expression of retinoid target genes. Clustering the altered genes revealed that heparin-binding epidermal growth factor-like growth factor, the main driver of epidermal hyperproliferation, was increased via RARγ-mediated pathways, while other clusters of genes were mainly decreased which were comparable to the changes seen upon activation of the RARα-mediated pathways. In summary, we conclude that epidermal hyperproliferation of mouse skin in response to a topically administered vitamin D receptor antagonist/partial agonist (ZK159222) is induced via increased retinoic acid synthesis, retinoic acid levels and increased RARγ-mediated pathways.
Collapse
Affiliation(s)
- Renata Lucas
- Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Johanna Mihály
- Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Janine Gericke
- Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Universidade Vigo, Vigo, Spain
| | - Susana Alvarez
- Departamento de Química Orgánica, Facultade de Química, Universidade Vigo, Vigo, Spain
| | - Zsuzsanna Veleczki
- Departamento de Química Orgánica, Facultade de Química, Universidade Vigo, Vigo, Spain
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ralph Rühl
- Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary,
- Paprika Bioanalytics BT, Debrecen, Hungary,
| |
Collapse
|
22
|
Töröcsik D, Weise C, Gericke J, Szegedi A, Lucas R, Mihaly J, Worm M, Rühl R. Transcriptomic and lipidomic profiling of eicosanoid/docosanoid signalling in affected and non-affected skin of human atopic dermatitis patients. Exp Dermatol 2020; 28:177-189. [PMID: 30575130 DOI: 10.1111/exd.13867] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023]
Abstract
Lipoxygenases (LOX) and cyclooxygenase (COX) are the main enzymes for PUFA metabolism to highly bio-active prostaglandins, leukotrienes, thromboxanes, lipoxins, resolvins and protectins. LOX and COX pathways are important for the regulation of pro-inflammatory or pro-resolving metabolite synthesis and metabolism for various inflammatory diseases such as atopic dermatitis (AD). In this study, we determined PUFAs and PUFA metabolites in serum as well as affected and non-affected skin samples from AD patients and the dermal expression of various enzymes, binding proteins and receptors involved in these LOX and COX pathways. Decreased EPA and DHA levels in serum and reduced EPA level in affected and non-affected skin were found; in addition, n3/n6-PUFA ratios were lower in affected and non-affected skin and serum. Mono-hydroxylated PUFA metabolites of AA, EPA, DHA and the sum of AA, EPA and DHA metabolites were increased in affected and non-affected skin. COX1 and ALOX12B expression, COX and 12/15-LOX metabolites as well as various lipids, which are known to induce itch (12-HETE, LTB4, TXB2, PGE2 and PGF2) and the ratio of pro-inflammatory vs pro-resolving lipid mediators in non-affected and affected skin as well as in the serum of AD patients were increased, while n3/n6-PUFAs and metabolite ratios were lower in non-affected and affected AD skin. Expression of COX1 and COX-metabolites was even higher in non-affected AD skin. To conclude, 12/15-LOX and COX pathways were mainly upregulated, while n3/n6-PUFA and metabolite ratios were lower in AD patients skin. All these parameters are a hallmark of a pro-inflammatory and non-resolving environment in affected and partly in non-affected skin of AD patients.
Collapse
Affiliation(s)
- Daniel Töröcsik
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Christin Weise
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Janine Gericke
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Renata Lucas
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Johanna Mihaly
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Margitta Worm
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
23
|
Abstract
The terminal differentiation of the epidermis is a complex physiological process. During the past few decades, medical genetics has shown that defects in the stratum corneum (SC) permeability barrier cause a myriad of pathological conditions, ranging from common dry skin to lethal ichthyoses. Contrarily, molecular phylogenetics has revealed that amniotes have acquired a specialized form of cytoprotection cornification that provides mechanical resilience to the SC. This superior biochemical property, along with desiccation tolerance, is attributable to the proper formation of the macromolecular protein-lipid complex termed cornified cell envelopes (CE). Cornification largely depends on the peculiar biochemical and biophysical properties of loricrin, which is a major CE component. Despite its quantitative significance, loricrin knockout (LKO) mice have revealed it to be dispensable for the SC permeability barrier. Nevertheless, LKO mice have brought us valuable lessons. It is also becoming evident that absent loricrin affects skin homeostasis more profoundly in many more aspects than previously expected. Through an extensive review of aggregate evidence, we discuss herein the functional significance of the thiol-rich protein loricrin from a biochemical, genetic, pathological, metabolic, or immunological aspect with some theoretical and speculative perspectives.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Dennis R. Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
24
|
Kumar S, Nandi A, Mahesh A, Sinha S, Flores E, Chakrabarti R. Inducible knockout of ∆Np63 alters cell polarity and metabolism during pubertal mammary gland development. FEBS Lett 2019; 594:973-985. [PMID: 31794060 DOI: 10.1002/1873-3468.13703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
The ∆Np63 isoform of the p53-family transcription factor Trp63 is a key regulator of mammary epithelial stem cells that is involved in breast cancer development. To investigate the role of ∆Np63 at different stages of normal mammary gland development, we generated a ∆Np63-inducible conditional knockout (cKO) mouse model. We demonstrate that the deletion of ∆Np63 at puberty results in depletion of mammary stem cell-enriched basal cells, reduces expression of E-cadherin and β-catenin, and leads to a closed ductal lumen. RNA-sequencing analysis reveals reduced expression of oxidative phosphorylation (OXPHOS)-associated proteins and desmosomal polarity proteins. Functional assays show reduced numbers of mitochondria in the mammary epithelial cells of ΔNp63 cKO compared to wild-type, supporting the reduced OXPHOS phenotype. These findings identify a novel role for ∆Np63 in cellular metabolism and mammary epithelial cell polarity.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aakash Mahesh
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York, Buffalo, NY, USA
| | - Elsa Flores
- Department of Molecular and Cellular Oncology, Division of Basic Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular Oncology, Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Rühl R, Krezel W, de Lera AR. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutr Rev 2019; 76:929-941. [PMID: 30358857 DOI: 10.1093/nutrit/nuy057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The identity of the endogenous RXR ligand has not been conclusively determined, even though several compounds of natural origin, including retinoids and fatty acids, have been postulated to fulfill this role. Filling this gap, 9-cis-13,14-dihydroretinoic acid (9CDHRA) was identified as an endogenous RXR ligand in mice. This review examines the physiological relevance of various potential endogenous RXR ligands, especially 9CDHRA. The elusive steps in the metabolic synthesis of 9CDHRA, as well as the nutritional/nutrimetabolic origin of 9CDHRA, are also explored, along with the suitability of the ligand to be the representative member of a novel vitamin A class (vitamin A5).
Collapse
Affiliation(s)
- Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm, Centre National Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, Centro De Investigaciones Biomédicasand Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Spain
| |
Collapse
|
26
|
Oncogenic potential of truncated RXRα during colitis-associated colorectal tumorigenesis by promoting IL-6-STAT3 signaling. Nat Commun 2019; 10:1463. [PMID: 30931933 PMCID: PMC6443775 DOI: 10.1038/s41467-019-09375-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Retinoid X receptor-alpha (RXRα) is a potent regulator of inflammatory responses; however, its therapeutic potential for inflammatory cancer remains to be explored. We previously discovered that RXRα is abnormally cleaved in tumor cells and tissues, producing a truncated RXRα (tRXRα). Here, we show that transgenic expression of tRXRα in mice accelerates the development of colitis-associated colon cancer (CAC). The tumorigenic effect of tRXRα is primarily dependent on its expression in myeloid cells, which results in interleukin-6 (IL-6) induction and STAT3 activation. Mechanistic studies reveal an extensive interaction between tRXRα and TRAF6 in the cytoplasm of macrophages, leading to TRAF6 ubiquitination and subsequent activation of the NF-κB inflammatory pathway. K-80003, a tRXRα modulator derived from nonsteroidal anti-inflammatory drug (NSAID) sulindac, suppresses the growth of tRXRα-mediated colorectal tumor by inhibiting the NF-κB-IL-6-STAT3 signaling cascade. These results provide new insight into tRXRα action and identify a promising tRXRα ligand for treating CAC.
Collapse
|
27
|
Yan Z, Chong S, Lin H, Yang Q, Wang X, Zhang W, Zhang X, Zeng Z, Su Y. Design, synthesis and biological evaluation of tetrazole-containing RXRα ligands as anticancer agents. Eur J Med Chem 2019; 164:562-575. [DOI: 10.1016/j.ejmech.2018.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
|
28
|
Chen L, Wu L, Zhu L, Zhao Y. Overview of the structure-based non-genomic effects of the nuclear receptor RXRα. Cell Mol Biol Lett 2018; 23:36. [PMID: 30093910 PMCID: PMC6080560 DOI: 10.1186/s11658-018-0103-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor RXRα (retinoid X receptor-α) is a transcription factor that regulates the expression of multiple genes. Its non-genomic function is largely related to its structure, polymeric forms and modification. Previous research revealed that some non-genomic activity of RXRα occurs via formation of heterodimers with Nur77. RXRα-Nur77 heterodimers translocate from the nucleus to the mitochondria in response to certain apoptotic stimuli and this activity correlates with cell apoptosis. More recent studies revealed a significant role for truncated RXRα (tRXRα), which interacts with the p85α subunit of the PI3K/AKT signaling pathway, leading to enhanced activation of AKT and promoting cell growth in vitro and in animals. We recently reported on a series of NSAID sulindac analogs that can bind to tRXRα through a unique binding mechanism. We also identified one analog, K-80003, which can inhibit cancer cell growth by inducing tRXRα to form a tetramer, thus disrupting p85α-tRXRα interaction. This review analyzes the non-genomic effects of RXRα in normal and tumor cells, and discusses the functional differences based on RXRα protein structure (structure source: the RCSB Protein Data Bank).
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Linyan Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Yiyi Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| |
Collapse
|
29
|
Castillo-Azofeifa D, Seidel K, Gross L, Golden EJ, Jacquez B, Klein OD, Barlow LA. SOX2 regulation by hedgehog signaling controls adult lingual epithelium homeostasis. Development 2018; 145:dev.164889. [PMID: 29945863 DOI: 10.1242/dev.164889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Adult tongue epithelium is continuously renewed from epithelial progenitor cells, a process that requires hedgehog (HH) signaling. In mice, pharmacological inhibition of the HH pathway causes taste bud loss within a few weeks. Previously, we demonstrated that sonic hedgehog (SHH) overexpression in lingual progenitors induces ectopic taste buds with locally increased SOX2 expression, suggesting that taste bud differentiation depends on SOX2 downstream of HH. To test this, we inhibited HH signaling in mice and observed a rapid decline in Sox2 and SOX2-GFP expression in taste epithelium. Upon conditional deletion of Sox2, differentiation of both taste and non-taste epithelial cells was blocked, and progenitor cell number increased. In contrast to basally restricted proliferation in controls, dividing cells were overabundant and spread to suprabasal epithelial layers in mutants. SOX2 loss in progenitors also led non-cell-autonomously to taste cell apoptosis, dramatically shortening taste cell lifespans. Finally, in tongues with conditional Sox2 deletion and SHH overexpression, ectopic and endogenous taste buds were not detectable; instead, progenitor hyperproliferation expanded throughout the lingual epithelium. In summary, we show that SOX2 functions downstream of HH signaling to regulate lingual epithelium homeostasis.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Rocky Mountain Taste and Smell Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kerstin Seidel
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94131, USA
| | - Lauren Gross
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Erin J Golden
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Belkis Jacquez
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,BRAIN Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94131, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, CA 94131, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94131, USA
| | - Linda A Barlow
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA .,Rocky Mountain Taste and Smell Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,BRAIN Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Abstract
Rickets is a metabolic bone disease that develops as a result of inadequate mineralization of growing bone due to disruption of calcium, phosphorus and/or vitamin D metabolism. Nutritional rickets remains a significant child health problem in developing countries. In addition, several rare genetic causes of rickets have also been described, which can be divided into two groups. The first group consists of genetic disorders of vitamin D biosynthesis and action, such as vitamin D-dependent rickets type 1A (VDDR1A), vitamin D-dependent rickets type 1B (VDDR1B), vitamin D-dependent rickets type 2A (VDDR2A), and vitamin D-dependent rickets type 2B (VDDR2B). The second group involves genetic disorders of excessive renal phosphate loss (hereditary hypophosphatemic rickets) due to impairment in renal tubular phosphate reabsorption as a result of FGF23-related or FGF23-independent causes. In this review, we focus on clinical, laboratory and genetic characteristics of various types of hereditary rickets as well as differential diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Sezer Acar
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Yufei Shi
- King Faisal Specialist Hospital & Research Centre, Department of Genetics, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Retinoid X receptor suppresses a metastasis-promoting transcriptional program in myeloid cells via a ligand-insensitive mechanism. Proc Natl Acad Sci U S A 2017; 114:10725-10730. [PMID: 28923935 DOI: 10.1073/pnas.1700785114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Retinoid X receptor (RXR) regulates several key functions in myeloid cells, including inflammatory responses, phagocytosis, chemokine secretion, and proangiogenic activity. Its importance, however, in tumor-associated myeloid cells is unknown. In this study, we demonstrate that deletion of RXR in myeloid cells enhances lung metastasis formation while not affecting primary tumor growth. We show that RXR deficiency leads to transcriptomic changes in the lung myeloid compartment characterized by increased expression of prometastatic genes, including important determinants of premetastatic niche formation. Accordingly, RXR-deficient myeloid cells are more efficient in promoting cancer cell migration and invasion. Our results suggest that the repressive activity of RXR on prometastatic genes is mediated primarily through direct DNA binding of the receptor along with nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors and is largely unresponsive to ligand activation. In addition, we found that expression and transcriptional activity of RXRα is down-modulated in peripheral blood mononuclear cells of patients with lung cancer, particularly in advanced and metastatic disease. Overall, our results identify RXR as a regulator in the myeloid cell-assisted metastatic process and establish lipid-sensing nuclear receptors in the microenvironmental regulation of tumor progression.
Collapse
|
32
|
Ichijo R, Kobayashi H, Yoneda S, Iizuka Y, Kubo H, Matsumura S, Kitano S, Miyachi H, Honda T, Toyoshima F. Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration. Nat Commun 2017; 8:508. [PMID: 28894084 PMCID: PMC5593911 DOI: 10.1038/s41467-017-00433-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
The skin surface area varies flexibly in response to body shape changes. Skin homeostasis is maintained by stem cells residing in the basal layer of the interfollicular epidermis. However, how the interfollicular epidermal stem cells response to physiological body shape changes remains elusive. Here, we identify a highly proliferative interfollicular epidermal basal cell population in the rapidly expanding abdominal skin of pregnant mice. These cells express Tbx3 that is necessary for their propagation to drive skin expansion. The Tbx3+ basal cells are generated from Axin2+ interfollicular epidermal stem cells through planar-oriented asymmetric or symmetric cell divisions, and express transit-amplifying cell marker CD71. This biased division of Axin2+ interfollicular epidermal stem cells is induced by Sfrp1 and Igfbp2 proteins secreted from dermal cells. The Tbx3+ basal cells promote wound repair, which is enhanced by Sfrp1 and Igfbp2. This study elucidates the interfollicular epidermal stem cell/progeny organisation during pregnancy and suggests its application in regenerative medicine.The abdominal skin expands rapidly during pregnancy. Here the authors show that a population of highly proliferative stem cell progenies expressing the transcription factor Tbx3 is required for abdominal skin expansion in pregnant mice.
Collapse
Affiliation(s)
- Ryo Ichijo
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroki Kobayashi
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Saori Yoneda
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yui Iizuka
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hirokazu Kubo
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigeru Matsumura
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Satsuki Kitano
- Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, 606-8507, Japan
| | - Hitoshi Miyachi
- Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, 606-8507, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
33
|
Kulkarni NN, Adase CA, Zhang LJ, Borkowski AW, Li F, Sanford JA, Coleman DJ, Aguilera C, Indra AK, Gallo RL. IL-1 Receptor-Knockout Mice Develop Epidermal Cysts and Show an Altered Innate Immune Response after Exposure to UVB Radiation. J Invest Dermatol 2017; 137:2417-2426. [PMID: 28754339 DOI: 10.1016/j.jid.2017.07.814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
In this study, we observed that mice lacking the IL-1 receptor (IL-1R) (IL1r-/-) or deficient in IL1-β developed multiple epidermal cysts after chronic UVB exposure. Cysts that developed in IL1r-/- mice were characterized by the presence of the hair follicle marker Sox 9, keratins 10 and 14, and normal melanocyte distribution and retinoid X receptor-α expression. The increased incidence of cysts in IL1r-/- mice was associated with less skin inflammation as characterized by decreased recruitment of macrophages, and their skin also maintained epidermal barrier function compared with wild-type mice. Transcriptional analysis of the skin of IL1r-/- mice after UVB exposure showed decreased gene expression of proinflammatory cytokines such as tumor necrosis factor-α and IL-6. In vitro, primary keratinocytes derived from IL1r-/- mice were more resistant to UVB-triggered cell death compared with wild-type cells, and tumor necrosis factor-α release was completely blocked in the absence of IL-1R. These observations illustrate an unexpected yet prominent phenotype associated with the lack of IL-1R signaling in mice and support further investigation into the role of IL-1 ligands in epidermal repair and innate immune response after damaging UVB exposure.
Collapse
Affiliation(s)
- Nikhil N Kulkarni
- Department of Dermatology, University of California, San Diego, California, USA
| | - Christopher A Adase
- Department of Dermatology, University of California, San Diego, California, USA
| | - Ling-Juan Zhang
- Department of Dermatology, University of California, San Diego, California, USA
| | - Andrew W Borkowski
- Department of Dermatology, University of California, San Diego, California, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, California, USA
| | - James A Sanford
- Department of Dermatology, University of California, San Diego, California, USA
| | - Daniel J Coleman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Carlos Aguilera
- Department of Dermatology, University of California, San Diego, California, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA; Linus Pauling Science Center, Oregon State University, Corvallis, Oregon, USA; Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Portland, Oregon, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, California, USA.
| |
Collapse
|
34
|
Maatough A, Whitfield GK, Brook L, Hsieh D, Palade P, Hsieh JC. Human Hairless Protein Roles in Skin/Hair and Emerging Connections to Brain and Other Cancers. J Cell Biochem 2017; 119:69-80. [PMID: 28543886 DOI: 10.1002/jcb.26164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/29/2023]
Abstract
The mammalian hairless protein (HR) is a 130 kDa nuclear transcription factor that is essential for proper skin and hair follicle function. Previous studies have focused on the role of HR in skin maintenance and hair cycling. However, the hairless gene (HR) is also expressed in brain and other tissues, where its role remains poorly understood. HR has been reported to contain functional domains that potentially serve in DNA binding, histone demethylation, nuclear translocation and protein-protein interactions. Indeed, HR has been shown to interact with and repress the action of the nuclear receptors for vitamin D and thyroid hormone as well as RAR-related orphan receptor alpha, possibly via recruitment of histone deacetylases. HR may also have important functions in non-skin tissues given that nearly 200 HR mutations have been identified in patients with various cancers, including prostate, breast, lung, melanoma, uterine, and glioma. This suggests that HR and/or mutants thereof have relevance to the growth and survival of cancer cells. For example, the reported intrinsic histone H3K9 demethylase activity of HR may activate dormant genes to contribute to carcinogenesis. Alternatively, the demonstrated ability of HR to interact with p53 and/or the p53 DNA response element to influence p53-regulated pathways may explain, at least in part, why many cancers express mutated HR proteins. In this review, we summarize the current knowledge of HR bioactions, how HR mutations may be contributing to alopecia as well as to cancer, and, finally, outline future directions in the study of this largely enigmatic nuclear protein. J. Cell. Biochem. 119: 69-80, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anas Maatough
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix 85004-2153, Arizona
| | - G Kerr Whitfield
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix 85004-2153, Arizona
| | - Lemlem Brook
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix 85004-2153, Arizona
| | - David Hsieh
- Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas 75390, Texas
| | - Patricia Palade
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix 85004-2153, Arizona
| | - Jui-Cheng Hsieh
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix 85004-2153, Arizona
| |
Collapse
|
35
|
Totaro A, Castellan M, Battilana G, Zanconato F, Azzolin L, Giulitti S, Cordenonsi M, Piccolo S. YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nat Commun 2017; 8:15206. [PMID: 28513598 PMCID: PMC5442321 DOI: 10.1038/ncomms15206] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
How the behaviour of somatic stem cells (SCs) is influenced by mechanical signals remains a black-box in cell biology. Here we show that YAP/TAZ regulation by cell shape and rigidity of the extracellular matrix (ECM) dictates a pivotal SC decision: to remain undifferentiated and grow, or to activate a terminal differentiation programme. Notably, mechano-activation of YAP/TAZ promotes epidermal stemness by inhibition of Notch signalling, a key factor for epidermal differentiation. Conversely, YAP/TAZ inhibition by low mechanical forces induces Notch signalling and loss of SC traits. As such, mechano-dependent regulation of YAP/TAZ reflects into mechano-dependent regulation of Notch signalling. Mechanistically, at least in part, this is mediated by YAP/TAZ binding to distant enhancers activating the expression of Delta-like ligands, serving as ‘in cis' inhibitors of Notch. Thus YAP/TAZ mechanotransduction integrates with cell–cell communication pathways for fine-grained orchestration of SC decisions. Notch signalling is a fundamental negative regulator of epidermal stemness. Here, the authors show that cell mechanics through YAP/TAZ activity prevent primary human keratinocytes from differentiating by inhibiting cell-autonomous Notch signals.
Collapse
Affiliation(s)
- Antonio Totaro
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Martina Castellan
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Giusy Battilana
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Francesca Zanconato
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Luca Azzolin
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Stefano Giulitti
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy.,Department of Industrial Engineering (DII), University of Padua, via Marzolo 9, Padua 35131, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| |
Collapse
|
36
|
Hu JKH, Du W, Shelton SJ, Oldham MC, DiPersio CM, Klein OD. An FAK-YAP-mTOR Signaling Axis Regulates Stem Cell-Based Tissue Renewal in Mice. Cell Stem Cell 2017; 21:91-106.e6. [PMID: 28457749 DOI: 10.1016/j.stem.2017.03.023] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/07/2017] [Accepted: 03/26/2017] [Indexed: 02/05/2023]
Abstract
Tissue homeostasis requires the production of newly differentiated cells from resident adult stem cells. Central to this process is the expansion of undifferentiated intermediates known as transit-amplifying (TA) cells, but how stem cells are triggered to enter this proliferative TA state remains an important open question. Using the continuously growing mouse incisor as a model of stem cell-based tissue renewal, we found that the transcriptional cofactors YAP and TAZ are required both to maintain TA cell proliferation and to inhibit differentiation. Specifically, we identified a pathway involving activation of integrin α3 in TA cells that signals through an LATS-independent FAK/CDC42/PP1A cascade to control YAP-S397 phosphorylation and nuclear localization. This leads to Rheb expression and potentiates mTOR signaling to drive the proliferation of TA cells. These findings thus reveal a YAP/TAZ signaling mechanism that coordinates stem cell expansion and differentiation during organ renewal.
Collapse
Affiliation(s)
- Jimmy Kuang-Hsien Hu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wei Du
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Samuel J Shelton
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - C Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat Commun 2017; 8:14609. [PMID: 28248300 PMCID: PMC5337976 DOI: 10.1038/ncomms14609] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in patatin-like phospholipase domain-containing 1 (PNPLA1) cause autosomal recessive congenital ichthyosis, but the mechanism involved remains unclear. Here we show that PNPLA1, an enzyme expressed in differentiated keratinocytes, plays a crucial role in the biosynthesis of ω-O-acylceramide, a lipid component essential for skin barrier. Global or keratinocyte-specific Pnpla1-deficient neonates die due to epidermal permeability barrier defects with severe transepidermal water loss, decreased intercellular lipid lamellae in the stratum corneum, and aberrant keratinocyte differentiation. In Pnpla1−/− epidermis, unique linoleate-containing lipids including acylceramides, acylglucosylceramides and (O-acyl)-ω-hydroxy fatty acids are almost absent with reciprocal increases in their putative precursors, indicating that PNPLA1 catalyses the ω-O-esterification with linoleic acid to form acylceramides. Moreover, acylceramide supplementation partially rescues the altered differentiation of Pnpla1−/− keratinocytes. Our findings provide valuable insight into the skin barrier formation and ichthyosis development, and may contribute to novel therapeutic strategies for treatment of epidermal barrier defects. Loss-of-function mutations in PNPLA1, a gene encoding an enzyme with unknown function, cause dry and scaling skin in humans. Using mouse models with PNPLA1 deficiency, the authors show that PNPLA1 participates in the biosynthesis of acylceramide, a lipid component essential for skin barrier function.
Collapse
|
38
|
Jusu S, Presley JF, Kremer R. Phosphorylation of Human Retinoid X Receptor α at Serine 260 Impairs Its Subcellular Localization, Receptor Interaction, Nuclear Mobility, and 1α,25-Dihydroxyvitamin D3-dependent DNA Binding in Ras-transformed Keratinocytes. J Biol Chem 2017; 292:1490-1509. [PMID: 27852823 PMCID: PMC5270490 DOI: 10.1074/jbc.m116.758185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
Human retinoid X receptor α (hRXRα) plays a critical role in DNA binding and transcriptional activity through heterodimeric association with several members of the nuclear receptor superfamily, including the human vitamin D receptor (hVDR). We previously showed that hRXRα phosphorylation at serine 260 through the Ras-Raf-MAPK ERK1/2 activation is responsible for resistance to the growth inhibitory effects of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), the biologically active metabolite of vitamin D3 To further investigate the mechanism of this resistance, we studied intranuclear dynamics of hVDR and hRXRα-tagged constructs in living cells together with endogenous and tagged protein in fixed cells. We find that hVDR-, hRXRα-, and hVDR-hRXRα complex accumulate in the nucleus in 1α,25(OH)2D3-treated HPK1A cells but to a lesser extent in HPK1ARas-treated cells. Also, by using fluorescence resonance energy transfer (FRET), we demonstrate increased interaction of the hVDR-hRXRα complex in 1α,25(OH)2D3-treated HPK1A but not HPK1ARas cells. In HPK1ARas cells, 1α,25(OH)2D3-induced nuclear localization and interaction of hRXRα are restored when cells are treated with the MEK1/2 inhibitor UO126 or following transfection of the non-phosphorylatable hRXRα Ala-260 mutant. Finally, we demonstrate using fluorescence loss in photobleaching and quantitative co-localization with chromatin that RXR immobilization and co-localization with chromatin are significantly increased in 1α,25(OH)2D3-treated HPK1ARas cells transfected with the non-phosphorylatable hRXRα Ala-260 mutant. This suggests that hRXRα phosphorylation significantly disrupts its nuclear localization, interaction with VDR, intra-nuclear trafficking, and binding to chromatin of the hVDR-hRXR complex.
Collapse
Affiliation(s)
- Sylvester Jusu
- From the Department of Medicine, Calcium Research Laboratory, Royal Victoria Hospital, McGill University, Montreal, Quebec H4A 3J1
- the Department of Medicine, Experimental Therapeutics and Metabolism Program, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - John F Presley
- the Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, and
| | - Richard Kremer
- From the Department of Medicine, Calcium Research Laboratory, Royal Victoria Hospital, McGill University, Montreal, Quebec H4A 3J1,
- the Department of Medicine, Experimental Therapeutics and Metabolism Program, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
39
|
Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, Reber LL, Pirottin D, Kim J, Chambon P, Roers A, Antoine N, Kawakami Y, Kawakami T, Bureau F, Tam SY, Tsai M, Galli SJ. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest 2016; 126:4497-4515. [PMID: 27820702 PMCID: PMC5127679 DOI: 10.1172/jci86359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023] Open
Abstract
Epidermal keratinocytes form a structural and immune barrier that is essential for skin homeostasis. However, the mechanisms that regulate epidermal barrier function are incompletely understood. Here we have found that keratinocyte-specific deletion of the gene encoding RAB guanine nucleotide exchange factor 1 (RABGEF1, also known as RABEX-5) severely impairs epidermal barrier function in mice and induces an allergic cutaneous and systemic phenotype. RABGEF1-deficient keratinocytes exhibited aberrant activation of the intrinsic IL-1R/MYD88/NF-κB signaling pathway and MYD88-dependent abnormalities in expression of structural proteins that contribute to skin barrier function. Moreover, ablation of MYD88 signaling in RABGEF1-deficient keratinocytes or deletion of Il1r1 restored skin homeostasis and prevented development of skin inflammation. We further demonstrated that epidermal RABGEF1 expression is reduced in skin lesions of humans diagnosed with either atopic dermatitis or allergic contact dermatitis as well as in an inducible mouse model of allergic dermatitis. Our findings reveal a key role for RABGEF1 in dampening keratinocyte-intrinsic MYD88 signaling and sustaining epidermal barrier function in mice, and suggest that dysregulation of RABGEF1 expression may contribute to epidermal barrier dysfunction in allergic skin disorders in mice and humans. Thus, RABGEF1-mediated regulation of IL-1R/MYD88 signaling might represent a potential therapeutic target.
Collapse
Affiliation(s)
- Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Sophie El Abbas
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Oliwia Zurek
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Philipp Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Laurent L. Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Dimitri Pirottin
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Jinah Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964, Collège de France, Université de Strasbourg, Illkirch Cedex, France
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl-Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadine Antoine
- Department of Morphology and Pathology, Laboratory of Animal Histology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Research Unit for Allergy, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Research Unit for Allergy, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
40
|
Mammadova A, Zhou H, Carels CE, Von den Hoff JW. Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 2016; 92:326-335. [DOI: 10.1016/j.diff.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023]
|
41
|
Wang AB, Zhang YV, Tumbar T. Gata6 promotes hair follicle progenitor cell renewal by genome maintenance during proliferation. EMBO J 2016; 36:61-78. [PMID: 27908934 DOI: 10.15252/embj.201694572] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 01/29/2023] Open
Abstract
Cell proliferation is essential to rapid tissue growth and repair, but can result in replication-associated genome damage. Here, we implicate the transcription factor Gata6 in adult mouse hair follicle regeneration where it controls the renewal of rapidly proliferating epithelial (matrix) progenitors and hence the extent of production of terminally differentiated lineages. We find that Gata6 protects against DNA damage associated with proliferation, thus preventing cell cycle arrest and apoptosis. Furthermore, we show that in vivo Gata6 stimulates EDA-receptor signaling adaptor Edaradd level and NF-κB pathway activation, known to be important for DNA damage repair and stress response in general and for hair follicle growth in particular. In cultured keratinocytes, Edaradd rescues DNA damage, cell survival, and proliferation of Gata6 knockout cells and restores MCM10 expression. Our data add to recent evidence in embryonic stem and neural progenitor cells, suggesting a model whereby developmentally regulated transcription factors protect from DNA damage associated with proliferation at key stages of rapid tissue growth. Our data may add to understanding why Gata6 is a frequent target of amplification in cancers.
Collapse
Affiliation(s)
- Alex B Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ying V Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
42
|
Wang PY, Zeng WJ, Liu J, Wu YL, Ma Y, Zeng Z, Pang JY, Zhang XK, Yan X, Wong AST, Zeng JZ. TRC4, an improved triptolide derivative, specifically targets to truncated form of retinoid X receptor-alpha in cancer cells. Biochem Pharmacol 2016; 124:19-28. [PMID: 27810320 DOI: 10.1016/j.bcp.2016.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2016] [Indexed: 02/02/2023]
Abstract
The nuclear retinoid X receptor-α (RXRα) plays critical roles in cell homeostasis and in many physiological processes mainly through its transcriptional function. However, an N-terminal truncated form of RXRα, tRXRα, was frequently described in various cancer cells and tumor tissues, thus representing a new promising drug target. We recently demonstrated that triptolide (TR01) could target to the oncogenic activity of tRXRα. To improve its tumor selectivity, we developed several TR01 derivatives by introducing different amine ester groups on C-14-hydroxyl site. Interestingly, C-14 modification could differently affect the expression of tRXRα without interfering the level of its full length RXRα. Among the derivatives, TRC4 could strongly reduce tRXRα expression, while TRC5-7 increased it. The capability of inhibiting tRXRα expression was shown to be closely associated with its inactivation of AKT and induction of apoptosis in various cancer cells. Conversely, treatment of cancer cells with the tRXRα-stabilizing compounds TRC5-7 resulted in enhanced AKT activity and apoptosis-resistance. However, although TR01 could strongly reduce tRXRα expression and AKT activity, it also strongly inhibited the expression and transcriptional activity of RXRα in normal cells. Importantly, the tRXRα-selective TRC4 that did not significantly inhibit RXRα transcriptional function retained the most potency of the anticancer effect of TR01 and had no significant effect on the viability of normal cells. In conclusion, our results demonstrated that tRXRα-selective TRC4 will have potential clinical application in terms of drug target and side effects. Our findings will offer new strategies to develop improved triptolide analogs for cancer therapy.
Collapse
Affiliation(s)
- Pei-Yu Wang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Wen-Jun Zeng
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Liu
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yun-Long Wu
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yinghui Ma
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhiping Zeng
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ji-Yan Pang
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiao-Kun Zhang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaomei Yan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Alice Sze Tsai Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
43
|
Patel H, Stavrou I, Shrestha RL, Draviam V, Frame MC, Brunton VG. Kindlin1 regulates microtubule function to ensure normal mitosis. J Mol Cell Biol 2016; 8:338-48. [PMID: 26993041 PMCID: PMC4991666 DOI: 10.1093/jmcb/mjw009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/13/2015] [Accepted: 11/08/2015] [Indexed: 11/14/2022] Open
Abstract
Loss of Kindlin 1 (Kin1) results in the skin blistering disorder Kindler Syndrome (KS), whose symptoms also include skin atrophy and reduced keratinocyte proliferation. Kin1 binds to integrins to modulate their activation and more recently it has been shown to regulate mitotic spindles and cell survival in a Plk1-dependent manner. Here we report that short-term Kin1 deletion in mouse skin results in impaired mitosis, which is associated with reduced acetylated tubulin (ac-tub) levels and cell proliferation. In cells, impaired mitosis and reduced ac-tub levels are also accompanied by reduced microtubule stability, all of which are rescued by HDAC6 inhibition. The ability of Kin1 to regulate HDAC6-dependent cellular ac-tub levels is dependent on its phosphorylation by Plk1. Taken together, these data define a novel role for Kin1 in microtubule acetylation and stability and offer a mechanistic insight into how certain KS phenotypes, such as skin atrophy and reduced cell proliferation, arise.
Collapse
Affiliation(s)
- Hitesh Patel
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Ifigeneia Stavrou
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Roshan L Shrestha
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Viji Draviam
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK Present address: School of Biological and Chemical Sciences, Queen Mary University of London, London, E11 4NS, UK
| | - Margaret C Frame
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
44
|
Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev 2016; 30:1261-77. [PMID: 27284162 PMCID: PMC4911926 DOI: 10.1101/gad.280057.116] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023]
Abstract
Here, Wuidart et al. present a rigorous new method for assessing the lineage relationship and stem cell fate in different organs and tissues. The authors developed two novel methods for determining lineage relationships: the first one based on statistical analysis of multicolor lineage tracing, and the second one based on lineage tracing at saturation to assess the fate of all stem cells within a given lineage and the “flux” of cells between different lineages. Lineage tracing has become the method of choice to study the fate and dynamics of stem cells (SCs) during development, homeostasis, and regeneration. However, transgenic and knock-in Cre drivers used to perform lineage tracing experiments are often dynamically, temporally, and heterogeneously expressed, leading to the initial labeling of different cell types and thereby complicating their interpretation. Here, we developed two methods: the first one based on statistical analysis of multicolor lineage tracing, allowing the definition of multipotency potential to be achieved with high confidence, and the second one based on lineage tracing at saturation to assess the fate of all SCs within a given lineage and the “flux” of cells between different lineages. Our analysis clearly shows that, whereas the prostate develops from multipotent SCs, only unipotent SCs mediate mammary gland (MG) development and adult tissue remodeling. These methods offer a rigorous framework to assess the lineage relationship and SC fate in different organs and tissues.
Collapse
|
45
|
Haussler MR, Whitfield GK, Haussler CA, Sabir MS, Khan Z, Sandoval R, Jurutka PW. 1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age. VITAMINS AND HORMONES 2016; 100:165-230. [PMID: 26827953 DOI: 10.1016/bs.vh.2015.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA.
| | - G Kerr Whitfield
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Marya S Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Zainab Khan
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Ruby Sandoval
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Peter W Jurutka
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| |
Collapse
|
46
|
Zhang X, Zhou H, Su Y. Targeting truncated RXRα for cancer therapy. Acta Biochim Biophys Sin (Shanghai) 2016; 48:49-59. [PMID: 26494413 DOI: 10.1093/abbs/gmv104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
Retinoid X receptor-alpha (RXRα), a unique member of the nuclear receptor superfamily, is a well-established drug target, representing one of the most important targets for pharmacologic interventions and therapeutic applications for cancer. However, how RXRα regulates cancer cell growth and how RXRα modulators suppress tumorigenesis are poorly understood. Altered expression and aberrant function of RXRα are implicated in the development of cancer. Previously, several studies had demonstrated the presence of N-terminally truncated RXRα (tRXRα) proteins resulted from limited proteolysis of RXRα in tumor cells. Recently, we discovered that overexpression of tRXRα can promote tumor growth by interacting with tumor necrosis factor-alpha-induced phosphoinositide 3-kinase and NF-κB signal transduction pathways. We also identified nonsteroidal anti-inflammatory drug Sulindac and analogs as effective inhibitors of tRXRα activities via a unique binding mechanism. This review discusses the emerging roles of tRXRα and modulators in the regulation of cancer cell survival and death as well as inflammation and our recent understanding of tRXRα regulation by targeting the alternate binding sites on its surface.
Collapse
Affiliation(s)
- Xiaokun Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, CA 92037, USA
| | - Hu Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Su
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, CA 92037, USA
| |
Collapse
|
47
|
Kanellos G, Zhou J, Patel H, Ridgway RA, Huels D, Gurniak CB, Sandilands E, Carragher NO, Sansom OJ, Witke W, Brunton VG, Frame MC. ADF and Cofilin1 Control Actin Stress Fibers, Nuclear Integrity, and Cell Survival. Cell Rep 2015; 13:1949-64. [PMID: 26655907 PMCID: PMC4678118 DOI: 10.1016/j.celrep.2015.10.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/21/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022] Open
Abstract
Genetic co-depletion of the actin-severing proteins ADF and CFL1 triggers catastrophic loss of adult homeostasis in multiple tissues. There is impaired cell-cell adhesion in skin keratinocytes with dysregulation of E-cadherin, hyperproliferation of differentiated cells, and ultimately apoptosis. Mechanistically, the primary consequence of depleting both ADF and CFL1 is uncontrolled accumulation of contractile actin stress fibers associated with enlarged focal adhesions at the plasma membrane, as well as reduced rates of membrane protrusions. This generates increased intracellular acto-myosin tension that promotes nuclear deformation and physical disruption of the nuclear lamina via the LINC complex that normally connects regulated actin filaments to the nuclear envelope. We therefore describe a pathway involving the actin-severing proteins ADF and CFL1 in regulating the dynamic turnover of contractile actin stress fibers, and this is vital to prevent the nucleus from being damaged by actin contractility, in turn preserving cell survival and tissue homeostasis.
Collapse
Affiliation(s)
- Georgios Kanellos
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Jing Zhou
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Hitesh Patel
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - David Huels
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Christine B Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Emma Sandilands
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
48
|
Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, Saya H, Amagai M, Nagao K. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med 2015; 21:1272-9. [PMID: 26479922 PMCID: PMC4636445 DOI: 10.1038/nm.3962] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/02/2015] [Indexed: 12/14/2022]
Abstract
The skin harbors a variety of resident leukocyte subsets that must be tightly regulated to maintain immune homeostasis. Hair follicles are unique structures in the skin that contribute to skin dendritic cell homeostasis via chemokine production. We demonstrate that CD4+ and CD8+ skin resident memory T cells (TRM), responsible for long-term skin immunity, resided predominantly within the hair follicle epithelium of unperturbed epidermis. TRM tropism for the epidermis and follicles was herein termed epidermotropism. Hair follicle-derived IL-15 was required for CD8+ TRM, and IL-7 for CD8+ and CD4+ TRM, to exert epidermotropism. The lack of either cytokine impaired hapten-induced contact hypersensitivity responses. In a model of cutaneous T cell lymphoma, epidermotropic CD4+ TRM lymphoma cell localization depended on hair follicle-derived IL-7. These findings implicate hair follicle-derived cytokines as regulators of malignant and non-malignant TRM cell tissue residence and suggest they may be targeted therapeutically in inflammatory skin disease and lymphoma.
Collapse
Affiliation(s)
- Takeya Adachi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuro Kobayashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.,Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Taketo Yamada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Nagao
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.,Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M, Piccolo S. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 2015; 17:1218-27. [PMID: 26258633 PMCID: PMC6186417 DOI: 10.1038/ncb3216] [Citation(s) in RCA: 840] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022]
Abstract
YAP/TAZ are nuclear effectors of the Hippo pathway regulating organ growth and tumorigenesis. Yet, their function as transcriptional regulators remains underinvestigated. By ChIP-seq analyses in breast cancer cells, we discovered that the YAP/TAZ transcriptional response is pervasively mediated by a dual element: TEAD factors, through which YAP/TAZ bind to DNA, co-occupying chromatin with activator protein-1 (AP-1, dimer of JUN and FOS proteins) at composite cis-regulatory elements harbouring both TEAD and AP-1 motifs. YAP/TAZ/TEAD and AP-1 form a complex that synergistically activates target genes directly involved in the control of S-phase entry and mitosis. This control occurs almost exclusively from distal enhancers that contact target promoters through chromatin looping. YAP/TAZ-induced oncogenic growth is strongly enhanced by gain of AP-1 and severely blunted by its loss. Conversely, AP-1-promoted skin tumorigenesis is prevented in YAP/TAZ conditional knockout mice. This work highlights a new layer of signalling integration, feeding on YAP/TAZ function at the chromatin level.
Collapse
Affiliation(s)
- Francesca Zanconato
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | - Giusy Battilana
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Erika Quaranta
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo and Enrica Invernizzi', via Francesco Sforza 35, Milan 20126, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua School of Medicine, Via Gattamelata 64, 35126 Padua, Italy
- Istituto Oncologico Veneto IRCCS, Via Gattamelata 64, 35126 Padua, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| |
Collapse
|
50
|
Chen F, Chen J, Lin J, Cheltsov AV, Xu L, Chen Y, Zeng Z, Chen L, Huang M, Hu M, Ye X, Zhou Y, Wang G, Su Y, Zhang L, Zhou F, Zhang XK, Zhou H. NSC-640358 acts as RXRα ligand to promote TNFα-mediated apoptosis of cancer cell. Protein Cell 2015; 6:654-666. [PMID: 26156677 PMCID: PMC4537469 DOI: 10.1007/s13238-015-0178-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/03/2015] [Indexed: 12/18/2022] Open
Abstract
Retinoid X receptor α (RXRα) and its N-terminally truncated version tRXRα play important roles in tumorigenesis, while some RXRα ligands possess potent anti-cancer activities by targeting and modulating the tumorigenic effects of RXRα and tRXRα. Here we describe NSC-640358 (N-6), a thiazolyl-pyrazole derived compound, acts as a selective RXRα ligand to promote TNFα-mediated apoptosis of cancer cell. N-6 binds to RXRα and inhibits the transactivation of RXRα homodimer and RXRα/TR3 heterodimer. Using mutational analysis and computational study, we determine that Arg316 in RXRα, essential for 9-cis-retinoic acid binding and activating RXRα transactivation, is not required for antagonist effects of N-6, whereas Trp305 and Phe313 are crucial for N-6 binding to RXRα by forming extra π–π stacking interactions with N-6, indicating a distinct RXRα binding mode of N-6. N-6 inhibits TR3-stimulated transactivation of Gal4-DBD-RXRα-LBD by binding to the ligand binding pocket of RXRα-LBD, suggesting a strategy to regulate TR3 activity indirectly by using small molecules to target its interacting partner RXRα. For its physiological activities, we show that N-6 strongly inhibits tumor necrosis factor α (TNFα)-induced AKT activation and stimulates TNFα-mediated apoptosis in cancer cells in an RXRα/tRXRα dependent manner. The inhibition of TNFα-induced tRXRα/p85α complex formation by N-6 implies that N-6 targets tRXRα to inhibit TNFα-induced AKT activation and to induce cancer cell apoptosis. Together, our data illustrate a new RXRα ligand with a unique RXRα binding mode and the abilities to regulate TR3 activity indirectly and to induce TNFα-mediated cancer cell apoptosis by targeting RXRα/tRXRα.
Collapse
Affiliation(s)
- Fan Chen
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
- />School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000 China
| | - Jiebo Chen
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Jiacheng Lin
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | | | - Lin Xu
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Ya Chen
- />Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Zhiping Zeng
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Liqun Chen
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Mingfeng Huang
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Mengjie Hu
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Xiaohong Ye
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Yuqi Zhou
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Guanghui Wang
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Ying Su
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
- />Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Long Zhang
- />Life Science Institute, Zhejiang University, Hangzhou, 310058 China
| | - Fangfang Zhou
- />Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123 China
| | - Xiao-kun Zhang
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
- />Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Hu Zhou
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| |
Collapse
|