1
|
Parker LE, Papanicolaou KN, Zalesak-Kravec S, Weinberger EM, Kane MA, Foster DB. Retinoic acid signaling and metabolism in heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H792-H813. [PMID: 39933792 DOI: 10.1152/ajpheart.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Nearly 70 years after studies first showed that the offspring of vitamin A (retinol, ROL)-deficient rats exhibit structural cardiac defects and over 20 years since the role of vitamin A's potent bioactive metabolite hormone, all-trans retinoic acid (ATRA), was elucidated in embryonic cardiac development, the role of the vitamin A metabolites, or retinoids, in adult heart physiology and heart and vascular disease, remains poorly understood. Studies have shown that low serum levels of retinoic acid correlate with higher all-cause and cardiovascular mortality, though the relationship between circulating retinol and ATRA levels, cardiac tissue ATRA levels, and intracellular cardiac ATRA signaling in the context of heart and vascular disease has only begun to be addressed. We have recently shown that patients with idiopathic dilated cardiomyopathy show a nearly 40% decline of in situ cardiac ATRA levels, despite adequate local stores of retinol. Moreover, we and others have shown that the administration of ATRA forestalls the development of heart failure (HF) in rodent models. In this review, we summarize key facets of retinoid metabolism and signaling and discuss mechanisms by which impaired ATRA signaling contributes to several HF hallmarks including hypertrophy, contractile dysfunction, poor calcium handling, redox imbalance, and fibrosis. We highlight unresolved issues in cardiac ATRA metabolism whose pursuit will help refine therapeutic strategies aimed at restoring ATRA homeostasis.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Eva M Weinberger
- School of Medicine, Imperial College London, London, United Kingdom
| | - Maureen A Kane
- School of Pharmacy, University of Maryland, Baltimore, Maryland, United States
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Penaloza JS, Moreland B, Gaither JB, Landis BJ, Ware SM, McBride KL, White P. Identification of Long Noncoding RNA Candidate Disease Genes Associated With Clinically Reported Copy Number Variants in Congenital Heart Disease. J Am Heart Assoc 2025; 14:e039177. [PMID: 40079339 DOI: 10.1161/jaha.124.039177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/04/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Copy number variants (CNVs) contribute to 3% to 10% of isolated congenital heart disease (CHD) cases, yet their pathogenic roles remain unclear. Diagnostic efforts have focused on protein-coding genes, largely overlooking long noncoding RNAs (lncRNAs), which play key roles in development and disease. METHODS AND RESULTS We systematically analyzed lncRNAs overlapping clinically validated CNVs in 743 patients with CHD from the Cytogenomics of Cardiovascular Malformations Consortium. We identified heart-expressed lncRNAs, constructed a gene regulatory network using weighted gene coexpression network analysis, and identified gene modules associated with heart development. Functional enrichment and network analyses were used to identify lncRNAs that may be involved in heart development and potentially contribute to CHD. The code is stably archived at https://doi.org/10.5281/zenodo.13799779. We identified 18 lncRNA candidate genes within modules significantly correlated with heart tissue, highlighting their potential involvement in CHD pathogenesis. Notably, lncRNAs such as lnc-STK32C-3, lnc-TBX20-1, and CRMA demonstrated strong associations with known CHD genes. Strikingly, although only 7.6% of known CHD genes were affected by a CNV, 68.8% of the CNVs contained a lncRNA expressed in the heart. CONCLUSIONS Using weighted gene coexpression network analysis, we identified CNV-associated lncRNAs with potential relevance to CHD, underscoring the complexities of noncoding regions in disease pathogenesis. These findings suggest that lncRNAs may play a greater role in CHD than previously recognized, highlighting the need for broader genomic analyses that extend beyond protein-coding genes. This study provides a foundation for further exploration of lncRNAs in CHD, with potential implications for improved genetic characterization and diagnosis.
Collapse
Affiliation(s)
- Jacqueline S Penaloza
- The Office of Data Sciences The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
| | - Blythe Moreland
- The Steve and Cindy Rasmussen Institute for Genomic Medicine The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
| | - Jeffrey B Gaither
- The Office of Data Sciences The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
| | - Benjamin J Landis
- Department of Pediatrics Indiana University School of Medicine Indianapolis IN USA
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Stephanie M Ware
- Department of Pediatrics Indiana University School of Medicine Indianapolis IN USA
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Kim L McBride
- Department of Medical Genetics Cumming School of Medicine University of Calgary Calgary Canada
| | - Peter White
- The Office of Data Sciences The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine The Abigail Wexner Research Institute Nationwide Children's Hospital Columbus OH USA
- Department of Pediatrics The Ohio State University College of Medicine Columbus OH USA
| |
Collapse
|
3
|
Purow J, Waidner L, Ale H. Review of the Pathophysiology and Clinical Manifestations of 22q11.2 Deletion and Duplication Syndromes. Clin Rev Allergy Immunol 2025; 68:23. [PMID: 40038168 DOI: 10.1007/s12016-025-09035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
22q11.2 deletion and duplication syndromes are complex genetic syndromes composed of a wide spectrum of clinical manifestations, mostly affecting cardiovascular, endocrine, neurodevelopmental, and immune functioning. 22q11.2 deletion syndrome (22q11.2 DS) is more common and widely recognized compared to the duplication counterpart. Most of the literature focuses on delineating the genetic, molecular, and clinical impact of 22q11.2 DS, and less information focuses on the 22q11.2 duplication syndrome (22q11.2 DupS). We will cover both variants in this review and shed light on the less reported atypical 22q11.2 deletions and duplications. Variants in multiple genes in the 22q11.2 region, especially the TBX1 and DGCR8 genes, have been linked to the clinical phenotypes of 22q11.2 DS and 22q11.2 DupS. Variations in genes on the non-deleted homologous chromosome in the critical 22q11.2 region can further influence phenotypes by revealing recessive diseases. This effect has been documented for several genes in this area, such as SNAP29 and GP1BB. Neural crest development is usually impacted leading to various cardiovascular defects including Tetralogy of Fallot and truncus arteriosus. It can also cause palatal defects, especially velopharyngeal deficiency, considered another hallmark of 22q11DS. Individuals may also present with hypocalcemia and thyroid dysfunction due to impaired parathyroid gland formation and thyroid dysgenesis, respectively. Immunodeficiencies result from impaired T-cell development due to thymic hypoplasia, also a consequence of abnormal neural crest development. Humoral defects are also now increasingly recognized in these individuals. Psychiatric, neurocognitive, and developmental features are common, but severity varies across affected individuals. Other systems like the genitourinary, gastrointestinal, skeletal, and hematological are also involved. Monitoring and treating all the possible clinical manifestations require a multi-disciplinary approach to effectively address the plethora of clinical findings. The complex nature of the treatment guidelines reflects the clinical heterogeneity of these genetic variations. Further research is required to continue exploring the mechanisms relating to the impact of genetic aberrations in the 22q11.2 region on various clinical parameters. This will hopefully guide future updates to the current clinical practice guidelines to continue tailoring them to the individual needs of each affected person.
Collapse
Affiliation(s)
- Jeremy Purow
- FIU Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Lauren Waidner
- FIU Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Hanadys Ale
- Joe DiMaggio Children's Hospital, Hollywood, FL, USA.
| |
Collapse
|
4
|
Tadeo D, Kakavand B, Bhat A, Tsuda T. Aberrant Subclavian Artery in Interrupted Aortic Arch with Severe Aortic Outlet Obstruction: Cerebral Blood Flow as a Possible Determinant of Embryonic Cardiovascular Development? Pediatr Cardiol 2025; 46:621-627. [PMID: 38578303 DOI: 10.1007/s00246-024-03476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Aberrant subclavian artery (ASCA) is frequently observed in interrupted aortic arch (IAA) with aortic/subaortic obstruction. Developmental significance of ASCA in IAA in utero remains elusive. Newborns with prenatally diagnosed isolated IAA under continuous prostaglandin E1 infusion were studied. Cross-sectional areas of aortic valve opening (AVOCSA) and patent ductus arteriosus (PDACSA) were represented by echocardiographic measurement of (diameter)2 indexed by body surface area (m2). Types of IAA and presence of ASCA were examined in relation to sizes of AVOCSA and PDACSA. Twenty-four newborns with IAA (six type A and 18 type B) were reviewed. Male dominance was seen in type B (male 72%). Twenty-three patients had left aortic arch. No type A patients had ASCA, but 50% of type B had ASCA; AVOCSA was significantly smaller in type B than in type A (p = 0.003). In type B, PDACSA was significantly larger in those with ASCA than without (p = 0.003), but AVOCSA exhibited no significant size difference between these two subgroups. Chromosome 22q11 deletion was only seen in type B (56%) and showed no significant correlation with the presence of ASCA. In type B IAA, the presence of ASCA was associated with larger PDACSA, suggesting an adaptive enlargement of the ductus arteriosus and ASCA in response to reduced antegrade flow across small AVOCSA, which may be augmenting cerebral blood flow. Preservation of cerebral blood flow may be another important determinant affecting embryonic cardiovascular development.
Collapse
Affiliation(s)
- Danilo Tadeo
- Nemours Cardiac Center, Nemours Children's Health, Delaware Valley, 1600 Rockland Rd, Wilmington, DE, 19803, USA
| | - Barham Kakavand
- Division of Cardiology, Nemours Children's Health, Orlando, FL, USA
| | - Abdul Bhat
- Nemours Cardiac Center, Nemours Children's Health, Delaware Valley, 1600 Rockland Rd, Wilmington, DE, 19803, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Takeshi Tsuda
- Nemours Cardiac Center, Nemours Children's Health, Delaware Valley, 1600 Rockland Rd, Wilmington, DE, 19803, USA.
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Mao Y, Zhao Y, Zhou Q, Li W. Chromosome Engineering: Technologies, Applications, and Challenges. Annu Rev Anim Biosci 2025; 13:25-47. [PMID: 39541223 DOI: 10.1146/annurev-animal-111523-102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chromosome engineering is a transformative field at the cutting edge of biological science, offering unprecedented precision in manipulating large-scale genomic DNA within cells. This discipline is central to deciphering how the multifaceted roles of chromosomes-guarding genetic information, encoding sequence positional information, and influencing organismal traits-shape the genetic blueprint of life. This review comprehensively examines the technological advancements in chromosome engineering, which center on engineering chromosomal rearrangements, generating artificial chromosomes, de novo synthesizing chromosomes, and transferring chromosomes. Additionally, we introduce the application progress of chromosome engineering in basic and applied research fields, showcasing its capacity to deepen our knowledge of genetics and catalyze breakthroughs in therapeutic strategies. Finally, we conclude with a discussion of the challenges the field faces and highlight the profound implications that chromosome engineering holds for the future of modern biology and medical applications.
Collapse
Affiliation(s)
- Yihuan Mao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Yulong Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
6
|
Haj Mohamad H, Nouh AK, AlAli F, AlNaeem S, Aldchach F, Abouelkhel HN. Unraveling Hematological Anomalies in DiGeorge Syndrome: A Retrospective Study of Thrombocytopenia and Mean Platelet Volume. Cureus 2025; 17:e78857. [PMID: 40084332 PMCID: PMC11906017 DOI: 10.7759/cureus.78857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND DiGeorge syndrome, arising from chromosome 22q11.2 deletion including the TBX1 gene, is known for its multifaceted developmental anomalies affecting the heart, immune system, and facial morphology. Despite extensive clinical characterization, hematological manifestations, particularly thrombocytopenia, remain underexplored. There is growing evidence of a potential association between DiGeorge syndrome and Bernard-Soulier syndrome, a rare platelet disorder characterized by defects in the GPIb-IX-V complex. This connection may be linked to the genetic location of the GPIBB gene, which encodes the GPIbβ subunit of the complex, on chromosome 22, where microdeletions are a hallmark of DiGeorge syndrome. OBJECTIVE This study investigates the hematological profile of pediatric DiGeorge syndrome patients followed up in Al Qassimi Women's and Children's Hospital, Sharjah, focusing on platelet counts, mean platelet volume, and potential genetic links to GPIBB mutations on chromosome 22q11.2. The aim is to deepen understanding of thrombocytopenia in DiGeorge syndrome and its implications for clinical management. METHODS A retrospective analysis of medical records identified eight pediatric DiGeorge syndrome patients diagnosed through fluorescent in situ hybridization (FISH) and microarray scanning, excluding cases with incomplete records or unrelated comorbidities. Uniform assessment of platelet parameters was conducted across all subjects. RESULTS DiGeorge syndrome patients had a mean age of 5.1 years, with four males and four females. The mean number of complete blood counts (CBCs) per patient was 14.25 (range: 6-42). The mean platelet count was 194,295/µL and the mean mean platelet volume (MPV) was 10.8 fL. Thrombocytopenia and large platelets showed notable variability. Four patients had large platelets on 100% of their CBCs, while the lowest was 57%. Two patients had thrombocytopenia in >80% of CBCs, while the rest showed lower rates. One patient presented with immune bicytopenia that responded to immunosuppressive therapy. DISCUSSION The findings underscore distinct hematological characteristics in DiGeorge syndrome. These insights into platelet abnormalities shed light on potential mechanisms underlying thrombocytopenia in DiGeorge syndrome. Specifically, the observed higher MPV and occasional presence of giant platelets suggest altered platelet production or function, possibly due to haploinsufficiency of gene within the 22q11.2 region, including GPIBB. The study's findings align with previous reports linking DiGeorge syndrome to thrombocytopenia and Bernard-Soulier syndrome features. CONCLUSION This study provides insights into hematological manifestations of DiGeorge syndrome, highlighting the role of GPIb-IX-V complex deficiencies. Further research is warranted to elucidate genetic interactions and optimize management strategies for thrombocytopenia in DiGeorge syndrome patients. Future investigations comparing proximal versus distal 22q11.2 deletions and their clinical implications could enhance our understanding.
Collapse
Affiliation(s)
| | | | - Fatima AlAli
- Pediatric Genetics, Al Qassimi Women's and Children's Hospital, Sharjah, ARE
| | - Sally AlNaeem
- Pediatric Hematology, Al Qassimi Women's and Children's Hospital, Sharjah, ARE
| | | | - Hanan N Abouelkhel
- Pediatrics, Alexandria University, Alexandria, EGY
- Pediatric Hematology, Al Qassimi Women's and Children's Hospital, Sharjah, ARE
| |
Collapse
|
7
|
Caterino M, Paris D, Torromino G, Costanzo M, Flore G, Tramice A, Golini E, Mandillo S, Cavezza D, Angelini C, Ruoppolo M, Motta A, De Leonibus E, Baldini A, Illingworth E, Lania G. Brain and behavioural anomalies caused by Tbx1 haploinsufficiency are corrected by vitamin B12. Life Sci Alliance 2025; 8:e202403075. [PMID: 39567195 PMCID: PMC11579592 DOI: 10.26508/lsa.202403075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
The brain-related phenotypes observed in 22q11.2 deletion syndrome (DS) patients are highly variable, and their origin is poorly understood. Changes in brain metabolism might contribute to these phenotypes, as many of the deleted genes are involved in metabolic processes, but this is unknown. This study shows for the first time that Tbx1 haploinsufficiency causes brain metabolic imbalance. We studied two mouse models of 22q11.2DS using mass spectrometry, nuclear magnetic resonance spectroscopy, and transcriptomics. We found that Tbx1 +/- mice and Df1/+ mice, with a multigenic deletion that includes Tbx1, have elevated brain methylmalonic acid, which is highly brain-toxic. Focusing on Tbx1 mutants, we found that they also have a more general brain metabolomic imbalance that affects key metabolic pathways, such as glutamine-glutamate and fatty acid metabolism. We provide transcriptomic evidence of a genotype-vitamin B12 treatment interaction. In addition, vitamin B12 treatment rescued a behavioural anomaly in Tbx1 +/- mice. Further studies will be required to establish whether the specific metabolites affected by Tbx1 haploinsufficiency are potential biomarkers of brain disease status in 22q11.2DS patients.
Collapse
Affiliation(s)
- Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (Naples), Italy
| | - Giulia Torromino
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gemma Flore
- Institute of Genetics and Biophysics of the National Research Council, Naples, Italy
| | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (Naples), Italy
| | - Elisabetta Golini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
| | - Diletta Cavezza
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
- PhD Program in Behavioural Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Claudia Angelini
- Institute for Applied Mathematics "Mauro Picone," National Research Council, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (Naples), Italy
| | - Elvira De Leonibus
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Monterotondo (Rome), Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | | | - Gabriella Lania
- Institute of Genetics and Biophysics of the National Research Council, Naples, Italy
| |
Collapse
|
8
|
Collins RL, Talkowski ME. Diversity and consequences of structural variation in the human genome. Nat Rev Genet 2025:10.1038/s41576-024-00808-9. [PMID: 39838028 DOI: 10.1038/s41576-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
The biomedical community is increasingly invested in capturing all genetic variants across human genomes, interpreting their functional consequences and translating these findings to the clinic. A crucial component of this endeavour is the discovery and characterization of structural variants (SVs), which are ubiquitous in the human population, heterogeneous in their mutational processes, key substrates for evolution and adaptation, and profound drivers of human disease. The recent emergence of new technologies and the remarkable scale of sequence-based population studies have begun to crystalize our understanding of SVs as a mutational class and their widespread influence across phenotypes. In this Review, we summarize recent discoveries and new insights into SVs in the human genome in terms of their mutational patterns, population genetics, functional consequences, and impact on human traits and disease. We conclude by outlining three frontiers to be explored by the field over the next decade.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Urbański B, Urbańska Z, Bąbol-Pokora K, Subocz E, Młynarski W, Janczar S. Inherited or Immunological Thrombocytopenia: The Complex Nature of Platelet Disorders in 22q11.2 Deletion Syndrome. Semin Thromb Hemost 2025. [PMID: 39805292 DOI: 10.1055/s-0044-1801383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
22q11.2 deletion syndrome (22q11.2DS) is one of the most common congenital malformation syndromes resulting from disrupted embryonic development of pharyngeal pouches. The classical triad of symptoms described by Angelo DiGeorge is frequently accompanied by hematological and immune disorders. While it is well-established that patients with 22q11.2DS have an increased risk of recurrent autoimmune cytopenias, including immune thrombocytopenia, the platelet abnormalities in this population are more complex and multifaceted. Given this issue, we conducted a comprehensive literature review on platelet disorders in 22q11.2DS using accessible databases (PubMed and Scopus). We aimed to outline previous studies limitations and most urgent challenges concerning thrombocytopenia in these patients. One characteristic finding frequently observed in 22q11.2DS is mild macrothrombocytopenia caused presumably by the loss of one GP1BB allele, encoding the element of the GPIb-IX-V complex. This structure plays a central role in thrombocyte adhesion, aggregation, and subsequent activation. Recent studies suggest that defective megakaryopoiesis and impaired vasculogenesis may strongly influence platelet and hemostasis disorders in 22q11.2DS. Furthermore, the phenotypic manifestation may be modulated by epigenetic factors and gene expression modifiers located outside the deletion region. Although the final hemorrhagic phenotype is typically mild, these patients may require more frequent transfusions following major surgical procedures. Despite the risk of thrombocytopenia and thrombocytopathy, there is a lack of large-scale research on hematological anomalies in 22q11.2DS, and the available results are often inconclusive. Given the complexity of hemostatic disorders, it is essential to establish specific recommendations for perioperative management and autoimmune cytopenias treatment within this population.
Collapse
Affiliation(s)
- Bartosz Urbański
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Urbańska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Subocz
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Arriagada C, Lin E, Schonning M, Astrof S. Mesodermal fibronectin controls cell shape, polarity, and mechanotransduction in the second heart field during cardiac outflow tract development. Dev Cell 2025; 60:62-84.e7. [PMID: 39413783 PMCID: PMC11706711 DOI: 10.1016/j.devcel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Failure in the elongation of the cardiac outflow tract (OFT) results in congenital heart disease due to the misalignment of the great arteries with the left and right ventricles. The OFT lengthens via the accretion of progenitors from the second heart field (SHF). SHF cells are exquisitely regionalized and organized into an epithelial-like layer, forming the dorsal pericardial wall (DPW). Tissue tension, cell polarity, and proliferation within the DPW are important for the addition of SHF-derived cells to the heart and OFT elongation. However, the genes controlling these processes are not completely characterized. Using conditional mutagenesis in the mouse, we show that fibronectin (FN1) synthesized by the mesoderm coordinates multiple cellular behaviors in the anterior DPW. FN1 is enriched in the anterior DPW and plays a role in OFT elongation by maintaining a balance between pro- and anti-adhesive cell-extracellular matrix (ECM) interactions and controlling DPW cell shape, polarity, cohesion, proliferation, and mechanotransduction.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Evan Lin
- Princeton Day School, Princeton, NJ, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
11
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
12
|
Zhang L, Huang R, Zhou H, Lin X, Guo F, Jing X, Zhang Y, Li F, Li F, Yu Q, Wang D, Chen G, Fu F, Pan M, Han J, Li D, Li R. Prenatal diagnosis in fetal right aortic arch using chromosomal microarray analysis and whole exome sequencing: a Chinese single-center retrospective study. Mol Cytogenet 2024; 17:22. [PMID: 39334424 PMCID: PMC11438370 DOI: 10.1186/s13039-024-00691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/23/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Right aortic arch (RAA) is a common congenital aortic arch abnormality. Fetuses with RAA frequently have good outcomes after birth. However, chromosomal abnormalities and genetic syndromes suggest poor prognosis for these patients. So far the underlying genetic etiology is still not identified in most RAA patients based on traditional genetic techniques and a problem is still debated whether fetuses with isolated RAA should be referred for CMA. Our study aims to investigate the genetic etiology of fetuses with right aortic arch (RAA) by chromosomal microarray analysis (CMA) and whole exome sequencing (WES) and evaluate the efficacy of CMA in fetal isolated RAA. RESULTS Among these 153 fetuses, 99 (64.7%) with isolated RAA and 54 (35.3%) with non-isolated RAA; 25.5% (39/153) with additional intracardiac anomalies (ICA), and 19.0% (29/153) with extracardiac anomalies (ECA). Tetralogy of Fallot (n = 10) and persistent left superior vena cava (n = 11) are the most common ICA and ECA, respectively. CMA detected 15 clinically significant copy number variations (CNVs) in 14 cases (9.2%); microdeletion of 22q11.21 was the most common pathogenic CNVs (7.8%). The chromosomal abnormalities rate was higher in non-isolated RAA and RAA with ICA groups than in isolated RAA group (16.7% vs. 5.1%; 20% vs. 5.1%, both p < 0.05). From five cases further undergoing WES, a diagnostic variant in MTOR gene (c.7255G > A, de novo) was first reported in prenatal, extending the prenatal manifestation of Smith-Kingsmore syndrome (OMIM: 616638); a clinically relevant variant c.3407A > T in STAG2 was identified, being inherited from the healthy mother. Moreover, the premature birth and termination rates were higher in non-isolated RAA group than in isolated RAA group (11.1% vs. 1.0%; 37.0% vs. 2.0%, both p < 0.01). CONCLUSIONS We demonstrate that CMA and WES are useful diagnostic tools for fetal RAA, particularly non-isolated RAA, and all fetuses with RAA should be referred for CMA. The data probably aids in prenatal diagnosis and prenatal counseling of fetal RAA.
Collapse
Affiliation(s)
- Lu Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Xiaomei Lin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Xiangyi Jing
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Yongling Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fucheng Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fatao Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Dan Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Guilan Chen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Min Pan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China.
| |
Collapse
|
13
|
Nawaz K, Alifah N, Hussain T, Hameed H, Ali H, Hamayun S, Mir A, Wahab A, Naeem M, Zakria M, Pakki E, Hasan N. From genes to therapy: A comprehensive exploration of congenital heart disease through the lens of genetics and emerging technologies. Curr Probl Cardiol 2024; 49:102726. [PMID: 38944223 DOI: 10.1016/j.cpcardiol.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Congenital heart disease (CHD) affects approximately 1 % of live births worldwide, making it the most common congenital anomaly in newborns. Recent advancements in genetics and genomics have significantly deepened our understanding of the genetics of CHDs. While the majority of CHD etiology remains unclear, evidence consistently indicates that genetics play a significant role in its development. CHD etiology holds promise for enhancing diagnosis and developing novel therapies to improve patient outcomes. In this review, we explore the contributions of both monogenic and polygenic factors of CHDs and highlight the transformative impact of emerging technologies on these fields. We also summarized the state-of-the-art techniques, including targeted next-generation sequencing (NGS), whole genome and whole exome sequencing (WGS, WES), single-cell RNA sequencing (scRNA-seq), human induced pluripotent stem cells (hiPSCs) and others, that have revolutionized our understanding of cardiovascular disease genetics both from diagnosis perspective and from disease mechanism perspective in children and young adults. These molecular diagnostic techniques have identified new genes and chromosomal regions involved in syndromic and non-syndromic CHD, enabling a more defined explanation of the underlying pathogenetic mechanisms. As our knowledge and technologies continue to evolve, they promise to enhance clinical outcomes and reduce the CHD burden worldwide.
Collapse
Affiliation(s)
- Khalid Nawaz
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Nur Alifah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Hamza Hameed
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Haider Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Awal Mir
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Mohammad Zakria
- Advanced Center for Genomic Technologies, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Ermina Pakki
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia.
| |
Collapse
|
14
|
Ferrena A, Zheng XY, Jackson K, Hoang B, Morrow BE, Zheng D. scDAPP: a comprehensive single-cell transcriptomics analysis pipeline optimized for cross-group comparison. NAR Genom Bioinform 2024; 6:lqae134. [PMID: 39345754 PMCID: PMC11437360 DOI: 10.1093/nargab/lqae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Single-cell transcriptomics profiling has increasingly been used to evaluate cross-group (or condition) differences in cell population and cell-type gene expression. This often leads to large datasets with complex experimental designs that need advanced comparative analysis. Concurrently, bioinformatics software and analytic approaches also become more diverse and constantly undergo improvement. Thus, there is an increased need for automated and standardized data processing and analysis pipelines, which should be efficient and flexible too. To address these, we develop the single-cell Differential Analysis and Processing Pipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or nucleus) transcriptomic data between two or more groups and at the levels of single cells or 'pseudobulking' samples. The pipeline automates many steps of pre-processing using data-learnt parameters, uses previously benchmarked software, and generates comprehensive intermediate data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by extensive data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly from raw data to biological interpretation. scDAPP is freely available under the MIT license, with source code, documentation and sample data at the GitHub (https://github.com/bioinfoDZ/scDAPP).
Collapse
Affiliation(s)
- Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kevyn Jackson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Obstetrics and Gynecology, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
15
|
Aurigemma I, Ferrentino R, Krishnan VP, Lanzetta O, Angelini C, Illingworth E, Baldini A. Significant improvement of cardiac outflow tract septation defects in a DiGeorge syndrome model after minoxidil treatment. Biochem Biophys Res Commun 2024; 720:150104. [PMID: 38749189 PMCID: PMC11166380 DOI: 10.1016/j.bbrc.2024.150104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
The T-BOX transcription factor TBX1 is essential for the development of the pharyngeal apparatus and it is haploinsufficient in DiGeorge syndrome (DGS), a developmental anomaly associated with congenital heart disease and other abnormalities. The murine model recapitulates the heart phenotype and showed collagen accumulation. We first used a cellular model to study gene expression during cardiogenic differentiation of WT and Tbx1-/- mouse embryonic stem cells. Then we used a mouse model of DGS to test whether interfering with collagen accumulation using an inhibitor of lysyl hydroxylase would modify the cardiac phenotype of the mutant. We found that loss of Tbx1 in a precardiac differentiation model was associated with up regulation of a subset of ECM-related genes, including several collagen genes. In the in vivo model, early prenatal treatment with Minoxidil, a lysyl hydroxylase inhibitor, ameliorated the cardiac outflow tract septation phenotype in Tbx1 mutant fetuses, but it had no effect on septation in WT fetuses. We conclude that TBX1 suppresses a defined subset of ECM-related genes. This function is critical for OFT septation because the inhibition of collagen cross-linking in the mutant reduces significantly the penetrance of septation defects.
Collapse
Affiliation(s)
| | | | | | - Olga Lanzetta
- Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | - Antonio Baldini
- Dept of Molecular Medicine and Medical Biotechnology, Univ. Federico II, Naples, Italy.
| |
Collapse
|
16
|
Casey-Clyde T, Liu SJ, Serrano JAC, Teng C, Jang YG, Vasudevan HN, Bush JO, Raleigh DR. Eed controls craniofacial osteoblast differentiation and mesenchymal proliferation from the neural crest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584903. [PMID: 38558995 PMCID: PMC10979956 DOI: 10.1101/2024.03.13.584903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The histone methyltransferase Polycomb repressive complex 2 (PRC2) is required for specification of the neural crest, and mis-regulation of neural crest development can cause severe congenital malformations. PRC2 is necessary for neural crest induction, but the embryonic, cellular, and molecular consequences of PRC2 activity after neural crest induction are incompletely understood. Here we show that Eed, a core subunit of PRC2, is required for craniofacial osteoblast differentiation and mesenchymal proliferation after induction of the neural crest. Integrating mouse genetics with single-cell RNA sequencing, our results reveal that conditional knockout of Eed after neural crest cell induction causes severe craniofacial hypoplasia, impaired craniofacial osteogenesis, and attenuated craniofacial mesenchymal cell proliferation that is first evident in post-migratory neural crest cell populations. We show that Eed drives mesenchymal differentiation and proliferation in vivo and in primary craniofacial cell cultures by regulating diverse transcription factor programs that are required for specification of post-migratory neural crest cells. These data enhance understanding of epigenetic mechanisms that underlie craniofacial development, and shed light on the embryonic, cellular, and molecular drivers of rare congenital syndromes in humans.
Collapse
Affiliation(s)
- Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Juan Antonio Camara Serrano
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Camilla Teng
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Yoon-Gu Jang
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
17
|
Jin S, Choe CP. A Potential Role of fgf4, fgf24, and fgf17 in Pharyngeal Pouch Formation in Zebrafish. Dev Reprod 2024; 28:55-65. [PMID: 39055102 PMCID: PMC11268894 DOI: 10.12717/dr.2024.28.2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 07/27/2024]
Abstract
In vertebrates, Fgf signaling is essential for the development of pharyngeal pouches, which controls facial skeletal development. Genetically, fgf3 and fgf8 are required for pouch formation in mice and zebrafish. However, loss-of-function phenotypes of fgf3 and fgf8 are milder than expected in mice and zebrafish, which suggests that an additional fgf gene(s) would be involved in pouch formation. Here, we analyzed the expression, regulation, and function of three fgfs, fgf4, fgf24, and fgf17, during pouch development in zebrafish. We find that they are expressed in the distinct regions of pharyngeal endoderm in pouch formation, with fgf4 and fgf17 also being expressed in the adjacent mesoderm, in addition to previously reported endodermal fgf3 and mesodermal fgf8 expression. The endodermal expression of fgf4, fgf24, and fgf17 and the mesodermal expression of fgf4 and fgf17 are positively regulated by Tbx1 but not by Fgf3, in pouch formation. Fgf8 is required to express the endodermal expression of fgf4 and fgf24. Interestingly, however, single mutant, all double mutant combinations, and triple mutant for fgf4, fgf24, and fgf17 do not show any defects in pouches and facial skeletons. Considering a high degree of genetic redundancy in the Fgf signaling components in craniofacial development in zebrafish, our result suggests that fgf4, fgf24, and fgf17 have a potential role for pouch formation, with a redundancy with other fgf gene(s).
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science,
Gyeongsang National University, Jinju 52828,
Korea
| | - Chong Pyo Choe
- Division of Life Science, Gyeongsang
National University, Jinju 52828,
Korea
- Plant Molecular Biology and Biotechnology
Research Center, Gyeongsang National University,
Jinju 52828, Korea
| |
Collapse
|
18
|
Cornman RS. A genomic hotspot of diversifying selection and structural change in the hoary bat ( Lasiurus cinereus). PeerJ 2024; 12:e17482. [PMID: 38832043 PMCID: PMC11146322 DOI: 10.7717/peerj.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Previous work found that numerous genes positively selected within the hoary bat (Lasiurus cinereus) lineage are physically clustered in regions of conserved synteny. Here I further validate and expand on those finding utilizing an updated L. cinereus genome assembly and additional bat species as well as other tetrapod outgroups. Methods A chromosome-level assembly was generated by chromatin-contact mapping and made available by DNAZoo (www.dnazoo.org). The genomic organization of orthologous genes was extracted from annotation data for multiple additional bat species as well as other tetrapod clades for which chromosome-level assemblies were available from the National Center for Biotechnology Information (NCBI). Tests of branch-specific positive selection were performed for L. cinereus using PAML as well as with the HyPhy package for comparison. Results Twelve genes exhibiting significant diversifying selection in the L. cinereus lineage were clustered within a 12-Mb genomic window; one of these (Trpc4) also exhibited diversifying selection in bats generally. Ten of the 12 genes are landmarks of two distinct blocks of ancient synteny that are not linked in other tetrapod clades. Bats are further distinguished by frequent structural rearrangements within these synteny blocks, which are rarely observed in other Tetrapoda. Patterns of gene order and orientation among bat taxa are incompatible with phylogeny as presently understood, implying parallel evolution or subsequent reversals. Inferences of positive selection were found to be robust to alternative phylogenetic topologies as well as a strong shift in background nucleotide composition in some taxa. Discussion This study confirms and further localizes a genomic hotspot of protein-coding divergence in the hoary bat, one that also exhibits an increased tempo of structural change in bats compared with other mammals. Most genes in the two synteny blocks have elevated expression in brain tissue in humans and model organisms, and genetic studies implicate the selected genes in cranial and neurological development, among other functions.
Collapse
Affiliation(s)
- Robert S. Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States
| |
Collapse
|
19
|
Ramirez A, Vyzas CA, Zhao H, Eng K, Degenhardt K, Astrof S. Buffering Mechanism in Aortic Arch Artery Formation and Congenital Heart Disease. Circ Res 2024; 134:e112-e132. [PMID: 38618720 PMCID: PMC11081845 DOI: 10.1161/circresaha.123.322767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1. Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele (VEGFR2SHF-HET) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2SHF-KO) abolishes it. The decrease in SHF-derived ECs in VEGFR2SHF-HET and VEGFR2SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2SHF-KO mutants. Blocking the compensatory response in VEGFR2SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1+/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.
Collapse
Affiliation(s)
- AnnJosette Ramirez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Christina A. Vyzas
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Kevin Eng
- Department of Statistics, Rutgers University, School of Arts and Sciences, Piscataway, NJ 08854
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
20
|
Ferrena A, Zheng XY, Jackson K, Hoang B, Morrow B, Zheng D. scDAPP: a comprehensive single-cell transcriptomics analysis pipeline optimized for cross-group comparison. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592708. [PMID: 38766089 PMCID: PMC11100619 DOI: 10.1101/2024.05.06.592708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single-cell transcriptomics profiling has increasingly been used to evaluate cross-group differences in cell population and cell-type gene expression. This often leads to large datasets with complex experimental designs that need advanced comparative analysis. Concurrently, bioinformatics software and analytic approaches also become more diverse and constantly undergo improvement. Thus, there is an increased need for automated and standardized data processing and analysis pipelines, which should be efficient and flexible too. To address these, we develop the single-cell Differential Analysis and Processing Pipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or nucleus) transcriptomic data between two or more groups and at the levels of single cells or "pseudobulking" samples. The pipeline automates many steps of pre-processing using data-learnt parameters, uses previously benchmarked software, and generates comprehensive intermediate data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by extensive data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly from raw data to biological interpretation. Availability and Implementation: scDAPP is freely available for non-commercial usage as an R package under the MIT license. Source code, documentation and sample data are available at the GitHub (https://github.com/bioinfoDZ/scDAPP).
Collapse
Affiliation(s)
- Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kevyn Jackson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Obstetrics and Gynecology, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
21
|
Funato N, Heliövaara A, Boeckx C. A regulatory variant impacting TBX1 expression contributes to basicranial morphology in Homo sapiens. Am J Hum Genet 2024; 111:939-953. [PMID: 38608674 PMCID: PMC11080286 DOI: 10.1016/j.ajhg.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Changes in gene regulatory elements play critical roles in human phenotypic divergence. However, identifying the base-pair changes responsible for the distinctive morphology of Homo sapiens remains challenging. Here, we report a noncoding single-nucleotide polymorphism (SNP), rs41298798, as a potential causal variant contributing to the morphology of the skull base and vertebral structures found in Homo sapiens. Screening for differentially regulated genes between Homo sapiens and extinct relatives revealed 13 candidate genes associated with basicranial development, with TBX1, implicated in DiGeorge syndrome, playing a pivotal role. Epigenetic markers and in silico analyses prioritized rs41298798 within a TBX1 intron for functional validation. CRISPR editing revealed that the 41-base-pair region surrounding rs41298798 modulates gene expression at 22q11.21. The derived allele of rs41298798 acts as an allele-specific enhancer mediated by E2F1, resulting in increased TBX1 expression levels compared to the ancestral allele. Tbx1-knockout mice exhibited skull base and vertebral abnormalities similar to those seen in DiGeorge syndrome. Phenotypic differences associated with TBX1 deficiency are observed between Homo sapiens and Neanderthals (Homo neanderthalensis). In conclusion, the regulatory divergence of TBX1 contributes to the formation of skull base and vertebral structures found in Homo sapiens.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku 113-8510, Tokyo, Japan; Research Core, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku 113-8510, Tokyo, Japan.
| | - Arja Heliövaara
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, Helsinki University Hospital and Helsinki University, Stenbäckinkatu 11, P.O. Box 281, Helsinki FI-00029 HUS, Finland
| | - Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain; Section of General Linguistics, University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain; University of Barcelona Institute of Neurosciences, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
| |
Collapse
|
22
|
Nunes N, Carvalho Nunes B, Zamariolli M, Cordeiro de Queiroz Soares D, Caires dos Santos L, Gollo Dantas A, Ayres Meloni V, Iole Belangero S, Gil-Da-Silva-Lopes VL, Ae Kim C, Melaragno MI. Variants in Candidate Genes for Phenotype Heterogeneity in Patients with the 22q11.2 Deletion Syndrome. Genet Res (Camb) 2024; 2024:5549592. [PMID: 38586596 PMCID: PMC10998724 DOI: 10.1155/2024/5549592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with a broad and heterogeneous phenotype, even though most of the deletions present similar sizes, involving ∼3 Mb of DNA. In a relatively large population of a Brazilian 22q11.2DS cohort (60 patients), we investigated genetic variants that could act as genetic modifiers and contribute to the phenotypic heterogeneity, using a targeted NGS (Next Generation Sequencing) with a specific Ion AmpliSeq panel to sequence nine candidate genes (CRKL, MAPK1, HIRA, TANGO2, PI4KA, HDAC1, ZDHHC8, ZFPM2, and JAM3), mapped in and outside the 22q11.2 hemizygous deleted region. In silico prediction was performed, and the whole-genome sequencing annotation analysis package (WGSA) was used to predict the possible pathogenic effect of single nucleotide variants (SNVs). For the in silico prediction of the indels, we used the genomic variants filtered by a deep learning model in NGS (GARFIELD-NGS). We identified six variants, 4 SNVs and 2 indels, in MAPK1, JAM3, and ZFPM2 genes with possibly synergistic deleterious effects in the context of the 22q11.2 deletion. Our results provide the opportunity for the discovery of the co-occurrence of genetic variants with 22q11.2 deletions, which may influence the patients´ phenotype.
Collapse
Affiliation(s)
- Natalia Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz Carvalho Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Leonardo Caires dos Santos
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Anelisa Gollo Dantas
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Lúcia Gil-Da-Silva-Lopes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Chong Ae Kim
- Genetics Unit, Instituto da Criança, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Ramirez A, Vyzas CA, Zhao H, Eng K, Degenhardt K, Astrof S. Identification of novel buffering mechanisms in aortic arch artery development and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530833. [PMID: 38370627 PMCID: PMC10871175 DOI: 10.1101/2023.03.02.530833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Rationale The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease (CHD) arising from defective morphogenesis of pharyngeal arch arteries (PAA) and their derivatives. Objective To uncover mechanisms underlying the robustness of PAA morphogenesis. Methods and Results The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived ECs is regulated by VEGFR2 and Tbx1 . Remarkably, when SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated three-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of one VEGFR2 allele (VEGFR2 SHF-HET ) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2 SHF-KO ) abolishes it. The decrease in SHF-derived ECs in VEGFR2 SHF-HET and VEGFR2 SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2 SHF-KO mutants. Blocking the compensatory response in VEGFR2 SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1 +/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and CHD. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. Conclusions Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling. Nonstandard Abbreviations and Acronyms in Alphabetical Order CHD - congenital heart disease; ECs - endothelial cells; IAA-B - interrupted aortic arch type B; PAA - pharyngeal arch arteries; RERSA - retro-esophageal right subclavian artery; SHF - second heart field; VEGFR2 - Vascular endothelial growth factor receptor 2.
Collapse
|
24
|
Sun J, Noss S, Banerjee D, Das M, Girirajan S. Strategies for dissecting the complexity of neurodevelopmental disorders. Trends Genet 2024; 40:187-202. [PMID: 37949722 PMCID: PMC10872993 DOI: 10.1016/j.tig.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are associated with a wide range of clinical features, affecting multiple pathways involved in brain development and function. Recent advances in high-throughput sequencing have unveiled numerous genetic variants associated with NDDs, which further contribute to disease complexity and make it challenging to infer disease causation and underlying mechanisms. Herein, we review current strategies for dissecting the complexity of NDDs using model organisms, induced pluripotent stem cells, single-cell sequencing technologies, and massively parallel reporter assays. We further highlight single-cell CRISPR-based screening techniques that allow genomic investigation of cellular transcriptomes with high efficiency, accuracy, and throughput. Overall, we provide an integrated review of experimental approaches that can be applicable for investigating a broad range of complex disorders.
Collapse
Affiliation(s)
- Jiawan Sun
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Serena Noss
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Deepro Banerjee
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Maitreya Das
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Santhosh Girirajan
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
25
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:777-796. [PMID: 38884748 DOI: 10.1007/978-3-031-44087-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The great arteries of the vertebrate carry blood from the heart to the systemic circulation and are derived from the pharyngeal arch arteries. In higher vertebrates, the pharyngeal arch arteries are a symmetrical series of blood vessels that rapidly remodel during development to become the asymmetric aortic arch arteries carrying oxygenated blood from the left ventricle via the outflow tract. At the base of the aorta, as well as the pulmonary trunk, are the semilunar valves. These valves each have three leaflets and prevent the backflow of blood into the heart. During development, the process of aortic arch and valve formation may go wrong, resulting in cardiovascular defects, and these may, at least in part, be caused by genetic mutations. In this chapter, we will review models harboring genetic mutations that result in cardiovascular defects affecting the great arteries and the semilunar valves.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Simon D Bamforth
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK.
| |
Collapse
|
26
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Truncus Arteriosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:853-865. [PMID: 38884754 DOI: 10.1007/978-3-031-44087-8_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In normal cardiovascular development in birds and mammals, the outflow tract of the heart is divided into two distinct channels to separate the oxygenated systemic blood flow from the deoxygenated pulmonary circulation. When the process of outflow tract septation fails, a single common outflow vessel persists resulting in a serious clinical condition known as persistent truncus arteriosus or common arterial trunk. In this chapter, we will review molecular pathways and the cells that are known to play a role in the formation and development of the outflow tract and how genetic manipulation of these pathways in animal models can result in common arterial trunk.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle, UK
| | | |
Collapse
|
27
|
Wilsdon A, Loughna S. Human Genetics of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:57-75. [PMID: 38884704 DOI: 10.1007/978-3-031-44087-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital heart diseases (or congenital heart defects/disorders; CHDs) are structural abnormalities of the heart and/or great vessels that are present at birth. CHDs include an extensive range of defects that may be minor and require no intervention or may be life-limiting and require complex surgery shortly after birth. This chapter reviews the current knowledge on the genetic causes of CHD.
Collapse
Affiliation(s)
- Anna Wilsdon
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- Clinical Geneticist at Nottingham Clinical Genetics Department, Nottingham University Hospitals, City Hospital, Nottingham, UK.
| | - Siobhan Loughna
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
28
|
Yamagishi H. Human Genetics of Truncus Arteriosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:841-852. [PMID: 38884753 DOI: 10.1007/978-3-031-44087-8_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Integrated human genetics and molecular/developmental biology studies have revealed that truncus arteriosus is highly associated with 22q11.2 deletion syndrome. Other congenital malformation syndromes and variants in genes encoding TBX, GATA, and NKX transcription factors and some signaling proteins have also been reported as its etiology.
Collapse
Affiliation(s)
- Hiroyuki Yamagishi
- Division of Pediatric Cardiology, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
29
|
Katano W, Mori S, Sasaki S, Tajika Y, Tomita K, Takeuchi JK, Koshiba-Takeuchi K. Sall1 and Sall4 cooperatively interact with Myocd and SRF to promote cardiomyocyte proliferation by regulating CDK and cyclin genes. Development 2023; 150:dev201913. [PMID: 38014633 DOI: 10.1242/dev.201913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Sall1 and Sall4 (Sall1/4), zinc-finger transcription factors, are expressed in the progenitors of the second heart field (SHF) and in cardiomyocytes during the early stages of mouse development. To understand the function of Sall1/4 in heart development, we generated heart-specific Sall1/4 functionally inhibited mice by forced expression of the truncated form of Sall4 (ΔSall4) in the heart. The ΔSall4-overexpression mice exhibited a hypoplastic right ventricle and outflow tract, both of which were derived from the SHF, and a thinner ventricular wall. We found that the numbers of proliferative SHF progenitors and cardiomyocytes were reduced in ΔSall4-overexpression mice. RNA-sequencing data showed that Sall1/4 act upstream of the cyclin-dependent kinase (CDK) and cyclin genes, and of key transcription factor genes for the development of compact cardiomyocytes, including myocardin (Myocd) and serum response factor (Srf). In addition, ChIP-sequencing and co-immunoprecipitation analyses revealed that Sall4 and Myocd form a transcriptional complex with SRF, and directly bind to the upstream regulatory regions of the CDK and cyclin genes (Cdk1 and Ccnb1). These results suggest that Sall1/4 are critical for the proliferation of cardiac cells via regulation of CDK and cyclin genes that interact with Myocd and SRF.
Collapse
Affiliation(s)
- Wataru Katano
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shunta Mori
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Shun Sasaki
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuki Tajika
- Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Koichi Tomita
- Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun K Takeuchi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Kazuko Koshiba-Takeuchi
- Graduate School of Life Sciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
- Faculty of Life Sciences, Department of Applied Biosciences, Toyo University, 1-1-1, Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
30
|
Bileckyj C, Blotz B, Cripps RM. Drosophila as a Model to Understand Second Heart Field Development. J Cardiovasc Dev Dis 2023; 10:494. [PMID: 38132661 PMCID: PMC10744189 DOI: 10.3390/jcdd10120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The genetic model system Drosophila has contributed fundamentally to our understanding of mammalian heart specification, development, and congenital heart disease. The relatively simple Drosophila heart is a linear muscular tube that is specified and develops in the embryo and persists throughout the life of the animal. It functions at all stages to circulate hemolymph within the open circulatory system of the body. During Drosophila metamorphosis, the cardiac tube is remodeled, and a new layer of muscle fibers spreads over the ventral surface of the heart to form the ventral longitudinal muscles. The formation of these fibers depends critically upon genes known to be necessary for mammalian second heart field (SHF) formation. Here, we review the prior contributions of the Drosophila system to the understanding of heart development and disease, discuss the importance of the SHF to mammalian heart development and disease, and then discuss how the ventral longitudinal adult cardiac muscles can serve as a novel model for understanding SHF development and disease.
Collapse
Affiliation(s)
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
31
|
Chhatwal K, Smith JJ, Bola H, Zahid A, Venkatakrishnan A, Brand T. Uncovering the Genetic Basis of Congenital Heart Disease: Recent Advancements and Implications for Clinical Management. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:464-480. [PMID: 38205435 PMCID: PMC10777202 DOI: 10.1016/j.cjcpc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.
Collapse
Affiliation(s)
- Karanjot Chhatwal
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Jacob J. Smith
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Harroop Bola
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Abeer Zahid
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Ashwin Venkatakrishnan
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| |
Collapse
|
32
|
Ibrahim S, Gaborit B, Lenoir M, Collod-Beroud G, Stefanovic S. Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies. Int J Mol Sci 2023; 24:16258. [PMID: 38003449 PMCID: PMC10671602 DOI: 10.3390/ijms242216258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.
Collapse
Affiliation(s)
- Stéphanie Ibrahim
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, 13005 Marseille, France
| | - Marien Lenoir
- Department of Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille University, 13005 Marseille, France
| | | | - Sonia Stefanovic
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| |
Collapse
|
33
|
Wang W, Li X, Ding X, Xiong S, Hu Z, Lu X, Zhang K, Zhang H, Hu Q, Lai KS, Chen Z, Yang J, Song H, Wang Y, Wei L, Xia Z, Zhou B, He Y, Pu J, Liu X, Ke R, Wu T, Huang C, Baldini A, Zhang M, Zhang Z. Lymphatic endothelial transcription factor Tbx1 promotes an immunosuppressive microenvironment to facilitate post-myocardial infarction repair. Immunity 2023; 56:2342-2357.e10. [PMID: 37625409 DOI: 10.1016/j.immuni.2023.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/14/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.
Collapse
Affiliation(s)
- Wenfeng Wang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiao Li
- Gene Editing Laboratory, The Texas Heart Institute, Houston, TX 77030, USA
| | - Xiaoning Ding
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shanshan Xiong
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhenlei Hu
- Department of Cardiovascular Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xuan Lu
- Silver Snake (Shanghai) Medical Science and Technique Co., Ltd., Shanghai 200030, China
| | - Kan Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Heng Zhang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianwen Hu
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaa Seng Lai
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhongxiang Chen
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Junjie Yang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hejie Song
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ye Wang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lu Wei
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zeyang Xia
- Department of Neurosurgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yulong He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Rongqin Ke
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Tao Wu
- Shanghai Collaborative Innovative Center of Intelligent Medical Device and Active Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Antonio Baldini
- Institute of Genetics and Biophysics "ABT," CNR, Naples 80131, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples, Federico II, Naples 80131, Italy
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Zhen Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Collaborative Innovative Center of Intelligent Medical Device and Active Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
34
|
Perrotta S, Carnevale D. Tbx1 orchestrates an immune niche that safeguards a broken heart. Immunity 2023; 56:2177-2179. [PMID: 37820578 DOI: 10.1016/j.immuni.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Cardiac lymphatics cooperate with the reparative immune response in myocardial healing after infarction. In this issue of Immunity, Wang and colleagues discover a mechanism underlying this cooperation, dependent on the transcription factor Tbx1 and responsible for the creation of an immunosuppressive niche that mitigates autoimmunity.
Collapse
Affiliation(s)
- Sara Perrotta
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, 86077 Pozzilli, Italy; Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
35
|
Zhao Y, Wang Y, Shi L, McDonald-McGinn DM, Crowley TB, McGinn DE, Tran OT, Miller D, Lin JR, Zackai E, Johnston HR, Chow EWC, Vorstman JAS, Vingerhoets C, van Amelsvoort T, Gothelf D, Swillen A, Breckpot J, Vermeesch JR, Eliez S, Schneider M, van den Bree MBM, Owen MJ, Kates WR, Repetto GM, Shashi V, Schoch K, Bearden CE, Digilio MC, Unolt M, Putotto C, Marino B, Pontillo M, Armando M, Vicari S, Angkustsiri K, Campbell L, Busa T, Heine-Suñer D, Murphy KC, Murphy D, García-Miñaúr S, Fernández L, Zhang ZD, Goldmuntz E, Gur RE, Emanuel BS, Zheng D, Marshall CR, Bassett AS, Wang T, Morrow BE. Chromatin regulators in the TBX1 network confer risk for conotruncal heart defects in 22q11.2DS. NPJ Genom Med 2023; 8:17. [PMID: 37463940 PMCID: PMC10354062 DOI: 10.1038/s41525-023-00363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.
Collapse
Affiliation(s)
- Yingjie Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yujue Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lijie Shi
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniel E McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Oanh T Tran
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniella Miller
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eva W C Chow
- Department of Psychiatry, University of Toronto, Ontario, M5G 0A4, Canada
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute and Autism Research Unit, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Doron Gothelf
- The Division of Child & Adolescent Psychiatry, Edmond and Lily Sapfra Children's Hospital, Sheba Medical Center and Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Ramat Gan, 5262000, Israel
| | - Ann Swillen
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Marianne B M van den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
- Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
| | - Gabriela M Repetto
- Center for Genetics and Genomics, Facultad de Medicina Clinica Alemana-Universidad del Desarrollo, Santiago, 7710162, Chile
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Kelly Schoch
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - M Cristina Digilio
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marta Unolt
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Carolina Putotto
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Bruno Marino
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
- Developmental Imaging and Psychopathology Lab, University of Geneva, Geneva, 1211, Switzerland
| | - Stefano Vicari
- Department of Life Sciences and Public Health, Catholic University and Child & Adolescent Psychiatry Unit at Bambino Gesù Hospital, Rome, 00165, Italy
| | - Kathleen Angkustsiri
- Developmental Behavioral Pediatrics, MIND Institute, University of California, Davis, CA, 95817, USA
| | - Linda Campbell
- School of Psychology, University of Newcastle, Newcastle, 2258, Australia
| | - Tiffany Busa
- Department of Medical Genetics, Aix-Marseille University, Marseille, 13284, France
| | - Damian Heine-Suñer
- Genomics of Health and Unit of Molecular Diagnosis and Clinical Genetics, Son Espases University Hospital, Balearic Islands Health Research Institute, Palma de Mallorca, 07120, Spain
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, 505095, Ireland
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, London, SE5 8AF, UK
- Behavioral and Developmental Psychiatry Clinical Academic Group, Behavioral Genetics Clinic, National Adult Autism and ADHD Service, South London and Maudsley Foundation National Health Service Trust, London, SE5 8AZ, UK
| | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Luis Fernández
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania Philadelphia, Philadelphia, PA, 19104, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Deyou Zheng
- Department of Genetics, Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christian R Marshall
- Division of Genome Diagnostics, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Dalglish Family 22q Clinic, Toronto General Hospital, and Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
36
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545013. [PMID: 37398198 PMCID: PMC10312713 DOI: 10.1101/2023.06.14.545013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1 , a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
|
37
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
38
|
Zhu C, Yang Y, Pan B, Wei H, Ju J, Si N, Xu Q. Genetic Screening of Targeted Region on the Chromosome 22q11.2 in Patients with Microtia and Congenital Heart Defect. Genes (Basel) 2023; 14:genes14040879. [PMID: 37107637 PMCID: PMC10137977 DOI: 10.3390/genes14040879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Microtia is a congenital malformation characterized by a small, abnormally shaped auricle (pinna) ranging in severity. Congenital heart defect (CHD) is one of the comorbid anomalies with microtia. However, the genetic basis of the co-existence of microtia and CHD remains unclear. Copy number variations (CNVs) of 22q11.2 contribute significantly to microtia and CHD, respectively, thus suggesting a possible shared genetic cause embedded in this genomic region. In this study, 19 sporadic patients with microtia and CHD, as well as a nuclear family, were enrolled for genetic screening of single nucleotide variations (SNVs) and CNVs in 22q11.2 by target capture sequencing. We detected a total of 105 potential deleterious variations, which were enriched in ear- or heart-development-related genes, including TBX1 and DGCR8. The gene burden analysis also suggested that these genes carry more deleterious mutations in the patients, as well as several other genes associated with cardiac development, such as CLTCL1. Additionally, a microduplication harboring SUSD2 was validated in an independent cohort. This study provides new insights into the underlying mechanisms for the comorbidity of microtia and CHD focusing on chromosome 22q11.2, and suggests that a combination of genetic variations, including SNVs and CNVs, may play a crucial role instead of single gene mutation.
Collapse
Affiliation(s)
- Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yang Yang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100144, China
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100144, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jiahang Ju
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Nuo Si
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100144, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
39
|
De Bono C, Liu Y, Ferrena A, Valentine A, Zheng D, Morrow BE. Single-cell transcriptomics uncovers a non-autonomous Tbx1-dependent genetic program controlling cardiac neural crest cell development. Nat Commun 2023; 14:1551. [PMID: 36941249 PMCID: PMC10027855 DOI: 10.1038/s41467-023-37015-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Disruption of cardiac neural crest cells (CNCCs) results in congenital heart disease, yet we do not understand the cell fate dynamics as these cells differentiate to vascular smooth muscle cells. Here we performed single-cell RNA-sequencing of NCCs from the pharyngeal apparatus with the heart in control mouse embryos and when Tbx1, the gene for 22q11.2 deletion syndrome, is inactivated. We uncover three dynamic transitions of pharyngeal NCCs expressing Tbx2 and Tbx3 through differentiated CNCCs expressing cardiac transcription factors with smooth muscle genes. These transitions are altered non-autonomously by loss of Tbx1. Further, inactivation of Tbx2 and Tbx3 in early CNCCs results in aortic arch branching defects due to failed smooth muscle differentiation. Loss of Tbx1 interrupts mesoderm to CNCC cell-cell communication with upregulation and premature activation of BMP signaling and reduced MAPK signaling, as well as alteration of other signaling, and failed dynamic transitions of CNCCs leading to disruption of aortic arch artery formation and cardiac outflow tract septation.
Collapse
Affiliation(s)
- Christopher De Bono
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aneesa Valentine
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Obstetrics and Gynecology; and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
40
|
Restivo A, di Gioia C, Marino B, Putotto C. Transpositions of the great arteries versus aortic dextropositions. A review of some embryogenetic and morphological aspects. Anat Rec (Hoboken) 2023; 306:502-514. [PMID: 36426596 DOI: 10.1002/ar.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
This review examines and discusses the morphology and embryology of two main groups of conotruncal cardiac malformations: (a) transposition of the great arteries (complete transposition and incomplete/partial transposition namely double outlet right ventricle), and (b) aortic dextroposition defects (tetralogy of Fallot and Eisenmenger malformation). In both groups, persistent truncus arteriosus was included because maldevelopment of the neural crest cell supply to the outflow tract, contributing to the production of the persistent truncus arteriosus, is shared by both groups of malformations. The potentially important role of the proximal conal cushions in the rotatory sequence of the conotruncus is emphasized. Most importantly, this study emphasizes the differentiation between the double-outlet right ventricle, which is a partial or incomplete transposition of the great arteries, and the Eisenmenger malformation, which is an aortic dextroposition. Special emphasis is also given to the leftward shift of the conoventricular junction, which covers an important morphogenetic role in both aortic dextropositions and transposition defects as well as in normal development, and whose molecular genetic regulation seems to remain unclear at present. Emphasis is placed on the distinct and overlapping roles of Tbx1 and Pitx2 transcription factors in modulating the development of the cardiac outflow tract.
Collapse
Affiliation(s)
- Angelo Restivo
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy.,Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy
| | - Cira di Gioia
- Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy.,Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Cioffi S, Flore G, Martucciello S, Bilio M, Turturo MG, Illingworth E. VEGFR3 modulates brain microvessel branching in a mouse model of 22q11.2 deletion syndrome. Life Sci Alliance 2022; 5:5/12/e202101308. [PMID: 36216515 PMCID: PMC9553901 DOI: 10.26508/lsa.202101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The loss of a single copy of TBX1 accounts for most of the clinical signs and symptoms of 22q11.2 deletion syndrome, a common genetic disorder that is characterized by multiple congenital anomalies and brain-related clinical problems, some of which likely have vascular origins. Tbx1 mutant mice have brain vascular anomalies, thus making them a useful model to gain insights into the human disease. Here, we found that the main morphogenetic function of TBX1 in the mouse brain is to suppress vessel branching morphogenesis through regulation of Vegfr3 We demonstrate that inactivating Vegfr3 in the Tbx1 expression domain on a Tbx1 mutant background enhances brain vessel branching and filopodia formation, whereas increasing Vegfr3 expression in this domain fully rescued these phenotypes. Similar results were obtained using an in vitro model of endothelial tubulogenesis. Overall, the results of this study provide genetic evidence that VEGFR3 is a regulator of early vessel branching and filopodia formation in the mouse brain and is a likely mediator of the brain vascular phenotype caused by Tbx1 loss of function.
Collapse
Affiliation(s)
- Sara Cioffi
- Institute of Genetics and Biophysics "ABT," CNR, Naples, Italy
| | - Gemma Flore
- Institute of Genetics and Biophysics "ABT," CNR, Naples, Italy
| | | | - Marchesa Bilio
- Institute of Genetics and Biophysics "ABT," CNR, Naples, Italy
| | | | | |
Collapse
|
42
|
Bhalla P, Du Q, Kumar A, Xing C, Moses A, Dozmorov I, Wysocki CA, Cleaver OB, Pirolli TJ, Markert ML, de la Morena MT, Baldini A, van Oers NS. Mesenchymal cell replacement corrects thymic hypoplasia in murine models of 22q11.2 deletion syndrome. J Clin Invest 2022; 132:e160101. [PMID: 36136514 PMCID: PMC9663160 DOI: 10.1172/jci160101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is the most common human chromosomal microdeletion, causing developmentally linked congenital malformations, thymic hypoplasia, hypoparathyroidism, and/or cardiac defects. Thymic hypoplasia leads to T cell lymphopenia, which most often results in mild SCID. Despite decades of research, the molecular underpinnings leading to thymic hypoplasia in 22q11.2DS remain unknown. Comparison of embryonic thymuses from mouse models of 22q11.2DS (Tbx1neo2/neo2) revealed proportions of mesenchymal, epithelial, and hematopoietic cell types similar to those of control thymuses. Yet, the small thymuses were growth restricted in fetal organ cultures. Replacement of Tbx1neo2/neo2 thymic mesenchymal cells with normal ones restored tissue growth. Comparative single-cell RNA-Seq of embryonic thymuses uncovered 17 distinct cell subsets, with transcriptome differences predominant in the 5 mesenchymal subsets from the Tbx1neo2/neo2 cell line. The transcripts affected included those for extracellular matrix proteins, consistent with the increased collagen deposition we observed in the small thymuses. Attenuating collagen cross-links with minoxidil restored thymic tissue expansion for hypoplastic lobes. In colony-forming assays, the Tbx1neo2/neo2-derived mesenchymal cells had reduced expansion potential, in contrast to the normal growth of thymic epithelial cells. These findings suggest that mesenchymal cells were causal to the small embryonic thymuses in the 22q11.2DS mouse models, which was correctable by substitution with normal mesenchyme.
Collapse
Affiliation(s)
| | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Departments of Bioinformatics and
- Population and Data Sciences, Departments of
| | | | | | | | | | - Timothy J. Pirolli
- Division of Pediatric Cardiothoracic Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Louise Markert
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington, and Seattle Children’s Hospital, Seattle, Washington, USA
| | - Antonio Baldini
- Department Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicolai S.C. van Oers
- Department of Immunology
- Pediatrics
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
43
|
Evans WN, Acherman RJ, Restrepo H. Aortic Arch Laterality in Chromosome 22q11.2 Deletion Syndrome: Male-Female Difference. Clin Pediatr (Phila) 2022; 62:345-348. [PMID: 36214167 DOI: 10.1177/00099228221127730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We reviewed patients with chromosome 22q11.2 deletion syndrome. We analyzed cardiovascular findings in patients with confirmed chromosome 22q11.2 deletion syndrome live-born in Nevada between March 2007 and September 2020. We identified 60 patients. Of the 60 patients, 32 (53%) were female. Of the 60, 48 (80%) had a conotruncal abnormality (including isolated vascular rings): 23 of 32 (72%) for females versus 25 of 28 (89%) for males, P = .41. However, 11 (34%) of 32 females had a right aortic arch; whereas, 21 (75%) of 28 males had a right aortic arch, P = .007. In conclusion, in our patient cohort, we found conotruncal malformations were common. However, we noted males were statistically more likely to have a right aortic arch than females. To the best of our knowledge, this male-female aortic arch laterality difference in patients with chromosome 22q11.2 deletion syndrome has not been previously noted.
Collapse
Affiliation(s)
- William N Evans
- Children's Heart Center Nevada, Las Vegas, NV, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Ruben J Acherman
- Children's Heart Center Nevada, Las Vegas, NV, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Humberto Restrepo
- Children's Heart Center Nevada, Las Vegas, NV, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
44
|
Raje NR, Noel-MacDonnell JR, Shortt KA, Gigliotti NM, Chan MA, Heruth DP. T Cell Transcriptome in Chromosome 22q11.2 Deletion Syndrome. THE JOURNAL OF IMMUNOLOGY 2022; 209:874-885. [DOI: 10.4049/jimmunol.2100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
|
45
|
Lania G, Franzese M, Noritaka A, Bilio M, Flore G, Russo A, D'Agostino E, Angelini C, Kelly RG, Baldini A. A phenotypic rescue approach identifies lineage regionalization defects in a mouse model of DiGeorge syndrome. Dis Model Mech 2022; 15:276264. [PMID: 35946435 PMCID: PMC9555768 DOI: 10.1242/dmm.049415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
TBX1 is a key regulator of pharyngeal apparatus (PhAp) development. Vitamin B12 (vB12) treatment partially rescues aortic arch patterning defects of Tbx1+/− embryos. Here, we show that it also improves cardiac outflow tract septation and branchiomeric muscle anomalies of Tbx1 hypomorphic mutants. At the molecular level, in vivo vB12 treatment enabled us to identify genes that were dysregulated by Tbx1 haploinsufficiency and rescued by treatment. We found that SNAI2, also known as SLUG, encoded by the rescued gene Snai2, identified a population of mesodermal cells that was partially overlapping with, but distinct from, ISL1+ and TBX1+ populations. In addition, SNAI2+ cells were mislocalized and had a greater tendency to aggregate in Tbx1+/− and Tbx1−/− embryos, and vB12 treatment restored cellular distribution. Adjacent neural crest-derived mesenchymal cells, which do not express TBX1, were also affected, showing enhanced segregation from cardiopharyngeal mesodermal cells. We propose that TBX1 regulates cell distribution in the core mesoderm and the arrangement of multiple lineages within the PhAp.
Collapse
Affiliation(s)
- Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Monica Franzese
- Istituto per le Applicazione del Calcolo, National Research Council (CNR), Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Adachi Noritaka
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Marchesa Bilio
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Gemma Flore
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Annalaura Russo
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Erika D'Agostino
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Claudia Angelini
- Istituto per le Applicazione del Calcolo, National Research Council (CNR), Naples, Italy
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Antonio Baldini
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| |
Collapse
|
46
|
Collins RL, Glessner JT, Porcu E, Lepamets M, Brandon R, Lauricella C, Han L, Morley T, Niestroj LM, Ulirsch J, Everett S, Howrigan DP, Boone PM, Fu J, Karczewski KJ, Kellaris G, Lowther C, Lucente D, Mohajeri K, Nõukas M, Nuttle X, Samocha KE, Trinh M, Ullah F, Võsa U, Hurles ME, Aradhya S, Davis EE, Finucane H, Gusella JF, Janze A, Katsanis N, Matyakhina L, Neale BM, Sanders D, Warren S, Hodge JC, Lal D, Ruderfer DM, Meck J, Mägi R, Esko T, Reymond A, Kutalik Z, Hakonarson H, Sunyaev S, Brand H, Talkowski ME. A cross-disorder dosage sensitivity map of the human genome. Cell 2022; 185:3041-3055.e25. [PMID: 35917817 PMCID: PMC9742861 DOI: 10.1016/j.cell.2022.06.036] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023]
Abstract
Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Joseph T Glessner
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Maarja Lepamets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | | | | | - Lide Han
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Theodore Morley
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jacob Ulirsch
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Selin Everett
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Daniel P Howrigan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Philip M Boone
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jack Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Konrad J Karczewski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Georgios Kellaris
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chelsea Lowther
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kiana Mohajeri
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Margit Nõukas
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Xander Nuttle
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kaitlin E Samocha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10, UK
| | - Mi Trinh
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10, UK
| | - Farid Ullah
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Matthew E Hurles
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10, UK
| | | | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hilary Finucane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | | | - Nicholas Katsanis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Benjamin M Neale
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, 51149 Cologne, Germany; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Douglas M Ruderfer
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Precision Medicine, Department of Biomedical Informatics, and Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Center for Primary Care and Public Health, University of Lausanne, 1015 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hakon Hakonarson
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shamil Sunyaev
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
47
|
Jeon H, Jin S, Choe CP. inka1b expression in the head mesoderm is dispensable for facial cartilage development. Gene Expr Patterns 2022; 45:119262. [PMID: 35811016 DOI: 10.1016/j.gep.2022.119262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Inka box actin regulator 1 (Inka1) is a novel protein identified in Xenopus and is found in vertebrates. While Inka1 is required for facial skeletal development in Xenopus and zebrafish, it is dispensable in mice despite its conserved expression in the cranial neural crest, indicating that Inka1 function in facial skeletal development is not conserved among vertebrates. Zebrafish bears two paralogs of inka1 (inka1a and inka1b) in the genome, with the biological roles of inka1b barely known. Here, we analyzed the expression and function of inka1b during facial skeletal development in zebrafish. inka1b was expressed sequentially in the head mesoderm adjacent to the pharyngeal pouches essential for facial skeletal development at the stage of arch segmentation. However, a loss-of-function mutation in inka1b displayed normal head development, including the pouches and facial cartilages. The normal head of inka1b mutant fish was unlikely a result of the genetic redundancy of inka1b with inka1a, given the distinct expression of inka1a and inka1b in the cranial neural crest and head mesoderm, respectively, during craniofacial development. Our findings suggest that the inka1b expression in the head mesoderm might not be essential for head development in zebrafish.
Collapse
Affiliation(s)
- Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
48
|
Alhazmi S, Alzahrani M, Farsi R, Alharbi M, Algothmi K, Alburae N, Ganash M, Azhari S, Basingab F, Almuhammadi A, Alqosaibi A, Alkhatabi H, Elaimi A, Jan M, Aldhalaan HM, Alrafiah A, Alrofaidi A. Multiple Recurrent Copy Number Variations (CNVs) in Chromosome 22 Including 22q11.2 Associated with Autism Spectrum Disorder. Pharmgenomics Pers Med 2022; 15:705-720. [PMID: 35898556 PMCID: PMC9309317 DOI: 10.2147/pgpm.s366826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a developmental disorder that can cause substantial social, communication, and behavioral challenges. Genetic factors play a significant role in ASD, where the risk of ASD has been increased for unclear reasons. Twin studies have shown important evidence of both genetic and environmental contributions in ASD, where the level of contribution of these factors has not been proven yet. It has been suggested that copy number variation (CNV) duplication and the deletion of many genes in chromosome 22 (Ch22) may have a strong association with ASD. This study screened the CNVs in Ch22 in autistic Saudi children and assessed the candidate gene in the CNVs region of Ch22 that is most associated with ASD. Methods This study included 15 autistic Saudi children as well as 4 healthy children as controls; DNA was extracted from samples and analyzed using array comparative genomic hybridization (aCGH) and DNA sequencing. Results The aCGH detected (in only 6 autistic samples) deletion and duplication in many regions of Ch22, including some critical genes. Moreover, DNA sequencing determined a genetic mutation in the TBX1 gene sequence in autistic samples. This study, carried out using aCGH, found that six autistic patients had CNVs in Ch22, and DNA sequencing revealed mutations in the TBX1 gene in autistic samples but none in the control. Conclusion CNV deletion and the duplication of the TBX1 gene could be related to ASD; therefore, this gene needs more analysis in terms of expression levels.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud Algothmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Alburae
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdah Ganash
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany Alqosaibi
- Department of Biology, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Heba Alkhatabi
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Jan
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hesham M Aldhalaan
- Center for Autism Research at King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Aziza Alrafiah
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Correspondence: Aziza Alrafiah, Department of Medical Laboratory Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia, Tel +966 126401000 Ext. 23495, Fax +966 126401000 Ext. 21686, Email
| | - Aisha Alrofaidi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
49
|
Huang S, Wu H, Qi Y, Wei L, Lv X, He Y. Case Report: Balanced Reciprocal Translocation t (17; 22) (p11.2; q11.2) and 10q23.31 Microduplication in an Infertile Male Patient Suffering From Teratozoospermia. Front Genet 2022; 13:797813. [PMID: 35719406 PMCID: PMC9204271 DOI: 10.3389/fgene.2022.797813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/05/2022] [Indexed: 02/03/2023] Open
Abstract
Two chromosomal abnormalities are described in an infertile man suffering from teratozoospermia: balanced reciprocal translocation t (17; 22) (p11.2; q11.2) and a microduplication in the region 10q23.31. Twenty genes located on the breakpoints of translocation (e.g., ALKBH5, TOP3A, SPECC1L, and CDC45) are selected due to their high expression in testicular tissues and might be influenced by chromosome translocation. Four genes located on the breakpoints of microduplication including FLJ37201, KIF20B, LINC00865, and PANK1 result in an increased dosage of genes, representing an imbalance in the genome. These genes have been reported to be associated with developmental disorders/retardation and might be risk factors affecting spermatogenesis. Bioinformatics analysis is carried out on these key genes, intending to find the pathogenic process of reproduction in the context of the translocation and microduplication encountered in the male patient. The combination of the two chromosomal abnormalities carries additional risks for gametogenesis and genomic instability and is apparently harmful to male fertility. Overall, our findings could contribute to the knowledge of male infertility caused by genetic factors.
Collapse
Affiliation(s)
- Shan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yunwei Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqiang Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu He
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
50
|
Putotto C, Pugnaloni F, Unolt M, Maiolo S, Trezzi M, Digilio MC, Cirillo A, Limongelli G, Marino B, Calcagni G, Versacci P. 22q11.2 Deletion Syndrome: Impact of Genetics in the Treatment of Conotruncal Heart Defects. CHILDREN 2022; 9:children9060772. [PMID: 35740709 PMCID: PMC9222179 DOI: 10.3390/children9060772] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Congenital heart diseases represent one of the hallmarks of 22q11.2 deletion syndrome. In particular, conotruncal heart defects are the most frequent cardiac malformations and are often associated with other specific additional cardiovascular anomalies. These findings, together with extracardiac manifestations, may affect perioperative management and influence clinical and surgical outcome. Over the past decades, advances in genetic and clinical diagnosis and surgical treatment have led to increased survival of these patients and to progressive improvements in postoperative outcome. Several studies have investigated long-term follow-up and results of cardiac surgery in this syndrome. The aim of our review is to examine the current literature data regarding cardiac outcome and surgical prognosis of patients with 22q11.2 deletion syndrome. We thoroughly evaluate the most frequent conotruncal heart defects associated with this syndrome, such as tetralogy of Fallot, pulmonary atresia with major aortopulmonary collateral arteries, aortic arch interruption, and truncus arteriosus, highlighting the impact of genetic aspects, comorbidities, and anatomical features on cardiac surgical treatment.
Collapse
Affiliation(s)
- Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy; (F.P.); (M.U.); (S.M.); (B.M.); (P.V.)
- Correspondence: ; Tel.: +39-3398644911
| | - Flaminia Pugnaloni
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy; (F.P.); (M.U.); (S.M.); (B.M.); (P.V.)
| | - Marta Unolt
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy; (F.P.); (M.U.); (S.M.); (B.M.); (P.V.)
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.T.); (G.C.)
| | - Stella Maiolo
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy; (F.P.); (M.U.); (S.M.); (B.M.); (P.V.)
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.T.); (G.C.)
| | - Matteo Trezzi
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.T.); (G.C.)
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Annapaola Cirillo
- Inherited and Rare Cardiovascular Disease—Pediatric Cardiology Unit, Monaldi Hospital, AORN Colli, 80131 Naples, Italy;
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy;
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy; (F.P.); (M.U.); (S.M.); (B.M.); (P.V.)
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.T.); (G.C.)
| | - Paolo Versacci
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy; (F.P.); (M.U.); (S.M.); (B.M.); (P.V.)
| |
Collapse
|