1
|
Masoumzadeh E, Ying J, Baber JL, Anfinrud P, Bax A. Proline Peptide Bond Isomerization in Ubiquitin Under Folding and Denaturing Conditions by Pressure-Jump NMR. J Mol Biol 2024; 436:168587. [PMID: 38663546 PMCID: PMC11166230 DOI: 10.1016/j.jmb.2024.168587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Proline isomerization is widely recognized as a kinetic bottleneck in protein folding, amplified for proteins rich in Pro residues. We introduced repeated hydrostatic pressure jumps between native and pressure-denaturing conditions inside an NMR sample cell to study proline isomerization in the pressure-sensitized L50A ubiquitin mutant. Whereas in two unfolded heptapeptides, X-Pro peptide bonds isomerized ca 1.6-fold faster at 1 bar than at 2.5 kbar, for ubiquitin ca eight-fold faster isomerization was observed for Pro-38 and ca two-fold for Pro-19 and Pro-37 relative to rates measured in the pressure-denatured state. Activation energies for isomerization in pressure-denatured ubiquitin were close to literature values of 20 kcal/mole for denatured polypeptides but showed a substantial drop to 12.7 kcal/mole for Pro-38 at atmospheric pressure. For ubiquitin isomers with a cis E18-P19 peptide bond, the 1-bar NMR spectrum showed sharp resonances with near random coil chemical shifts for the C-terminal half of the protein, characteristic of an unfolded chain, while most of the N-terminal residues were invisible due to exchange broadening, pointing to a metastable partially folded state for this previously recognized 'folding nucleus'. For cis-P37 isomers, a drop in pressure resulted in the rapid loss of nearly all unfolded-state NMR resonances, while the recovery of native state intensity revealed a slow component attributed to cis → trans isomerization of P37. This result implies that the NMR-invisible cis-P37 isomer adopts a molten globule state that encompasses the entire length of the ubiquitin chain, suggestive of a structure that mostly resembles the folded state.
Collapse
Affiliation(s)
- Elahe Masoumzadeh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L Baber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Nishimura K, Takata K. Combination of Drugs and Cell Transplantation: More Beneficial Stem Cell-Based Regenerative Therapies Targeting Neurological Disorders. Int J Mol Sci 2021; 22:ijms22169047. [PMID: 34445753 PMCID: PMC8396512 DOI: 10.3390/ijms22169047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Cell transplantation therapy using pluripotent/multipotent stem cells has gained attention as a novel therapeutic strategy for treating neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, ischemic stroke, and spinal cord injury. To fully realize the potential of cell transplantation therapy, new therapeutic options that increase cell engraftments must be developed, either through modifications to the grafted cells themselves or through changes in the microenvironment surrounding the grafted region. Together these developments could potentially restore lost neuronal function by better supporting grafted cells. In addition, drug administration can improve the outcome of cell transplantation therapy through better accessibility and delivery to the target region following cell transplantation. Here we introduce examples of drug repurposing approaches for more successful transplantation therapies based on preclinical experiments with clinically approved drugs. Drug repurposing is an advantageous drug development strategy because drugs that have already been clinically approved can be repurposed to treat other diseases faster and at lower cost. Therefore, drug repurposing is a reasonable approach to enhance the outcomes of cell transplantation therapies for neurological diseases. Ideal repurposing candidates would result in more efficient cell transplantation therapies and provide a new and beneficial therapeutic combination.
Collapse
|
3
|
Antonios JP, Farah GJ, Cleary DR, Martin JR, Ciacci JD, Pham MH. Immunosuppressive mechanisms for stem cell transplant survival in spinal cord injury. Neurosurg Focus 2020; 46:E9. [PMID: 30835678 DOI: 10.3171/2018.12.focus18589] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) has been associated with a dismal prognosis-recovery is not expected, and the most standard interventions have been temporizing measures that do little to mitigate the extent of damage. While advances in surgical and medical techniques have certainly improved this outlook, limitations in functional recovery continue to impede clinically significant improvements. These limitations are dependent on evolving immunological mechanisms that shape the cellular environment at the site of SCI. In this review, we examine these mechanisms, identify relevant cellular components, and discuss emerging treatments in stem cell grafts and adjuvant immunosuppressants that target these pathways. As the field advances, we expect that stem cell grafts and these adjuvant treatments will significantly shift therapeutic approaches to acute SCI with the potential for more promising outcomes.
Collapse
Affiliation(s)
- Joseph P Antonios
- 1David Geffen School of Medicine, University of California, Los Angeles, Los Angeles; and
| | - Ghassan J Farah
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Daniel R Cleary
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Joel R Martin
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Joseph D Ciacci
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Martin H Pham
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| |
Collapse
|
4
|
Solomentsev G, Diehl C, Akke M. Conformational Entropy of FK506 Binding to FKBP12 Determined by Nuclear Magnetic Resonance Relaxation and Molecular Dynamics Simulations. Biochemistry 2018; 57:1451-1461. [DOI: 10.1021/acs.biochem.7b01256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gleb Solomentsev
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Carl Diehl
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
5
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
6
|
Schwarz F, Pearce OMT, Wang X, Samraj AN, Läubli H, Garcia JO, Lin H, Fu X, Garcia-Bingman A, Secrest P, Romanoski CE, Heyser C, Glass CK, Hazen SL, Varki N, Varki A, Gagneux P. Siglec receptors impact mammalian lifespan by modulating oxidative stress. eLife 2015; 4. [PMID: 25846707 PMCID: PMC4384638 DOI: 10.7554/elife.06184] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/08/2015] [Indexed: 12/12/2022] Open
Abstract
Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan. DOI:http://dx.doi.org/10.7554/eLife.06184.001 As we get older, we are more likely to become frail, be less mobile and develop heart disease, diabetes, and other age-related diseases. This is partly due to damage to tissues and organs that accumulates over the course of our lifetime. How quickly we age is controlled both by our genetics and by the environment we live in. It is thought that damage to DNA, proteins, and other molecules in the body caused by chemically active molecules called reactive oxygen species (ROS) can influence aging. ROS are produced during respiration, immune responses, and other important processes in cells, but in excessive amounts they can be extremely harmful. To avoid damage to DNA and other important molecules, cells have several ways to control the levels of ROS. One of the other hallmarks of aging is the development of chronic inflammation in tissues around the body, which is partly triggered by the immune system in response to cell damage. A group of genes called the CD33rSIGLEC genes are involved in controlling inflammation. The genomes of different mammal species carry different numbers of these genes, but it is not clear whether this alters the aging process in these animals. In this study, Schwarz et al. investigated whether the CD33rSIGLEC genes influence the lifespans of mammals. Species with a higher number of CD33rSIGLEC genes generally have a longer lifespan than those with fewer of these genes. Mice that were missing one of these genes and were subjected to inflammation early in life showed signs of accelerated aging and had shortened lifespans compared with normal mice. As predicted, these mice also had higher levels of ROS, which led to a greater amount of damage to the DNA and other molecules in their bodies. Schwarz et al.'s findings suggest that the CD33rSIGLECs co-evolved in mammals to help control the levels of ROS during inflammation, thereby reducing the damage to cells and extending the lifespan of the animals. Given that individual humans have different numbers of working CD33rSIGLEC genes, it would be interesting to see if this influences human lifespan. DOI:http://dx.doi.org/10.7554/eLife.06184.002
Collapse
Affiliation(s)
- Flavio Schwarz
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| | - Oliver M T Pearce
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| | - Xiaoxia Wang
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| | - Annie N Samraj
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| | - Heinz Läubli
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| | - Javier O Garcia
- Department of Psychology, University of California, San Diego, San Diego, United States
| | - Hongqiao Lin
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, United States
| | - Xiaoming Fu
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, United States
| | - Andrea Garcia-Bingman
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| | - Patrick Secrest
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Charles Heyser
- Department of Neurosciences, University of California, San Diego, San Diego, United States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, United States
| | - Nissi Varki
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| | - Pascal Gagneux
- Glycobiology Research and Training Center, University of California, San Diego, San Diego, United States
| |
Collapse
|
7
|
Lopez DH, Fiol-deRoque MA, Noguera-Salvà MA, Terés S, Campana F, Piotto S, Castro JA, Mohaibes RJ, Escribá PV, Busquets X. 2-hydroxy arachidonic acid: a new non-steroidal anti-inflammatory drug. PLoS One 2013; 8:e72052. [PMID: 24015204 PMCID: PMC3754997 DOI: 10.1371/journal.pone.0072052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/07/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies. METHODOLOGY/PRINCIPAL FINDINGS The analogue of arachidonic acid (AA), 2-hydroxy-arachidonic acid (2OAA), was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production) activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method) and iNOS (Western blot) were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the -OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo. CONCLUSION/SIGNIFICANCE These findings demonstrate the potential of 2OAA as a NSAID.
Collapse
Affiliation(s)
- Daniel H. Lopez
- Lipopharma Therapeutics, Palma de Mallorca, Balearic Islands, Spain
| | - Maria A. Fiol-deRoque
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Maria A. Noguera-Salvà
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Terés
- Lipopharma Therapeutics, Palma de Mallorca, Balearic Islands, Spain
| | - Federica Campana
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fischiano, Salerno, Italy
| | - Stefano Piotto
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fischiano, Salerno, Italy
| | - José A. Castro
- Laboratory of Genetics, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Raheem J. Mohaibes
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Pablo V. Escribá
- Laboratory of Molecular and Cellular Biomedicine, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
- * E-mail:
| | - Xavier Busquets
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
8
|
Monneau YR, Soufari H, Nelson CJ, Mackereth CD. Structure and activity of the peptidyl-prolyl isomerase domain from the histone chaperone Fpr4 toward histone H3 proline isomerization. J Biol Chem 2013; 288:25826-25837. [PMID: 23888048 DOI: 10.1074/jbc.m113.479964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The FK506-binding protein (FKBP) family of peptidyl-prolyl isomerases (PPIases) is characterized by a common catalytic domain that binds to the inhibitors FK506 and rapamycin. As one of four FKBPs within the yeast Saccharomyces cerevisiae, Fpr4 has been described as a histone chaperone, and is in addition implicated in epigenetic function in part due to its mediation of cis-trans conversion of proline residues within histone tails. To better understand the molecular details of this activity, we have determined the solution structure of the Fpr4 C-terminal PPIase domain by using NMR spectroscopy. This canonical FKBP domain actively increases the rate of isomerization of three decapeptides derived from the N terminus of yeast histone H3, whereas maintaining intrinsic cis and trans populations. Observation of the uncatalyzed and Fpr4-catalyzed isomerization rates at equilibrium demonstrate Pro(16) and Pro(30) of histone H3 as the major proline targets of Fpr4, with little activity shown against Pro(38). This alternate ranking of the three target prolines, as compared with affinity determination or the classical chymotrypsin-based fluorescent assay, reveals the mechanistic importance of substrate residues C-terminal to the peptidyl-prolyl bond.
Collapse
Affiliation(s)
- Yoan R Monneau
- From the Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Heddy Soufari
- From the Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France,; the INSERM U869, University of Bordeaux, 33076 Bordeaux, France, and
| | - Christopher J Nelson
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Cameron D Mackereth
- From the Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France,; the INSERM U869, University of Bordeaux, 33076 Bordeaux, France, and.
| |
Collapse
|
9
|
Li J, Zoldak G, Kriehuber T, Soroka J, Schmid FX, Richter K, Buchner J. Unique Proline-Rich Domain Regulates the Chaperone Function of AIPL1. Biochemistry 2013; 52:2089-96. [DOI: 10.1021/bi301648q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Li
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| | - Gabriel Zoldak
- Laboratorium für
Biochemie, Universität Bayreuth,
D-95440 Bayreuth, Germany
| | - Thomas Kriehuber
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| | - Joanna Soroka
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| | - Franz X. Schmid
- Laboratorium für
Biochemie, Universität Bayreuth,
D-95440 Bayreuth, Germany
| | - Klaus Richter
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| | - Johannes Buchner
- Center for Integrated Protein
Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching,
Germany
| |
Collapse
|
10
|
Some transformations of tacrolimus, an immunosuppressive drug. Eur J Pharm Sci 2012; 48:514-22. [PMID: 23238171 DOI: 10.1016/j.ejps.2012.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/15/2012] [Accepted: 12/02/2012] [Indexed: 11/20/2022]
Abstract
Transformations of the macrocyclic lactone tacrolimus (1), an important immunosuppressive drug produced by Streptomyces species, are described. These transformation products are primarily of interest as reference substances for drug impurity analyses. Upon action of acid (p-toluenesulfonic acid in toluene), tacrolimus is dehydrated by loss of water from the β-hydroxyketone moiety with partial inversion of configuration at C-8, resulting in formation of 5-deoxy-Δ(5,6)-tacrolimus and 5-deoxy-Δ(5,6)-8-epitacrolimus. The structure of the latter was determined by single-crystal X-ray crystallography. The same products are formed upon action of free radicals (iodine in boiling toluene), along with formation of 8-epitacrolimus. The latter is converted by p-toluenesulfonic acid to 5-deoxy-Δ(5,6)-8-epitacrolimus. Treatment of tacrolimus with weak base (1,5-diazabicyclo[4.3.0]nonene) gives, in addition to 8-epitacrolimus, the open-chain acid corresponding to 5-deoxy-Δ(5,6)-tacrolimus, a rare non-cyclic derivative of tacrolimus. Strong base (t-butoxide) causes pronounced degradation of the molecule. Thermolysis of tacrolimus leads to ring expansion by an apparent [3,3]-sigmatropic rearrangement of the allylic ester moiety with subsequent loss of water from the β-hydroxyketone moiety. ¹H and ¹³C NMR spectra of the obtained compounds, complicated by the presence of amide bond rotamers and ketal moiety tautomers, were assigned by extensive use of 2D NMR techniques.
Collapse
|
11
|
Cabrera RM, Finnell RH, Zhu H, Shaw GM, Wlodarczyk BJ. Transcriptional analyses of two mouse models of spina bifida. ACTA ACUST UNITED AC 2012; 94:782-9. [PMID: 23024056 DOI: 10.1002/bdra.23081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/03/2012] [Accepted: 08/08/2012] [Indexed: 11/09/2022]
Abstract
BACKGROUND Spina bifida is one of the most common of all human structural birth defects. Despite considerable effort over several decades, the causes and mechanisms underlying this malformation remain poorly characterized. METHODS To better understand the pathogenesis of this abnormality, we conducted a microarray study using Mouse Whole Genome Bioarrays which have ~36,000 gene targets, to compare gene expression profiles between two mouse models; CXL-Splotch and FKBP8(Gt(neo)) which express a similar spina bifida phenotype. We anticipated that there would be a collection of overlapping genes or shared genetic pathways at the molecular level indicative of a common mechanism underlying the pathogenesis of spina bifida during embryonic development. RESULTS A total of 54 genes were determined to be differentially expressed (25 downregulated, 29 upregulated) in the FKBP8Gt((neo)) mouse embryos; whereas 73 genes were differentially expressed (56 downregulated, 17 upregulated) in the CXL-Splotch mouse relative to their wild-type controls. Remarkably, the only two genes that showed decreased expression in both mutants were v-ski sarcoma viral oncogene homolog (Ski), and Zic1, a transcription factor member of the zinc finger family. Confirmation analysis using quantitative real-time (qRT)-PCR indicated that only Zic1 was significantly decreased in both mutants. Gene ontology analysis revealed striking enrichment of genes associated with mesoderm and central nervous system development in the CXL-Splotch mutant embryos, whereas in the FKBP8(Gt(neo)) mutants, the genes involved in dorsal/ventral pattern formation, cell fate specification, and positive regulation of cell differentiation were most likely to be enriched. These results indicate that there are multiple pathways and gene networks perturbed in mouse embryos with shared phenotypes.
Collapse
Affiliation(s)
- Robert M Cabrera
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Skytte DM, Frydenvang K, Hansen L, Nielsen PG, Jaroszewski JW. Synthesis and characterization of an epimer of tacrolimus, an immunosuppressive drug. JOURNAL OF NATURAL PRODUCTS 2010; 73:776-779. [PMID: 20166703 DOI: 10.1021/np9007975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
8-Epitacrolimus (2), a new l-pipecolic acid macrolide lactone, was obtained by base-catalyzed epimerization of tacrolimus (FK-506, 1), an important immunosuppressive drug, and its structure determined by a single-crystal X-ray diffraction method. The compound was fully characterized by spectroscopic techniques. The epimer is of importance due to its potential biological effects as well as because of its possible formation during formulation, handling, and use of tacrolimus products.
Collapse
Affiliation(s)
- Dorthe M Skytte
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
14
|
Martino L, He Y, Hands-Taylor KLD, Valentine ER, Kelly G, Giancola C, Conte MR. The interaction of the Escherichia coli protein SlyD with nickel ions illuminates the mechanism of regulation of its peptidyl-prolyl isomerase activity. FEBS J 2009; 276:4529-44. [PMID: 19645725 DOI: 10.1111/j.1742-4658.2009.07159.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sensitive to lysis D (SlyD) protein from Escherichia coli is related to the FK506-binding protein family, and it harbours both peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone-like activity, preventing aggregation and promoting the correct folding of other proteins. Whereas a functional role of SlyD as a protein-folding catalyst in vivo remains unclear, SlyD has been shown to be an essential component for [Ni-Fe]-hydrogenase metallocentre assembly in bacteria. Interestingly, the isomerase activity of SlyD is uniquely modulated by nickel ions, which possibly regulate its functions in response to external stimuli. In this work, we investigated the solution structure of SlyD and its interaction with nickel ions, enabling us to gain insights into the molecular mechanism of this regulation. We have revealed that the PPIase module of SlyD contains an additional C-terminal alpha-helix packed against the catalytic site of the domain; unexpectedly, our results show that the interaction of SlyD with nickel ions entails participation of the novel structural features of the PPIase domain, eliciting structural alterations of the catalytic pocket. We suggest that such conformational rearrangements upon metal binding underlie the ability of nickel ions to regulate the isomerase activity of SlyD.
Collapse
Affiliation(s)
- Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Pluth MD, Bergman RG, Raymond KN. Acceleration of Amide Bond Rotation by Encapsulation in the Hydrophobic Interior of a Water-Soluble Supramolecular Assembly. J Org Chem 2008; 73:7132-6. [DOI: 10.1021/jo800991g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael D. Pluth
- Department of Chemistry, University of California, Berkeley, California 94720-1460, and Chemistry Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, and Chemistry Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Kenneth N. Raymond
- Department of Chemistry, University of California, Berkeley, California 94720-1460, and Chemistry Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| |
Collapse
|
16
|
Maddess ML, Tackett MN, Ley SV. Total synthesis studies on macrocyclic pipecolic acid natural products: FK506, the antascomicins and rapamycin. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 66:13, 15-186. [PMID: 18416305 DOI: 10.1007/978-3-7643-8595-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This chapter derives its inspiration from the challenges presented to total synthesis chemists, by a particular group of macrocyclic pipecolic acid natural products. Although there is considerable emphasis on the completed syntheses of the main characters (FK506 (1), the antascomycins (4 and 5) and rapamycin (7)), the overall complexity of the molecular problem has stimulated a wealth of new knowledge, including the development of novel strategies and the invention of new synthetic methods. The ingenious and innovative approaches to these targets have enabled new generations of analogues, and provided material to further probe the biology of these fascinating molecules. With pharmaceutical application as an immunosuppressant, as well as potential use for the treatment of cancer and neurodegenerative diseases, this family of natural products continues to inspire new and interesting science while providing solutions to healthcare problems of the world.
Collapse
Affiliation(s)
- Matthew L Maddess
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
17
|
Wong RLY, Wlodarczyk BJ, Min KS, Scott ML, Kartiko S, Yu W, Merriweather MY, Vogel P, Zambrowicz BP, Finnell RH. Mouse Fkbp8 activity is required to inhibit cell death and establish dorso-ventral patterning in the posterior neural tube. Hum Mol Genet 2007; 17:587-601. [PMID: 18003640 DOI: 10.1093/hmg/ddm333] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rebecca Lee Yean Wong
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, The Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Röhrig CH, Loch C, Guan JY, Siegal G, Overhand M. Fragment-Based Synthesis and SAR of Modified FKBP Ligands: Influence of Different Linking on Binding Affinity. ChemMedChem 2007; 2:1054-70. [PMID: 17541991 DOI: 10.1002/cmdc.200600296] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The viability of the fragment-based approach for lead discovery depends on reliable fragment-screening methods combined with straightforward fragment-linking- or fragment-growing-chemistry. In the present study we sought a flexible synthetic approach that would allow efficient synthesis of a variety of linkers that can subsequently be tested for biological activity. We applied this approach to fragments known to bind to FKBP12 (FK506 binding protein), a peptidyl-prolyl isomerase involved in immunosuppression and neural functioning. In our set of linked FKBP ligands, ester and thioester linkages resulted in high-affinity ligands, whereas an amide linkage decreased affinity remarkably; oxime and triazole linkages were not tolerated by the target protein's binding pocket, rendering these ligands ineffective. By investigating corresponding derivatized non-linked fragments and docking studies of linked fragments, we were able to evaluate the effect of the linker region on ligand binding affinity.
Collapse
Affiliation(s)
- Christoph H Röhrig
- Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Vanwetswinkel S, Heetebrij RJ, van Duynhoven J, Hollander JG, Filippov DV, Hajduk PJ, Siegal G. TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. ACTA ACUST UNITED AC 2005; 12:207-16. [PMID: 15734648 DOI: 10.1016/j.chembiol.2004.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 11/19/2004] [Accepted: 11/24/2004] [Indexed: 11/16/2022]
Abstract
We propose a ligand screening method, called TINS (target immobilized NMR screening), which reduces the amount of target required for the fragment-based approach to drug discovery. Binding is detected by comparing 1D NMR spectra of compound mixtures in the presence of a target immobilized on a solid support to a control sample. The method has been validated by the detection of a variety of ligands for protein and nucleic acid targets (K(D) from 60 to 5000 muM). The ligand binding capacity of a protein was undiminished after 2000 different compounds had been applied, indicating the potential to apply the assay for screening typical fragment libraries. TINS can be used in competition mode, allowing rapid characterization of the ligand binding site. TINS may allow screening of targets that are difficult to produce or that are insoluble, such as membrane proteins.
Collapse
Affiliation(s)
- Sophie Vanwetswinkel
- Leiden Institute of Chemistry, Leiden University, Postbus 9502, 2300-RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- R L Stein
- Department of Enzymology, Merck, Sharp and Dohme Research Laboratories, PO Box 2000, Rahway, New Jersey 07065, USA
| |
Collapse
|
21
|
Abstract
The role of a protein inside a cell is determined by both its location and its conformational state. Although fluorescence techniques are widely used to determine the cellular localization of proteins in vivo, these approaches cannot provide detailed information about a protein's three-dimensional state. This gap, however, can be filled by NMR spectroscopy, which can be used to investigate both the conformation as well as the dynamics of proteins inside living cells. In this chapter we describe technical aspects of these "in-cell NMR" experiments. In particular, we show that in the case of (15)N-labeling schemes the background caused by labeling all cellular components is negligible, while (13)C-based experiments suffer from high background levels and require selective labeling schemes. A correlation between the signal-to-noise ratio of in-cell NMR experiments with the overexpression level of the protein shows that the current detection limit is 150-200 muM (intracellular concentration). We also discuss experiments that demonstrate that the intracellular viscosity is not a limiting factor since the intracellular rotational correlation time is only approximately two times longer than the correlation time in water. Furthermore, we describe applications of the technique and discuss its limitations.
Collapse
Affiliation(s)
- Zach Serber
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
22
|
Kessler H, Haessner R, Schüler W. Structure of Rapamycin: An NMR and Molecular-Dynamics Investigation. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19930760106] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Kuzuhara T, Horikoshi M. A nuclear FK506-binding protein is a histone chaperone regulating rDNA silencing. Nat Struct Mol Biol 2004; 11:275-83. [PMID: 14981505 DOI: 10.1038/nsmb733] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 01/23/2004] [Indexed: 01/16/2023]
Abstract
We report a novel chromatin-modulating factor, nuclear FK506-binding protein (FKBP). It is a member of the peptidyl prolyl cis-trans isomerase (PPIase) family, whose members were originally identified as enzymes that assist in the proper folding of polypeptides. The endogenous FKBP gene is required for the in vivo silencing of gene expression at the rDNA locus and FKBP has histone chaperone activity in vitro. Both of these properties depend on the N-terminal non-PPIase domain of the protein. The C-terminal PPIase domain is not essential for the histone chaperone activity in vitro, but it regulates rDNA silencing in vivo. Chromatin immunoprecipitation showed that nuclear FKBP associates with chromatin at rDNA loci in vivo. These in vivo and in vitro findings in nuclear FKBPs reveal a hitherto unsuspected link between PPIases and the alteration of chromatin structure.
Collapse
Affiliation(s)
- Takashi Kuzuhara
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | |
Collapse
|
24
|
Suzuki R, Nagata K, Yumoto F, Kawakami M, Nemoto N, Furutani M, Adachi K, Maruyama T, Tanokura M. Three-dimensional solution structure of an archaeal FKBP with a dual function of peptidyl prolyl cis-trans isomerase and chaperone-like activities. J Mol Biol 2003; 328:1149-60. [PMID: 12729748 DOI: 10.1016/s0022-2836(03)00379-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Here we report the solution structure of an archaeal FK506-binding protein (FKBP) from a thermophilic archaeum, Methanococcus thermolithotrophicus (MtFKBP17), which has peptidyl prolyl cis-trans isomerase (PPIase) and chaperone-like activities, to reveal the structural basis for the dual function. In addition to a typical PPIase domain, a newly identified domain is formed in the flap loop by a 48-residue insert that is required for the chaperone-like activity. The new domain, called IF domain (the Insert in the Flap), is a novel-folding motif and exposes a hydrophobic surface, which we consider to play an important role in the chaperone-like activity.
Collapse
Affiliation(s)
- Rintaro Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- F X Schmid
- Biochemisches Laboratorium, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
26
|
Pereira PJB, Vega MC, González-Rey E, Fernández-Carazo R, Macedo-Ribeiro S, Gomis-Rüth FX, González A, Coll M. Trypanosoma cruzi macrophage infectivity potentiator has a rotamase core and a highly exposed alpha-helix. EMBO Rep 2002; 3:88-94. [PMID: 11751578 PMCID: PMC1083928 DOI: 10.1093/embo-reports/kvf009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The macrophage infectivity potentiator protein from Trypanosoma cruzi (TcMIP) is a major virulence factor secreted by the etiological agent of Chagas' disease. It is functionally involved in host cell invasion. We have determined the three-dimensional crystal structure of TcMIP at 1.7 A resolution. The monomeric protein displays a peptidyl-prolyl cis-trans isomerase (PPIase) core, encompassing the characteristic rotamase hydrophobic active site, thus explaining the strong inhibition of TcMIP by the immunosuppressant FK506 and related drugs. In TcMIP, the twisted beta-sheet of the core is extended by an extra beta-strand, preceded by a long, exposed N-terminal alpha-helix, which might be a target recognition element. An invasion assay shows that the MIP protein from Legionella pneumophila (LpMIP), which has an equivalent N-terminal alpha-helix, can substitute for TcMIP. An additional exposed alpha-helix, this one unique to TcMIP, is located in the C-terminus of the protein. The high-resolution structure reported here opens the possibility for the design of new inhibitory drugs that might be useful for the clinical treatment of American trypanosomiasis.
Collapse
Affiliation(s)
- Pedro José Barbosa Pereira
- Institut de Biología Molecular-CSIC, Jordi Girona 18-26, E-08034 Barcelona and 1Instituto de Parasitología y Biomedicina-CSIC, Ventanilla 11, E-18001 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ruepp A, Rockel B, Gutsche I, Baumeister W, Lupas AN. The Chaperones of the archaeon Thermoplasma acidophilum. J Struct Biol 2001; 135:126-38. [PMID: 11580262 DOI: 10.1006/jsbi.2001.4402] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chaperonesare an essential component of a cell's ability to respond to environmental challenges. Chaperones have been studied primarily in bacteria, but in recent years it has become apparent that some classes of chaperones either are very divergent in bacteria relative to archaea and eukaryotes or are missing entirely. In contrast, a high degree of similarity was found between the chaperonins of archaea and those of the eukaryotic cytosol, which has led to the establishment of archaeal model systems. The archaeon most extensively used for such studies is Thermoplasma acidophilum, which thrives at 59 degrees C and pH 2. Here we review information on its chaperone complement in light of the recently determined genome sequence.
Collapse
Affiliation(s)
- A Ruepp
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, Martinsried, D-82152, Germany
| | | | | | | | | |
Collapse
|
28
|
Pirkl F, Buchner J. Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. J Mol Biol 2001; 308:795-806. [PMID: 11350175 DOI: 10.1006/jmbi.2001.4595] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Large peptidyl-prolyl cis/trans isomerases (PPIases) are important components of the Hsp90 chaperone complex. In mammalian cells, either Cyp40, FKBP51 or FKBP52 is incorporated into these complexes. It has been suggested that members of this protein family exhibit both prolyl isomerase and chaperone activity. Here we define the structural and functional properties of the three mammalian large PPIases. We find that in all cases two PPIase monomers bind to an Hsp90 dimer. However, the affinities of the PPIases are different with FKBP52 exhibiting the strongest interaction and Cyp40 the weakest. Furthermore, in the mammalian system, in contrast to the yeast system, the catalytic activity of prolyl isomerization corresponds well to that of the respective small PPIases. Interestingly, Cyp40 and FKBP51 are the more potent chaperones. Thus, it seems that both the affinity for Hsp90 and the differences in their chaperone properties, which may reflect their interaction with the non-native protein in the Hsp90 complex, are critical for the selective incorporation of a specific large PPIase.
Collapse
Affiliation(s)
- F Pirkl
- Institut für Organische Chemie und Biochemie, Technische Universität München, Garching, 85747, Germany
| | | |
Collapse
|
29
|
Abstract
Peptidylprolyl isomerases (PPIases) are a group of cytosolic enzymes first characterized by their ability to catalyze the cis-trans isomerization of cis-peptidylprolyl bonds. Subsequently, some PPIases were also identified as the initial targets of the immunosuppressant drugs-cyclosporin A (CsA), FK506, and rapamycin-have been called immunophilins. Immunophilins have been found to be both widely distributed and abundantly expressed leading to suggestions that they may play a general role in cellular biochemistry. However, the nature of this role has been difficult to elucidate and is still controversial in vivo. A number of roles for these enzymes have been identified in vitro including the ability to catalyze the refolding of partly denatured proteins and stabilize multiprotein complexes such as Ca(2+) channels, inactive steroid receptor complexes, and receptor protein tyrosine kinases. Generally, these effects appear to depend on the ability of immunophilins to selectively bind to other proteins. This review will examine in detail experimental and structural investigations of the mechanism of PPIase activity for both FKBPs and cyclophilins and suggest a mechanism for these enzymes, which depends on their ability to recognize a specific peptide conformation rather than sequence. Examination of structures of immunophilin-protein complexes will then be used to further suggest that the ability of these enzymes to recognize specific peptide conformations is central to the formation of these complexes and may constitute a general function of immunophilin enzymes. The binding of ligand to immunophilins will also be shown to stabilize specific conformations in surface loops of these proteins that are observed to play a critical role in a number of immunophilin-protein complexes suggesting that the immunophilins may constitute a class of ligand-triggered selective protein binders.
Collapse
Affiliation(s)
- M T Ivery
- Faculty of Pharmacy, University of Sydney, N.S.W. 2006, Australia.
| |
Collapse
|
30
|
Xin HB, Rogers K, Qi Y, Kanematsu T, Fleischer S. Three amino acid residues determine selective binding of FK506-binding protein 12.6 to the cardiac ryanodine receptor. J Biol Chem 1999; 274:15315-9. [PMID: 10336416 DOI: 10.1074/jbc.274.22.15315] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FK506-binding protein (FKBP12) has been found to be associated with the skeletal muscle ryanodine receptor (RyR1) (calcium release channel), whereas FKBP12.6, a novel isoform of FKBP, is selectively associated with the cardiac ryanodine receptor (RyR2). For both RyRs, the stoichiometry is 4 FKBP/RyR. Although FKBP12.6 differs from FKBP12 by only 18 of 108 amino acids, FKBP12.6 selectively binds to RyR2 and exchanges with bound FKBP12.6 of RyR2, whereas both FKBP isoforms bind to RyR1 and exchange with bound FKBP12 of RyR1. To assess the amino acid residues of FKBP12.6 that are critical for selective binding to RyR2, the residues of FKBP12.6 that differ with FKBP12 were mutated to the respective residues of FKBP12. RyR2 of cardiac sarcoplasmic reticulum, prelabeled by exchange with [35S]FKBP12.6, was used as assay system for binding/exchange with the mutants. The triple mutant (Q31E/N32D/F59W) of FKBP12.6 was found to lack selective binding to the cardiac RyR2, comparable with that of FKBP12.0. In complementary studies, mutations of FKBP12 to the three critical amino acids of FKBP12.6, conferred selective binding to RyR2. Each of the FKBP12.6 and FKBP12 mutants retained binding to the skeletal muscle RyR1. We conclude that three amino acid residues (Gln31, Asn32, and Phe59) of human FKBP12.6 account for the selective binding to cardiac RyR2.
Collapse
Affiliation(s)
- H B Xin
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
31
|
Brenner C, Garrison P, Gilmour J, Peisach D, Ringe D, Petsko GA, Lowenstein JM. Crystal structures of HINT demonstrate that histidine triad proteins are GalT-related nucleotide-binding proteins. NATURE STRUCTURAL BIOLOGY 1997; 4:231-8. [PMID: 9164465 PMCID: PMC2571075 DOI: 10.1038/nsb0397-231] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Histidine triad nucleotide-binding protein (HINT), a dimeric purine nucleotide-binding protein from rabbit heart, is a member of the HIT (histidine triad) superfamily which includes HINT homologues and FHIT (HIT protein encoded at the chromosome 3 fragile site) homologues. Crystal structures of HINT-nucleotide complexes demonstrate that the most conserved residues in the superfamily mediate nucleotide binding and that the HIT motif forms part of the phosphate binding loop. Galactose-1-phosphate uridylyltransferase, whose deficiency causes galactosemia, contains tandem HINT domains with the same fold and mode of nucleotide binding as HINT despite having no overall sequence similarity. Features of FHIT, a diadenosine polyphosphate hydrolase and candidate tumour suppressor, are predicted from HINT-nucleotide structures.
Collapse
Affiliation(s)
- C Brenner
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ivery MT, Weiler L. Modeling the interaction between FK506 and FKBP12: a mechanism for formation of the calcineurin inhibitory complex. Bioorg Med Chem 1997; 5:217-32. [PMID: 9061187 DOI: 10.1016/s0968-0896(96)00229-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
FK506 is a naturally occurring immunosuppressant whose mode of action involves formation of an initial complex with the cytosolic protein FKBP12. The composite surface of this complex then binds to and inhibits the protein phosphatase calcineurin (PP2B). To investigate why FK506 does not inhibit calcineurin directly we have conducted molecular modeling and conformational studies on published structures of FK506 both alone and in complex with FKBP12. From studies of the structure of FK506 in CDCl3 and Z-Arg32-ascomycin in water (a water soluble analogue of FK506) we suggest that the FK506 molecule can be viewed as consisting of three separate regions. The pipecolate region which extends from C24 to C10 including the pipecolate ring shows strongly conserved conformation in both solvents. The loop region which extends from C25 to C16 shows general conservation of the loop structure and the pyranose region made up of the pyranose ring and C15-C17 which shows highly variable conformation depending on solvent. Comparison of the structure of Z-Arg32-ascomycin in water with structures of FK506 bound to FKBP12 indicate that the conformation of the pipecolate region is conserved during the binding process. The conformation of the loop region was generally conserved but a significant reduction (approximately 1.7 A) in the diameter of the loop in the bound structure was observed. The conformation of the pyranose ring and C15-C17 region was found to be significantly altered in the bound structure resulting in displacements of the C13 and C15 methoxyl groups of 2.8 and 3.5 A, respectively. From computer models and molecular dynamics simulations of interactions between FK506 and FKBP12 we suggest that the conformational changes observed in bound FK506 are induced by the interaction between the 80's loop of FKBP12 and the pyranose ring of FKBP12. These interactions result in the formation of a complex with the both correct shape and surface polarity for interaction with calcineurin.
Collapse
Affiliation(s)
- M T Ivery
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
33
|
Abstract
E. coli trigger factor is an abundant cytosolic protein originally identified by its ability to maintain the precursor of a secretory protein in a translocation competent form. Recent studies shed new light on the function of this protein. Trigger factor was found to be a peptidyl-prolyl-cisltrans-isomerase capable of catalysing protein folding in vitro, to associate with nascent cytosolic and secretory polypeptide chains, and to cooperate with the GroEL chaperone in promoting proteolysis of an unstable polypeptide in vivo. These findings suggest roles for trigger factor in various folding processes of secretory as well as cytosolic proteins.
Collapse
Affiliation(s)
- T Hesterkamp
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany
| | | |
Collapse
|
34
|
Scholz C, Zarnt T, Kern G, Lang K, Burtscher H, Fischer G, Schmid FX. Autocatalytic folding of the folding catalyst FKBP12. J Biol Chem 1996; 271:12703-7. [PMID: 8662669 DOI: 10.1074/jbc.271.22.12703] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Prolyl isomerases are folding enzymes and thus have the potential to catalyze their own folding. We show here that the folding of cytosolic FKBP12 (FK 506 binding protein) is an autocatalytic process both for the mature protein and for a fusion protein with an amino-terminal extension of 16 residues. Native FKBP contains seven trans-prolyl peptide bonds, and the cis-to-trans isomerizations of some or all of them constitute the slow, rate-limiting events in folding. The rate of an autocatalytic reaction increases with reactant concentration, because the product catalyzes its own formation. Accordingly, the folding of the fusion protein was more than 10-fold accelerated when the protein concentration was increased from 0.05 microM to 10 microM. At high concentrations of both forms of FKBP12 autocatalysis was very efficient, and the observed folding rate seemed to approach the rate of the fast direct folding reaction of the protein molecules with the correct (all trans) peptidyl-prolyl bond conformation.
Collapse
Affiliation(s)
- C Scholz
- Biochemisches Laboratorium, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Hesterkamp T, Bukau B. Identification of the prolyl isomerase domain of Escherichia coli trigger factor. FEBS Lett 1996; 385:67-71. [PMID: 8641469 DOI: 10.1016/0014-5793(96)00351-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
E. coli trigger factor is a protein of 48 kDa which was recently identified as a ribosome-bound peptidyl-prolyl-cis/transisomerase (PPIase) capable of catalysing protein folding in vitro. We found trigger factor in association with nascent polypeptide chains, suggesting a function in the co-translational folding of proteins. Sequence comparisons revealed a homology of a segment of trigger factor with PPIases of the FK506 binding protein (FKBP) family. Here, we report on the purification of trigger factor and a domain assignment of its polypeptide chain by microsequencing and mass spectroscopy of proteolytic fragments. Two proteases generated fragments of 12-13 kDa molecular weight that encompass the predicted FKBP domain and possess PPIase activity in vitro. Sequence alignment of the known trigger factor proteins demonstrates a high degree of conservation within this central functional domain of the protein.
Collapse
Affiliation(s)
- T Hesterkamp
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany
| | | |
Collapse
|
36
|
Wagenknecht T, Grassucci R, Berkowitz J, Wiederrecht GJ, Xin HB, Fleischer S. Cryoelectron microscopy resolves FK506-binding protein sites on the skeletal muscle ryanodine receptor. Biophys J 1996; 70:1709-15. [PMID: 8785329 PMCID: PMC1225139 DOI: 10.1016/s0006-3495(96)79733-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A 12-kDa immunophilin (FKBP12) is an integral component of the skeletal muscle ryanodine receptor (RyR). The RyR is a hetero-oligomeric complex with structural formula (FKBP)4(Ryr1)4, where Ryr1 is the 565-kDa product of the Ryr1 gene. To aid in the detection of the immunophilin's location in the receptor, we exchanged the FKBP12 present in RyR-enriched vesicles derived from sarcoplasmic reticulum with an engineered construct of FKBP12 fused to glutathione S-transferase and then isolated the complexes. Cryoelectron microscopy and image averaging of the complexes (in an orientation displaying the RyR's fourfold symmetry) revealed four symmetrically distributed, diffuse density regions that were located just outside the boundary defining the cytoplasmic assembly of the RyR. These regions are attributed to the glutathione transferase portion of the fusion protein because they are absent from receptors lacking the fusion protein. To more precisely define the location of FKBP12, we similarly analyzed complexes of RyR containing FKBP12 itself. Apparently some FKBP is lost during the purification or storage of the RyR because, to detect the receptor-bound immunophilin, it was necessary to add FKBP12 to the purified receptor before electron microscopy. Averaged images of these complexes showed a region of density that had not been observed previously in images of isolated receptors, and its position, along the edges of the transmembrane assembly, agreed with the position of the FKBP12 deduced from the experiments with the fusion protein. The proposed locations for FKBP12 are about 10 nm from the transmembrane baseplate assembly that contains the ion channel of the RyR.
Collapse
Affiliation(s)
- T Wagenknecht
- Wadsworth Center for Laboratories and Research, New York State Department of Health, State University of New York at Albany 12201-0509, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Silva ND, Prendergast FG. Tryptophan dynamics of the FK506 binding protein: time-resolved fluorescence and simulations. Biophys J 1996; 70:1122-37. [PMID: 8785272 PMCID: PMC1225042 DOI: 10.1016/s0006-3495(96)79706-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The FK506-binding protein (FKBP12) is important in the immunosuppressant action of FK506 and rapamycin. We have investigated Trp side chain dynamics in FKBP12, with and without a bound immunosuppressant, by measuring the Trp time-resolved fluorescence anisotropy decay r(t). The r(t) for W59 in aqueous uncomplexed FKBP12 at 20 degrees C is well described by a single exponential with a recovered initial anisotropy, r(eff)o, of 0.192 and an overall rotational correlation time for the protein, phi p, of 4.7 ns; r(eff)o = 0.214 and phi p = 4.2 ns for the FKBP12/FK506 complex. Using an expression for the order parameter squared, namely S2 = r(eff)o/rTo, where rTo is the vitrified steady-state excitation anisotropy, we recovered an S2 of 0.75 for W59 fluorescence in uncomplexed FKBP12 and S2 approximately equal to 1 in the FKBP12/FK506 complex. Results obtained for the FKBP12/rapamycin complex are similar to those found for the FKBP12/FK506 complex. Minimum perturbation mapping simulations were performed on the free and complexed forms of FKBP12 and the results were generally in agreement with the experimental data.
Collapse
Affiliation(s)
- N D Silva
- Department of Pharmacology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
38
|
Galat A. A note on circular-dichroic-constrained prediction of protein secondary structure. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:428-35. [PMID: 8612612 DOI: 10.1111/j.1432-1033.1996.00428.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Circular dichroic (CD) spectra of bovine immunosuppressant binding proteins FKBP12 and FKBP25, and cyclophilins (peptidylprolyl isomerases) A (bCyP-18) and B(bCyP-20), the immunophilins which selectively bind the clinically useful immunosuppressants FK506, rapamycin and cyclosporin A, respectively, were analysed using the singular-value-decomposition algorithm augmented by a simplified variable selection method. The differences between the CD-estimated values of alpha-helix, beta-structure and beta-turn and those predicted by the Chou-Fasman algorithm were minimized using the CD data as constraints of an algorithm which utilizes the method of hierarchical updating of quasi-equipotential peptide segments of the Chou-Fasman prediction. The method allows one to correct the Chou-Fasman prediction of secondary structures in globular proteins.
Collapse
Affiliation(s)
- A Galat
- Department d'Ingénierie et d'Etudes des Proteines, D. S. V./C. E. A., Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| |
Collapse
|
39
|
Coss MC, Winterstein D, Sowder RC, Simek SL. Molecular cloning, DNA sequence analysis, and biochemical characterization of a novel 65-kDa FK506-binding protein (FKBP65). J Biol Chem 1995; 270:29336-41. [PMID: 7493967 DOI: 10.1074/jbc.270.49.29336] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have identified a mouse gene encoding a 65-kDa protein (FKBP65) that shares homology with members of the FK506-binding protein (FKBP) class of immunophilins. Predicted amino acid sequence shows that this protein shares significant homology with FKBP12 (46%), FKBP13 (43%), FKBP25 (35%), and FKBP52 (26%). FKBP65 contains four predicted peptidylprolyl cistrans-isomerase (PPIase) signature domains, and, although similar in size, is distinct from FKBP52 (also identified as FKBP59, hsp56, or HBI), which contains three FKBP12-like PPIase domains. With N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as the substrate, recombinant FKBP65 is shown to accelerate the isomerization of the prolyl peptide bond with a catalytic efficiency similar to other family members. This isomerization activity is inhibited by FK506 and rapamycin, but is not sensitive to Cyclosporin A. Based on Northern blot analysis, FKBP65 mRNA transcripts are present in lung, spleen, heart, brain, and testis. A polyclonal antibody, raised against a COOH-terminal peptide (amino acid residues 566-581), was used to immunoprecipitate FKBP65 from NIH3T3 cells and demonstrate that FKBP65 is a glycoprotein. In addition, [32P]orthophosphate labeling experiments show that FKBP65 is also a phosphoprotein. These results suggest that FKBP65 is a new FKBP family member.
Collapse
Affiliation(s)
- M C Coss
- Laboratory of Experimental Immunology, NCI-Frederick Cancer Research and Development Center, National Institute of Health, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Wintermeyer E, Ludwig B, Steinert M, Schmidt B, Fischer G, Hacker J. Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells. Infect Immun 1995; 63:4576-83. [PMID: 7591108 PMCID: PMC173657 DOI: 10.1128/iai.63.12.4576-4583.1995] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is able to survive intracellularly in eukaryotic cells such as monocytes, macrophages, and protozoan organisms. The Mip (macrophage infectivity potentiator) protein represents a factor of L. pneumophila necessary for optimal intracellular survival. Interestingly, Mip belongs to the substance class of FK 506-binding proteins and exhibits peptidyl-prolyl cis/trans isomerase (PPIase) activity that can be inhibited by the immunosuppressant FK506. In order to identify amino acids most likely to be involved in the enzymatic activity of Mip, site-directed mutagenized Mip proteins were constructed and characterized. It was shown that an Asp-142 to Leu-142 mutation and a Tyr-185 to Ala-185 substitution resulted in strongly reduced PPIase activity of the recombinant Mip proteins (5.3 and 0.6% of the activity of the wild-type Mip, respectively). Genes coding for the wild-type and for site-directed-mutagenized Mip proteins were used to complement three different Mip-negative mutants of the L. pneumophila Corby, Philadelphia I, and Wadsworth. While Mip protein expression could be restored in the corresponding complementants, significant Mip-specific PPIase activity could be detected only in Mip mutants complemented with wild-type mip genes. To investigate the influence of the PPIase activity of Mip on intracellular survival of L. pneumophila, invasion assays were performed using the macrophage-like cell line U937, human blood monocytes, and Acanthamoeba castellanii. The Mip-negative mutants were approximately 50- to 100-fold less infective for A. castellanii and for human mononuclear phagocytes in vitro compared with their isogenic Mip-positive parental strains. The wild-type invasion rate could be restored by introducing an intact copy of the mip gene into Mip-negative strains. In addition, no differences in intracellular survival were observed between the wild-type isolates and the Legionella strains exhibiting strongly reduced PPIase activity. These data indicated that the enzymatic activity of Mip does not contribute to intracellular survival of L. pneumophila.
Collapse
Affiliation(s)
- E Wintermeyer
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Futer O, DeCenzo MT, Aldape RA, Livingston DJ. FK506 binding protein mutational analysis. Defining the surface residue contributions to stability of the calcineurin co-complex. J Biol Chem 1995; 270:18935-40. [PMID: 7642551 DOI: 10.1074/jbc.270.32.18935] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 12- and 13-kDa FK506 binding proteins (FKBP12 and FKBP13) are cis-trans peptidyl-prolyl isomerases that bind the macrolides FK506 (Tacrolimus) and rapamycin (Sirolimus). The FKBP12.FK506 complex is immunosuppressive, acting as an inhibitor of the protein phosphatase calcineurin. We have examined the role of the key surface residues of FKBP12 and FKBP13 in calcineurin interactions by generating substitutions at these residues by site-directed mutagenesis. All mutants are active catalysts of the prolyl isomerase reaction, and bind FK506 or rapamycin with high affinity. Mutations at FKBP12 residues Asp-37, Arg-42, His-87, and Ile-90 decrease calcineurin affinity of the mutant FKBP12.FK506 complex by as much as 2600-fold in the case of I90K. Replacement of three FKBP13 surface residues (Gln-50, Ala-95, and Lys-98) with the corresponding homologous FKBP12 residues (Arg-42, His-87, and Ile-90) generates an FKBP13 variant that is equivalent to FKBP12 in its affinity for FK506, rapamycin, and calcineurin. These results confirm the role of two loop regions of FKBP12 (residues 40-44 and 84-91) as part of the effector face that interacts with calcineurin.
Collapse
Affiliation(s)
- O Futer
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139-4211, USA
| | | | | | | |
Collapse
|
43
|
Baughman G, Wiederrecht GJ, Campbell NF, Martin MM, Bourgeois S. FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol 1995; 15:4395-402. [PMID: 7542743 PMCID: PMC230679 DOI: 10.1128/mcb.15.8.4395] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The immunosuppressive drugs FK506 and cyclosporin A block T-lymphocyte proliferation by inhibiting calcineurin, a critical signaling molecule for activation. Multiple intracellular receptors (immunophilins) for these drugs that specifically bind either FK506 and rapamycin (FK506-binding proteins [FKBPs]) or cyclosporin A (cyclophilins) have been identified. We report the cloning and characterization of a new 51-kDa member of the FKBP family from murine T cells. The novel immunophilin, FKBP51, is distinct from the previously isolated and sequenced 52-kDa murine FKBP, demonstrating 53% identity overall. Importantly, Western blot (immunoblot) analysis showed that unlike all other FKBPs characterized to date, FKBP51 expression was largely restricted to T cells. Drug binding to recombinant FKBP51 was demonstrated by inhibition of peptidyl prolyl isomerase activity. As judged from peptidyl prolyl isomerase activity, FKBP51 had a slightly higher affinity for rapamycin than for FK520, an FK506 analog. FKBP51, when complexed with FK520, was capable of inhibiting calcineurin phosphatase activity in an in vitro assay system. Inhibition of calcineurin phosphatase activity has been implicated both in the mechanism of immunosuppression and in the observed toxic side effects of FK506 in nonlymphoid cells. Identification of a new FKBP that can mediate calcineurin inhibition and is restricted in its expression to T cells suggests that new immunosuppressive drugs may be identified that, by virtue of their specific interaction with FKBP51, would be targeted in their site of action.
Collapse
Affiliation(s)
- G Baughman
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, San Diego, California 92186-5800, USA
| | | | | | | | | |
Collapse
|
44
|
Rouviere-Fourmy N, Craescu CT, Mispelter J, Lebeau MC, Baulieu EE. 1H and 15N Assignment of NMR Spectrum, Secondary Structure and Global Folding of the Immunophilin-Like Domain of the 59-kDa FK506-Binding Protein. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0761d.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Lam E, Martin M, Wiederrecht G. Isolation of a cDNA encoding a novel human FK506-binding protein homolog containing leucine zipper and tetratricopeptide repeat motifs. Gene 1995; 160:297-302. [PMID: 7543869 DOI: 10.1016/0378-1119(95)00216-s] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reduced-stringency PCR was used to isolate a cDNA encoding a novel human FK506-binding protein (FKBP) homolog. The encoded 38-kDa protein (FKBPr38) contains at its N-terminus a domain that is 33% identical to FKBP12. FKBPr38 is a member of a subclass of immunophilins, whose other members include FKBP52 and CyP40 (cyclophilin 40), that contain a three-unit tetratricopeptide repeat (TPR). In addition, FKBPr38 contains a consensus leucine-zipper repeat. The presence of the TPR domain and leucine zipper suggest that FKBPr38 may form homo-multimers or interact with other, as yet unidentified, proteins.
Collapse
Affiliation(s)
- E Lam
- Department of Immunology Research, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | |
Collapse
|
46
|
Zav'yalov VP, Denesyuk AI, Lundell J, Korpela T. Some new aspects of molecular mechanisms of cyclosporin A effect on immune response. APMIS 1995; 103:401-15. [PMID: 7546642 DOI: 10.1111/j.1699-0463.1995.tb01125.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A few protein targets were found to display a specific high-affinity interaction with the immunosuppressant cyclosporin A (CsA): cytosolic cyclophilins (CyP)A, B, C, D, E containing from 122 to 174 amino acid residues in a polypeptide chain, and secreted forms of CyP; CyP-40, 40-kDa CsA-binding polypeptide complexed with steroid receptor (SR); CyP-related 150-kDa receptor of natural killer (NK) cells; interleukin 8 (IL-8); actin; a family of molecular chaperones hsp70 and P-glycoprotein (P-GP). All CyPs possess peptidyl-prolyl cis-trans isomerase activity (PPIase) and may serve as ATP-independent molecular chaperone proteins. The CsA-CyP complexes are specific inhibitors of Ca(2+)-and calmodulin-dependent protein phosphatase calcineurin (CaN). The inhibition of CaN blocks the activation of genes of IL-2, IL-2R, IL-4, etc. in T cells. In addition, immunosuppressive and/or antiinflammatory activity of CsA can be executed via CyP-40 and hsp 70 complexed with SR, and following the interaction with CyP-related receptor of NK and with IL-8. CsA binding to CyPC, P-GP and actin may throw light on the biochemical events leading to nephrotoxicity and graft vessel disease, two major side effects produced by CsA. The discovery of the interaction of human immunodeficiency virus type 1 (HIV-1) Gag protein with CyP and effective disruption of this interaction by CsA may be important for our understanding of the pathology caused by this immunosuppressive virus and will inspire therapeutic strategies to nip HIV in the bud. Bacterial immunophilins (ImPs) contribute to the virulence of pathogenic microorganisms. Elucidation of molecular mechanisms of microbial ImPs' action in the pathogenesis of bacterial infections may lead to new strategies for designing antibacterial drugs.
Collapse
Affiliation(s)
- V P Zav'yalov
- Institute of Immunology, Lyubuchany, Moscow Region, Russia
| | | | | | | |
Collapse
|
47
|
Fruman DA, Wood MA, Gjertson CK, Katz HR, Burakoff SJ, Bierer BE. FK506 binding protein 12 mediates sensitivity to both FK506 and rapamycin in murine mast cells. Eur J Immunol 1995; 25:563-71. [PMID: 7533090 DOI: 10.1002/eji.1830250239] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The immunosuppressive drugs FK506 and rapamycin bind to a family of intracellular proteins termed FK506-binding proteins (FKBP). FK506 and rapamycin inhibit lymphocyte-activation pathways by forming complexes with an FKBP; subsequently, the drug/FKBP complexes interact with target molecules involved in signal transduction. A key target of FK506/FKBP12 complexes is calcineurin, a calcium- and calmodulin-dependent serine/threonine phosphatase. In mammalian cells, rapamycin treatment is associated with inhibition of the activity of several cellular serine/threonine kinases, including p70 S6 kinase. These kinases may function in signaling pathways involving TOR gene producs, which have been shown to interact with rapamycin/FKBP12 complexes in vitro. To determine if FKBP12 mediates the effects of both FK506 and rapamycin in mammalian cells, we overexpressed FKBP12 in a murine mast cell line. Increased expression of FKBP12 resulted in increased sensitivity to FK506 and rapamycin, as measured by inhibition of calcineurin activity and p70 S6 kinase activity, respectively. In contrast, overexpression of FKBP25 had no effect on sensitivity to either drug. Two distinct point mutations in FKBP12, one altering a hydrophobic residue within the drug-binding pocket and the other changing a charged surface residue of FKBP12, abrogated its ability to mediate sensitivity to FK506 and rapamycin. These results establish that FKBP12 can mediate sensitivity to both FK506 and rapamycin in mammalian cells.
Collapse
Affiliation(s)
- D A Fruman
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Several disciplines, including chemical ecology, seek to understand the molecular basis of information transfer in biological systems, and general molecular strategies are beginning to emerge. Often these strategies are discovered by a careful analysis of natural products and their biological effects. Cyclosporin A, FK506, and rapamycin are produced by soil microorganisms and are being used or considered as clinical immunosuppressive agents. They interrupt the cytoplasmic portion of T-cell signaling by forming a complex with a binding protein--FKBP12 in the case of FK506 and rapamycin and cyclophilin A (CyPA) in the case of cyclosporin A (CsA). This complex in turn inhibits a protein target, and the best understood target is calcineurin, which is inhibited by FK506-FKBP12 and CyPA-CsA. Mutational and structural studies help define how FK506-FKBP12 interacts with calcineurin, and the results of these studies are summarized. The existence of strong FK506-FKBP12 binding suggests that FK506 is mimicking some natural ligand for FKBP12. Synthetic and structural studies to probe this mimicry are also described.
Collapse
Affiliation(s)
- J Clardy
- Department of Chemistry, Cornell University, Ithaca, NY 14853-1301
| |
Collapse
|
49
|
Cardenas ME, Heitman J. Role of calcium in T-lymphocyte activation. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1995; 30:281-98. [PMID: 7695994 DOI: 10.1016/s1040-7952(05)80011-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M E Cardenas
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
50
|
Galat A, Metcalfe SM. Peptidylproline cis/trans isomerases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1995; 63:67-118. [PMID: 7538221 DOI: 10.1016/0079-6107(94)00009-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A Galat
- Département d'Ingénierie et d'Etudes des Protéines, D.S.V., C.E.A., C.E. Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|