1
|
Sánchez-Cisneros LE, Frutis-Osorio MF, Ríos-Barrera LD. A tale of two tissues: Patterning of the epidermis through morphogens and their role in establishing tracheal system organization. Cells Dev 2025:203998. [PMID: 39884391 DOI: 10.1016/j.cdev.2025.203998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Throughout embryonic development, cells respond to a diverse set of signals and forces, making individual or collective decisions that drive the formation of specialized tissues. The development of these structures is tightly regulated in space and time. In recent years, the possibility that neighboring tissues influence one another's morphogenesis has been explored, as some of them develop simultaneously. We study this issue by reviewing the interactions between Drosophila epidermal and tracheal tissues in early and late stages of embryogenesis. Early in development, the epidermis emerges from the ectodermal layer. During its differentiation, epidermal cells produce morphogen gradients that influence the fundamental organization of the embryo. In this work, we analyze how molecules produced by the epidermis guide tracheal system development. Since both tissues emerge from the same germ layer and lie in close proximity all along their development, they are an excellent model for studying induction processes and tissue interactions.
Collapse
Affiliation(s)
- L E Sánchez-Cisneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - M F Frutis-Osorio
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - L D Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
2
|
Tran TA, Gentile L. A lineage CLOUD for neoblasts. Semin Cell Dev Biol 2018; 87:22-29. [PMID: 29727726 DOI: 10.1016/j.semcdb.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022]
Abstract
In planarians, pluripotency can be studied in vivo in the adult animal, making these animals a unique model system where pluripotency-based regeneration (PBR)-and its therapeutic potential-can be investigated. This review focuses on recent findings to build a cloud model of fate restriction likelihood for planarian stem and progenitor cells. Recently, a computational approach based on functional and molecular profiling at the single cell level was proposed for human hematopoietic stem cells. Based on data generated both in vivo and ex vivo, we hypothesized that planarian stem cells could acquire multiple direction lineage biases, following a "badlands" landscape. Instead of a discrete tree-like hierarchy, where the potency of stem/progenitor cells reduces stepwise, we propose a Continuum of LOw-primed UnDifferentiated Planarian Stem/Progenitor Cells (CLOUD-PSPCs). Every subclass of neoblast/progenitor cells is a cloud of likelihood, as the single cell transcriptomics data indicate. The CLOUD-HSPCs concept was substantiated by in vitro data from cell culture; therefore, to confirm the CLOUD-PSPCs model, the planarian community needs to develop new tools, like live cell tracking. Future studies will allow a deeper understanding of PBR in planarian, and the possible implications for regenerative therapies in human.
Collapse
Affiliation(s)
- Thao Anh Tran
- Pluripotency and Regeneration Group, Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg, 1, 66280, Sulzbach, Germany
| | - Luca Gentile
- Pluripotency and Regeneration Group, Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg, 1, 66280, Sulzbach, Germany; Planarian Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, von-Esmarch-str. 54, 48149, Münster, Germany; Hasselt University - Campus Diepenbeek, Agoralaan building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
3
|
Wang J, Yi X, Liu M, Zhou Q, Ren S, Wang Y, Yang C, Zhou J, Han Y. Correlation between the In Vitro Functionality of Stored Platelets and the Cytosolic Esterase-Induced Fluorescence Intensity with CMFDA. PLoS One 2015; 10:e0138509. [PMID: 26390135 PMCID: PMC4577108 DOI: 10.1371/journal.pone.0138509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/30/2015] [Indexed: 11/20/2022] Open
Abstract
It has been hypothesized that the cytosolic esterase-induced fluorescence intensity (CEIFI) from carboxy dimethyl fluorescein diacetate (CMFDA) in platelets may related to platelet functions. In the present study, we measured the change of CEIFI in platelets during storage, and examined the correlations of CEIFI with the in vitro functionality of stored platelets, including the ADP-induced aggregation activity, hypotonic shock response, expression of CD62P as well as platelet apoptosis. The CEIFI of fresh platelets, when tested at 10 μM CMFDA, the mean fluorescence intensity index (MFI) was 305.9 ± 49.9 (N = 80). After 1-day storage, it was 203.8 ± 34.4, the CEIFI of the stored platelets started to decline significantly, and reduced to 112.7 ±27.7 after 7-day storage. The change in CEIFI is highly correlated to all four functional parameters measured, with the correlation coefficients being 0.9813, 0.9848, -0.9945 and -0.9847 for the ADP-induced aggregation activity, hypotonic shock response (HSR), expression of CD62P and platelet apoptosis respectively. The above results show that the CEIFI measurement of platelets represents well the viability and functional state of in vitro stored platelets. This may be used as a convenient new method for quality evaluation for stored platelets if this result can be further validated by the following clinical trials.
Collapse
Affiliation(s)
- Jiexi Wang
- Beijing Institute of Blood Transfusion, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoyang Yi
- Beijing Institute of Blood Transfusion, Academy of Military Medical Sciences, Beijing, China
| | - Minxia Liu
- Beijing Institute of Blood Transfusion, Academy of Military Medical Sciences, Beijing, China
| | - Qian Zhou
- Beijing Red Cross Blood Center, Beijing, China
| | - Suping Ren
- Beijing Institute of Blood Transfusion, Academy of Military Medical Sciences, Beijing, China
| | - Yan Wang
- Beijing Institute of Blood Transfusion, Academy of Military Medical Sciences, Beijing, China
| | - Chao Yang
- The Second Artillery General Hospital PLA, Beijing, China
| | - Jianwei Zhou
- Beijing Institute of Blood Transfusion, Academy of Military Medical Sciences, Beijing, China
| | - Ying Han
- Beijing Institute of Blood Transfusion, Academy of Military Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
Hartl TA, Scott MP. Wing tips: The wing disc as a platform for studying Hedgehog signaling. Methods 2014; 68:199-206. [PMID: 24556557 DOI: 10.1016/j.ymeth.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/26/2022] Open
Abstract
Hedgehog (Hh) signal transduction is necessary for the development of most mammalian tissues and can go awry and cause birth defects or cancer. Hh signaling was initially described in Drosophila, and much of what we know today about mammalian Hh signaling was directly guided by discoveries in the fly. Indeed, Hh signaling is a wonderful example of the use of non-vertebrate model organisms to make basic discoveries that lead to new disease treatment. The first pharmaceutical to treat hyperactive Hh signaling in Basal Cell Carcinoma was released in 2012, approximately 30 years after the isolation of Hh mutants in Drosophila. The study of Hh signaling has been greatly facilitated by the imaginal wing disc, a tissue with terrific experimental advantages. Studies using the wing disc have led to an understanding of Hh ligand processing, packaging into particles for transmission, secretion, reception, signal transduction, target gene activation, and tissue patterning. Here we describe the imaginal wing disc, how Hh patterns this tissue, and provide methods to use wing discs to study Hh signaling in Drosophila. The tools and approaches we highlight form the cornerstone of research efforts in many laboratories that use Drosophila to study Hh signaling, and are essential for ongoing discoveries.
Collapse
Affiliation(s)
- Tom A Hartl
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Bradburne CE, Delehanty JB, Boeneman Gemmill K, Mei BC, Mattoussi H, Susumu K, Blanco-Canosa JB, Dawson PE, Medintz IL. Cytotoxicity of Quantum Dots Used for In Vitro Cellular Labeling: Role of QD Surface Ligand, Delivery Modality, Cell Type, and Direct Comparison to Organic Fluorophores. Bioconjug Chem 2013; 24:1570-83. [DOI: 10.1021/bc4001917] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | | | | | - Kimihiro Susumu
- Sotera Defense Solutions, Annapolis Junction, Maryland 20701, United
States
| | - Juan B. Blanco-Canosa
- Departments of Cell
Biology
and Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Philip E. Dawson
- Departments of Cell
Biology
and Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | | |
Collapse
|
6
|
Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H. Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun 2011; 2:500. [PMID: 21988916 PMCID: PMC3207210 DOI: 10.1038/ncomms1510] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022] Open
Abstract
During development segmentation is a process that generates a spatial periodic pattern. Peak splitting of waves of gene expression is a mathematically predicted, simple strategy accounting for this type of process, but it has not been well characterized biologically. Here we show temporally repeated splitting of gene expression into stripes that is associated with head axis growth in the spider Achaearanea embryo. Preceding segmentation, a wave of hedgehog homologue gene expression is observed to travel posteriorly during development stage 6. This stripe, co-expressing an orthodenticle homologue, undergoes two cycles of splitting and shifting accompanied by convergent extension, serving as a generative zone for the head segments. The two orthodenticle and odd-paired homologues are identified as targets of Hedgehog signalling, and evidence suggests that their activities mediate feedback to maintain the head generative zone and to promote stripe splitting in this zone. We propose that the 'stripe-splitting' strategy employs genetic components shared with Drosophila blastoderm subdivision, which are required for participation in an autoregulatory signalling network.
Collapse
Affiliation(s)
- Masaki Kanayama
- JT Biohistory Research Hall, Murasaki-cho, Takatsuki, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Wang S, Yuan Y, Liao L, Kuang SQ, Tien JCY, O'Malley BW, Xu J. Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc Natl Acad Sci U S A 2009; 106:151-6. [PMID: 19109434 PMCID: PMC2629242 DOI: 10.1073/pnas.0808703105] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Indexed: 01/12/2023] Open
Abstract
Steroid receptor coactivator-1 (SRC-1) is a coactivator for nuclear hormone receptors such as estrogen and progesterone receptors and certain other transcription factors such as Ets-2 and PEA3. SRC-1 expression in breast cancer is associated with HER2 and c-Myc expression and with reduced disease-free survival. In this study, SRC-1(-/-) mice were backcrossed with FVB mice and then cross-bred with MMTV-polyoma middle T antigen (PyMT) mice to investigate the role of SRC-1 in breast cancer. Although mammary tumor initiation and growth were similar in SRC-1(-/-)/PyMT and wild-type (WT)/PyMT mice, genetic ablation of SRC-1 antagonized PyMT-induced restriction of mammary ductal differentiation and elongation. SRC-1(-/-)/PyMT mammary tumors were also more differentiated than WT/PyMT mammary tumors. The intravasation of mammary tumor cells and the frequency and extent of lung metastasis were drastically reduced in SRC-1(-/-)/PyMT mice compared with WT/PyMT mice. Metastatic analysis of transplanted WT/PyMT and SRC-1(-/-)/PyMT tumors in SRC-1(-/-) and WT recipient mice revealed that SRC-1 played an intrinsic role in tumor cell metastasis. Furthermore, SRC-1 was up-regulated during mammary tumor progression. Disruption of SRC-1 inhibited Ets-2-mediated HER2 expression and PyMT-stimulated Akt activation in the mammary tumors. Disruption of SRC-1 also suppressed colony-stimulating factor-1 (CSF-1) expression and reduced macrophage recruitment to the tumor site. These results suggest that SRC-1 specifically promotes metastasis without affecting primary tumor growth. SRC-1 may promote metastasis through mediating Ets-2-mediated HER2 expression and activating CSF-1 expression for macrophage recruitment. Therefore, functional interventions for coactivators like SRC-1 may provide unique approaches to control breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Shu Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Yuhui Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Shao-Qing Kuang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Jean Ching-Yi Tien
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
- Luzhou Medical College, Luzhou, Sichuan 646000, China
| |
Collapse
|
8
|
Yamada S, Uchimura E, Ueda T, Iguchi F, Akiyama Y, Fujita S, Miyake M, Miyake J. Area-based analyzing technique at cell array experiment using neuronal cell line. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/bf02697264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Gallet A, Ruel L, Staccini-Lavenant L, Thérond PP. Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia. Development 2006; 133:407-18. [PMID: 16396912 DOI: 10.1242/dev.02212] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hedgehog morphogen is a major developmental regulator that acts at short and long range to direct cell fate decisions in invertebrate and vertebrate tissues. Hedgehog is the only known metazoan protein to possess a covalently linked cholesterol moiety. Although the role of the cholesterol group of Hedgehog remains unclear, it has been suggested to be dispensable for the its long-range activity in Drosophila. Here, we provide data in three different epithelia - ventral and dorsal embryonic ectoderm, and larval imaginal disc tissue - showing that cholesterol modification is in fact necessary for the controlled long-range activity of Drosophila Hedgehog. We provide an explanation for the discrepancy between our results and previous reports by showing that unmodified Hh can act at long range, albeit in an uncontrolled manner, only when expressed in squamous cells. Our data show that cholesterol modification controls long-range Hh activity at multiple levels. First, cholesterol increases the affinity of Hh for the plasma membrane, and consequently enhances its apparent intrinsic activity, both in vitro and in vivo. In addition, multimerisation of active Hh requires the presence of cholesterol. These multimers are correlated with the assembly of Hh into apically located, large punctate structures present in active Hh gradients in vivo. By comparing the activity of cholesterol-modified Hh in columnar epithelial cells and peripodial squamous cells, we show that epithelial cells provide the machinery necessary for the controlled planar movement of Hh, thereby preventing the unrestricted spreading of the protein within the three-dimensional space of the epithelium. We conclude that, as in vertebrates, cholesterol modification is essential for controlled long-range Hh signalling in Drosophila.
Collapse
Affiliation(s)
- Armel Gallet
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre de Biochimie, Parc Valrose, Nice, France
| | | | | | | |
Collapse
|
10
|
Nakayama J, Ogawa Y, Yoshigae Y, Onozawa Y, Yonemura A, Saito M, Ichikawa K, Yamoto T, Komai T, Tatsuta T, Ohtsuki M. A humanized anti-human Fas antibody, R-125224, induces apoptosis in type I activated lymphocytes but not in type II cells. Int Immunol 2005; 18:113-24. [PMID: 16361317 DOI: 10.1093/intimm/dxh353] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fas-mediated apoptosis plays an important role in the immune system, including the elimination of autoreactive lymphoid cells. The Fas-mediated signaling pathway is classified into two types, type I and type II, in human lymphoid cell lines. We investigated whether a humanized anti-human Fas mAb, R-125224, has cell selectivity in induction of apoptosis. R-125224 induced apoptosis in H9 cells, SKW6.4 cells and activated human lymphocytes when cross-linked with anti-human IgG. On the other hand, R-125224 did not induce apoptosis in HPB-ALL cells, Jurkat cells or human hepatocytes. By analysis of death-inducing signaling complex formation, it was demonstrated that R-125224 induced apoptosis selectively in type I cells but not in type II cells. Type I cells also expressed more Fas and had more Fas-clustering activity than type II cells. Moreover, co-localization of these clusters and GM1, which is an sphingoglycolipid associated with lipid rafts, was detected. It was also shown that R-125224 treatment could reduce the number of activated human CD3+Fas+ cells in a SCID mouse model in vivo. Thus, we demonstrated that R-125224 induces apoptosis specifically in type I cells in vitro and in vivo.
Collapse
Affiliation(s)
- Junichi Nakayama
- Biological Research Laboratories, Sankyo Co., Ltd, Tokyo 140-8710, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Takada R, Hijikata H, Kondoh H, Takada S. Analysis of combinatorial effects of Wnts and Frizzleds on beta-catenin/armadillo stabilization and Dishevelled phosphorylation. Genes Cells 2005; 10:919-28. [PMID: 16115200 DOI: 10.1111/j.1365-2443.2005.00889.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Both Wnt ligands and Frizzled (Fz) receptors each constitute a large family in vertebrates, but the receptor specificity of each Wnt has remained largely unknown. Here, we examined the receptor specificity of two typical Wnts, Wnt-3a and Wnt-5a, in signal transmission. To investigate systematically the combinatorial effects of these Wnts, various Fzs on canonical Wnt/beta-catenin signaling, we analyzed the ability of these Wnt proteins to increase stability of armadillo/beta-catenin proteins in Drosophila S2 cells expressing vertebrate Fzs. Wnt-3a increases the amount of armadillo proteins in cells expressing Fzs 4, 5 and 8, but not Fzs 3 and 6; whereas Wnt-5a does not increase it in any cell line. In contrast, both Wnt-3a and Wnt-5a increase the phosphorylation of Dsh in combination with most of the Fzs. This Dsh phosphorylation is abrogated by decreasing the levels of casein kinase I alpha by double-stranded RNA-mediated translational interference. These observations indicate that both Wnt proteins can interact with the majority of Fz receptors and elicit signaling reactions exemplified by Dsh phosphorylation but that the stabilization of beta-catenin/armadillo proteins in the Wnt/beta-catenin signaling occurs only when specific combinations of Wnt and Fz meet.
Collapse
Affiliation(s)
- Ritsuko Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | | |
Collapse
|
12
|
Abstract
This article focuses on molecular imaging of novel cell-based therapies, particularly stem cell therapies and the adoptive transfer of immunocytes. The animal models,potential clinical applications, and likely future prospects of these therapies are discussed in the context of imaging.
Collapse
Affiliation(s)
- Dawid Schellingerhout
- Department of Radiology, Center for Molecular Imaging Research, Massachusetts General Hospital, Room 5403, Building 149, 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
13
|
Manoukian AS, Woodgett JR. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res 2002; 84:203-29. [PMID: 11883528 DOI: 10.1016/s0065-230x(02)84007-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although glycogen synthase kinase-3 (GSK-3) is but one of more than a thousand distinct serine/threonine kinases present in the mammalian genome, this enzyme has attracted attention for its role in a diverse range of cellular processes and its positioning at a nexus of several signaling pathways that are important in cancer and other human diseases. The association of GSK-3 with widely different functions, from glycogen metabolism to fruit fly segmentation and slime mold differentiation, was initially perplexing. However, as the context of the biological processes involving this enzyme has been clarified, unifying themes have emerged that begin to explain its pleiotropic nature. Unlike most protein kinases involved in signaling, GSK-3 is active in unstimulated, resting cells. Its activity is inactivated during cellular responses and its substrates therefore tend to be dephosphorylated. As more of these targets have been identified and the effects of their modification by GSK-3 determined, most have been found to be functionally inhibited by GSK-3. Hence, this kinase appears to act as a general repressor, keeping its targets switched off or inaccessible under resting conditions. The rarity of this form of regulation is perhaps related to the diversity of its targets. Over the past decade, the importance of GSK-3 has been established by three significant properties: its remarkable evolutionary conservation, allowing analysis in genetically tractable organisms; its involvement in the Wnt/wingless signaling pathway; and its inhibition by agonists of the prosurvival phosphatidylinositol 3' kinase (P13'K) pathway. This review covers recent advances in understanding the physiological roles of this enzyme, particularly in the context of cancer.
Collapse
Affiliation(s)
- Armen S Manoukian
- Division of Experimental Therapeutics, Ontario Cancer Institute Toronto, Canada
| | | |
Collapse
|
14
|
Schagat TL, Wofford JA, Wright JR. Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2727-33. [PMID: 11160338 DOI: 10.4049/jimmunol.166.4.2727] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surfactant protein A (SP-A) is an innate immune molecule that binds foreign organisms that invade the lungs and targets them for phagocytic clearance by the resident pulmonary phagocyte, the alveolar macrophage (AM). We hypothesized that SP-A binds to and enhances macrophage uptake of other nonself particles, specifically apoptotic polymorphonuclear neutrophils (PMNs). PMNs are recruited into the lungs during inflammation, but as inflammation is resolved, PMNs undergo apoptosis and are phagocytosed by AMs. We determined that SP-A increases AM phagocytosis of apoptotic PMNs 280 +/- 62% above the no protein control value. The increase is dose dependent, and heat-treated SP-A still enhanced uptake, whereas deglycosylated SP-A had significantly diminished ability to enhance phagocytosis. Surfactant protein D also increased phagocytosis of apoptotic PMNs by approximately 125%. However, other proteins that are structurally homologous to SP-A, mannose-binding lectin and complement protein 1q, did not. SP-A enhances phagocytosis via an opsonization-dependent mechanism and binds apoptotic PMNs approximately 4-fold more than viable PMNs. Also, binding of SP-A to apoptotic PMNs does not appear to involve SP-A's lectin domain. These data suggest that the pulmonary collectins SP-A and SP-D facilitate the resolution of inflammation by accelerating apoptotic PMN clearance.
Collapse
Affiliation(s)
- T L Schagat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
15
|
Boleti H, Ojcius DM, Dautry-Varsat A. Fluorescent labelling of intracellular bacteria in living host cells. J Microbiol Methods 2000; 40:265-74. [PMID: 10802143 DOI: 10.1016/s0167-7012(00)00132-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The fluorescent reagent, CellTracker, labels metabolically-active cells and was used here to label Chlamydia in vivo during their exponential phase of growth in infected cells. HeLa cells infected with C. psittaci were labelled with the CellTracker reagents between 15 and 48 h post-infection. The fluorescent label accumulated in the host-cell membrane compartment (inclusion) within which Chlamydia reside and replicate, and was also incorporated by the bacteria. Labelling with the CellTracker affected neither the growth nor the differentiation of the chlamydiae, and labelled chlamydiae isolated from infected cells were infectious. Our results demonstrate that the CellTracker could become a valuable tool for in vivo labelling of obligate intracellular parasites for which no genetic tools exist.
Collapse
Affiliation(s)
- H Boleti
- Unité de Biologie des Interactions Cellulaire, Institut Pasteur, URA CNRS 1960, 25 rue du Dr Roux, 75724, Paris, France.
| | | | | |
Collapse
|
16
|
Uren A, Reichsman F, Anest V, Taylor WG, Muraiso K, Bottaro DP, Cumberledge S, Rubin JS. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J Biol Chem 2000; 275:4374-82. [PMID: 10660608 DOI: 10.1074/jbc.275.6.4374] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Secreted Frizzled-related protein-1 (sFRP-1) contains a cysteine-rich domain homologous to the putative Wnt-binding site of Frizzleds. To facilitate the biochemical and biological analysis of sFRP-1, we developed a mammalian recombinant expression system that yields approximately 3 mg of purified protein/liter of conditioned medium. Using this recombinant protein, we demonstrated that sFRP-1 and Wg (wingless) interact in enzyme-linked immunosorbent and co-precipitation assays. Surprisingly, a derivative lacking the cysteine-rich domain retained the ability to bind Wg. Cross-linking experiments performed with radioiodinated sFRP-1 provided definitive evidence that sFRP-1 and Wg bind directly to each other. Besides detecting a cross-linked complex consistent in size with 1:1 stoichiometry of sFRP-1 and Wg, we also observed a larger complex whose size suggested the presence of a second sFRP-1 molecule. The formation of both complexes was markedly enhanced by an optimal concentration of exogenous heparin, emphasizing the potential importance of heparan-sulfate proteoglycan in Wnt binding and signaling. sFRP-1 exerted a biphasic effect on Wg activity in an armadillo stabilization assay, increasing armadillo level at low concentrations but reducing it at higher concentrations. These results provide new insights about the Wnt binding and biological activity of sFRPs.
Collapse
Affiliation(s)
- A Uren
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gritzan U, Hatini V, DiNardo S. Mutual antagonism between signals secreted by adjacent wingless and engrailed cells leads to specification of complementary regions of the Drosophila parasegment. Development 1999; 126:4107-15. [PMID: 10457019 DOI: 10.1242/dev.126.18.4107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specialized groups of cells known as organizers govern the establishment of cell type diversity across cellular fields. Segmental patterning within the Drosophila embryonic epidermis is one paradigm for organizer function. Here cells differentiate into smooth cuticle or distinct denticle types. At parasegment boundaries, cells expressing Wingless confront cells co-expressing Engrailed and Hedgehog. While Wingless is essential for smooth cell fates, the signals that establish denticle diversity are unknown. We show that wg mutants have residual mirror-symmetric pattern that is due to an Engrailed-dependent signal specifying anterior denticle fates. The Engrailed-dependent signal acts unidirectionally and Wg activity imposes this asymmetry. Reciprocally, the Engrailed/Hedgehog interface imposes asymmetry on Wg signaling. Thus, a bipartite organizer, with each signal acting essentially unidirectionally, specifies segmental pattern.
Collapse
Affiliation(s)
- U Gritzan
- Cell & Developmental Biology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
18
|
Ruel L, Stambolic V, Ali A, Manoukian AS, Woodgett JR. Regulation of the protein kinase activity of Shaggy(Zeste-white3) by components of the wingless pathway in Drosophila cells and embryos. J Biol Chem 1999; 274:21790-6. [PMID: 10419494 DOI: 10.1074/jbc.274.31.21790] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The protein-serine kinase Shaggy(Zeste-white3) (Sgg(Zw3)) is the Drosophila homolog of mammalian glycogen synthase kinase-3 and has been genetically implicated in signal transduction pathways necessary for the establishment of patterning. Sgg(Zw3) is a putative component of the Wingless (Wg) pathway, and epistasis analyses suggest that Sgg(Zw3) function is repressed by Wg signaling. Here, we have investigated the biochemical consequences of Wg signaling with respect to the Sgg(Zw3) protein kinase in two types of Drosophila cell lines and in embryos. Our results demonstrate that Sgg(Zw3) activity is inhibited following exposure of cells to Wg protein and by expression of downstream components of Wg signaling, Drosophila frizzled 2 and dishevelled. Wg-dependent inactivation of Sgg(Zw3) is accompanied by serine phosphorylation. We also show that the level of Sgg(Zw3) activity regulates the stability of Armadillo protein and modulates the level of phosphorylation of D-Axin and Armadillo. Together, these results provide direct biochemical evidence in support of the genetic model of Wg signaling and provide a model for dissecting the molecular interactions between the signaling proteins.
Collapse
Affiliation(s)
- L Ruel
- Division of Experimental Therapeutics, Ontario Cancer Institute, and the Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
19
|
Julius MA, Rai SD, Kitajewski J. Chimeric Wnt proteins define the amino-terminus of Wnt-1 as a transformation-specific determinant. Oncogene 1999; 18:149-56. [PMID: 9926929 DOI: 10.1038/sj.onc.1202268] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wnt-1 induces morphological transformation of C57MG mammary epithelial cells and accumulation of cytosolic beta-catenin whereas Wnt-5a has no effect. To identify regions within the 370 amino acid Wnt-1 protein required for these functions we tested eleven chimeric genes that contained variable amounts of Wnt-1 and Wnt-5a sequence. Transformation and beta-catenin regulation in C57MG cells is controlled by amino acids that lie within 186 residues of the amino terminus of Wnt-1. Small substitutions between residues 186 and 292 reduced Wnt-1 activity. Replacement of the carboxy terminal 79 amino acids of Wnt-1 by Wnt-5a did not affect function. These results were supported by transient expression assays in 293 cells wherein beta-catenin accumulated in the cytoplasm in response to ectopic Wnt-1 expression. In 293 cells, a larger region of the amino-terminus of Wnt-1 was found to be required for beta-catenin regulation. Nonfunctional chimeras that contained at least 99 amino terminal Wnt-1 residues inhibited Wnt-1 stimulation of 293 cells. One of these chimeras inhibited both Wnt-1 and Wnt-3 activity suggesting that Wnt-1 and Wnt-3 interact with a common signaling component.
Collapse
Affiliation(s)
- M A Julius
- Department of Pathology and Center for Reproductive Sciences, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
20
|
Sato K, Imai Y, Irimura T. Contribution of Dermal Macrophage Trafficking in the Sensitization Phase of Contact Hypersensitivity. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.12.6835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
We investigated cellular trafficking of dermal macrophages that express a macrophage calcium-type lectin (MMGL) during the sensitization of delayed-type hypersensitivity. In skin, dermal macrophages, but not epidermal Langerhans cells, have been shown to express MMGL. Epicutaneous sensitization by FITC produced a transient increase in MMGL-positive cells in regional lymph nodes. To directly investigate whether the increase was due to cell migration from dermis, MMGL-positive cells purified from skin were intradermally injected into syngeneic mice after labeling with a fluorescent cell tracer, followed by epicutaneous sensitization over the site of injection. MMGL-positive cells containing the tracer were found in the regional lymph nodes after sensitization. The majority of the MMGL-positive cell migrants were negative for FITC fluorescence despite the presence of FITC-labeled cells that included Langerhans cell migrants. Because the extent of MMGL-positive cell migration was greatly influenced by the selection of vehicles to dissolve FITC, the efficiency of sensitization was compared using the ear swelling test. Migration of both Langerhans cells (FITC-labeled cells) and MMGL-positive cells contributed positively to the efficiency of sensitization. Interestingly, MMGL-positive cell migration was induced by vehicle alone, even in the absence of FITC. These results suggest that migration of dermal MMGL-positive cells accounts for the adjuvant effects of vehicles at least in part.
Collapse
Affiliation(s)
- Kayoko Sato
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Imai
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
21
|
Yanagawa S, Lee JS, Ishimoto A. Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling. J Biol Chem 1998; 273:32353-9. [PMID: 9822716 DOI: 10.1074/jbc.273.48.32353] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wingless (Wg) treatment of Drosophila wing disc clone 8 cells leads to Armadillo (Arm) protein elevation, and this effect has been used as the basis of in vitro assays for Wg protein. Previously analyzed stocks of Drosophila Schneider S2 cells could not respond to added Wg, because they lack the Wg receptor, Dfrizzled-2. However, we found that a line of S2 cells obtained from another source express Dfrizzled-2 and Dfrizzled-1. Thus, we designated this cell line as S2R+ (S2 receptor plus). S2R+ cells respond to addition of extracellular Wg by elevating Arm and DE-cadherin protein levels and by hyperphosphorylating Dsh, just as clone 8 cells do. Moreover, overexpression of Wg in S2R+, but not in S2 cells, induced the same changes in Dsh, Arm, and DE-cadherin proteins as induced in clone 8 cells, indicating that these events are common effects of Wg signaling, which occurs in cells expressing functional Wg receptors. In addition, unphosphorylated Dsh protein in S2 cells was phosphorylated as a consequence of expression of Dfrizzled-2 or mouse Frizzled-6, suggesting that basal structures common to various frizzled family proteins trigger this phosphorylation of Dsh. S2R+ cells are as sensitive to Wg as are clone 8 cells but can grow in simpler medium. Therefore, the S2R+ cell line is likely to prove highly useful for in vitro analyses of Wg signaling.
Collapse
Affiliation(s)
- S Yanagawa
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
22
|
O'Keefe L, Dougan ST, Gabay L, Raz E, Shilo BZ, DiNardo S. Spitz and Wingless, emanating from distinct borders, cooperate to establish cell fate across the Engrailed domain in the Drosophila epidermis. Development 1997; 124:4837-45. [PMID: 9428420 DOI: 10.1242/dev.124.23.4837] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A key step in development is the establishment of cell type diversity across a cellular field. Segmental patterning within the Drosophila embryonic epidermis is one paradigm for this process. At each parasegment boundary, cells expressing the Wnt family member Wingless confront cells expressing the homeoprotein Engrailed. The Engrailed-expressing cells normally differentiate as one of two alternative cell types. In investigating the generation of this cell type diversity among the 2-cell-wide Engrailed stripe, we previously showed that Wingless, expressed just anterior to the Engrailed cells, is essential for the specification of anterior Engrailed cell fate. In a screen for additional mutations affecting Engrailed cell fate, we identified anterior open/yan, a gene encoding an inhibitory ETS-domain transcription factor that is negatively regulated by the Rasl-MAP kinase signaling cascade. We find that Anterior Open must be inactivated for posterior Engrailed cells to adopt their correct fate. This is achieved by the EGF receptor (DER), which is required autonomously in the Engrailed cells to trigger the Ras1-MAP kinase pathway. Localized activation of DER is accomplished by restricted processing of the activating ligand, Spitz. Processing is confined to the cell row posterior to the Engrailed domain by the restricted expression of Rhomboid. These cells also express the inhibitory ligand Argos, which attenuates the activation of DER in cell rows more distant from the ligand source. Thus, distinct signals flank each border of the Engrailed domain, as Wingless is produced anteriorly and Spitz posteriorly. Since we also show that En cells have the capacity to respond to either Wingless or Spitz, these cells must choose their fate depending on the relative level of activation of the two pathways.
Collapse
Affiliation(s)
- L O'Keefe
- The Rockefeller University, New York City, NY 10021-6399, USA
| | | | | | | | | | | |
Collapse
|
23
|
Yanagawa SI, Lee JS, Haruna T, Oda H, Uemura T, Takeichi M, Ishimoto A. Accumulation of Armadillo induced by Wingless, Dishevelled, and dominant-negative Zeste-White 3 leads to elevated DE-cadherin in Drosophila clone 8 wing disc cells. J Biol Chem 1997; 272:25243-51. [PMID: 9312140 DOI: 10.1074/jbc.272.40.25243] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drosophila genetic studies suggest that in the Wingless (Wg) signaling pathway, the segment polarity gene products, Dishevelled (Dsh), Zeste-white 3 (ZW-3), and Armadillo (Arm), work sequentially; wg and dsh negatively regulate zw-3, which in turn down-regulates arm. To biochemically analyze interactions between the Wg pathway and Drosophila E-cadherin (DE-cadherin) which bind to Arm, we overexpressed Dsh, ZW-3, and Arm, in the Drosophila wing disc cell line, clone 8, which responds to Wg signal. Dsh overexpression led to accumulation of Arm primarily in the cytosol and elevation of DE-cadherin at cell junctions. Overexpression of wild-type and dominant-negative forms of ZW-3 decreased and increased Arm levels, respectively, indicating that modulation in zw-3 activity negatively regulates Arm levels. Overexpression of an Arm mutant with an amino-terminal deletion elevated DE-cadherin levels, suggesting that Dsh-induced DE-cadherin elevation is caused by the Arm accumulation induced by Dsh. Moreover, the Dsh-, dominant-negative ZW-3-, and truncated Arm-induced accumulation of DE-cadherin protein was accompanied by a marked increase in the steady-state levels of DE-cadherin mRNA, suggesting that transcription of DE-cadherin is activated by Wg signaling. In addition, overexpression of DE-cadherin elevated Arm levels by stabilizing Arm at cell-cell junctions.
Collapse
Affiliation(s)
- S i Yanagawa
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-Ku, Kyoto, 606 Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang YK, Samos CH, Peoples R, Pérez-Jurado LA, Nusse R, Francke U. A novel human homologue of the Drosophila frizzled wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23. Hum Mol Genet 1997; 6:465-72. [PMID: 9147651 DOI: 10.1093/hmg/6.3.465] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Williams syndrome (WS) is a developmental disorder with a characteristic personality and cognitive profile that is associated, in most cases, with a 2 Mb deletion of part of chromosome band 7q11.23. By applying CpG island cloning methods to cosmids from the deletion region, we have identified a new gene, called FZD3. Dosage blotting of DNA from 11 WS probands confirmed that it is located within the commonly deleted region. Sequence comparisons revealed that FZD3, encoding a 591 amino acid protein, is a novel member of a seven transmembrane domain receptor family that are mammalian homologs of the Drosophila tissue polarity gene frizzled. FZD3 is expressed predominantly in brain, testis, eye, skeletal muscle and kidney. Recently, frizzled has been identified as the receptor for the wingless (wg) protein in Drosophila. We show that Drosophila as well as human cells, when transfected with FZD3 expression constructs, bind Wg protein. In mouse, the wg homologous Wnt1 gene is involved in early development of a large domain of the central nervous system encompassing much of the midbrain and rostral metencephalon. The potential function of FZD3 in transmitting a Wnt protein signal in the human brain and other tissues suggests that heterozygous deletion of the FZD3 gene could contribute to the WS phenotype.
Collapse
Affiliation(s)
- Y K Wang
- Howard Hughes Medical Institute, Stanford University Medical Center, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
25
|
Reichsman F, Smith L, Cumberledge S. Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J Cell Biol 1996; 135:819-27. [PMID: 8909553 PMCID: PMC2121077 DOI: 10.1083/jcb.135.3.819] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Wingless, the Drosophila homologue of the proto-oncogene Wnt-1, encodes a secreted glycoprotein that regulates differentiation and proliferation of nearby cells. Here we report on the biochemical mechanism(s) by which the wingless signal is transmitted from cell to cell. When expressed in S2 cells, the majority (approximately 83%) of secreted wingless protein (WG) is bound to the cell surface and extracellular matrix through specific, noncovalent interactions. The tethered WG can be released by addition of exogenous heparan sulfate and chondroitin sulfate glycosaminoglycans. WG also binds directly to heparin agarose beads with high affinity. These data suggest that WG can bind to the cell surface via naturally occurring sulfated proteoglycans. Two lines of evidence indicate that extracellular glycosaminoglycans on the receiving cells also play a functional role in WG signaling. First, treatment of WG-responsive cells with glycosaminoglycan lyases reduced WG activity by 50%. Second, when WG-responsive cells were preincubated with 1 mM chlorate, which blocks sulfation, WG activity was inhibited to near-basal levels. Addition of exogenous heparin to the chlorate-treated cells was able to restore WG activity. Based on these results, we propose that WG belongs to the group of growth factor ligands whose actions are mediated by extracellular proteoglycan molecules.
Collapse
Affiliation(s)
- F Reichsman
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
26
|
Jonkers J, Berns A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1287:29-57. [PMID: 8639705 DOI: 10.1016/0304-419x(95)00020-g] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J Jonkers
- The Netherlands Cancer Institute, Division of Molecular Genetics, Amsterdam, Netherlands
| | | |
Collapse
|
27
|
Bokor P, DiNardo S. The roles of hedgehog, wingless and lines in patterning the dorsal epidermis in Drosophila. Development 1996; 122:1083-92. [PMID: 8620835 DOI: 10.1242/dev.122.4.1083] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rows of cells that flank the parasegment boundary make up a signaling center within the epidermis of the Drosophila embryo. Signals emanating from these cells, encoded by hedgehog (hh) and wingless (wg), are shown to be required for all segment pattern dorsally. Wg activity is required for the differentiation of one cell type, constituting half the parasegment. The gene lines appears to act in parallel to the Wg pathway in the elaboration of this cell type. Hh activity is responsible for three other cell types in the parasegment. Some cell types are specified as Hh activity and interfere with the function of patched, analogous to patterning of imaginal discs. However, some pattern is independent of the antagonism of patched by Hh, and relies instead on novel interactions with lines. Lastly, we provide evidence that decapentaplegic does not mediate patterning by Hh in the dorsal epidermis.
Collapse
Affiliation(s)
- P Bokor
- The Rockefeller University, New York 10021-6399, USA
| | | |
Collapse
|
28
|
Yu X, Hoppler S, Eresh S, Bienz M. decapentaplegic, a target gene of the wingless signalling pathway in the Drosophila midgut. Development 1996; 122:849-58. [PMID: 8631263 DOI: 10.1242/dev.122.3.849] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
dishevelled, shaggy/zeste-white 3 and armadillo are required for transmission of the wingless signal in the Drosophila epidermis. We show that these genes act in the same epistatic order in the embryonic midgut to transmit the wingless signal. In addition to mediating transcriptional stimulation of the homeotic genes Ultrabithorax and labial, they are also required for transcriptional repression of labial by high wingless levels. Efficient labial expression thus only occurs within a window of intermediate wingless pathway activity. Finally, the shaggy/zeste-white 3 mutants revealed that wingless signalling can stimulate decapentaplegic transcription in the absence of Ultrabithorax, identifying decapentaplegic as a target gene of wingless. As decapentaplegic itself is required for wingless expression in the midgut, this represents a positive feed-back loop between two cell groups signalling to each other to stimulate each other's signal production.
Collapse
Affiliation(s)
- X Yu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|
29
|
The wingless/Wnt-1 Signaling Pathway—New Insights into the Cellular Mechanisms of Signal Transduction. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1064-2722(08)60056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Noordermeer J, Klingensmith J, Nusse R. Differential requirements for segment polarity genes in wingless signaling. Mech Dev 1995; 51:145-55. [PMID: 7547463 DOI: 10.1016/0925-4773(95)00348-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The segment polarity genes wingless and engrailed are required throughout development of Drosophila. During early embryogenesis, these two genes are expressed in adjacent domains, in an inter-dependent way. Later, their expression is regulated by different mechanisms and becomes maintained by auto-regulation. To dissect the genetic requirements for the initial signaling between wingless and engrailed expressing cells, we have previously used a transgenic Drosophila strain that expresses wingless under the control of the heat shock promoter (HS-wg). Focusing on the later phases of wingless and engrailed regulation, we have now extended these studies, using embryos carrying various combinations of segment polarity mutations and the HS-wg transgene. We confirm some of the existing models of regulation of the expression of wingless and engrailed. In addition, we find that HS-wg embryos require engrailed for induction of ectopic endogenous wingless expression. Signaling from engrailed cells to this novel wingless expression domain is dependent on hedgehog but also on porcupine. We further demonstrate a novel requirement for hedgehog in maintenance of expression of engrailed itself.
Collapse
Affiliation(s)
- J Noordermeer
- Howard Hughes Medical Institute, Stanford University, California 94305-5428, USA
| | | | | |
Collapse
|
31
|
Yanagawa S, van Leeuwen F, Wodarz A, Klingensmith J, Nusse R. The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev 1995; 9:1087-97. [PMID: 7744250 DOI: 10.1101/gad.9.9.1087] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Wingless (Wg) is an important signaling molecule in the development of Drosophila, but little is known about its signal transduction pathway. Genetic evidence indicates that another segment polarity gene, dishevelled (dsh) is required for Wg signaling. We have recently developed a cell culture system for Wg protein activity, and using this in vitro system as well as intact Drosophila embryos, we have analyzed biochemical changes in the Dsh protein as a consequence of Wg signaling. We find that Dsh is a phosphoprotein, normally present in the cytoplasm. Wg signaling generates a hyperphosphorylated form of Dsh, which is associated with a membrane fraction. Overexpressed Dsh becomes hyperphosphorylated in the absence of extracellular Wg and increases levels of the Armadillo protein, thereby mimicking the Wg signal. A deletional analysis of Dsh identifies several conserved domains essential for activity, among which is a so-called GLGF/DHR motif. We conclude that dsh, a highly conserved gene, is not merely a permissive factor in Wg signaling but encodes a novel signal transduction molecule, which may function between the Wg receptor and more downstream signaling molecules.
Collapse
Affiliation(s)
- S Yanagawa
- Howard Hughes Medical Institute, Department of Developmental Biology, Beckman Center, Stanford University, California 94305-5428, USA
| | | | | | | | | |
Collapse
|
32
|
Bally-Cuif L, Wassef M. Ectopic induction and reorganization of Wnt-1 expression in quail/chick chimeras. Development 1994; 120:3379-94. [PMID: 7821210 DOI: 10.1242/dev.120.12.3379] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When grafted ectopically into the diencephalon of a chick host embryo, a portion of met-mesencephalon straddling the met-mesencephalic constriction has the capacity to induce En-2 expression in the surrounding host tissue. Subsequently, tectal and cerebellar structures, composed of both host and grafted cells, are reconstructed in this ectopic location at the expense of the host diencephalon. Previous experiments indicated that the induction of En-2 was correlated with Wnt-1 expression within the graft. The aim of the present study was: (i) to determine whether Wnt-1 expression was spatially regulated within the graft, (ii) to investigate whether host Wnt-1-expressing cells were also involved in the ectopic met-mesencephalic development and, if so, (iii) to localize these Wnt-1-positive domains in relation to the patterning of the ectopically developing met-mesencephalic territory. We studied the expression profile of Wnt-1, in relation with that of other positional markers, in quail/chick chimeras where various portions of met-mesencephalon had been grafted into the diencephalon. We found that Wnt-1 expression was reorganized within the graft, and that it was also induced in the host in contact with the graft. Moreover, these ectopic expressions of Wnt-1, in both the grafted and the surrounding host tissues, were organized in concert to form a continuous positive line at the host/graft junction, the location of which depended on the precise origin of the graft. Finally, we found that this line was frequently located at the limit between territories expressing different positional markers. We propose that Wnt-1 expression is turned on at the junction between domains of different phenotypes, and may be used as a border to stabilize these adjacent differently committed territories.
Collapse
Affiliation(s)
- L Bally-Cuif
- INSERM U106, Hôpital de la Salpêtrière, Paris, France
| | | |
Collapse
|
33
|
DiNardo S, Heemskerk J, Dougan S, O'Farrell PH. The making of a maggot: patterning the Drosophila embryonic epidermis. Curr Opin Genet Dev 1994; 4:529-34. [PMID: 7950320 PMCID: PMC2873142 DOI: 10.1016/0959-437x(94)90068-e] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell fates are instructed by signals emitted from specialized cell populations called organizers. The study of epidermal patterning in Drosophila is contributing novel insights concerning the establishment and action of such organizers. Juxtaposed rows of cells express either the wingless or hedgehog signaling molecules and thereby act as organizers of segment pattern. These signals mediate a mutually re-enforcing interaction between the two rows of cells to sustain organizer function. In a distinct and subsequent phase, wingless and hedgehog act to specify the fates of cells.
Collapse
Affiliation(s)
- S DiNardo
- Rockefeller University, New York, New York
| | | | | | | |
Collapse
|
34
|
Siegfried E, Perrimon N. Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. Bioessays 1994; 16:395-404. [PMID: 8080429 DOI: 10.1002/bies.950160607] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The link between oncogenesis and normal development is well illustrated by the study of the Wnt family of proteins. The first Wnt gene (int-1) was identified over a decade ago as a proto-oncogene, activated in response to proviral insertion of a mouse mammary tumor virus. Subsequently, the discovery that Drosophila wingless, a developmentally important gene, is homologous to int-1 supported the notion that int-1 may have a role in normal development. In the last few years it has been recognized that int-1 and Wingless belong to a large family of related glyco-proteins found in vertebrates and invertebrates. In recognition of this, members of this family have been renamed Wnts, an amalgam of int and Wingless. Investigation of Wnt genes in Xenopus and mouse indicates that Wnts have a role in cell proliferation, differentiation and body axis formation. Further analysis in Drosophila has revealed that Wingless function is required in several developmental processes in the embryo and imaginal discs. In addition, a genetic approach has identified some of the molecules required for the transmission and reception of the Wingless signal. We will review recent data which have contributed to our growing understanding of the function and mechanism of Drosophila Wingless signaling in cell fate determination, growth and specification of pattern.
Collapse
Affiliation(s)
- E Siegfried
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
35
|
Diaz-Benjumea FJ, Cohen SM. wingless acts through the shaggy/zeste-white 3 kinase to direct dorsal-ventral axis formation in the Drosophila leg. Development 1994; 120:1661-70. [PMID: 8050372 DOI: 10.1242/dev.120.6.1661] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secreted glycoproteins encoded by Wnt genes are thought to function as intercellular signaling molecules which convey positional information. Localized expression of Wingless protein is required to specify the fate of ventral cells in the developing Drosophila leg. We report here that Wingless acts through inactivation of the shaggy/zeste white 3 protein kinase to specify ventral cell fate in the leg. Ectopic expression of Wingless outside its normal ventral domain has been shown reorganize the dorsal-ventral axis of the leg in a non-autonomous manner. Using genetic mosaics, we show that cells that lack shaggy/zeste white 3 activity can influence the fate of neighboring cells to reorganize dorsal-ventral pattern in the leg, in the same manner as Wingless-expressing cells. Therefore, clones of cells that lack shaggy/zeste white 3 activity exhibit all of the organizer activity previously attributed to Wingless-expressing cells, but do so without expressing wingless. We also show that the organizing activity of ventral cells depends upon the location of the clone along the dorsal-ventral axis. These findings suggest that Wingless protein does not function as a morphogen in the dorsal-ventral axis of the leg.
Collapse
Affiliation(s)
- F J Diaz-Benjumea
- Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
36
|
van Leeuwen F, Samos CH, Nusse R. Biological activity of soluble wingless protein in cultured Drosophila imaginal disc cells. Nature 1994; 368:342-4. [PMID: 8127369 DOI: 10.1038/368342a0] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The phenotypes caused by mutations in Wnt genes suggest that their gene products are involved in cell-to-cell communication. Wnt genes indeed encode secreted molecules, but soluble active Wnt protein has not been found. We have developed a novel cell culture assay for the Drosophila Wnt gene wingless, using a Drosophila imaginal disc cell line (cl-8; ref. 13), and measured effects on the adherens junction protein armadillo, a known genetic target of wingless. Transfection of a temperature-sensitive wingless complementary DNA into cl-8 cells increases the levels of the armadillo protein. The wingless protein does not affect the rate of synthesis of armadillo, but leads to increased stability of an otherwise rapidly decaying armadillo protein. The wingless protein in the extracellular matrix and soluble medium from donor cells also increases the levels of armadillo protein. The protein in the medium acts fast and is inhibited by an antibody to wingless protein, demonstrating that Wnt products can act as soluble extracellular signalling molecules.
Collapse
Affiliation(s)
- F van Leeuwen
- Howard Hughes Medical Institute, Beckman Center, Stanford University, School of Medicine, California 94305
| | | | | |
Collapse
|
37
|
Affiliation(s)
- N Perrimon
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
38
|
Affiliation(s)
- L W Burrus
- Department of Biochemistry, Molecular, Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
39
|
Abstract
The patterning of cell types in embryogenesis is specified by signals emanating from specialized organizer regions. We demonstrate that engrailed-expressing cells in the Drosophila epidermis have organizer properties. These cells influence the pattern of cell type differentiation across the segment. We show that this function is mediated by the hedgehog (hh) gene. The results of modulating the levels of hh in the embryo suggest that hh acts as a morphogen, specifying distinct cell fates by a concentration-dependent mechanism. We present a model that integrates the role of hh with that of the wingless signal in establishing the segmental array of cell type diversity.
Collapse
Affiliation(s)
- J Heemskerk
- Department of Physiology, Columbia University, New York, New York 10032
| | | |
Collapse
|
40
|
Klingensmith J, Nusse R, Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev 1994; 8:118-30. [PMID: 8288125 DOI: 10.1101/gad.8.1.118] [Citation(s) in RCA: 312] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Drosophila Wnt-1 homolog, wingless (wg), is involved in the signaling of patterning information in several contexts. In the embryonic epidermis, Wg protein is secreted and taken up by neighboring cells, in which it is required for maintenance of engrailed transcription and accumulation of Armadillo protein. The dishevelled (dsh) gene mediates these signaling events as well as wg-dependent induction across tissue layers in the embryonic midgut. dsh is also required for the development processes in which wg functions in adult development. Overall, cells lacking dsh are unable to adopt fates specified by Wg. dsh functions cell autonomously, indicating that it is involved in the response of target cells to the Wg signal. dsh is expressed uniformly in the embryo and encodes a novel protein with no known catalytic motifs, although it shares a domain of homology with several junction-associated proteins. Our results demonstrate that dsh encodes a specific component of Wg signaling and illustrate that Wnt proteins may utilize a novel mechanism of extracellular signal transduction.
Collapse
Affiliation(s)
- J Klingensmith
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
41
|
Affiliation(s)
- L Cherbas
- Department of Biology, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
42
|
Cumberledge S, Krasnow MA. Preparation and analysis of pure cell populations from Drosophila. Methods Cell Biol 1994; 44:143-59. [PMID: 7707949 DOI: 10.1016/s0091-679x(08)60911-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S Cumberledge
- Department of Biochemistry, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
43
|
Leconte L, Semonin O, Zvara A, Boisseau S, Poujeol C, Julien JP, Simonneau M. Both upstream and intragenic sequences of the human neurofilament light gene direct expression of lacZ in neurons of transgenic mouse embryos. J Mol Neurosci 1994; 5:273-95. [PMID: 7577369 DOI: 10.1007/bf02736727] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Initial expression of the neurofilament light gene coincides with the appearance of postmitotic neurons. To investigate the molecular mechanisms involved in neuron-specific gene expression during embryogenesis, we generated transgenic mice carrying various regions of the human neurofilament light gene (hNF-L) fused to the lacZ reporter gene. We found that 2.3 or 0.3 kb of the hNF-L promoter region directs expression of lacZ in neurons of transgenic embryos. Addition of 1.8 kb hNF-L intragenic sequences (IS) enlarges the neuronal pattern of transgene expression. The 2.3-kb hNF-L promote lacZ-IS construct contains all regulatory elements essential for both spatial and temporal expression of the hNF-L gene during embryogenesis and in the adult. The use of a heterologous promoter demonstrated that the 1.8-kb hNF-L intragenic sequences are sufficient to direct the expression of lacZ in a NF-L-specific manner both temporally and spatially during development and in the adult. We conclude that these hNF-L intragenic sequences contain cis-acting DNA regulatory elements that specify neuronal expression. Taken together, these results show that the neurofilament light gene contains separate upstream and intragenic elements, each of which directs lacZ expression in embryonic neurons.
Collapse
Affiliation(s)
- L Leconte
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- P A Lawrence
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
45
|
Abstract
The product of the Wnt-1 proto-oncogene is a cysteine-rich glycoprotein that plays a crucial role in the development of the vertebrate central nervous system. Wnt-1 protein is secreted but remains associated with the cell surface and extracellular matrix. The function of Wnt-1 in several different biological settings can be carried out by cells that receive the Wnt signal from adjacent cells. Ectopic expression of Wnt-1 in certain mammary gland cell lines, such as C57MG, causes morphological transformation; C57MG cells can also be transformed by a paracrine mechanism when mixed with other cell types secreting Wnt-1 protein. To ask whether Wnt-1 protein can function while bound to the cell of origin, a variety of cell types were programmed to produce chimeric proteins containing the complete sequence of mature Wnt-1 protein fused to part or all of the transmembrane protein CD4 or CD8. The chimeras were found at the cell surface of transfected cells and did not appear to be proteolytically processed. In autocrine and paracrine transformation assays with C57MG cells and in an axis induction assay in Xenopus laevis embryos, the Wnt-1/CD4 or CD8 fusions retained significant activity, as did a secreted chimera containing the CD8 extracellular domain but lacking the transmembrane domain. However, a chimera lacking a spacer between the Wnt-1 and the transmembrane domains was weakly active and only in autocrine transformation. These results show that tethering Wnt-1 to the cell surface still allows Wnt-1-mediated cell-to-cell signaling.
Collapse
Affiliation(s)
- N T Parkin
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0502
| | | | | |
Collapse
|