1
|
Smithers B, Oates M, Gough J. 'Why genes in pieces?'-revisited. Nucleic Acids Res 2019; 47:4970-4973. [PMID: 30997511 PMCID: PMC6547436 DOI: 10.1093/nar/gkz284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 02/04/2023] Open
Abstract
The alignment between the boundaries of protein domains and the boundaries of exons could provide evidence for the evolution of proteins via domain shuffling, but literature in the field has so far struggled to conclusively show this. Here, on larger data sets than previously possible, we do finally show that this phenomenon is indisputably found widely across the eukaryotic tree. In contrast, the alignment between exons and the boundaries of intrinsically disordered regions of proteins is not a general property of eukaryotes. Most interesting of all is the discovery that domain-exon alignment is much more common in recently evolved protein sequences than older ones.
Collapse
Affiliation(s)
- Ben Smithers
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Matt Oates
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Julian Gough
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK.,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
2
|
Yu H, Wang Y, Li X, Ni F, Sun M, Zhang Q, Yu H, Wang X. The evolution and possible role of two Sox8 genes during sex differentiation in Japanese flounder (Paralichthys olivaceus). Mol Reprod Dev 2019; 86:592-607. [PMID: 30811727 DOI: 10.1002/mrd.23136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023]
Abstract
Sox8 genes, as members of the Sox family, have been studied widely in mammals. However, regulation of sox8 genes in teleosts has rarely been studied, and functional analysis of these genes in teleosts has rarely been performed. Here, two duplicates of sox8 genes were identified in Japanese flounder, Posox8a and Posox8b. The analysis of expression showed that Posox8a and Posox8b were expressed in Sertoli cells of the testis, indicating that they play important roles in development and functional maintenance of the testis. Positive selection and phylogenetic analysis found that both Posox8a and Posox8b underwent the purification selection during evolutionary and that sox8 was most likely to be the ancestor sox8a. These results suggested that both Posox8a and Posox8b had important biological functions after generation from three rounds of whole-genome duplication in Japanese flounder. The functional differentiation of Posox8a and Posox8b was verified using cell transfection and dual-luciferase reporter assays; Posox8a overexpression-promoted 3β-hydroxysteroid dehydrogenase expression and Posox8b overexpression-promoted cytochrome P450 aromatase (cyp19a1; P450arom) expression. Finally, combined with Posox8a and Posox8b expression analysis from 30 to 100 days after hatch, we speculated that Posox8a and Posox8b might participate in the process of sex differentiation and gonadogenesis by regulating sex hormone biosynthesis in the Japanese flounder. Our study is the first to demonstrate the possible mechanism of Posox8a and Posox8b in Japanese flounder sex differentiation and gonadogenesis, laying a solid foundation for functional studies of sox8 genes in teleosts.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xiaojing Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Feifei Ni
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Minmin Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
3
|
Martin WF, Cerff R. Physiology, phylogeny, early evolution, and GAPDH. PROTOPLASMA 2017; 254:1823-1834. [PMID: 28265765 PMCID: PMC5610209 DOI: 10.1007/s00709-017-1095-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 05/23/2023]
Abstract
The chloroplast and cytosol of plant cells harbor a number of parallel biochemical reactions germane to the Calvin cycle and glycolysis, respectively. These reactions are catalyzed by nuclear encoded, compartment-specific isoenzymes that differ in their physiochemical properties. The chloroplast cytosol isoenzymes of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) harbor evidence of major events in the history of life: the origin of the first genes, the bacterial-archaeal split, the origin of eukaryotes, the evolution of protein compartmentation during eukaryote evolution, the origin of plastids, and the secondary endosymbiosis among the algae with complex plastids. The reaction mechanism of GAPDH entails phosphorolysis of a thioester to yield an energy-rich acyl phosphate bond, a chemistry that points to primitive pathways of energy conservation that existed even before the origin of the first free-living cells. Here, we recount the main insights that chloroplast and cytosolic GAPDH provided into endosymbiosis and physiological evolution.
Collapse
Affiliation(s)
- William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rüdiger Cerff
- Institute of Genetics, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
McInerney J, Pisani D, O'Connell MJ. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140323. [PMID: 26323755 DOI: 10.1098/rstb.2014.0323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The literature is replete with manuscripts describing the origin of eukaryotic cells. Most of the models for eukaryogenesis are either autogenous (sometimes called slow-drip), or symbiogenic (sometimes called big-bang). In this article, we use large and diverse suites of 'Omics' and other data to make the inference that autogeneous hypotheses are a very poor fit to the data and the origin of eukaryotic cells occurred in a single symbiosis.
Collapse
Affiliation(s)
- James McInerney
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Republic of Ireland Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Davide Pisani
- School of Biological Sciences and School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TG, UK
| | - Mary J O'Connell
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Republic of Ireland
| |
Collapse
|
5
|
Watanabe S, Wakasugi K. Module M1 of zebrafish neuroglobin acts as a structural and functional protein building block for a cell-membrane-penetrating activity. PLoS One 2011; 6:e16808. [PMID: 21304818 PMCID: PMC3033418 DOI: 10.1371/journal.pone.0016808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/31/2010] [Indexed: 11/18/2022] Open
Abstract
Neuroglobin (Ngb) is a recently discovered vertebrate globin that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection during oxidative stress that occurs, for example, during ischemia and reperfusion. Recently, we found that zebrafish, but not human, Ngb can translocate into cells. Moreover, we demonstrated that a chimeric ZHHH Ngb protein, in which the module M1 of human Ngb is replaced by the corresponding region of zebrafish Ngb, can penetrate cell membranes and protect cells against oxidative stress-induced cell death, suggesting that module M1 of zebrafish Ngb is important for protein transduction. Furthermore, we recently showed that Lys7, Lys9, Lys21, and Lys23 in module M1 of zebrafish Ngb are crucial for protein transduction activity. In the present study, we have investigated whether module M1 of zebrafish Ngb can be used as a building block to create novel cell-membrane-penetrating folded proteins. First, we engineered a chimeric myoglobin (Mb), in which module M1 of zebrafish Ngb was fused to the N-terminus of full-length human Mb, and investigated its functional and structural properties. Our results showed that this chimeric Mb protein is stable and forms almost the same heme environment and α-helical structure as human wild-type Mb. In addition, we demonstrated that chimeric Mb has a cell-membrane-penetrating activity similar to zebrafish Ngb. Moreover, we found that glycosaminoglycan is crucial for the cell-membrane-penetrating activity of chimeric Mb as well as that of zebrafish Ngb. These results enable us to conclude that such module substitutions will facilitate the design and production of novel functional proteins.
Collapse
Affiliation(s)
- Seiji Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, Japan
- * E-mail:
| |
Collapse
|
6
|
Oda T, Ohniwa RL, Suzuki Y, Denawa M, Kumeta M, Okamura H, Takeyasu K. Evolutionary dynamics of spliceosomal intron revealed by in silico analyses of the P-Type ATPase superfamily genes. Mol Biol Rep 2010; 38:2285-93. [DOI: 10.1007/s11033-010-0360-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
7
|
d'Aloisio E, Paolacci AR, Dhanapal AP, Tanzarella OA, Porceddu E, Ciaffi M. The Protein Disulfide Isomerase gene family in bread wheat (T. aestivum L.). BMC PLANT BIOLOGY 2010; 10:101. [PMID: 20525253 PMCID: PMC3017771 DOI: 10.1186/1471-2229-10-101] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 06/03/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Protein Disulfide Isomerase (PDI) gene family encodes several PDI and PDI-like proteins containing thioredoxin domains and controlling diversified metabolic functions, including disulfide bond formation and isomerisation during protein folding. Genomic, cDNA and promoter sequences of the three homologous wheat genes encoding the "typical" PDI had been cloned and characterized in a previous work. The purpose of present research was the cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species. RESULTS Eight new non-homologous wheat genes were cloned and characterized. The nine PDI and PDI-like sequences of wheat were located in chromosome regions syntenic to those in rice and assigned to eight plant phylogenetic groups. The nine wheat genes differed in their sequences, genomic organization as well as in the domain composition and architecture of their deduced proteins; conversely each of them showed high structural conservation with genes from other plant species in the same phylogenetic group. The extensive quantitative RT-PCR analysis of the nine genes in a set of 23 wheat samples, including tissues and developmental stages, showed their constitutive, even though highly variable expression. CONCLUSIONS The nine wheat genes showed high diversity, while the members of each phylogenetic group were highly conserved even between taxonomically distant plant species like the moss Physcomitrella patens. Although constitutively expressed the nine wheat genes were characterized by different expression profiles reflecting their different genomic organization, protein domain architecture and probably promoter sequences; the high conservation among species indicated the ancient origin and diversification of the still evolving gene family. The comprehensive structural and expression characterization of the complete set of PDI and PDI-like wheat genes represents a basis for the functional characterization of this gene family in the hexaploid context of bread wheat.
Collapse
Affiliation(s)
- Elisa d'Aloisio
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Anna R Paolacci
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Arun P Dhanapal
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Oronzo A Tanzarella
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Enrico Porceddu
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Mario Ciaffi
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| |
Collapse
|
8
|
Cave LD, Insom E, Simonetta AM. Advances, diversions, possible relapses and additional problems in understanding the early evolution of the Articulata. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11250009809386724] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Laura Delle Cave
- a Dipartimento di Scienze della Terra , Università di Firenze , via La Pira 4, Firenze, I‐50121, Italy
| | - Emilio Insom
- b Dipartimento di Biologia Molecolare, Cellulare e Animale , Università di Camerino , via Camerini 2, Camerino (MC), I‐62032, Italy
| | - Alberto Mario Simonetta
- c Dipartimento di Biologia Animale e Genetica “L. Pardi”; , Università di Firenze , via Romana 17, Firenze, I‐50125, Italy
| |
Collapse
|
9
|
Venugopal C, Demos CM, Rao KSJ, Pappolla MA, Sambamurti K. Beta-secretase: structure, function, and evolution. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:278-94. [PMID: 18673212 PMCID: PMC2921875 DOI: 10.2174/187152708784936626] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The most popular current hypothesis is that Alzheimer's disease (AD) is caused by aggregates of the amyloid peptide (Abeta), which is generated by cleavage of the Abeta protein precursor (APP) by beta-secretase (BACE-1) followed by gamma-secretase. BACE-1 cleavage is limiting for the production of Abeta, making it a particularly good drug target for the generation of inhibitors that lower Abeta. A landmark discovery in AD was the identification of BACE-1 (a.k.a. Memapsin-2) as a novel class of type I transmembrane aspartic protease. Although BACE-2, a homologue of BACE-1, was quickly identified, follow up studies using knockout mice demonstrated that BACE-1 was necessary and sufficient for most neuronal Abeta generation. Despite the importance of BACE-1 as a drug target, development has been slow due to the incomplete understanding of its function and regulation and the difficulties in developing a brain penetrant drug that can specifically block its large catalytic pocket. This review summarizes the biological properties of BACE-1 and attempts to use phylogenetic perspectives to understand its function. The article also addresses the challenges in discovering a selective drug-like molecule targeting novel mechanisms of BACE-1 regulation.
Collapse
Affiliation(s)
| | | | | | | | - Kumar Sambamurti
- Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
10
|
Teich R, Grauvogel C, Petersen J. Intron distribution in Plantae: 500 million years of stasis during land plant evolution. Gene 2007; 394:96-104. [PMID: 17400407 DOI: 10.1016/j.gene.2007.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/16/2022]
Abstract
Little is known about the evolution of the intron-exon organization in the more primitive groups of land plants, and the intron distribution among Plantae (glauco-, rhodo-, chloro- and streptophytes) has not been investigated so far. The present study is focused on some key species such as the liverwort Marchantia polymorpha, representing the most ancient lineage of land plants, and the streptophycean green alga Mesostigma viride, branching prior to charophycean green algae and terrestrial plants. The intron distribution of six genes for sugar phosphate metabolism was analyzed including four different glyceraldehyde-3-phosphate dehydrogenases (GAPDH), the sedoheptulose-1,7-bisphosphatase (SBP) and the glucose-6-phosphate isomerase (GPI). We established 15 new sequences including three cDNA and twelve genomic clones with up to 24 introns per gene, which were identified in the GPI of Marchantia. The intron patterns of all six genes are completely conserved among seed plants, lycopods, mosses and even liverworts. This intron stasis without any gain of novel introns seem to last for nearly 500 million years and may be characteristic for land plants in general. Some unique intron positions in Mesostigma document that a uniform distribution is no common trait of all streptophytes, but it may correlate with the transition to terrestrial habitats. However, the respective genes of chlorophycean green algae display largely different patterns, thus indicating at least one phase of massive intron rearrangement in the green lineage. We moreover included rhodophyte and glaucophyte reference sequences in our analyses and, even if the well documented monophyly of Plantae is not reflected by a uniform intron distribution, at least one GPI intron is strictly conserved for 1.5 billion years.
Collapse
Affiliation(s)
- René Teich
- Institut für Genetik, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
11
|
de Roos ADG. Conserved intron positions in ancient protein modules. Biol Direct 2007; 2:7. [PMID: 17288589 PMCID: PMC1800838 DOI: 10.1186/1745-6150-2-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 12/31/2022] Open
Abstract
Background The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank. Results A set of conserved intron positions was found by matching identical splice sites sequences from distantly-related eukaryotic kingdoms. Most amino acid sequences with conserved introns were homologous to consensus sequences of functional domains from conserved proteins including kinases, phosphatases, small GTPases, transporters and matrix proteins. These included ancient proteins that originated before the eukaryote-prokaryote split, for instance the catalytic domain of protein phosphatase 2A where a total of eleven conserved introns were found. Using an experimental setup in which the relation between a splice site and the ancientness of its surrounding sequence could be studied, it was found that the presence of an intron was positively correlated to the ancientness of its surrounding sequence. Intron phase conservation was linked to the conservation of the gene sequence and not to the splice site sequence itself. However, no apparent differences in phase distribution were found between introns in conserved versus non-conserved sequences. Conclusion The data confirm an origin of introns deep in the eukaryotic branch and is in concordance with the presence of introns in the first functional protein modules in an 'Exon theory of genes' scenario. A model is proposed in which shuffling of primordial short exonic sequences led to the formation of the first functional protein modules, in line with hypotheses that see the formation of introns integral to the origins of genome evolution. Reviewers This article was reviewed by Scott Roy (nominated by Anthony Poole), Sandro de Souza (nominated by Manyuan Long), and Gáspár Jékely.
Collapse
Affiliation(s)
- Albert D G de Roos
- Syncyte BioIntelligence, P.O. Box 600, 1000 AP, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Gudlaugsdottir S, Boswell DR, Wood GR, Ma J. Exon size distribution and the origin of introns. Genetica 2007; 131:299-306. [PMID: 17279432 DOI: 10.1007/s10709-007-9139-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 01/06/2007] [Indexed: 11/29/2022]
Abstract
Since it was first recognised that eukaryotic genes are fragmented into coding segments (exons) separated by non-coding segments (introns), the reason for this phenomenon has been debated. There are two dominant theories: that the piecewise arrangement of genes allows functional protein domains, represented by exons, to recombine by shuffling to form novel proteins with combinations of functions; or that introns represent parasitic DNA that can infest the eukaryotic genome because it does not interfere grossly with the fitness of its host. Differing distributions of exon lengths are predicted by these two theories. In this paper we examine distributions of exon lengths for six different organisms and find that they offer empirical evidence that both theories may in part be correct.
Collapse
|
13
|
Abstract
Mechanisms for loss and gain of introns are elusive. Reported here is a new pattern of intron loss which features a random loss of a single intron in a multiple-intron gene with its neighboring introns remained, which process is defined as intron exclusion. Intron exclusion is reminiscent of removal of a limited stretch of non-homologous sequence in a homologous recombination (HR) triggered by a double strand break (DSB), and therefore lends further evidence for a theory of intron loss through HR between a cDNA and its genomic intron-containing locus. Thus, a model for intron loss is formulated.
Collapse
Affiliation(s)
- Kejin Hu
- Pharmacology Department, University of Pittsburgh, W1301, BST, 200 Lothrop Street, PA 15213, USA.
| |
Collapse
|
14
|
Yoshihama M, Nakao A, Nguyen HD, Kenmochi N. Analysis of ribosomal protein gene structures: implications for intron evolution. PLoS Genet 2006; 2:e25. [PMID: 16518464 PMCID: PMC1386722 DOI: 10.1371/journal.pgen.0020025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 01/20/2006] [Indexed: 11/18/2022] Open
Abstract
Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs), which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.
Collapse
Affiliation(s)
- Maki Yoshihama
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Akihiro Nakao
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Hung D Nguyen
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, Kiyotake, Miyazaki, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Petersen J, Teich R, Brinkmann H, Cerff R. A “Green” Phosphoribulokinase in Complex Algae with Red Plastids: Evidence for a Single Secondary Endosymbiosis Leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates. J Mol Evol 2006; 62:143-57. [PMID: 16474987 DOI: 10.1007/s00239-004-0305-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 05/24/2005] [Indexed: 01/06/2023]
Abstract
Phosphoribulokinase (PRK) is an essential enzyme of photosynthetic eukaryotes which is active in the plastid-located Calvin cycle and regenerates the substrate for ribulose-bisphosphate carboxylase/oxygenase (Rubisco). Rhodophytes and chlorophytes (red and green algae) recruited their nuclear-encoded PRK from the cyanobacterial ancestor of plastids. The plastids of these organisms can be traced back to a single primary endosymbiosis, whereas, for example, haptophytes, dinoflagellates, and euglenophytes obtained their "complex" plastids through secondary endosymbioses, comprising the engulfment of a unicellular red or green alga by a eukaryotic host cell. We have cloned eight new PRK sequences from complex algae as well as a rhodophyte in order to investigate their evolutionary origin. All available PRK sequences were used for phylogenetic analyses and the significance of alternative topologies was estimated by the approximately unbiased test. Our analyses led to several astonishing findings. First, the close relationship of PRK genes of haptophytes, heterokontophytes, cryptophytes, and dinophytes (complex red lineage) supports a monophyletic origin of their sequences and hence their plastids. Second, based on PRK genes the complex red lineage forms a highly supported assemblage together with chlorophytes and land plants, to the exclusion of the rhodophytes. This green affinity is in striking contrast to the expected red algal origin and our analyses suggest that the PRK gene was acquired once via lateral transfer from a green alga. Third, surprisingly the complex green lineages leading to Bigelowiella and Euglena probably also obtained their PRK genes via lateral gene transfers from a red alga and a complex alga with red plastids, respectively.
Collapse
Affiliation(s)
- Jörn Petersen
- Institut für Genetik, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
| | | | | | | |
Collapse
|
16
|
Braun BR, van het Hoog M, d'Enfert C, Martchenko M, Dungan J, Kuo A, Inglis DO, Uhl MA, Hogues H, Berriman M, Lorenz M, Levitin A, Oberholzer U, Bachewich C, Harcus D, Marcil A, Dignard D, Iouk T, Zito R, Frangeul L, Tekaia F, Rutherford K, Wang E, Munro CA, Bates S, Gow NA, Hoyer LL, Köhler G, Morschhäuser J, Newport G, Znaidi S, Raymond M, Turcotte B, Sherlock G, Costanzo M, Ihmels J, Berman J, Sanglard D, Agabian N, Mitchell AP, Johnson AD, Whiteway M, Nantel A. A human-curated annotation of the Candida albicans genome. PLoS Genet 2005; 1:36-57. [PMID: 16103911 PMCID: PMC1183520 DOI: 10.1371/journal.pgen.0010001] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 03/14/2005] [Indexed: 11/24/2022] Open
Abstract
Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Burkhard R Braun
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Marco van het Hoog
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Christophe d'Enfert
- Unité Postulante Biologie et Pathogénicité Fongiques, INRA USC 2019, Institut Pasteur, Paris, France
| | - Mikhail Martchenko
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Jan Dungan
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Alan Kuo
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Diane O Inglis
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - M. Andrew Uhl
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Hervé Hogues
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | | | - Michael Lorenz
- Department of Microbiology and Molecular Genetics, Utah-Houston Medical School, Houston, Texas, United States of America
| | - Anastasia Levitin
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Ursula Oberholzer
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Catherine Bachewich
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Doreen Harcus
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Anne Marcil
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Daniel Dignard
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Tatiana Iouk
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Rosa Zito
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Lionel Frangeul
- Plate-Forme Intégration et Analyse Génomique, Institut Pasteur, Paris, France
| | - Fredj Tekaia
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France
| | | | - Edwin Wang
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Carol A Munro
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Steve Bates
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Neil A Gow
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Lois L Hoyer
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gerwald Köhler
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Wurzburg, Wurzburg, Germany
| | - George Newport
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Sadri Znaidi
- Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada
| | - Martine Raymond
- Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada
| | - Bernard Turcotte
- Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Maria Costanzo
- Department of Genetics, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Jan Ihmels
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Nina Agabian
- Department of Stomatology, University of California, San Francisco, California, United States of America
| | - Aaron P Mitchell
- Department of Microbiology and Institute of Cancer Research, Columbia University, New York, New York, United States of America
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Malcolm Whiteway
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - André Nantel
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Michalecka AM, Svensson AS, Johansson FI, Agius SC, Johanson U, Brennicke A, Binder S, Rasmusson AG. Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. PLANT PHYSIOLOGY 2003; 133:642-52. [PMID: 12972666 PMCID: PMC219040 DOI: 10.1104/pp.103.024208] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Revised: 04/22/2003] [Accepted: 07/01/2003] [Indexed: 05/17/2023]
Abstract
In addition to proton-pumping complex I, plant mitochondria contain several type II NAD(P)H dehydrogenases in the electron transport chain. The extra enzymes allow the nonenergy-conserving electron transfer from cytoplasmic and matrix NAD(P)H to ubiquinone. We have investigated the type II NAD(P)H dehydrogenase gene families in Arabidopsis. This model plant contains two and four genes closely related to potato (Solanum tuberosum) genes nda1 and ndb1, respectively. A novel homolog, termed ndc1, with a lower but significant similarity to potato nda1 and ndb1, is also present. All genes are expressed in several organs of the plant. Among the nda genes, expression of nda1, but not nda2, is dependent on light and circadian regulation, suggesting separate roles in photosynthesis-associated and other respiratory NADH oxidation. Genes from all three gene families encode proteins exclusively targeted to mitochondria, as revealed by expression of green fluorescent fusion proteins and by western blotting of fractionated cells. Phylogenetic analysis indicates that ndc1 affiliates with cyanobacterial type II NADH dehydrogenase genes, suggesting that this gene entered the eukaryotic cell via the chloroplast progenitor. The ndc1 should then have been transferred to the nucleus and acquired a signal for mitochondrial targeting of the protein product. Although they are of different origin, the nda, ndb, and ndc genes carry an identical intron position.
Collapse
Affiliation(s)
- Agnieszka M Michalecka
- Department of Cell and Organism Biology, Biology Building, Lund University, Sölvegatan 35B, SE-223 62 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefebvre PA, Silflow CD. Molecular map of the Chlamydomonas reinhardtii nuclear genome. EUKARYOTIC CELL 2003; 2:362-79. [PMID: 12684385 PMCID: PMC154841 DOI: 10.1128/ec.2.2.362-379.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 12/10/2002] [Indexed: 11/20/2022]
Abstract
We have prepared a molecular map of the Chlamydomonas reinhardtii genome anchored to the genetic map. The map consists of 264 markers, including sequence-tagged sites (STS), scored by use of PCR and agarose gel electrophoresis, and restriction fragment length polymorphism markers, scored by use of Southern blot hybridization. All molecular markers tested map to one of the 17 known linkage groups of C. reinhardtii. The map covers approximately 1,000 centimorgans (cM). Any position on the C. reinhardtii genetic map is, on average, within 2 cM of a mapped molecular marker. This molecular map, in combination with the ongoing mapping of bacterial artificial chromosome (BAC) clones and the forthcoming sequence of the C. reinhardtii nuclear genome, should greatly facilitate isolation of genes of interest by using positional cloning methods. In addition, the presence of easily assayed STS markers on each arm of each linkage group should be very useful in mapping new mutations in preparation for positional cloning.
Collapse
Affiliation(s)
- Pushpa Kathir
- Department of Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
19
|
Fedorov A, Merican AF, Gilbert W. Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc Natl Acad Sci U S A 2002; 99:16128-33. [PMID: 12444254 PMCID: PMC138576 DOI: 10.1073/pnas.242624899] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We purge large databases of animal, plant, and fungal intron-containing genes to a 20% similarity level and then identify the most similar animal-plant, animal-fungal, and plant-fungal protein pairs. We identify the introns in each BLAST 2.0 alignment and score matched intron positions and slid (near-matched, within six nucleotides) intron positions automatically. Overall we find that 10% of the animal introns match plant positions, and a further 7% are "slides." Fifteen percent of fungal introns match animal positions, and 13% match plant positions. Furthermore, the number of alignments with high numbers of matches deviates greatly from the Poisson expectation. The 30 animal-plant alignments with the highest matches (for which 44% of animal introns match plant positions) when aligned with fungal genes are also highly enriched for triple matches: 39% of the fungal introns match both animal and plant positions. This is strong evidence for ancestral introns predating the animal-plant-fungal divergence, and in complete opposition to any expectations based on random insertion. In examining the slid introns, we show that at least half are caused by imperfections in the alignments, and are most likely to be actual matches at common positions. Thus, our final estimates are that approximately equal 14% of animal introns match plant positions, and that approximately equal 17-18% of fungal introns match animal or plant positions, all of these being likely to be ancestral in the eukaryotes.
Collapse
Affiliation(s)
- Alexei Fedorov
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
20
|
Nikolaou C, Almirantis Y. A study of the middle-scale nucleotide clustering in DNA sequences of various origin and functionality, by means of a method based on a modified standard deviation. J Theor Biol 2002; 217:479-92. [PMID: 12234754 DOI: 10.1006/jtbi.2002.3045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deviation from randomness in the distribution of nucleotides in genomic sequences is quantified and studied, using a modified standard deviation (MSD). This method implies a "per block" computation of the standard deviation of the nucleotide frequencies of occurrence, using local means (means taken in a neighborhood of each block). This quantity may serve as a scale-dependent measure of the nucleotide clustering. In the present work, the meso-scale of tenths of nucleotides is principally explored, by means of suitably adjusted filter parameters. This length scale is of an order of magnitude not directly affected by the grammar and syntax rules of the protein-coding procedure, remaining shorter than the scale of appearance of large-scale characteristics of the genome. MSD has been found to distinguish systematically between the sequences of different origin and functionality. The most near-random are found to be coding sequences of prokaryotes, while in intronic and intergenic regions of eukaryotic genomes, extended clustering of similar nucleotides is observed. The distributions of MSD values of large collections of sequences are found to be in most cases characteristic of their biological role and origin. Protein- and non-coding, prokaryotic and eukaryotic DNA as well as promoter, rRNA, viral and organelle sequences have been examined. The presented results corroborate a recently proposed model for genome evolution. The method is also applied for an assessment of the annotation of ORFs taken from the complete genome of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Christoforos Nikolaou
- Institute of Biology, National Research Center for Physical Sciences, "Demokritos" 15310, Athens, Greece
| | | |
Collapse
|
21
|
Jean L, Long M, Young J, Péry P, Tomley F. Aspartyl proteinase genes from apicomplexan parasites: evidence for evolution of the gene structure. Trends Parasitol 2001; 17:491-8. [PMID: 11587964 DOI: 10.1016/s1471-4922(01)02030-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aspartyl proteinases are a widely distributed family of enzymes. All vertebrate aspartyl proteinases share a conserved nine-exon gene structure, but in other organisms the structure of aspartyl proteinase genes varies considerably. The exon-intron patterns generally reflect phylogeny based on amino acid sequences. However, close comparison of these gene structures reveals some striking features, such as the conservation of intron positions and intron phases between aspartyl proteinases from nematodes and apicomplexans. Here, we discuss the implications of gene structure for the possible evolution of the aspartyl proteinase family, with particular reference to the plasmepsins of Plasmodium falciparum and eimepsin from Eimeria tenella.
Collapse
Affiliation(s)
- L Jean
- National Institute for Medical Research, Division of Parasitology, The Ridgeway, Mill Hill, London, UK NW7 1AA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
The introns-early view has been challenged for several genes; prominent instances are triose phosphate isomerase (TPI), aldolase, pyruvate kinase (PK), alcohol dehydrogenase (ADH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and myosin heavy chain. While some of their introns appear to be phylogenetically ancient and/or to delineate exons corresponding to protein modules, a considerable number seemingly do not. But it is argued here that many of these anomalous introns are periodic, that is, relics of internal sequence repetitions within the ancestral gene. Some of these periodic-intron patterns are shared between related genes, as in the alphabeta -barrels of TPI, aldolase and PK, or the Rossmann nucleotide-binding domain common to PK, ADH and GAPDH. This is further evidence for the ancestral status of these introns. The myosin heavy chain C-terminal rod region is paradoxical in that its sequence is clearly periodic but its intron placements are not; however, they exhibit a remarkable coherence of intron translational phases, suggesting that these introns may also have originally had a periodic arrangement now obscured by intron slipping.
Collapse
Affiliation(s)
- D Elder
- School of Pharmacy, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| |
Collapse
|
23
|
Comeron JM, Kreitman M. The correlation between intron length and recombination in drosophila. Dynamic equilibrium between mutational and selective forces. Genetics 2000; 156:1175-90. [PMID: 11063693 PMCID: PMC1461334 DOI: 10.1093/genetics/156.3.1175] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intron length is negatively correlated with recombination in both Drosophila melanogaster and humans. This correlation is not likely to be the result of mutational processes alone: evolutionary analysis of intron length polymorphism in D. melanogaster reveals equivalent ratios of deletion to insertion in regions of high and low recombination. The polymorphism data do reveal, however, an excess of deletions relative to insertions (i.e., a deletion bias), with an overall deletion-to-insertion events ratio of 1.35. We propose two types of selection favoring longer intron lengths. First, the natural mutational bias toward deletion must be opposed by strong selection in very short introns to maintain the minimum intron length needed for the intron splicing reaction. Second, selection will favor insertions in introns that increase recombination between mutations under the influence of selection in adjacent exons. Mutations that increase recombination, even slightly, will be selectively favored because they reduce interference among selected mutations. Interference selection acting on intron length mutations must be very weak, as indicated by frequency spectrum analysis of Drosophila intron length polymorphism, making the equilibrium for intron length sensitive to changes in the recombinational environment and population size. One consequence of this sensitivity is that the advantage of longer introns is expected to decrease inversely with the rate of recombination, thus leading to a negative correlation between intron length and recombination rate. Also in accord with this model, intron length differs between closely related Drosophila species, with the longest variant present more often in D. melanogaster than in D. simulans. We suggest that the study of the proposed dynamic model, taking into account interference among selected sites, might shed light on many aspects of the comparative biology of genome sizes including the C value paradox.
Collapse
Affiliation(s)
- J M Comeron
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
24
|
Seegmiller A, Williams KR, Herrick G. Two two-gene macronuclear chromosomes of the hypotrichous ciliates Oxytricha fallax and O. trifallax generated by alternative processing of the 81 locus. DEVELOPMENTAL GENETICS 2000; 20:348-57. [PMID: 9254909 DOI: 10.1002/(sici)1520-6408(1997)20:4<348::aid-dvg6>3.0.co;2-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe the first know macronuclear chromosomes that carry more than one gene in hypotrichous ciliated protozoa. These 4.9- and 2.8-kbp chromosomes each consist almost exclusively of two protein-coding genes, which are conserved and transcribed. The two chromosomes share a common region that consists of a gene that is a member of the family of mitochondrial solute carrier genes (CR-MSC; [Williams and Herrick (1991): Nucleic Acids Res 19:4717-4724]. Each chromosome also carries another gene appended to its common region: The 4.9-kbp chromosome also carries a gene that encodes a protein that is rich in glutamine and charged amino acids and bears regions of heptad repeats characteristic of coiled-coils. Its function is unknown. The second gene of the 2.8 kbp chromosome is a mitochondrial solute carrier gene (LA-MSC); thus, the 2.8-kbp chromosomes consists of two mitochondrial solute carrier paralogs. Phylogenetic analysis indicates that the two genes were duplicated before ciliates diverged from the main eukaryotic lineage and were subsequently juxtaposed. The CR- and LA-MSC genes are each interrupted by three introns. The introns are not in homologous positions, suggesting that they may have originated from multiple group II intron transpositions. These chromosomes and their genes are encoded in the Oxytricha germline by the 81 locus. This locus is alternatively processed to generate a nested set of three macronuclear chromosomes, the 4.9- and 2.8-kbp chromosomes and a third (1.6 kbp) which consists almost exclusively of the shared common gene, CR-MSC. Such alternative processing is common in macronuclear development of O. fallax [Cartinhour and Herrick (1984): Mol Cell Biol 4:931-938]. Possible functions for alternative processing are considered; e.g., it may serve to physically link genes to allow co-regulation or co-replication by a common cis-acting sequence.
Collapse
Affiliation(s)
- A Seegmiller
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | |
Collapse
|
25
|
|
26
|
Penrose JF, Austen KF. The biochemical, molecular, and genomic aspects of leukotriene C4 synthase. PROCEEDINGS OF THE ASSOCIATION OF AMERICAN PHYSICIANS 1999; 111:537-46. [PMID: 10591082 DOI: 10.1046/j.1525-1381.1999.99212.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leukotriene C4 (LTC4) synthase is an 18 kD integral membrane enzyme of the 5-lipoxygenase/LTC4 synthase pathway and is positioned as the pivotal and only committed enzyme for the formation of the cysteinyl leukotrienes. Although its function is to conjugate catalytically LTA4 to reduced glutathione, LTC4 synthase is differentiated from other glutathione S-transferase family members by its lack of amino acid homology, substrate specificity, and kinetics. LTC4 synthase (LTC4S) protein is present in the perinuclear membranes of a limited number of hematopoietic cells involved in allergic inflammation, including mast cells, eosinophils, basophils, and macrophages. The cDNA encodes a monomeric protein of 150 amino acids with three hydrophobic domains interspersed with two hydrophilic loops. Site-directed mutagenic studies reveal that the enzyme functions as a homodimer and that arginine-51 in the first hydrophilic loop, and tyrosine-93 in the second hydrophilic loop, are involved in the acid and base catalysis of LTA4 and glutathione, respectively. Homology and secondary structural predictions indicate that LTC4S is a novel member of a new gene superfamily of integral membrane proteins, each with the capacity to participate in leukotriene biosynthesis. The gene for LTC4S is 2.5 kb in length and is localized on chromosome 5q35, distal to that of the genes for cytokines and receptors important in the development and perpetuation of allergic inflammation. Immunohistochemical studies of mucosal biopsies from the bronchi of aspirin-intolerant asthmatics show that LTC4S is overrepresented in individuals with this phenotype, and this finding correlates with overproduction of cysteinyl leukotrienes and lysine-aspirin bronchial hyperreactivity.
Collapse
Affiliation(s)
- J F Penrose
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
27
|
Krimm I, Gans P, Hernandez JF, Arlaud GJ, Lancelin JM. A coil-helix instead of a helix-coil motif can be induced in a chloroplast transit peptide from Chlamydomonas reinhardtii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:171-80. [PMID: 10491171 DOI: 10.1046/j.1432-1327.1999.00701.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A synthetic peptide MQVTMKSSAVSGQRVGGARVATRSVRRAQLQV corresponding to the 32 amino acid chloroplast transit sequence of the ribulose bisphosphatase carboxylase/oxygenase activase preprotein from Chlamydomonas reinhardtii, required for translocation through the envelope of the chloroplast, has been characterized structurally using CD and NMR under the same experimental conditions as used previously for the 32 amino acid presequence of preferredoxin from the same organism [Lancelin, J.-M., Bally, I., Arlaud, G. J., Blackledge, M., Gans, P., Stein, M. & Jacquot, J.-P. (1994) FEBS Lett. 343, 261-266]. The peptide is found to undergo a conformational transition in aqueous 2,2,2-trifluoroethanol, characterized by three turns of amphiphilic alpha-helix in the C-terminal region preceded by a disordered coil in the N-terminal region. Compared with the preferredoxin transit peptide, the helical and coiled domains are arranged in the reverse order along the peptide sequence, but the positively charged groups are distributed analogously as well as the hydrophobic residues within the amphiphilic alpha-helix. It is proposed that such coil-helix or helix-coil motifs, occasionally repeated, could be an intrinsic structural feature of chloroplastic transit peptides, adapted to the proper translocase and possibly to each nuclear-encoded chloroplast preproteins. This feature may distinguish chloroplastic transit sequences from the other organelle-targeting peptides in the eukaryotic green alga C. reinhardtii, particularly the mitochondrial transit sequences.
Collapse
Affiliation(s)
- I Krimm
- Laboratoire de RMN Biomoléculaire associé au CNRS, Université Claude Bernard-Lyon 1 and Ecole Supérieure de Chimie Physique et Electronique de Lyon, Villeurbanne, France
| | | | | | | | | |
Collapse
|
28
|
Abstract
Xylanases are classified into two families, numbered F/10 and G/11 according to the similarity of amino acid sequences of their catalytic domain (Henrissat, B., Bairoch, A., 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781-788). Three-dimensional structure of the catalytic domain of the family F/10 xylanase was reported (White, A., Withers, S.G., Gilkes, N.R., Rose, D.R., 1994. Crystal structure of the catalytic domain of the beta-1,4-glycanase Cex from Cellulomonas fimi. Biochemistry 33, 12546-12552). The domain was decomposed into 22 modules by centripetal profiles (Go, M., Nosaka, M., 1987. Protein architecture and the origin of introns. Cold Spring Harbor Symp. Quant. Biol. 52, 915-924; Noguti, T., Sakakibara, H., Go, M., 1993. Localization of hydrogen-bonds within modules in barnase. Proteins 16, 357-363). A module is a contiguous polypeptide segment of amino acid residues having a compact conformation within a globular domain. Collected 31 intron sites of the family F/10 xylanase genes from fungus were found to be correlated to module boundaries with considerable statistical force (p values <0.001). The relationship between the intron locations and protein structures provides supporting evidence for the ancient origin of introns, because such a relationship cannot be expected by random insertion of introns into eukaryotic genes, but it rather suggests pre-existence of introns in the ancestral genes of prokaryotes and eukaryotes. A phylogenetic tree of the fungal and bacterial xylanase sequences made two clusters; one includes both the bacterial and fungal genes, but the other consists of only fungal genes. The mixed cluster of bacterial genes without introns and the fungal genes with introns further supports the ancient origin of introns. Comparison of the conserved base sequences of introns indicates that sliding of a splice site occurred in Aspergillus kawachii gene by one base from the ancestral position. Substrate-binding sites of xylanase are localized on eight modules, and introns are found at both termini of six out of these functional modules. This result suggests that introns might play a functional role in shuffling the exons encoding the substrate-binding modules.
Collapse
Affiliation(s)
- Y Sato
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | | | | | | |
Collapse
|
29
|
Penrose JF. LTC4 synthase. Enzymology, biochemistry, and molecular characterization. Clin Rev Allergy Immunol 1999; 17:133-52. [PMID: 10436863 DOI: 10.1007/bf02737601] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
LTC4S conjugates reduce glutathione to LTA4 and is positioned as the pivotal and only committed enzyme involved in the formation of cysteinyl LTs. Despite its function as an enzyme that conjugates glutathione to LTA4, it is abundantly clear that LTC4S differs from the classic glutathione S-transferase (GST) families. This distinction is based on narrow substrate specificity, inability to conjugate GSH to xenobiotics, differential susceptibility to inhibitors, lack of homology, and failure to be immunorecognized by specific microsomal GST antibodies. The presence of LTC4S protein is restricted to a limited number of hematopoietic cells to include mast cells, eosinophils, basophils, monocytes/macrophages, and platelets, with the platelet being unique in its lack of the complete biosynthetic pathway for cysteinyl LTs. The purification of the protein and the cloning of the cDNA have demonstrated that the kinetic parameters of LTC4S are similar for the isolated natural or recombinant proteins. The protein is an 18-kDa integral perinuclear membrane enzyme, which is functional as a homodimer. The cDNA encodes a 150 amino-acid polypeptide monomer with three hydrophobic domains interspersed by two hydrophilic loops. Homology and secondary structural predictions have revealed that LTC4S is a member of a novel gene family that includes FLAP, mGST II, and mGST III. Each of these molecules is an integral membrane protein with the capacity to participate in LT biosynthesis: LTC4S as the terminal and only committed enzyme in cysteinyl LT formation, FLAP as an arachidonic acid presentation protein, and mGST II and mGST III as unique dual-function enzymes with primary detoxification functions. Site directed mutagenic studies of LTC4S have revealed that two residues, R51 and Y93, are involved in the acid and base catalysis, respectively, of LTA4 and GSH. Alignment of molecules with LTA4 conjugating ability demonstrates conservation of amino acid residues R51 and Y93, which appear necessary for this specific enzymatic function. The 2.5-Kb gene for human LTC4S contains five small exons and four introns, and the 5' UTR contains consensus sequences for AP-1 and AP-2 sites as well as an SP-1 site. The chromosomal localization of this gene is 5q35, distal to that of cytokine, growth factor, and receptor genes that have relevance to the development of allergic inflammation. Furthermore, there is genetic linkage of this region of human chromosome 5 to atopy and asthma, whereas no linkage exists for the chromosomal localization of the other family members, FLAP and mGST II, distinguishing LTC4S as a unique member of the novel gene family. LTC4S is profoundly overexpressed in the aspirin-induced asthmatic phenotype and correlates with overproduction of cysteinyl LTs and bronchial hyperreactivity to lysine aspirin. Ongoing studies are directed to the genomic regulation and additional polymorphisms within the gene of this pivotal enzyme, as well as to further identification of the amino acid residues central to its catalytic function.
Collapse
Affiliation(s)
- J F Penrose
- Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Gregory TR, Hebert PD. The Modulation of DNA Content: Proximate Causes and Ultimate Consequences. Genome Res 1999. [DOI: 10.1101/gr.9.4.317] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The forces responsible for modulating the large-scale features of the genome remain one of the most difficult issues confronting evolutionary biology. Although diversity in chromosomal architecture, nucleotide composition, and genome size has been well documented, there is little understanding of either the evolutionary origins or impact of much of this variation. The 80,000-fold divergence in genome sizes among eukaryotes represents perhaps the greatest challenge for genomic holists. Although some researchers continue to characterize much variation in genome size as a mere by-product of an intragenomic selfish DNA “free-for-all” there is increasing evidence for the primacy of selection in molding genome sizes via impacts on cell size and division rates. Moreover, processes inducing quantum or doubling series variation in gametic or somatic genome sizes are common. These abrupt shifts have broad effects on phenotypic attributes at both cellular and organismal levels and may play an important role in explaining episodes of rapid—or even saltational—character state evolution.
Collapse
|
31
|
Abstract
Does the intron/exon structure of eukaryotic genes belie their ancient assembly by exon-shuffling or have introns been inserted into preformed genes during eukaryotic evolution? These are the central questions in the ongoing 'introns-early' versus 'introns-late' controversy. The phylogenetic distribution of spliceosomal introns continues to strongly favor the intronslate theory. The introns-early theory, however, has claimed support from intron phase and protein structure correlations.
Collapse
Affiliation(s)
- J M Logsdon
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia,B3H 4H7, Canada.
| |
Collapse
|
32
|
Meyer-Gauen G, Herbrand H, Pahnke J, Cerff R, Martin W. Gene structure, expression in Escherichia coli and biochemical properties of the NAD+ -dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts. Gene 1998; 209:167-74. [PMID: 9583948 DOI: 10.1016/s0378-1119(98)00034-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photosynthetic eukaryotes typically possess two distinct glyceraldehyde-3-phosphate dehydrogenases, an NAD+ -specific enzyme in the cytosol (GapC: EC 1.2.1.12) and an NADP+ -dependent enzyme in the chloroplast (GapAB: EC 1.2.1.13). The gymnosperm Pinus sylvestris is an exception in that it is known to express a gene encoding a transit peptide-bearing GapC-like subunit that is imported into chloroplasts (GapCp), but the enzymatic properties of this novel GAPDH have not been described from any source. We have expressed the mature GapCp unit from Pinus in Escherichia coli and have characterized the active enzyme. GapCp has a specific activity of 89 units per milligram and is strictly NAD+ -dependent, showing no detectable activity with NADP+. Values of the apparent Km for NAD+ and glyceraldehyde-3-phosphate were determined as 62 and 344 microM, respectively. The Pinus GapCpl gene possesses 12 introns, two in the region encoding the transit peptide and ten in the region encoding the mature subunit, all of which are found at positions strictly conserved across genes for higher plant GapC. A cDNA encoding a homologue of GapCp was isolated from the heterosporous fern Marsilea quadrifolia, indicating that NAD+ -dependent chloroplast GAPDH also occurs in other higher plants.
Collapse
Affiliation(s)
- G Meyer-Gauen
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | | | | | | | |
Collapse
|
33
|
O'Neill RJ, Brennan FE, Delbridge ML, Crozier RH, Graves JA. De novo insertion of an intron into the mammalian sex determining gene, SRY. Proc Natl Acad Sci U S A 1998; 95:1653-7. [PMID: 9465071 PMCID: PMC19134 DOI: 10.1073/pnas.95.4.1653] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1997] [Indexed: 02/06/2023] Open
Abstract
Two theories have been proposed to explain the evolution of introns within eukaryotic genes. The introns early theory, or "exon theory of genes," proposes that introns are ancient and that recombination within introns provided new exon structure, and thus new genes. The introns late theory, or "insertional theory of introns," proposes that ancient genes existed as uninterrupted exons and that introns have been introduced during the course of evolution. There is still controversy as to how intron-exon structure evolved and whether the majority of introns are ancient or novel. Although there is extensive evidence in support of the introns early theory, phylogenetic comparisons of several genes indicate recent gain and loss of introns within these genes. However, no example has been shown of a protein coding gene, intronless in its ancestral form, which has acquired an intron in a derived form. The mammalian sex determining gene, SRY, is intronless in all mammals studied to date, as is the gene from which it recently evolved. However, we report here comparisons of genomic and cDNA sequences that now provide evidence of a de novo insertion of an intron into the SRY gene of dasyurid marsupials. This recently (approximately 45 million years ago) inserted sequence is not homologous with known transposable elements. Our data demonstrate that introns may be inserted as spliced units within a developmentally crucial gene without disrupting its function.
Collapse
Affiliation(s)
- R J O'Neill
- School of Genetics and Human Variation, La Trobe University, Bundoora, VIC 3083, Australia.
| | | | | | | | | |
Collapse
|
34
|
Intron-exon structures. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1067-5701(98)80020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Stoltzfus A, Logsdon JM, Palmer JD, Doolittle WF. Intron "sliding" and the diversity of intron positions. Proc Natl Acad Sci U S A 1997; 94:10739-44. [PMID: 9380704 PMCID: PMC23469 DOI: 10.1073/pnas.94.20.10739] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alignments of homologous genes typically reveal a great diversity of intron locations, far more than could fit comfortably in a single gene. Thus, a minority of these intron positions could be inherited from a single ancestral gene, but the larger share must be attributed to subsequent events of intron gain or intron "sliding" (movement from one position to another within a gene). Intron sliding has been argued from cases of discordant introns and from putative spatial clustering of intron positions. A list of 32 cases of discordant introns is presented here. Most of these cases are found to be artefactual. The spatial and phylogenetic distributions of intron positions from five published compilations of gene data, comprising 205 intron positions, have been examined systematically for evidence of intron sliding. The results suggest that sliding, if it occurs at all, has contributed little to the diversity of intron positions.
Collapse
Affiliation(s)
- A Stoltzfus
- Canadian Institute for Advanced Research Program in Evolutionary Biology, and Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | | | | | |
Collapse
|
36
|
Hoffmann-Sommergruber K, Vanek-Krebitz M, Radauer C, Wen J, Ferreira F, Scheiner O, Breiteneder H. Genomic characterization of members of the Bet v 1 family: genes coding for allergens and pathogenesis-related proteins share intron positions. Gene 1997; 197:91-100. [PMID: 9332353 DOI: 10.1016/s0378-1119(97)00246-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bet v 1, the major birch pollen allergen, is a member of a multigene family; a number of isoforms and homologous proteins from closely related species (alder, hazel and hornbeam) has been isolated and their cDNAs cloned and characterized. Genomic clones coding for Bet v 1 and homologues from apple and hazel were isolated and sequenced. Some of these clones contained intervening sequences. The exon-intron formation is highly conserved throughout this family of pathogenesis-related proteins in dicot plants and is also found in Aopr1 (Asparagus officinalis), a monocol species. Phylogenetic analysis suggested a possible common origin of the intron position in these homologous proteins at codon 62 in various families of flowering plants, including Fagaceae, Rosaceae and Apiaceae. This conserved 'proto-splice site' may point to a structure/function relationship. A conserved sequence motif (P-loop) was also found in all members of this protein family. Moreover, there is a certain degree of sequence similarity among the proteins derived from various species throughout the dicots and the only monocot examined. This fact is reflected by cross-reactivity from monoclonal and polyclonal antibodies raised against Bet v 1.
Collapse
|
37
|
Rzhetsky A, Ayala FJ, Hsu LC, Chang C, Yoshida A. Exon/intron structure of aldehyde dehydrogenase genes supports the "introns-late" theory. Proc Natl Acad Sci U S A 1997; 94:6820-5. [PMID: 9192649 PMCID: PMC21242 DOI: 10.1073/pnas.94.13.6820] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/1997] [Accepted: 04/16/1997] [Indexed: 02/04/2023] Open
Abstract
Whether or not nuclear introns predate the divergence of bacteria and eukaryotes is the central argument between the proponents of the "introns-early" and "introns-late" theories. In this study we compared the goodness-of-fit of each theory with a probabilistic model of exon/intron evolution and multiple nonallelic genes encoding human aldehyde dehydrogenases (ALDHs). Using a reconstructed phylogenetic tree of ALDH genes, we computed the likelihood of obtaining the present-day ALDH sequences under the assumptions of each competing theory. Although on the grounds of its own assumptions each theory accounted for the ALDH data significantly better than its rival, the introns-early model required frequent intron slippage, and the estimated slippage rates were too high to be consistent with reported correlations between the boundaries of ancient protein modules and the ends of ancient exons. Because the molecular mechanisms proposed to explain intron slippage are incapable of providing such high rates and are incompatible with the observed distribution of introns in higher eukaryotes, the ALDH data support the introns-late theory.
Collapse
Affiliation(s)
- A Rzhetsky
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
38
|
Liaud MF, Brandt U, Scherzinger M, Cerff R. Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. J Mol Evol 1997; 44 Suppl 1:S28-37. [PMID: 9071009 DOI: 10.1007/pl00000050] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cryptomonads are complex microalgae which share characteristics of chromophytes (chlorophyll c, extra pair of membranes surrounding the plastids) and rhodophytes (phycobiliproteins). Unlike chromophytes, however, they contain a small nucleus-like organelle, the nucleomorph, in the periplastidial space between the inner and outer plastid membrane pairs. These cellular characteristics led to the suggestion that cryptomonads may have originated via a eukaryote-eukaryote endosymbiosis between a phagotrophic host cell and a unicellular red alga, a hypothesis supported by rRNA phylogenies. Here we characterized cDNAs of the nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from the two cryptomonads Pyrenomonas salina and Guillardia theta. Our results suggest that in cryptomonads the classic Calvin cycle GAPDH enzyme of cyanobacterial origin, GapAB, is absent and functionally replaced by a photosynthetic GapC enzyme of proteobacterial descent, GapC1. The derived GapC1 precursor contains a typical signal/transit peptide of complex structure and sequence signatures diagnostic for dual cosubstrate specificity with NADP and NAD. In addition to this novel GapC1 gene a cytosol-specific GapC2 gene of glycolytic function has been found in both cryptomonads showing conspicuous sequence similarities to animal GAPDH. The present findings support the hypothesis that the host cell component of cryptomonads may be derived from a phototrophic rather than a organotrophic cell which lost its primary plastid after receiving a secondary one. Hence, cellular compartments of endosymbiotic origin may have been lost or replaced several times in eukaryote cell evolution, while the corresponding endosymbiotic genes (e.g., GapC1) were retained, thereby increasing the chimeric potential of the nuclear genome.
Collapse
Affiliation(s)
- M F Liaud
- Institut für Genetik, Universität Braunschweig, Germany
| | | | | | | |
Collapse
|
39
|
Seegmiller A, Williams KR, Herrick G. Two two-gene macronuclear chromosomes of the hypotrichous ciliatesOxytricha fallax andO. trifallax generated by alternative processing of the 81 locus. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1520-6408(1997)20:4%3c348::aid-dvg6%3e3.0.co;2-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Pohlmeyer K, Paap BK, Soll J, Wedel N. CP12: a small nuclear-encoded chloroplast protein provides novel insights into higher-plant GAPDH evolution. PLANT MOLECULAR BIOLOGY 1996; 32:969-78. [PMID: 8980547 DOI: 10.1007/bf00020493] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Higher-plant chloroplast NAD(P)-glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) is composed of two different nuclear-encoded subunits, GAPA and GAPB, forming the highly active heterotetrameric A2B2 enzyme. The main difference between these two subunits is a C-terminal extension of about 30 amino acid residues of GAPB. We present cDNA clones for a nuclear-encoded chloroplast protein from pea, spinach and tobacco, which we have named CP12. The mature protein consists of only 74, 75 and 76 amino acid residues, respectively and contains two domains with significant homology to the C-terminal extension of GAPB. Affinity chromatography approaches reveal also a specific interaction between CP12 and chloroplast GAPDH. Northern blot analysis indicates that CP12 is, like plastid GAPDH, expressed in green and also in etiolated leaves. Further homology is observed between CP12 and ORF3, an open reading frame located in the hox gene cluster of Anabaena variabilis. This gene cluster encodes the subunits of the bidirectional NADP(+)-dependent [NiFeS] dehydrogenase. We propose therefore a common evolutionary origin of CP12 and higher-plant chloroplast GAPDH subunit GAPB from the cyanobacterial ORF3.
Collapse
Affiliation(s)
- K Pohlmeyer
- Botanisches Institut der Christian-Albrechts-Universitä zu Kiel, Germany
| | | | | | | |
Collapse
|
41
|
Roger AJ, Smith MW, Doolittle RF, Doolittle WF. Evidence for the Heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3-phosphate dehydrogenase. J Eukaryot Microbiol 1996; 43:475-85. [PMID: 8976605 DOI: 10.1111/j.1550-7408.1996.tb04507.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The phylogenetic relationships between major slime mould groups and the identification of their unicellular relatives has been a subject of controversy for many years. Traditionally, it has been assumed that two slime mould groups, the acrasids and the dictyostelids were related by virtue of their cellular slime mould habit; a view still endorsed by at least one current classification scheme. However, a decade ago, on the basis of detailed ultrastructural resemblances it was proposed that acrasids of the family Acrasidae were not relatives of other slime moulds but instead related to a group of mostly free-living unicellular amoebae, the Schizopyrenida. The class Heterolobosea was created to contain these organisms and has since figured in many discussions of protist evolution. We sought to test the validity of Heterolobosea by characterizing homologs of the highly conserved glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from an acrasid, Acrasis rosea; a dictyostelid, Dictyostelium discoideum; and the schizopyrenid Naegleria andersoni. Phylogenetic analysis of these and other GAPDH sequences, using maximum parsimony, neighbour-joining distance and maximum likelihood methods strongly supports the Heterolobosea hypothesis and discredits the concept of a cellular slime mould grouping. Moreover, all of our analyses place Dictyostelium discoideum as a relatively recently originating lineage, most closely related to the Metazoa, similar to other recently published phylogenies of protein-coding genes. However, GAPDH phylogenies do not show robust branching orders for most of the relationships between major groups. We propose that several of the incongruencies observed between GAPDH and other molecular phylogenies are artifacts resulting from substitutional saturation of this enzyme.
Collapse
Affiliation(s)
- A J Roger
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
42
|
SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL. Nested retrotransposons in the intergenic regions of the maize genome. Science 1996; 274:765-8. [PMID: 8864112 DOI: 10.1126/science.274.5288.765] [Citation(s) in RCA: 805] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The relative organization of genes and repetitive DNAs in complex eukaryotic genomes is not well understood. Diagnostic sequencing indicated that a 280-kilobase region containing the maize Adh1-F and u22 genes is composed primarily of retrotransposons inserted within each other. Ten retroelement families were discovered, with reiteration frequencies ranging from 10 to 30,000 copies per haploid genome. These retrotransposons accounted for more than 60 percent of the Adh1-F region and at least 50 percent of the nuclear DNA of maize. These elements were largely intact and are dispersed throughout the gene-containing regions of the maize genome.
Collapse
Affiliation(s)
- P SanMiguel
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Long M, de Souza SJ, Rosenberg C, Gilbert W. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Proc Natl Acad Sci U S A 1996; 93:7727-31. [PMID: 8755543 PMCID: PMC38815 DOI: 10.1073/pnas.93.15.7727] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Since most of the examples of "exon shuffling" are between vertebrate genes, the view is often expressed that exon shuffling is limited to the evolutionarily recent lineage of vertebrates. Although exon shuffling in plants has been inferred from the analysis of intron phases of plant genes [Long, M., Rosenberg, C. & Gilbert, W. (1995) Proc. Natl. Acad. Sci. USA 92, 12495-12499] and from the comparison of two functionally unknown sunflower genes [Domon, C. & Steinmetz, A. (1994) Mol. Gen. Genet. 244, 312-317], clear cases of exon shuffling in plant genes remain to be uncovered. Here, we report an example of exon shuffling in two important nucleus-encoded plant genes: cytosolic glyceraldehyde-3-phosphate dehydrogenase (cytosolic GAPDH or GapC) and cytochrome c1 precursor. The intron-exon structures of the shuffled region indicate that the shuffling event took place at the DNA sequence level. In this case, we can establish a donor-recipient relationship for the exon shuffling. Three amino terminal exons of GapC have been donated to cytochrome c1, where, in a new protein environment, they serve as a source of the mitochondrial targeting function. This finding throws light upon an old important but unsolved question in gene evolution: the origin of presequences or transit peptides that generally exist in nucleus-encoded organelle genes.
Collapse
Affiliation(s)
- M Long
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
44
|
Köhler U, Donath M, Mendel RR, Cerff R, Hehl R. Intron-specific stimulation of anaerobic gene expression and splicing efficiency in maize cells. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:252-8. [PMID: 8668137 DOI: 10.1007/bf02172925] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes characterized in plants and algae to date have one intron very close to the 5' end of the gene. To study the functional relevance of some of these introns for gene expression we have analysed the influence of three 5' introns on transient gene expression of the anaerobically inducible maize GapC4 promoter in maize cells. Under aerobic conditions, reporter gene expression is increased in the presence of the first introns of the GapC4 and GapC1 genes, and the first intron of the nuclear encoded chloroplast-specific GapA1 gene. In contrast, the GapC4 intron increases anaerobic gene expression above the level obtained for the intronless construct, while anaerobic expression of constructs harboring the GapA1 and GapC1 introns was similar to the anaerobic expression level of the intronless construct. Splicing analysis revealed that the GapC4 intron is processed more efficiently under anaerobic conditions, while no change in splicing efficiency is observed for the GapC1 and the GapA1 introns when subjected to anaerobic conditions. These results suggest that an increase in splicing efficiency contributes to the anaerobic induction of the maize GapC4 gene.
Collapse
Affiliation(s)
- U Köhler
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | | | | | | | |
Collapse
|
45
|
Penrose JF, Spector J, Baldasaro M, Xu K, Boyce J, Arm JP, Austen KF, Lam BK. Molecular cloning of the gene for human leukotriene C4 synthase. Organization, nucleotide sequence, and chromosomal localization to 5q35. J Biol Chem 1996; 271:11356-61. [PMID: 8626689 DOI: 10.1074/jbc.271.19.11356] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Leukotriene C4 (LTC4) synthase catalyzes the conjugation of LTA4 with reduced GSH to form LTC4, the parent of the receptor active cysteinyl leukotrienes implicated in the pathobiology of bronchial asthma. Previous cloning of the cDNA for human LTC4 synthase demonstrated significant homology of its amino acid sequence to that of 5-lipoxygenase activating protein (FLAP) but none to that of the GSH S-transferase super-family. Genomic cloning from a P1 library now reveals that the gene for LTC4 synthase contains five exons (ranging from 71 to 257 nucleotides in length) and four introns, which in total span 2.52 kilobase pairs in length. The intron/exon junctions of LTC4 synthase align identically with those of FLAP; however, the small size of the LTC4 synthase gene contrasts with the > 31-kilobase pair size reported for FLAP. Confirmation of the LTC4 synthase gene size to ensure that no deletions had occurred during the cloning was obtained by two overlapping polymerase chain reactions from genomic DNA, which provided products of the predicted sizes. Primer extension analysis with poly(A)+ RNA from culture-derived human eosinophilic granulocytes or the KG-1 myelogenous cell line revealed multiple transcriptional start sites with prominent signals at 66, 69, and 96 base pairs 5' of the ATG translation start site. The 5'-flanking region revealed a GC-rich promoter sequence consistent with an SP-1 site and consensus sequences for AP-1 and AP-2 enhancer elements, 24, 807, and 877 bp, respectively, 5' from the first transcription initiation site. Southern blot analysis of a genomic DNA (with full-length cDNA as well as 5' and 3' oligonucleotide probes) confirmed the size of the gene and indicated a single copy gene in normal human genomic DNA. Fluorescent in situ hybridization mapped LTC4 synthase to chromosomal location 5q35, which is in close proximity to the cluster of genes for cytokines and receptors involved in the regulation of cells central to allergic inflammation and implicated in bronchial asthma.
Collapse
Affiliation(s)
- J F Penrose
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Allen JF, Raven JA. Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol 1996; 42:482-92. [PMID: 8662000 DOI: 10.1007/bf02352278] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J F Allen
- Department of Plant cell Biology, Lund Univeristy, Sweden
| | | |
Collapse
|
47
|
Sahrawy M, Hecht V, Lopez-Jaramillo J, Chueca A, Chartier Y, Meyer Y. Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. J Mol Evol 1996; 42:422-31. [PMID: 8642611 DOI: 10.1007/bf02498636] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In contrast to prokaryotes, which typically possess one thioredoxin gene per genome, three different thioredoxin types have been described in higher plants. All are encoded by nuclear genes, but thioredoxins m and f are chloroplastic while thioredoxins h have no transit peptide and are probably cytoplasmic. We have cloned and sequenced Arabidopsis thaliana genomic fragments encoding the five previously described thioredoxins h, as well as a sixth gene encoding a new thioredoxin h. In spite of the high divergence of the sequences, five of them possess two introns at positions identical to the previously sequenced tobacco thioredoxin h gene, while a single one has only the first intron. The recently published sequence of Chlamydomonas thioredoxin h shows three introns, two at the same positions as in higher plants. This strongly suggests a common origin for all cytoplasmic thioredoxins of plants and green algae. In addition, we have cloned and sequenced pea DNA genomic fragments encoding thioredoxins m and f. The thioredoxin m sequence shows only one intron between the regions encoding the transit peptide and the mature protein, supporting the prokaryotic origin of this sequence and suggesting that its association with the transit peptide has been facilitated by exon shuffling. In contrast, the thioredoxin f sequence shows two introns, one at the same position as an intron in various plant and animal thioredoxins and the second at the same position as an intron in thioredoxin domains of disulfide isomerases. This strongly supports the hypothesis of a eukaryotic origin for chloroplastic thioredoxin f.
Collapse
Affiliation(s)
- M Sahrawy
- Department of Plant Biochemistry, Consejo Superior de Investigaciones, Granada, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Proudhon D, Wei J, Briat J, Theil EC. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints. J Mol Evol 1996; 42:325-36. [PMID: 8661994 DOI: 10.1007/bf02337543] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ferritin, a protein widespread in nature, concentrates iron approximately 10(11)-10(12)-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n = 7) is higher than in animals (n = 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling.
Collapse
Affiliation(s)
- D Proudhon
- Department of Biochemistry, North Carolina State University, NCSU Box 7622, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
49
|
Long M, Rosenberg C, Gilbert W. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci U S A 1995; 92:12495-9. [PMID: 8618928 PMCID: PMC40384 DOI: 10.1073/pnas.92.26.12495] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two issues in the evolution of the intron/exon structure of genes are the role of exon shuffling and the origin of introns. Using a large data base of eukaryotic intron-containing genes, we have found that there are correlations between intron phases leading to an excess of symmetric exons and symmetric exon sets. We interpret these excesses as manifestations of exon shuffling and make a conservative estimate that at least 19% of the exons in the data base were involved in exon shuffling, suggesting an important role for exon shuffling in evolution. Furthermore, these excesses of symmetric exons appear also in those regions of eukaryotic genes that are homologous to prokaryotic genes: the ancient conserved regions. This last fact cannot be explained in terms of the insertional theory of introns but rather supports the concept that some of the introns were ancient, the exon theory of genes.
Collapse
Affiliation(s)
- M Long
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
50
|
Köhler U, Liaud MF, Mendel RR, Cerff R, Hehl R. The maize GapC4 promoter confers anaerobic reporter gene expression and shows homology to the maize anthocyanin regulatory locus C1. PLANT MOLECULAR BIOLOGY 1995; 29:1293-1298. [PMID: 8616225 DOI: 10.1007/bf00020469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The cytosolic glyceraldehyde-3-phosphate dehydrogenase (GapC) gene family of maize is differentially expressed in response to anaerobic stress. While GapCl and GapC2 are downregulated, GapC3 and GapC4 are anaerobically induced. We have sequenced and analyzed a 3073 bp promoter fragment of GapC4. The promoter confers anaerobic induction of a reporter gene construct in a transient gene expression system in maize. Deletion analysis of the GapC4 promoter revealed a 270 bp long DNA region required for anaerobic induction. This region contains sequence motifs resembling the cis-acting sequences of the anaerobically induced maize Adh1 and Adh2 genes. Furthermore, the 3073 bp GapC4 promoter fragment displays homology to long terminal repeats of maize retrotransposons and to the 3' region of the maize anthocyanin regulatory locus C1.
Collapse
Affiliation(s)
- U Köhler
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | | | | | | | |
Collapse
|