1
|
Cardinali I, Tancredi D, Lancioni H. The Revolution of Animal Genomics in Forensic Sciences. Int J Mol Sci 2023; 24:ijms24108821. [PMID: 37240167 DOI: 10.3390/ijms24108821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays, the coexistence between humans and domestic animals (especially dogs and cats) has become a common scenario of daily life. Consequently, during a forensic investigation in civil or criminal cases, the biological material from a domestic animal could be considered "evidence" by law enforcement agencies. Animal genomics offers an important contribution in attacks and episodes of property destruction or in a crime scene where the non-human biological material is linked to the victim or perpetrator. However, only a few animal genetics laboratories in the world are able to carry out a valid forensic analysis, adhering to standards and guidelines that ensure the admissibility of data before a court of law. Today, forensic sciences focus on animal genetics considering all domestic species through the analysis of STRs (short tandem repeats) and autosomal and mitochondrial DNA SNPs (single nucleotide polymorphisms). However, the application of these molecular markers to wildlife seems to have gradually gained a strong relevance, aiming to tackle illegal traffic, avoid the loss of biodiversity, and protect endangered species. The development of third-generation sequencing technologies has glimmered new possibilities by bringing "the laboratory into the field", with a reduction of both the enormous cost management of samples and the degradation of the biological material.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Domenico Tancredi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Harper CK. Poaching Forensics: Animal Victims in the Courtroom. Annu Rev Anim Biosci 2023; 11:269-286. [PMID: 36790886 DOI: 10.1146/annurev-animal-070722-084803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Poaching and the international trade in wildlife are escalating problems driven by poverty and greed and coordinated by increasingly sophisticated criminal networks. Biodiversity loss, caused by habitat change, is exacerbated by poaching, and species globally are facing extinction. Forensic evidence underpins human and animal criminal investigations and is critical in criminal prosecution and conviction. The application of forensic tools, particularly forensic genetics, to animal case work continues to advance, providing the systems to confront the challenges of wildlife investigations. This article discusses some of these tools, their development, and implementations, as well as recent advances. Examples of cases are provided in which forensic evidence played a key role in obtaining convictions, thus laying the foundation for the future application of techniques to disrupt the criminal networks and safeguard biodiversity through species protection.
Collapse
Affiliation(s)
- Cindy K Harper
- Veterinary Genetics Laboratory, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa;
| |
Collapse
|
3
|
“Guess Who’s Coming to Dinner”: Molecular Tools to Reconstruct multilocus Genetic Profiles from Wild Canid Consumption Remains. Animals (Basel) 2022; 12:ani12182428. [PMID: 36139288 PMCID: PMC9495216 DOI: 10.3390/ani12182428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Non-invasive genetic sampling is a practical tool to monitor pivotal ecological parameters and population dynamic patterns of endangered species. It can be particularly suitable when applied to elusive carnivores such as the Apennine wolf (Canis lupus italicus) and the European wildcat (Felis silvestris silvestris), which can live in overlapping ecological contexts and sometimes share their habitats with their domestic free-ranging relatives, increasing the risk of anthropogenic hybridisation. In this case study, we exploited all the ecological and genetic information contained in a single biological canid faecal sample, collected in a forested area of central Italy, to detect any sign of trophic interactions between wolves and European wildcats or their domestic counterparts. Firstly, the faecal finding was morphologically examined, showing the presence of felid hair and claw fragment remains. Subsequently, total genomic DNA contained in the hair and claw samples was extracted and genotyped, through a multiple-tube approach, at canid and felid diagnostic panels of microsatellite loci. Finally, the obtained individual multilocus genotypes were analysed with reference wild and domestic canid and felid populations to assess their correct taxonomic status using Bayesian clustering procedures. Assignment analyses classified the genotype obtained from the endothelial cells present on the hair sample as a wolf with slight signals of dog ancestry, showing a qi = 0.954 (C.I. 0.780–1.000) to the wolf cluster, and the genotype obtained from the claw as a domestic cat, showing a qi = 0.996 (95% C.I. = 0.982–1.000) to the domestic cat cluster. Our results clearly show how a non-invasive multidisciplinary approach allows the cost-effective identification of both prey and predator genetic profiles and their taxonomic status, contributing to the improvement of our knowledge about feeding habits, predatory dynamics, and anthropogenic hybridisation risk in threatened species.
Collapse
|
4
|
de Groot M, Anderson H, Bauer H, Bauguil C, Bellone RR, Brugidou R, Buckley RM, Dovč P, Forman O, Grahn RA, Kock L, Longeri M, Mouysset‐Geniez S, Qiu J, Sofronidis G, van der Goor LHP, Lyons LA. Standardization of a SNP panel for parentage verification and identification in the domestic cat (Felis silvestris catus). Anim Genet 2021; 52:675-682. [PMID: 34143521 PMCID: PMC8519126 DOI: 10.1111/age.13100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 01/02/2023]
Abstract
The domestic cat (Felis silvestris catus) is a valued companion animal throughout the world. Over 60 different cat breeds are accepted for competition by the cat fancy registries in different countries. Genetic markers, including short tandem repeats and SNPs, are available to evaluate and manage levels of inbreeding and genetic diversity, population and breed structure relationships, and individual identification for forensic and registration purposes. The International Society of Animal Genetics (ISAG) hosts the Applied Genetics in Companion Animals Workshop, which supports the standardization of genetic marker panels and genotyping for the identification of cats via comparison testing. SNP panels have been in development for many species, including the domestic cat. An ISAG approved core panel of SNPs for use in cat identification and parentage analyses is presented. SNPs (n = 121) were evaluated by different university-based and commercial laboratories using 20 DNA samples as part of the ISAG comparison testing procedures. Different SNP genotyping technologies were examined, including DNA arrays, genotyping-by-sequencing and mass spectroscopy, to select a robust and efficient panel of 101 SNPs as the ISAG core panel for cats. The SNPs are distributed across all chromosomes including two on the X chromosome and an XY pseudo-autosomal sexing marker (zinc-finger XY; ZFXY). A population study demonstrated that the markers have an average polymorphic information content of 0.354 and a power of exclusion greater than 0.9999. The SNP panel should keep testing affordable while also allowing for the development of additional panels to monitor health, phenotypic traits, hybrid cats and highly inbred cats.
Collapse
Affiliation(s)
- M. de Groot
- MolGenTraverse 2VeenendaalUtrecht3905NLThe Netherlands
| | | | - H. Bauer
- Laboklin GMBH & Co. KGBad Kissingen97688Germany
| | | | - R. R. Bellone
- Veterinary Genetics LaboratorySchool of Veterinary MedicineUniversity of CaliforniaDavisCA95616USA
- Population Health and ReproductionSchool of Veterinary MedicineUniversity of CaliforniaDavisCA95616USA
| | | | - R. M. Buckley
- Department of Veterinary Medicine and SurgeryCollege of Veterinary MedicineUniversity of MissouriColumbiaMO65211USA
| | - P. Dovč
- Department of Animal ScienceBiotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | | | - R. A. Grahn
- Veterinary Genetics LaboratorySchool of Veterinary MedicineUniversity of CaliforniaDavisCA95616USA
| | - L. Kock
- Neogen GenomicsLincolnNE68504USA
| | - M. Longeri
- Department of Veterinary MedicineUniversity of MilanMilan20133Italy
| | | | - J. Qiu
- Neogen GenomicsLincolnNE68504USA
| | - G. Sofronidis
- Orivet Genetic Pet CareSuite St. KildaMelbourneVic.3182Australia
| | | | - L. A. Lyons
- Department of Veterinary Medicine and SurgeryCollege of Veterinary MedicineUniversity of MissouriColumbiaMO65211USA
| |
Collapse
|
5
|
Ghemrawi M, Fischinger F, Duncan G, Dukes MJ, Guilliano M, McCord B. Developmental validation of SpeID: A pyrosequencing-based assay for species identification. Forensic Sci Int Genet 2021; 55:102560. [PMID: 34507077 DOI: 10.1016/j.fsigen.2021.102560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
In crime scenes, biological exhibits are often human in origin, yet biological stains from other fauna may also be present at a crime scene, creating confusion during an investigation. Furthermore, identifying the source of a biological sample can be critical during an investigation. To identify the presence of biological material from non-human sources, it is common to use genetic markers within mitochondrial DNA such as cytochrome b, 16S rRNA, and 12S rRNA genes. This process usually requires DNA sequencing, a process that is neither quick nor easy. In general, a faster, more standardized method for species identification from tissue and body fluids is desirable.For this reason, we have developed a vertebrate specific real-time quantitation method that is followed by an automated pyrosequencing-based procedure that sequences a short fragment within the 12S rRNA gene. Using no more than 35 bases, the assay can distinguish between 32 different species commonly found in and around a household with a turnaround time of 6 h from extraction to sequencing. -Using this procedure, up to 48 samples can be run at a time without the need for expensive reagents or bioinformatic skills.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | | | - George Duncan
- Nova Southeastern University, Dania Beach, Fl 33004, United State
| | | | | | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
6
|
Linacre A. Animal Forensic Genetics. Genes (Basel) 2021; 12:genes12040515. [PMID: 33916063 PMCID: PMC8066154 DOI: 10.3390/genes12040515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Animal forensic genetics, where the focus is on non-human species, is broadly divided in two: domestic species and wildlife. When traces of a domestic species are relevant to a forensic investigation the question of species identification is less important, as the material comes from either a dog or a cat for instance, but more relevant may be the identification of the actual pet. Identification of a specific animal draws on similar methods to those used in human identification by using microsatellite markers. The use of cat short tandem repeats to link a cat hair to a particular cat paved the way for similar identification of dogs. Wildlife forensic science is becoming accepted as a recognised discipline. There is growing acceptance that the illegal trade in wildlife is having devasting effects on the numbers of iconic species. Loci on the mitochondrial genome are used to identify the most likely species present. Sequencing the whole locus may not be needed if specific bases can be targeted. There can be benefits of increased sensitivity using mitochondrial loci for species testing, but occasionally there is an issue if hybrids are present. The use of massively parallel DNA sequencing has a role in the identification of the ingredients of traditional medicines where studies found protected species to be present, and a potential role in future species assignments. Non-human animal forensic testing can play a key role in investigations provided that it is performed to the same standards as all other DNA profiling processes.
Collapse
Affiliation(s)
- Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
7
|
Roccaro M, Bini C, Fais P, Merialdi G, Pelotti S, Peli A. Who killed my dog? Use of forensic genetics to investigate an enigmatic case. Int J Legal Med 2020; 135:387-392. [PMID: 32783156 PMCID: PMC7870635 DOI: 10.1007/s00414-020-02388-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022]
Abstract
Genetic testing of animal biological material has become a valuable tool in forensic investigations, and it is successfully used to identify unknown crime perpetrators, to unmask food frauds, or to clarify cases of animal attacks on humans or other animals. When DNA profiling is not possible due to inadequate amounts of nuclear DNA, mitochondrial DNA (mtDNA) testing is the only viable alternative, as in the case of shed hair samples. In this case, a dog was allegedly killed by wild animals while being hosted in a boarding house. Extraneous hair fragments recovered from the dog’s mouth and paws were subjected to genetic analysis: the cytochrome b gene located on mtDNA was amplified and sequenced in order to determine the species responsible for the killing. The mtDNA analysis provided evidence that the dog was killed by other dogs, thus unmasking a false wild animal attack and putting the case in an entirely different perspective.
Collapse
Affiliation(s)
- Mariana Roccaro
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy.
| | - Carla Bini
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", Bologna Unit, Bologna, Italy
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Angelo Peli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
8
|
Khayat ROS, Grant RA, Ryan H, Melling LM, Dougill G, Killick DR, Shaw KJ. Investigating cat predation as the cause of bat wing tears using forensic DNA analysis. Ecol Evol 2020; 10:8368-8378. [PMID: 32788986 PMCID: PMC7417221 DOI: 10.1002/ece3.6544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 11/05/2022] Open
Abstract
Cat predation upon bat species has been reported to have significant effects on bat populations in both rural and urban areas. The majority of research in this area has focussed on observational data from bat rehabilitators documenting injuries, and cat owners, when domestic cats present prey. However, this has the potential to underestimate the number of bats killed or injured by cats. Here, we use forensic DNA analysis techniques to analyze swabs taken from injured bats in the United Kingdom, mainly including Pipistrellus pipistrellus (40 out of 72 specimens). Using quantitative PCR, cat DNA was found in two-thirds of samples submitted by bat rehabilitators. Of these samples, short tandem repeat analysis produced partial DNA profiles for approximately one-third of samples, which could be used to link predation events to individual cats. The use of genetic analysis can complement observational data and potentially provide additional information to give a more accurate estimation of cat predation.
Collapse
Affiliation(s)
- Rana O. S. Khayat
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
- Department of BiologyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Robyn A. Grant
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | | | - Louise M. Melling
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Gary Dougill
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - David R. Killick
- Institute of Infection, Veterinary and Ecological SciencesUniversity of Liverpool, LeahurstLiverpoolUK
| | - Kirsty J. Shaw
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
9
|
Abstract
This narrative is a personal view of adventures in genetic science and society that have blessed my life and career across five decades. The advances I enjoyed and the lessons I learned derive from educational training, substantial collaboration, and growing up in the genomics age. I parse the stories into six research disciplines my students, fellows, and colleagues have entered and, in some cases, made an important difference. The first is comparative genetics, where evolutionary inference is applied to genome organization, from building gene maps in the 1970s to building whole genome sequences today. The second area tracks the progression of molecular evolutionary advances and applications to resolve the hierarchical relationship among living species in the silence of prehistory. The third endeavor outlines the birth and maturation of genetic studies and application to species conservation. The fourth theme discusses how emerging viruses studied in a genomic sense opened our eyes to host-pathogen interaction and interdependence. The fifth research emphasis outlines the population genetic-based search and discovery of human restriction genes that influence the epidemiological outcome of abrupt outbreaks, notably HIV-AIDS and several cancers. Finally, the last arena explored illustrates how genetic individualization in human and animals has improved forensic evidence in capital crimes. Each discipline has intuitive and technological overlaps, and each has benefitted from the contribution of genetic and genomic principles I learned so long ago from Drosophila. The journey continues.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004; .,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33004, USA
| |
Collapse
|
10
|
Nonhuman forensic genetics. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Grela M, Kowalczyk M, Gryzinska M, Listos P, Zawadzka E, Mazurkiewicz I, Jakubczak A. Development of an STR panel for individual identification and determination of the degree of relationship between American mink (Neovison Vison). AUST J FORENSIC SCI 2019. [DOI: 10.1080/00450618.2019.1661514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Malgorzata Grela
- Department and Clinic of Animal Internal Diseases Sub-Department of Pathomorphology and Forensic Medicine Faculty of Veterinary Medicine, Uniwersytet Przyrodniczy w Lublinie, Lublin, Poland
| | - Marek Kowalczyk
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Magdalena Gryzinska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Listos
- Department and Clinic of Animal Internal Diseases Sub-Department of Pathomorphology and Forensic Medicine Faculty of Veterinary Medicine, Uniwersytet Przyrodniczy w Lublinie, Lublin, Poland
| | - Ewelina Zawadzka
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Ilona Mazurkiewicz
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Andrzej Jakubczak
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
12
|
Moore MK, Frazier K. Humans Are Animals, Too: Critical Commonalities and Differences Between Human and Wildlife Forensic Genetics. J Forensic Sci 2019; 64:1603-1621. [DOI: 10.1111/1556-4029.14066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/10/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- M. Katherine Moore
- Forensic Laboratory Conservation Biology Division Northwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration 219 Fort Johnson Road Charleston SC29412
| | - Kim Frazier
- Wyoming Game and Fish Wildlife Forensic and Fish Health Laboratory 1212 South Adams Street Laramie WY 82070
| |
Collapse
|
13
|
Sobhakumari A, Poppenga RH, Pesavento JB, Uzal FA. Pathology of carbon monoxide poisoning in two cats. BMC Vet Res 2018; 14:67. [PMID: 29506505 PMCID: PMC5836452 DOI: 10.1186/s12917-018-1385-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 05/17/2023] Open
Abstract
Background Carbon monoxide (CO), a common cause of poisoning in human beings has also been implicated in the death of animals. Though there are multiple studies on CO poisoning and relevant lethal blood COHb concentrations in humans, there are no reliable reports of diagnostic lethal carboxyhemoglobin percentage of saturation (COHb%) in cats. Additionally, due to shared housing environments, exposures to companion animals can be a surrogate for lethal exposures in human beings and provide valuable information in concurrent forensic investigations. Case presentation Two adult Singapura brown ticked cats were submitted to the California Animal Health and Food Safety Laboratory (CAHFS) for necropsy and diagnostic work-up. These animals were found dead along with their two deceased owners. Similar lesions were observed in both cats. At necropsy, gross lesions consisted of multifocal, large, irregular, bright red spots on the skin of the abdomen and the inner surface of ear pinnae, bright red muscles and blood. The carcasses, and tissues fixed in formalin retained the bright red discoloration for up to two weeks. Microscopic lesions included diffuse pulmonary congestion and edema, and multifocal intense basophilia of cardiomyocytes mostly affecting whole fibers or occasionally a portion of the fiber. Based on the clinical history,gross and microscopic changes, cyanide or carbon monoxide poisoning was suspected. Blood samples analyzed for carbon monoxide showed 57 and 41% carboxyhemoglobin COHb%. Muscle samples were negative for cyanide. Conclusion There are no established reference values for lethal COHb concentration in cats. The COHb % values detected in this case which fell within the lethal range reported for other species, along with the gross lesions and unique histological findings in the heart suggest a helpful criteria for diagnosis of CO intoxication associated death in cats. This case demonstrates that since pets share the same environment as human beings and often are a part of their activities, they can be useful adjuncts in potential forensic investigations to help solve human cases.
Collapse
Affiliation(s)
- Arya Sobhakumari
- California Animal Health and Food Safety Laboratory System, Davis branch, School of Veterinary Medicine, University of California Davis, Davis, USA
| | - Robert H Poppenga
- California Animal Health and Food Safety Laboratory System, Davis branch, School of Veterinary Medicine, University of California Davis, Davis, USA
| | - J Brad Pesavento
- California Animal Health and Food Safety Laboratory System, Davis branch, School of Veterinary Medicine, University of California Davis, Davis, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, School of Veterinary Medicine, University of California Davis, 105 W Central Ave, San Bernardino, CA, 92408, USA.
| |
Collapse
|
14
|
Wesselink M, Desmyter S, Kuiper I. Local populations and inaccuracies: Determining the relevant mitochondrial haplotype distributions for North West European cats. Forensic Sci Int Genet 2017. [DOI: 10.1016/j.fsigen.2017.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Arenas M, Pereira F, Oliveira M, Pinto N, Lopes AM, Gomes V, Carracedo A, Amorim A. Forensic genetics and genomics: Much more than just a human affair. PLoS Genet 2017; 13:e1006960. [PMID: 28934201 PMCID: PMC5608170 DOI: 10.1371/journal.pgen.1006960] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While traditional forensic genetics has been oriented towards using human DNA in criminal investigation and civil court cases, it currently presents a much wider application range, including not only legal situations sensu stricto but also and, increasingly often, to preemptively avoid judicial processes. Despite some difficulties, current forensic genetics is progressively incorporating the analysis of nonhuman genetic material to a greater extent. The analysis of this material-including other animal species, plants, or microorganisms-is now broadly used, providing ancillary evidence in criminalistics in cases such as animal attacks, trafficking of species, bioterrorism and biocrimes, and identification of fraudulent food composition, among many others. Here, we explore how nonhuman forensic genetics is being revolutionized by the increasing variety of genetic markers, the establishment of faster, less error-burdened and cheaper sequencing technologies, and the emergence and improvement of models, methods, and bioinformatics facilities.
Collapse
Affiliation(s)
- Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipe Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Manuela Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nadia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Centre of Mathematics of the University of Porto, Porto, Portugal
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Veronica Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Angel Carracedo
- Institute of Forensic Sciences Luis Concheiro, University of Santiago de Compostela, Santiago de Compostela, Spain
- Genomics Medicine Group, CIBERER, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Ottolini B, Lall GM, Sacchini F, Jobling MA, Wetton JH. Application of a mitochondrial DNA control region frequency database for UK domestic cats. Forensic Sci Int Genet 2017; 27:149-155. [PMID: 28073089 DOI: 10.1016/j.fsigen.2016.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 11/15/2022]
Abstract
DNA variation in 402bp of the mitochondrial control region flanked by repeat sequences RS2 and RS3 was evaluated by Sanger sequencing in 152 English domestic cats, in order to determine the significance of matching DNA sequences between hairs found with a victim's body and the suspect's pet cat. Whilst 95% of English cats possessed one of the twelve globally widespread mitotypes, four new variants were observed, the most common of which (2% frequency) was shared with the evidential samples. No significant difference in mitotype frequency was seen between 32 individuals from the locality of the crime and 120 additional cats from the rest of England, suggesting a lack of local population structure. However, significant differences were observed in comparison with frequencies in other countries, including the closely neighbouring Netherlands, highlighting the importance of appropriate genetic databases when determining the evidential significance of mitochondrial DNA evidence.
Collapse
Affiliation(s)
- Barbara Ottolini
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Gurdeep Matharu Lall
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Federico Sacchini
- IDEXX Laboratories Ltd., Grange House, Sandbeck Way, Wetherby, West Yorkshire, LS22 7DN, UK
| | - Mark A Jobling
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | - Jon H Wetton
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK; School of History, University of Leicester, University Road, Leicester LE1 7RH, UK.
| |
Collapse
|
17
|
Arcieri M, Agostinelli G, Gray Z, Spadaro A, Lyons LA, Webb KM. Establishing a database of Canadian feline mitotypes for forensic use. Forensic Sci Int Genet 2016; 22:169-174. [PMID: 26971852 DOI: 10.1016/j.fsigen.2016.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 12/01/2022]
Abstract
Hair shed by pet animals is often found and collected as evidence from crime scenes. Due to limitations such as small amount and low quality, mitochondrial DNA (mtDNA) is often the only type of DNA that can be used for linking the hair to a potential contributor. mtDNA has lower discriminatory power than nuclear DNA because multiple, unrelated individuals within a population can have the same mtDNA sequence, or mitotype. Therefore, to determine the evidentiary value of a match between crime scene evidence and a suspected contributor, the frequency of the mitotype must be known within the regional population. While mitotype frequencies have been determined for the United States' cat population, the frequencies are unknown for the Canadian cat population. Given the countries' close proximity and similar human settlement patterns, these populations may be homogenous, meaning a single, regional database may be used for estimating cat population mitotype frequencies. Here we determined the mitotype frequencies of the Canadian cat population and compared them to the United States' cat population. The two cat populations are statistically homogenous, however mitotype B6 was found in high frequency in Canada and extremely low frequency in the United States, meaning a single database would not be appropriate for North America. Furthermore, this work calls attention to these local spikes in frequency of otherwise rare mitotypes, instances of which exist around the world and have the potential to misrepresent the evidentiary value of matches compared to a regional database.
Collapse
Affiliation(s)
- M Arcieri
- Department of Biology, Allegheny College, 520 North Main Street, Meadville, PA 16335 USA
| | - G Agostinelli
- Department of Biology, Allegheny College, 520 North Main Street, Meadville, PA 16335 USA
| | - Z Gray
- Department of Biology, Allegheny College, 520 North Main Street, Meadville, PA 16335 USA
| | - A Spadaro
- Department of Biology, Allegheny College, 520 North Main Street, Meadville, PA 16335 USA
| | - L A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - K M Webb
- Department of Biology, Allegheny College, 520 North Main Street, Meadville, PA 16335 USA.
| |
Collapse
|
18
|
Brooks A, Creighton EK, Gandolfi B, Khan R, Grahn RA, Lyons LA. SNP Miniplexes for Individual Identification of Random-Bred Domestic Cats. J Forensic Sci 2016; 61:594-606. [PMID: 27122395 PMCID: PMC5019183 DOI: 10.1111/1556-4029.13026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/13/2015] [Accepted: 06/06/2015] [Indexed: 11/30/2022]
Abstract
Phenotypic and genotypic characteristics of the cat can be obtained from single nucleotide polymorphisms (SNPs) analyses of fur. This study developed miniplexes using SNPs with high discriminating power for random‐bred domestic cats, focusing on individual and phenotypic identification. Seventy‐eight SNPs were investigated using a multiplex PCR followed by a fluorescently labeled single base extension (SBE) technique (SNaPshot®). The SNP miniplexes were evaluated for reliability, reproducibility, sensitivity, species specificity, detection limitations, and assignment accuracy. Six SNPplexes were developed containing 39 intergenic SNPs and 26 phenotypic SNPs, including a sex identification marker, ZFXY. The combined random match probability (cRMP) was 6.58 × 10−19 across all Western cat populations and the likelihood ratio was 1.52 × 1018. These SNPplexes can distinguish individual cats and their phenotypic traits, which could provide insight into crime reconstructions. A SNP database of 237 cats from 13 worldwide populations is now available for forensic applications.
Collapse
Affiliation(s)
- Ashley Brooks
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA, 95616
| | - Erica K Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, 1600 East Rollins Street, Columbia, MO, 65211
| | - Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA, 95616.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, 1600 East Rollins Street, Columbia, MO, 65211
| | - Razib Khan
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA, 95616
| | - Robert A Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA, 95616
| | - Leslie A Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA, 95616.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, 1600 East Rollins Street, Columbia, MO, 65211
| |
Collapse
|
19
|
Kanthaswamy S. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges. Anim Genet 2015; 46:473-84. [DOI: 10.1111/age.12335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 01/09/2023]
Affiliation(s)
- S. Kanthaswamy
- School of Mathematical and Natural Sciences; Arizona State University (ASU) at the West Campus; 4701 W Thunderbird Road Glendale AZ 85306-4908 USA
- California National Primate Research Center; University of California; Davis CA 95616 USA
| |
Collapse
|
20
|
Wesselink M, Bergwerff L, Hoogmoed D, Kloosterman AD, Kuiper I. Forensic utility of the feline mitochondrial control region - A Dutch perspective. Forensic Sci Int Genet 2015; 17:25-32. [PMID: 25796048 DOI: 10.1016/j.fsigen.2015.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/26/2022]
Abstract
Different portions of the feline mitochondrial DNA control region (CR) were evaluated for their informative value in forensic investigations. The 402bp region located between RS2 and RS3 described most extensively in the past is not efficient for distinguishing between the majority of Dutch cats, illustrated by a random match probability (RMP) of 41%. Typing of the whole region between RS2 and RS3, and additional typing of the 5'portion of the feline CR decreases the RMP to 29%, increasing the applicability of such analyses for forensic investigations. The haplotype distribution in Dutch random bred cats (N=113) differs greatly from the distributions reported for other countries, with a single haplotype NL-A1 present in 54% of the population. The three investigated breeds showed haplotype distributions differing from each other and the random bred cats with haplotype NL-A1 accounting for 4%, 29% and 32% of Maine Coon, Norwegian forest cats and Siamese & Oriental cats. These results indicate the necessity of validating haplotype frequencies within continents and regions prior to reporting the value a mtDNA match. In cases where known purebred cats are involved, further investigation of the breed may be valuable.
Collapse
Affiliation(s)
- Monique Wesselink
- Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands.
| | - Leonie Bergwerff
- Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Daniëlle Hoogmoed
- Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Ate D Kloosterman
- Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Irene Kuiper
- Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands
| |
Collapse
|
21
|
Grahn RA, Alhaddad H, Alves PC, Randi E, Waly NE, Lyons LA. Feline mitochondrial DNA sampling for forensic analysis: when enough is enough! Forensic Sci Int Genet 2014; 16:52-57. [PMID: 25531059 DOI: 10.1016/j.fsigen.2014.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/28/2014] [Accepted: 11/22/2014] [Indexed: 10/24/2022]
Abstract
Pet hair has a demonstrated value in resolving legal issues. Cat hair is chronically shed and it is difficult to leave a home with cats without some level of secondary transfer. The power of cat hair as an evidentiary resource may be underused because representative genetic databases are not available for exclusionary purposes. Mitochondrial control region databases are highly valuable for hair analyses and have been developed for the cat. In a representative worldwide data set, 83% of domestic cat mitotypes belong to one of twelve major types. Of the remaining 17%, 7.5% are unique within the published 1394 sample database. The current research evaluates the sample size necessary to establish a representative population for forensic comparison of the mitochondrial control region for the domestic cat. For most worldwide populations, randomly sampling 50 unrelated local individuals will achieve saturation at 95%. The 99% saturation is achieved by randomly sampling 60-170 cats, depending on the numbers of mitotypes available in the population at large. Likely due to the recent domestication of the cat and minimal localized population substructure, fewer cats are needed to meet mitochondria DNA control region database practical saturation than for humans or dogs. Coupled with the available worldwide feline control region database of nearly 1400 cats, minimal local sampling will be required to establish an appropriate comparative representative database and achieve significant exclusionary power.
Collapse
Affiliation(s)
- Robert A Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA.
| | - Hasan Alhaddad
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos and Departamento de Biologia da Faculdade de Ciências do Porto, Universidade do Porto, Portugal
| | - Ettore Randi
- Laboratorio di Genetica, ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Cà Fornacetta 9, 40064 Ozzano dell'Emilia, BO, Italy; Department 18/Section of Environmental Engineering, Aalborg University, Sohngårdsholmsvej 57, 9000 Aalborg, Denmark
| | - Nashwa E Waly
- Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt
| | - Leslie A Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616, USA
| |
Collapse
|
22
|
Lyons LA, Grahn RA, Kun TJ, Netzel LR, Wictum EE, Halverson JL. Acceptance of domestic cat mitochondrial DNA in a criminal proceeding. Forensic Sci Int Genet 2014; 13:61-7. [PMID: 25086413 DOI: 10.1016/j.fsigen.2014.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/20/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
Shed hair from domestic animals readily adheres to clothing and other contact items, providing a source of transfer evidence for criminal investigations. Mitochondrial DNA is often the only option for DNA analysis of shed hair. Human mitochondrial DNA analysis has been accepted in the US court system since 1996. The murder trial of the State of Missouri versus Henry L. Polk, Jr. represents the first legal proceeding where cat mitochondrial DNA analysis was introduced into evidence. The mitochondrial DNA evidence was initially considered inadmissible due to concerns about the cat dataset and the scientific acceptance of the marker. Those concerns were subsequently addressed, and the evidence was deemed admissible. This report reviews the case in regards to the cat biological evidence and its ultimate admission as generally accepted and reliable. Expansion and saturation analysis of the cat mitochondrial DNA control region dataset supported the initial interpretation of the evidence.
Collapse
Affiliation(s)
- Leslie A Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Robert A Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States; Forensics Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Teri J Kun
- Forensics Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Linda R Netzel
- Kansas City Police Crime Laboratory, 6633 Troost Avenue, Kansas City, MO 64131, United States
| | - Elizabeth E Wictum
- Forensics Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Joy L Halverson
- Zoogen Services, 1046 Olive Drive Suite 1, Davis, CA 95616, United States
| |
Collapse
|
23
|
Schury N, Schleenbecker U, Hellmann AP. Forensic animal DNA typing: Allele nomenclature and standardization of 14 feline STR markers. Forensic Sci Int Genet 2014; 12:42-59. [PMID: 24893348 DOI: 10.1016/j.fsigen.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022]
Abstract
Since the domestic cat (Felis catus) has become one of the most popular pets and owners usually develop a close relationship to their cats, it is necessary to take traces of cats into account for forensic casework. For this purpose feline short tandem (STR) repeat markers have been investigated in several earlier studies, but no detailed description of sequence data, allelic variations or a repeat-based nomenclature is available. The aim of the study was to provide a suggestion for the allele nomenclature of 14 cat STR markers according to the recommendations of the International Society for Forensic Genetics (ISFG) for human DNA typing and to present a standardized system for a secure DNA typing of samples. Samples of 122 unrelated cats from a local animal shelter and private owners in Germany were used to generate a population database with allele frequencies and to analyze the tandemly repeated sequence variations within the alleles of each STR marker. These markers could be grouped into two STR classes: simple repeat STRs and complex STRs (some with the supplement highly complex), consisting of di- and tetranucleotide repeat motifs. After analyzing the repeat structure and elaborating a repeat based nomenclature, allelic ladders of common and rarely occurring alleles for each marker were designed to enable accurate typing of alleles that differ in fragment length and to facilitate data exchange.
Collapse
Affiliation(s)
- N Schury
- Bundeskriminalamt, Forensic Science Institute, KT32, Äppelallee 45, 65203 Wiesbaden, Germany; Johannes Gutenberg University Mainz, Institute of Legal Medicine - Medical University, Molecular Biology, Am Pulverturm 3, 55131 Mainz, Germany
| | - U Schleenbecker
- Bundeskriminalamt, Forensic Science Institute, KT32, Äppelallee 45, 65203 Wiesbaden, Germany
| | - A P Hellmann
- Bundeskriminalamt, Forensic Science Institute, KT32, Äppelallee 45, 65203 Wiesbaden, Germany.
| |
Collapse
|
24
|
Iyengar A, Hadi S. Use of non-human DNA analysis in forensic science: a mini review. MEDICINE, SCIENCE, AND THE LAW 2014; 54:41-50. [PMID: 23929675 DOI: 10.1177/0025802413487522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Analysis of non-human DNA in forensic science, first reported about two decades ago, is now commonplace. Results have been used as evidence in court in a variety of cases ranging from abduction and murder to patent infringement and dog attack. DNA from diverse species, including commonly encountered pets such as dogs and cats, to plants, viruses and bacteria has been used and the sheer potential offered by such analyses has been proven. In this review, using case examples throughout, we detail the considerable literature in this field.
Collapse
Affiliation(s)
- Arati Iyengar
- School of Forensic & Investigative Sciences, University of Central Lancashire, Preston, UK
| | | |
Collapse
|
25
|
Kun T, Lyons LA, Sacks BN, Ballard RE, Lindquist C, Wictum EJ. Developmental validation of Mini-DogFiler for degraded canine DNA. Forensic Sci Int Genet 2012; 7:151-8. [PMID: 23040244 DOI: 10.1016/j.fsigen.2012.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 11/29/2022]
Abstract
Dogs (Canis lupus familiaris) are kept as pets in 39% of American households and are, therefore, a significant source of potentially probative biological evidence. As with any biological evidence, degradation can occur as a consequence of environmental exposure causing fracturing of the DNA and a resulting loss of intact template. Degraded human DNA analysis has benefited from the application of primer sets that amplify shorter nuclear sequences for core STR loci (miniSTRs), resulting in improved DNA profiles. This same approach was applied to our core canine STR loci. The 16-locus "DogFiler" panel was redesigned into three panels of miniSTRs for analysis of degraded canine DNA, with all primer pairs producing amplicons below 205 base pairs in length. These new miniSTR marker panels - known as Mini-DogFiler - were validated according to SWGDAM guidelines, and concordance with the original 16-locus multiplex was demonstrated through genotyping 1244 samples. The combination of these miniSTRs and a half-volume reaction increased the amplification success of degraded and low copy number canine biological samples resulting in a near three-fold increase in reportable alleles. This assemblage of miniSTRs along with the DogFiler panel and associated allelic ladder are the first non-human DNA profiling system to parallel the human forensic paradigm.
Collapse
Affiliation(s)
- Teri Kun
- Forensic Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8744, USA
| | | | | | | | | | | |
Collapse
|
26
|
Developmental validation of DogFiler, a novel multiplex for canine DNA profiling in forensic casework. Forensic Sci Int Genet 2012; 7:82-91. [PMID: 22832398 DOI: 10.1016/j.fsigen.2012.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/22/2022]
Abstract
While the analysis of human DNA has been the focus of large-scale collaborative endeavors, non-human forensic DNA analysis has not benefited from the same funding streams and coordination of effort. Consequently, the development of standard marker panels, allelic ladders and allele-specific sequence data comparable to those established for human forensic genetics has lagged. To meet that need for domestic dogs, we investigated sequence data provided by the published 7.6X dog genome for novel short tandem repeat markers that met our criteria for sensitivity, stability, robustness, polymorphic information content, and ease of scoring. Fifteen unlinked tetranucleotide repeat markers were selected from a pool of 3113 candidate markers and assembled with a sex-linked marker into a multiplex capable of generating a full profile with as little as 60pg of nuclear DNA. An accompanying allelic ladder was assembled and sequenced to obtain detailed repeat motif data. Validation was carried out according to SWGDAM guidelines, and the DogFiler panel has been integrated into forensic casework and accepted in courts across the U.S. Applying various formulae for calculating random match probabilities for inbred populations, estimates for this panel of markers have proven to be comparable to those obtained in human forensic genetics. The DogFiler panel and the associated allelic ladder represent the first published non-human profiling system to fully address all SWGDAM recommendations.
Collapse
|
27
|
Imes DL, Wictum EJ, Allard MW, Sacks BN. Identification of single nucleotide polymorphisms within the mtDNA genome of the domestic dog to discriminate individuals with common HVI haplotypes. Forensic Sci Int Genet 2012; 6:630-9. [PMID: 22436122 DOI: 10.1016/j.fsigen.2012.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 11/26/2022]
Abstract
We sequenced the entire ∼16 kb canine mitochondrial genome (mtGenome) of 100 unrelated domestic dogs (Canis lupus familiaris) and compared these to 246 published sequences to assess hypervariable region I (HVI) haplotype frequencies. We then used all available sequences to identify informative single nucleotide polymorphisms (SNPs) outside of the control region for use in further resolving mtDNA haplotypes corresponding to common HVI haplotypes. Haplotype frequencies in our data set were highly correlated with previous ones (e.g., F(ST)=0.02, r=0.90), suggesting the total data set reasonably reflected the broader dog population. A total of 128 HVI haplotypes was represented. The 10 most common HVI haplotypes (n=184 dogs) represented 53.3% of the sample. We identified a total 71 SNPs in the mtGenomes (external to the control region) that resolved the 10 most common HVI haplotypes into 63 mtGenome subhaplotypes. The random match probability of the dataset based solely on the HVI sequence was 4%, whereas the random match probability of the mtGenome subhaplotypes was <1%. Thus, the panel of 71 SNPs identified in this study represents a useful forensic tool to further resolve the identity of individual dogs from mitochondrial DNA (mtDNA).
Collapse
Affiliation(s)
- Donna L Imes
- Canid Diversity and Conservation Laboratory, Center for Veterinary Genetics, University of California at Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
28
|
Menotti-Raymond M, David VA, Weir BS, O'Brien SJ. A population genetic database of cat breeds developed in coordination with a domestic cat STR multiplex. J Forensic Sci 2012; 57:596-601. [PMID: 22268511 DOI: 10.1111/j.1556-4029.2011.02040.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A simple tandem repeat (STR) PCR-based typing system developed for the genetic individualization of domestic cat samples has been used to generate a population genetic database of domestic cat breeds. A panel of 10 tetranucleotide STR loci and a gender-identifying sequence tagged site (STS) were co-amplified in genomic DNA of 1043 individuals representing 38 cat breeds. The STR panel exhibits relatively high heterozygosity in cat breeds, with an average 10-locus heterozygosity of 0.71, which represents an average of 38 breed-specific heterozygosities for the 10-member panel. When the entire set of breed individuals was analyzed as a single population, a heterozygosity of 0.87 was observed. Heterozygosities obtained for the 10 loci range from 0.72 to 0.96. The power for genetic individualization of domestic cat samples of the multiplex is high, with a probability of match (p(m)) of 6.2E-14, using a conservative θ = 0.05.
Collapse
Affiliation(s)
- Marilyn Menotti-Raymond
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Building 560, Room 11-38, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
29
|
Scharnhorst G, Kanthaswamy S. An assessment of scientific and technical aspects of closed investigations of canine forensics DNA--case series from the University of California, Davis, USA. Croat Med J 2012; 52:280-92. [PMID: 21674824 PMCID: PMC3118728 DOI: 10.3325/cmj.2011.52.280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aim To describe and assess the scientific and technical aspects of animal forensic testing at the University of California, Davis. The findings and recommendations contained in this report are designed to assess the past, evaluate the present, and recommend reforms that will assist the animal forensic science community in providing the best possible services that comply with court standards and bear judicial scrutiny. Methods A batch of 32 closed files of domestic dog DNA cases processed at the University of California, Davis, between August 2003 and July 2005 were reviewed in this study. The case files comprised copies of all original paperwork, copies of the cover letter or final report, laboratory notes, notes on analyses, submission forms, internal chains of custody, printed images and photocopies of evidence, as well as the administrative and technical reviews of those cases. Results While the fundamental aspects of animal DNA testing may be reliable and acceptable, the scientific basis for forensic testing animal DNA needs to be improved substantially. In addition to a lack of standardized and validated genetic testing protocols, improvements are needed in a wide range of topics including quality assurance and quality control measures, sample handling, evidence testing, statistical analysis, and reporting. Conclusion This review implies that although a standardized panel of short tandem repeat and mitochondrial DNA markers and publicly accessible genetic databases for canine forensic DNA analysis are already available, the persistent lack of supporting resources, including standardized quality assurance and quality control programs, still plagues the animal forensic community. This report focuses on closed cases from the period 2003-2005, but extends its scope more widely to include other animal DNA forensic testing services.
Collapse
Affiliation(s)
- Günther Scharnhorst
- The Jan Bashinski DNA Laboratory, California Department of Justice, Richmond, Calif., USA
| | | |
Collapse
|
30
|
Tarditi CR, Grahn RA, Evans JJ, Kurushima JD, Lyons LA. Mitochondrial DNA sequencing of cat hair: an informative forensic tool. J Forensic Sci 2010; 56 Suppl 1:S36-46. [PMID: 21077873 DOI: 10.1111/j.1556-4029.2010.01592.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approximately 81.7 million cats are in 37.5 million U.S. households. Shed fur can be criminal evidence because of transfer to victims, suspects, and/or their belongings. To improve cat hairs as forensic evidence, the mtDNA control region from single hairs, with and without root tags, was sequenced. A dataset of a 402-bp control region segment from 174 random-bred cats representing four U.S. geographic areas was generated to determine the informativeness of the mtDNA region. Thirty-two mtDNA mitotypes were observed ranging in frequencies from 0.6-27%. Four common types occurred in all populations. Low heteroplasmy, 1.7%, was determined. Unique mitotypes were found in 18 individuals, 10.3% of the population studied. The calculated discrimination power implied that 8.3 of 10 randomly selected individuals can be excluded by this region. The genetic characteristics of the region and the generated dataset support the use of this cat mtDNA region in forensic applications.
Collapse
Affiliation(s)
- Christy R Tarditi
- Department of Population Health and Reproduction, University of California, Davis, 95616, USA
| | | | | | | | | |
Collapse
|
31
|
Grahn RA, Kurushima JD, Billings NC, Grahn JC, Halverson JL, Hammer E, Ho CK, Kun TJ, Levy JK, Lipinski MJ, Mwenda JM, Ozpinar H, Schuster RK, Shoorijeh SJ, Tarditi CR, Waly NE, Wictum EJ, Lyons LA. Feline non-repetitive mitochondrial DNA control region database for forensic evidence. Forensic Sci Int Genet 2010; 5:33-42. [PMID: 20457082 DOI: 10.1016/j.fsigen.2010.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 01/08/2010] [Accepted: 01/20/2010] [Indexed: 01/26/2023]
Abstract
The domestic cat is the one of the most popular pets throughout the world. A by-product of owning, interacting with, or being in a household with a cat is the transfer of shed fur to clothing or personal objects. As trace evidence, transferred cat fur is a relatively untapped resource for forensic scientists. Both phenotypic and genotypic characteristics can be obtained from cat fur, but databases for neither aspect exist. Because cats incessantly groom, cat fur may have nucleated cells, not only in the hair bulb, but also as epithelial cells on the hair shaft deposited during the grooming process, thereby generally providing material for DNA profiling. To effectively exploit cat hair as a resource, representative databases must be established. The current study evaluates 402 bp of the mtDNA control region (CR) from 1394 cats, including cats from 25 distinct worldwide populations and 26 breeds. Eighty-three percent of the cats are represented by 12 major mitotypes. An additional 8.0% are clearly derived from the major mitotypes. Unique sequences are found in 7.5% of the cats. The overall genetic diversity for this data set is 0.8813±0.0046 with a random match probability of 11.8%. This region of the cat mtDNA has discriminatory power suitable for forensic application worldwide.
Collapse
Affiliation(s)
- R A Grahn
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Forensic hair analysis to identify animal species on a case of pet animal abuse. Int J Legal Med 2009; 124:249-56. [DOI: 10.1007/s00414-009-0383-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
33
|
Kanthaswamy S, Tom BK, Mattila AM, Johnston E, Dayton M, Kinaga J, Joy-Alise Erickson B, Halverson J, Fantin D, DeNise S, Kou A, Malladi V, Satkoski J, Budowle B, Glenn Smith D, Koskinen MT. Canine Population Data Generated from a Multiplex STR Kit for Use in Forensic Casework. J Forensic Sci 2009; 54:829-40. [DOI: 10.1111/j.1556-4029.2009.01080.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Linacre A, s. Tobe S. Species Identification Using DNA Loci. FORENSIC SCIENCE IN WILDLIFE INVESTIGATIONS 2009. [DOI: 10.1201/9780849304118.ch4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
O'Brien SJ, Johnson W, Driscoll C, Pontius J, Pecon-Slattery J, Menotti-Raymond M. State of cat genomics. Trends Genet 2008; 24:268-79. [PMID: 18471926 PMCID: PMC7126825 DOI: 10.1016/j.tig.2008.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 01/19/2023]
Abstract
Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Müller K, Brugger C, Klein R, Miltner E, Reuther F, Wiegand P. STR typing of hairs from domestic cats. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2008. [DOI: 10.1016/j.fsigss.2007.10.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Forensic veterinary medicine: a rapidly evolving discipline. Forensic Sci Med Pathol 2008; 4:75-82. [DOI: 10.1007/s12024-008-9036-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
38
|
Pontius JU, Mullikin JC, Smith DR, Lindblad-Toh K, Gnerre S, Clamp M, Chang J, Stephens R, Neelam B, Volfovsky N, Schäffer AA, Agarwala R, Narfström K, Murphy WJ, Giger U, Roca AL, Antunes A, Menotti-Raymond M, Yuhki N, Pecon-Slattery J, Johnson WE, Bourque G, Tesler G, O'Brien SJ. Initial sequence and comparative analysis of the cat genome. Genome Res 2008; 17:1675-89. [PMID: 17975172 DOI: 10.1101/gr.6380007] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing approximately 65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence.
Collapse
Affiliation(s)
- Joan U Pontius
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Forensic botany: Usability of bryophyte material in forensic studies. Forensic Sci Int 2007; 172:161-3. [DOI: 10.1016/j.forsciint.2006.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 11/16/2006] [Accepted: 11/19/2006] [Indexed: 11/20/2022]
|
41
|
Dawnay N, Ogden R, Thorpe RS, Pope LC, Dawson DA, McEwing R. A forensic STR profiling system for the Eurasian badger: a framework for developing profiling systems for wildlife species. Forensic Sci Int Genet 2007; 2:47-53. [PMID: 19083789 DOI: 10.1016/j.fsigen.2007.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 07/19/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
Developing short tandem repeat (STR) profiling systems for forensic identification is complicated in animal species. Obtaining a representative number of individuals from populations, limited access to family groups and a lack of developed STR markers can make adhering to human forensic guidelines difficult. Furthermore, a lack of animal specific guidelines may explain why many wildlife forensic STR profiling systems developed to date have not appropriately addressed areas such as marker validation or the publication and analysis of population data necessary for the application of these tools to forensic science. Here we present a methodology used to develop an STR profiling system for a legally protected wildlife species, the Eurasian badger Meles meles. Ten previously isolated STR loci were selected based on their level of polymorphism, adherence to Hardy-Weinberg expectations and their fragment size. Each locus was individually validated with respect to its reproducibility, inheritance, species specificity, DNA template concentration and thermocycling parameters. The effects of chemical, substrate and environmental exposure were also investigated. All ten STR loci provided reliable and reproducible results, and optimal amplification conditions were defined. Allele frequencies from 20 representative populations in England and Wales are presented and used to calculate the level of population substructure (theta) and inbreeding (f). Accounting for these estimates, the average probability of identity (PI(ave)) was 2.18 x 10(-7). This case study can act as a framework for others attempting to develop wildlife forensic profiling systems.
Collapse
Affiliation(s)
- Nick Dawnay
- School of Biological Sciences, University of Wales, Bangor LL57 2UW, United Kingdom.
| | | | | | | | | | | |
Collapse
|
42
|
Hellmann AP, Rohleder U, Eichmann C, Pfeiffer I, Parson W, Schleenbecker U. A Proposal for Standardization in Forensic Canine DNA Typing: Allele Nomenclature of Six Canine-Specific STR Loci. J Forensic Sci 2006; 51:274-81. [PMID: 16566760 DOI: 10.1111/j.1556-4029.2006.00049.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study a proposal for the allele nomenclature of six polymorphic short tandem repeat (STR) loci (PEZ3, PEZ6, PEZ8, PEZ10, FHC2161, and FHC2328) for canine genotyping (Canis lupus familiaris) is presented. The nomenclature is based on the sequence data of the polymorphic region of the microsatellite markers as recommended by the DNA commission of the International Society of Forensic Haemogenetics (ISFH) in 1994 for human DNA typing. To cover commonly and rarely occurring alleles, a selection of homozygous and heterozygous animals were analyzed and subjected to sequence studies. The alleles consisted of simple tri- and tetra-nucleotide repeat patterns as well as compound and highly complex repeat patterns. Several alleles revealing the same fragment size but different repeat structures were found. The allele designation described here was adopted to the number of repeats, including all variable regions within the amplified fragment. In a second step the most commonly occurring alleles were added to an allelic ladder for each marker allowing a reliable typing of all alleles differing in size. A total number of 142 unrelated dogs from surrounding municipal animal homes, private households, and canines in police duty were analyzed. The data were added to a population database providing allele frequencies for each marker.
Collapse
Affiliation(s)
- Andreas P Hellmann
- Bundeskriminalamt, Kriminaltechnisches Institut, KT32, Thaerstr. 11, 65193 Wiesbaden, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Sato T, Sato G, Shoji Y, Itou T, Sakai T. Extraction and Detection of mRNA from Horsehair. J Vet Med Sci 2006; 68:503-6. [PMID: 16757896 DOI: 10.1292/jvms.68.503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After RNA extraction from horsehair shafts and roots, the mRNAs of beta-actin, muscle-type phosphofructokinase, and transforming growth factor-beta1 were detected by reverse transcription polymerase chain reaction assay. Low amounts of RNA were present in the horsehair. These specific mRNA transcripts were readily detected when more than three hair roots were used. However, detection of the mRNA transcripts was difficult in the hair shaft. These findings indicate that the small amounts of residual RNA in horsehair roots can be utilized as samples for molecular biological analysis.
Collapse
Affiliation(s)
- Tetsuo Sato
- Department of Preventive Veterinary Medicine and Animal Health, Nihon University School of Veterinary Medicine, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
44
|
Abstract
Advances in population and quantitative genomics, aided by the computational algorithms that employ genetic theory and practice, are now being applied to biological questions that surround free-ranging species not traditionally suitable for genetic enquiry. Here we review how applications of molecular genetic tools have been used to describe the natural history, present status, and future disposition of wild cat species. Insight into phylogenetic hierarchy, demographic contractions, geographic population substructure, behavioral ecology, and infectious diseases have revealed strategies for survival and adaptation of these fascinating predators. Conservation, stabilization, and management of the big cats are important areas that derive benefit from the genome resources expanded and applied to highly successful species, imperiled by an expanding human population.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
45
|
Xu YC, Li B, Li WS, Bai SY, Jin Y, Li XP, Gu MB, Jing SY, Zhang W. Individualization of tiger by using microsatellites. Forensic Sci Int 2005; 151:45-51. [PMID: 15935942 DOI: 10.1016/j.forsciint.2004.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Revised: 07/01/2004] [Accepted: 07/07/2004] [Indexed: 11/25/2022]
Abstract
In investigating criminal cases of poaching and smuggling involving tigers (Panthera tigris), the number of tiger individuals involved is critical for determining the penalty. Morphological methodologies do not often work because tiger parts do not possess the distinctive characteristics of the individual. Microsatellite DNAs have been proved a reliable marker for the individualization of animals. Seven microsatellite loci derived from domestic cat (Felis catus) were selected to individualize tigers, namely F41, F42, F146, Fca304, Fca391, Fca441 and Fca453. A reference population containing 37 unrelated tigers were used to investigate alleles, allelic frequencies, genotypes and genotype frequencies of each locus. Consequently, the data was used to assess the validity of the combination of seven loci for tiger individualization. All loci were polymorphic and easy to amplify. Three out of the seven loci were significantly departure from the Hardy-Weinberg Equilibrium (P < 0.05). Cumulative discrimination power (DP) calculated with observed genotype frequencies was 0.99999789. Match probability of an individual in the reference population with a random individual in seven loci ranged from 7.34 x 10(-9) to 2.77 x 10(-5). This suggests that combining the seven microsatellite loci provides desirable power to individualize tigers. The combination of seven loci was applied to a case of tiger bone smuggling. Genotypes of all samples were identical in all seven loci, and the P(M) of the evidence samples in the seven loci hit 5.63 x 10(-7), provided evidence that the bones belong to a single tiger.
Collapse
Affiliation(s)
- Yan Chun Xu
- State Forestry Administration Detecting Center of Wild Fauna and Flora, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Budowle B, Garofano P, Hellman A, Ketchum M, Kanthaswamy S, Parson W, van Haeringen W, Fain S, Broad T. Recommendations for animal DNA forensic and identity testing. Int J Legal Med 2005; 119:295-302. [PMID: 15834735 DOI: 10.1007/s00414-005-0545-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/29/2005] [Indexed: 11/25/2022]
Abstract
Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.
Collapse
Affiliation(s)
- Bruce Budowle
- FBI Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Sherlock Holmes said "it has long been an axiom of mine that the little things are infinitely the most important", but never imagined that such a little thing, the DNA molecule, could become perhaps the most powerful single tool in the multifaceted fight against crime. Twenty years after the development of DNA fingerprinting, forensic DNA analysis is key to the conviction or exoneration of suspects and the identification of victims of crimes, accidents and disasters, driving the development of innovative methods in molecular genetics, statistics and the use of massive intelligence databases.
Collapse
Affiliation(s)
- Mark A Jobling
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.
| | | |
Collapse
|
48
|
Extraction and Analysis of Human Nuclear and Mitochondrial DNA from Electron Beam Irradiated Envelopes. J Forensic Sci 2003. [DOI: 10.1520/jfs2003109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Abstract
The compilation of a dense gene map and eventually a whole genome sequence (WGS) of the domestic cat holds considerable value for human genome annotation, for veterinary medicine, and for insight into the evolution of genome organization among mammals. Human association and veterinary studies of the cat, its domestic breeds, and its charismatic wild relatives of the family Felidae have rendered the species a powerful model for human hereditary diseases, for infectious disease agents, for adaptive evolutionary divergence, for conservation genetics, and for forensic applications. Here we review the advantages, rationale, and present strategy of a feline genome project, and we describe the disease models, comparative genomics, and biological applications posed by the full resolution of the cat's genome.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, Maryland 21702-1201, USA.
| | | | | | | |
Collapse
|
50
|
|