1
|
Jadhav P, Roy S, Butzin XY, Butzin NC. Engineering a New SsrA-Based Degradation Tag (LAA-LAA) and a Bacterial Synthetic Oscillator. ACS Synth Biol 2025; 14:1062-1071. [PMID: 40106229 PMCID: PMC12013620 DOI: 10.1021/acssynbio.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
The ATP-dependent ClpXP-SspB protease complex is responsible for the degradation of intracellular proteins and is maintained at low levels in Escherichia coli to avoid nonspecific degradation. The rate-limiting step in the protease complex leads to proteolytic queueing, where the proteins form waiting lines, and their overall degradation rate is slowed. Synthetic biologists have leveraged proteolytic queueing to design robust synthetic circuits by tagging proteins with the SsrA tag, an 11-amino acid sequence recognized by the complex. Previous work has demonstrated the binding site of each component of the ClpXP-SspB complex to the SsrA tag. However, the precise component responsible for queueing was unknown. To identify the bottleneck in the complex, we designed different SsrA tag variants depending on the chaperone binding sequences. We further overexpressed each protein in the ClpXP-SspB complex in vivo to determine how an increased amount of each component affects the tagged protein levels. Based on the degradation of the SsrA variants, upon overexpression of each component of the ClpXP-SspB system, evidence supports that ClpX (the ATP-dependent chaperone) is responsible for queueing but not ClpP (the protease) or SspB (the adapter, ATP-independent chaperone). In the process, we identified LAA-LAA, a 6-amino acid ClpX-dependent tag that degraded in vivo faster than the original SsrA tag, AANDENYALAA. We speculated that this high degradation tag could be useful in a dynamic-synthetic circuit, so we modified the well-characterized dual-feedback oscillator by replacing its original SsrA tag with the LAA-LAA tag to form the LAA-LAA-Osc oscillator. Both population and single-cell level experiments show that the new and old oscillators have distinct frequencies. Like the original oscillator, thousands of cells containing the new oscillator could be synchronized by entrainment using an external signal. Thus, the new LAA-LAA-Osc oscillator retains the original oscillator's best characteristics (robustness to fluctuations, a steady oscillation period, and entrainment across 1000s of cells to an external signal) but oscillates at a different frequency.
Collapse
Affiliation(s)
| | | | - Xuan Yi Butzin
- Department of Biology and
Microbiology, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Nicholas C. Butzin
- Department of Biology and
Microbiology, South Dakota State University, Brookings, South Dakota 57007, United States
| |
Collapse
|
2
|
Lenče T, Sulzer J, Andress K, Gribling-Burrer AS, Lamm-Schmidt V, Barquist L, Smyth RP, Faber F. The conserved noncoding RNA ModT coordinates growth and virulence in Clostridioides difficile. PLoS Biol 2024; 22:e3002948. [PMID: 39671441 PMCID: PMC11706538 DOI: 10.1371/journal.pbio.3002948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/07/2025] [Accepted: 11/22/2024] [Indexed: 12/15/2024] Open
Abstract
Bacterial noncoding RNAs fulfill a variety of cellular functions as catalysts, as scaffolds in protein complexes or as regulators of gene expression. They often exhibit complex tertiary structures that are a key determinant of their biochemical function. Here, we characterize the structured "raiA motif" RNA from Clostridioides difficile, which is conserved in more than 2,500 bacterial species from the phyla Bacillota and Actinomycetota. We show that its transcript abundance and stability in exponentially growing bacteria rivals that of ribosomal RNAs. Deletion of the "raiA motif" RNA is associated with delayed transition into stationary phase, and changes in stationary phase pathways such as spore formation, hence we rename it ModT (modulator of transition phase). Mechanistically, we show that ModT-mediated changes in cellular cyclic di-GMP levels are linked to the pronounced sporulation defect in the modT mutant. Importantly, we show that expression profiles and isoform patterns of ModT are conserved in Clostridium perfringens and Paeniclostridium sordellii, and that these orthologs can functionally complement ModT in C. difficile. Chemical structure probing of ModT in vivo reveals dynamic refolding and provides initial evidence for a potential association of ModT with proteins. In summary, our findings indicate that ModT fulfills a conserved role in regulating growth transitions in bacteria and provide a crucial step towards delineating its molecular mechanism.
Collapse
Affiliation(s)
- Tina Lenče
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Johannes Sulzer
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Kilian Andress
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, 67000 Strasbourg, France
| | - Vanessa Lamm-Schmidt
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Redmond P. Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, 67000 Strasbourg, France
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Franziska Faber
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute for Hygiene and Microbiology, Würzburg, Germany
| |
Collapse
|
3
|
Gronauer TF, Eck LK, Ludwig C, Sieber SA. A Photocrosslinking Probe to Capture the Substrates of Caseinolytic Protease P. Angew Chem Int Ed Engl 2024; 63:e202409220. [PMID: 39073273 DOI: 10.1002/anie.202409220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Protein homeostasis in bacteria is regulated by proteases such as the tetradecameric caseinolytic protease P (ClpP). Although substrates of ClpP have been successfully deciphered in genetically engineered cells, methods which directly trap processed proteins within native cells remain elusive. Here, we introduce an in situ trapping strategy which utilizes trifunctional probes that bind to the active site serine of ClpP and capture adjacent substrates with an attached photocrosslinking moiety. After enrichment using an alkyne handle, substrate deconvolution by mass spectrometry (MS) is performed. We show that our two traps bind substoichiometrically to ClpP, retain protease activity, exhibit unprecedented selectivity for Staphylococcus aureus ClpP in living cells and capture numerous known and novel substrates. The exemplary validation of trapped hits using a targeted proteomics approach confirmed the fidelity of this technology. In conclusion, we provide a novel chemical platform suited for the discovery of serine protease substrates beyond genetic engineering.
Collapse
Affiliation(s)
- Thomas F Gronauer
- TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Current affiliation: Metabolomics and Proteomics Core (MPC), Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Laura K Eck
- TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich (TUM), Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Stephan A Sieber
- TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
4
|
Shih TT, Sauer RT, Baker TA. How the double-ring ClpAP protease motor grips the substrate to unfold and degrade stable proteins. J Biol Chem 2024; 300:107861. [PMID: 39374782 PMCID: PMC11570520 DOI: 10.1016/j.jbc.2024.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Loops in the axial channels of ClpAP and other AAA+ proteases bind a short peptide degron connected by a linker to the N- or C-terminal residue of a native protein to initiate degradation. ATP hydrolysis then powers pore-loop movements that translocate these segments through the channel until a native domain is pulled against the narrow channel entrance, creating an unfolding force. Substrate unfolding is thought to depend on strong contacts between pore loops and a subset of amino acids in the unstructured sequence directly preceding the folded domain. Here, we identify such contact sequences that promote grip for ClpAP and use ClpA structures to place these sequences within ClpA's two AAA+ rings. The positions and chemical nature of certain residues within an unstructured segment that are positioned to interact with the D2 ring have major positive effects on substrate unfolding, whereas segments located within the D1 ring have little consequence. Within the D2-bound segment, two short elements are critical for accelerating degradation; one is at the "top" of D2 and consists of at least two properly positioned nonslippery residues. In contrast, the second D2 element, which can be as short as one residue, is positioned to contact pore loops near the "bottom" of this ring. Comparison with similar studies for ClpXP reveals that positioning a well-gripped substrate sequence within the major unfoldase motor is more important than its proximity to the folded domain and that charged, polar, and hydrophobic residues all contribute favorable contacts to substrate grip.
Collapse
Affiliation(s)
- Tsai-Ting Shih
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
5
|
Pollack D, Nozoe T, Kussell E. Proteolytic stability and aggregation in a key metabolic enzyme of bacteria. Proc Natl Acad Sci U S A 2024; 121:e2301458121. [PMID: 38683989 PMCID: PMC11087809 DOI: 10.1073/pnas.2301458121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
Proteins that are kinetically stable are thought to be less prone to both aggregation and proteolysis. We demonstrate that the classical lac system of Escherichia coli can be leveraged as a model system to study this relation. β-galactosidase (LacZ) plays a critical role in lactose metabolism and is an extremely stable protein that can persist in growing cells for multiple generations after expression has stopped. By attaching degradation tags to the LacZ protein, we find that LacZ can be transiently degraded during lac operon expression but once expression has stopped functional LacZ is protected from degradation. We reversibly destabilize its tetrameric assembly using α-complementation, and show that unassembled LacZ monomers and dimers can either be degraded or lead to formation of aggregates within cells, while the tetrameric state protects against proteolysis and aggregation. We show that the presence of aggregates is associated with cell death, and that these proteotoxic stress phenotypes can be alleviated by attaching an ssrA tag to LacZ monomers which leads to their degradation. We unify our findings using a biophysical model that enables the interplay of protein assembly, degradation, and aggregation to be studied quantitatively in vivo. This work may yield approaches to reversing and preventing protein-misfolding disease states, while elucidating the functions of proteolytic stability in constant and fluctuating environments.
Collapse
Affiliation(s)
- Dan Pollack
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY10003
| | - Takashi Nozoe
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo153-8902, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, Tokyo153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo113-0033, Japan
| | - Edo Kussell
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY10003
- Department of Physics, New York University, New York, NY10003
| |
Collapse
|
6
|
Howell LM, Manole S, Reitter AR, Forbes NS. Controlled production of lipopolysaccharides increases immune activation in Salmonella treatments of cancer. Microb Biotechnol 2024; 17:e14461. [PMID: 38758181 PMCID: PMC11100551 DOI: 10.1111/1751-7915.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 05/18/2024] Open
Abstract
Immunotherapies have revolutionized cancer treatment. These treatments rely on immune cell activation in tumours, which limits the number of patients that respond. Inflammatory molecules, like lipopolysaccharides (LPS), can activate innate immune cells, which convert tumour microenvironments from cold to hot, and increase therapeutic efficacy. However, systemic delivery of lipopolysaccharides (LPS) can induce cytokine storm. In this work, we developed immune-controlling Salmonella (ICS) that only produce LPS in tumours after colonization and systemic clearance. We tuned the expression of msbB, which controls production of immunogenic LPS, by optimizing its ribosomal binding sites and protein degradation tags. This genetic system induced a controllable inflammatory response and increased dendritic cell cross-presentation in vitro. The strong off state did not induce TNFα production and prevented adverse events when injected into mice. The accumulation of ICS in tumours after intravenous injection focused immune responses specifically to tumours. Tumour-specific expression of msbB increased infiltration of immune cells, activated monocytes and neutrophils, increased tumour levels of IL-6, and activated CD8 T cells in draining lymph nodes. These immune responses reduced tumour growth and increased mouse survival. By increasing the efficacy of bacterial anti-cancer therapy, localized production of LPS could provide increased options to patients with immune-resistant cancers.
Collapse
Affiliation(s)
- Lars M. Howell
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Simin Manole
- Molecular and Cellular Biology ProgramUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Alec R. Reitter
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Neil S. Forbes
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- Molecular and Cellular Biology ProgramUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- Institute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
7
|
Fang N, Wu L, Duan S, Li J. The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules 2024; 29:2058. [PMID: 38731549 PMCID: PMC11085428 DOI: 10.3390/molecules29092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ning Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Lingyun Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Shuyan Duan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| |
Collapse
|
8
|
Kim J, Byun I, Kim DY, Joh H, Kim HJ, Lee MJ. Targeted protein degradation directly engaging lysosomes or proteasomes. Chem Soc Rev 2024; 53:3253-3272. [PMID: 38369971 DOI: 10.1039/d3cs00344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Targeted protein degradation (TPD) has been established as a viable alternative to attenuate the function of a specific protein of interest in both biological and clinical contexts. The unique TPD mode-of-action has allowed previously undruggable proteins to become feasible targets, expanding the landscape of "druggable" properties and "privileged" target proteins. As TPD continues to evolve, a range of innovative strategies, which do not depend on recruiting E3 ubiquitin ligases as in proteolysis-targeting chimeras (PROTACs), have emerged. Here, we present an overview of direct lysosome- and proteasome-engaging modalities and discuss their perspectives, advantages, and limitations. We outline the chemical composition, biochemical activity, and pharmaceutical characteristics of each degrader. These alternative TPD approaches not only complement the first generation of PROTACs for intracellular protein degradation but also offer unique strategies for targeting pathologic proteins located on the cell membrane and in the extracellular space.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Do Young Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hyunhi Joh
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hak Joong Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Vazulka S, Schiavinato M, Tauer C, Wagenknecht M, Cserjan-Puschmann M, Striedner G. RNA-seq reveals multifaceted gene expression response to Fab production in Escherichia coli fed-batch processes with particular focus on ribosome stalling. Microb Cell Fact 2024; 23:14. [PMID: 38183013 PMCID: PMC10768439 DOI: 10.1186/s12934-023-02278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Escherichia coli is a cost-effective expression system for production of antibody fragments like Fabs. Various yield improvement strategies have been applied, however, Fabs remain challenging to produce. This study aimed to characterize the gene expression response of commonly used E. coli strains BL21(DE3) and HMS174(DE3) to periplasmic Fab expression using RNA sequencing (RNA-seq). Two Fabs, Fabx and FTN2, fused to a post-translational translocation signal sequence, were produced in carbon-limited fed-batch cultivations. RESULTS Production of Fabx impeded cell growth substantially stronger than FTN2 and yields of both Fabs differed considerably. The most noticeable, common changes in Fab-producing cells suggested by our RNA-seq data concern the cell envelope. The Cpx and Psp stress responses, both connected to inner membrane integrity, were activated, presumably by recombinant protein aggregation and impairment of the Sec translocon. The data additionally suggest changes in lipopolysaccharide synthesis, adjustment of membrane permeability, and peptidoglycan maturation and remodeling. Moreover, all Fab-producing strains showed depletion of Mg2+, indicated by activation of the PhoQP two-component signal transduction system during the early stage and sulfur and phosphate starvation during the later stage of the process. Furthermore, our data revealed ribosome stalling, caused by the Fabx amino acid sequence, as a contributor to low Fabx yields. Increased Fabx yields were obtained by a site-specific amino acid exchange replacing the stalling sequence. Contrary to expectations, cell growth was not impacted by presence or removal of the stalling sequence. Considering ribosome rescue is a conserved mechanism, the substantial differences observed in gene expression between BL21(DE3) and HMS174(DE3) in response to ribosome stalling on the recombinant mRNA were surprising. CONCLUSIONS Through characterization of the gene expression response to Fab production under industrially relevant cultivation conditions, we identified potential cell engineering targets. Thereby, we hope to enable rational approaches to improve cell fitness and Fab yields. Furthermore, we highlight ribosome stalling caused by the amino acid sequence of the recombinant protein as a possible challenge during recombinant protein production.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV, GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
10
|
Asensio‐Calavia A, Ceballos‐Munuera Á, Méndez‐Pérez A, Álvarez B, Fernández LÁ. A tuneable genetic switch for tight control of tac promoters in Escherichia coli boosts expression of synthetic injectisomes. Microb Biotechnol 2024; 17:e14328. [PMID: 37608576 PMCID: PMC10832536 DOI: 10.1111/1751-7915.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Biosafety of engineered bacteria as living therapeutics requires a tight regulation to control the specific delivery of protein effectors, maintaining minimum leakiness in the uninduced (OFF) state and efficient expression in the induced (ON) state. Here, we report a three repressors (3R) genetic circuit that tightly regulates the expression of multiple tac promoters (Ptac) integrated in the chromosome of E. coli and drives the expression of a complex type III secretion system injectisome for therapeutic protein delivery. The 3R genetic switch is based on the tetracycline repressor (TetR), the non-inducible lambda repressor cI (ind-) and a mutant lac repressor (LacIW220F ) with higher activity. The 3R switch was optimized with different protein translation and degradation signals that control the levels of LacIW220F . We demonstrate the ability of an optimized switch to fully repress the strong leakiness of the Ptac promoters in the OFF state while triggering their efficient activation in the ON state with anhydrotetracycline (aTc), an inducer suitable for in vivo use. The implementation of the optimized 3R switch in the engineered synthetic injector E. coli (SIEC) strain boosts expression of injectisomes upon aTc induction, while maintaining a silent OFF state that preserves normal growth in the absence of the inducer. Since Ptac is a commonly used promoter, the 3R switch may have multiple applications for tight control of protein expression in E. coli. In addition, the modularity of the 3R switch may enable its tuning for the control of Ptac promoters with different inducers.
Collapse
Affiliation(s)
- Alejandro Asensio‐Calavia
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| | - Álvaro Ceballos‐Munuera
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
- Programa de Doctorado en Biociencias MolecularesUniversidad Autónoma de Madrid (UAM)MadridSpain
| | - Almudena Méndez‐Pérez
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
- Programa de Doctorado en Biociencias MolecularesUniversidad Autónoma de Madrid (UAM)MadridSpain
| | - Beatriz Álvarez
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| |
Collapse
|
11
|
Santos HSDB, Damé-Teixeira N, Nagano MH, Do T, Parolo CCF, Maltz M, Arthur RA. Acid tolerance of Lactobacillus spp. on root carious lesions: A complex and multifaceted response. Arch Oral Biol 2023; 156:105820. [PMID: 37866118 DOI: 10.1016/j.archoralbio.2023.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Lactobacillus spp. are acidogenic and aciduric bacteria and are among the main cariogenic microorganisms associated with the carious process. OBJECTIVE This study aimed to identify genes involved in the acid-tolerance of Lactobacillus spp. and potential functions attributed to these genes within the metatranscriptome of sound root surfaces and carious root surfaces. DESIGN Genomic libraries were built from mRNA isolated from the biofilm samples (10 from sound root and 9 from carious root using Illumina HiSeq 2500). Reads generated by RNA-seq were mapped against 162 oral microbial genomes and genes potentially related to acid tolerance were manually extracted from the Lactobacillus spp. genomes using L. paracasei ATCC 344 as reference genome. The R package DESeq2 was used to calculate the level of differential gene expression between those two clinical conditions. RESULTS Fifteen Lactobacillus spp. genomes were identified and a total of 653 acid tolerance genes were overexpressed in carious root surfaces. Multiple functions, as translation, ribosomal structure and biogenesis, transport of nucleotides and amino acids, are involved in Lactobacillus spp. acid tolerance. Species-specific functions also seem to be related to the fitness of Lactobacillus spp. in acidified environments such as that of the cariogenic biofilm associated with carious root lesions. CONCLUSIONS The response of Lactobacillus spp. to an acidic environment is complex and multifaceted. This finding suggests several possible avenues for further research into the adaptive mechanisms of these bacteria.
Collapse
Affiliation(s)
- Heitor Sales de Barros Santos
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil
| | - Nailê Damé-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasilia, Brazil; Division of Oral Biology, School of Dentistry, University of Leeds, Wellcome Trust Brenner Building, St. James' University Hospital, LS9 7TF Leeds, United Kingdom
| | - Martina Hitomi Nagano
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Wellcome Trust Brenner Building, St. James' University Hospital, LS9 7TF Leeds, United Kingdom
| | - Clarissa Cavalcanti Fatturi Parolo
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil
| | - Marisa Maltz
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil
| | - Rodrigo Alex Arthur
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| |
Collapse
|
12
|
Rudenko O, Baseggio L, McGuigan F, Barnes AC. Transforming the untransformable with knockout minicircles: High-efficiency transformation and vector-free allelic exchange knockout in the fish pathogen Photobacterium damselae. Microbiologyopen 2023; 12:e1374. [PMID: 37642481 PMCID: PMC10441182 DOI: 10.1002/mbo3.1374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Gene inactivation studies are critical in pathogenic bacteria, where insights into species biology can guide the development of vaccines and treatments. Allelic exchange via homologous recombination is a generic method of targeted gene editing in bacteria. However, generally applicable protocols are lacking, and suboptimal approaches are often used for nonstandard but epidemiologically important species. Photobacterium damselae subsp. piscicida (Pdp) is a primary pathogen of fish in aquaculture and has been considered hard to transform since the mid-1990s. Consequently, conjugative transfer of RK2/RP4 suicide vectors from Escherichia coli S17-1/SM10 donor strains, a system prone to off-target mutagenesis, was used to deliver the allelic exchange DNA in previous studies. Here we have achieved efficient electrotransformation in Pdp using a salt-free highly concentrated sucrose solution, which performs as a hypertonic wash buffer, cryoprotectant, and electroporation buffer. High-efficiency transformation has enabled vector-free mutagenesis for which we have employed circular minimalistic constructs (knockout minicircles) containing only allelic exchange essentials that were generated by Gibson assembly. Preparation of competent cells using sucrose and electroporation/integration of minicircles had virtually no detectable off-target promutagenic effect. In contrast, a downstream sacB selection apparently induced several large deletions via mobilization of transposable elements. Electroporation of minicircles into sucrose-treated cells is a versatile broadly applicable approach that may facilitate allelic exchange in a wide range of microbial species. The method permitted inactivation of a primary virulence factor unique to Pdp, apoptogenic toxin AIP56, demonstrating the efficacy of minicircles for difficult KO targets located on the high copy number of small plasmids.
Collapse
Affiliation(s)
- Oleksandra Rudenko
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Laura Baseggio
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fynn McGuigan
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Andrew C. Barnes
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
13
|
Tawk C, Lim B, Bencivenga-Barry NA, Lees HJ, Ramos RJF, Cross J, Goodman AL. Infection leaves a genetic and functional mark on the gut population of a commensal bacterium. Cell Host Microbe 2023; 31:811-826.e6. [PMID: 37119822 PMCID: PMC10197903 DOI: 10.1016/j.chom.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/04/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Gastrointestinal infection changes microbiome composition and gene expression. In this study, we demonstrate that enteric infection also promotes rapid genetic adaptation in a gut commensal. Measurements of Bacteroides thetaiotaomicron population dynamics within gnotobiotic mice reveal that these populations are relatively stable in the absence of infection, and the introduction of the enteropathogen Citrobacter rodentium reproducibly promotes rapid selection for a single-nucleotide variant with increased fitness. This mutation promotes resistance to oxidative stress by altering the sequence of a protein, IctA, that is essential for fitness during infection. We identified commensals from multiple phyla that attenuate the selection of this variant during infection. These species increase the levels of vitamin B6 in the gut lumen. Direct administration of this vitamin is sufficient to significantly reduce variant expansion in infected mice. Our work demonstrates that a self-limited enteric infection can leave a stable mark on resident commensal populations that increase fitness during infection.
Collapse
Affiliation(s)
- Caroline Tawk
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Natasha A Bencivenga-Barry
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hannah J Lees
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruben J F Ramos
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
14
|
Wang N, Gao JG, Wu MW. Molecular docking and molecular simulation studies for N-degron selectivity of chloroplastic ClpS from Chlamydomonas reinhardtii. Comput Biol Chem 2023; 103:107825. [PMID: 36773520 DOI: 10.1016/j.compbiolchem.2023.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Regarding the importance of N-degron pathway in protein degradation network, the adaptor protein ClpS recognizes the substrates bearing classical N-degrons, and delivers them to caseinolytic protease complex ClpAP for degradation. Interestingly, the majority of N-degrons located near the N-terminus of protein substrate are belonged to the hydrophobic type amino acids. Chloroplast, an important organelle for plant photosynthesis, contain a diversified Clp degradation system. Despite several studies have confirmed that chloroplastic ClpS is able to interact with classical N-degrons derived from prokaryotes, whereas, the molecular mechanism underlying how the chloroplastic ClpS protein could recognize the substrate tagged by N-degrons is still unclear until now. Chlamydomonas reinhardtii is a kind of unicellular model organism for photosynthesis researches, which possesses a large cup-shaped chloroplast, and the corresponding genome data indicates that it owns bacterial homologous adaptor protein, named CrClpS1. However, the relevant biochemical knowledges, and protein structure researches for CrClpS1 adaptor aren't reported up to date. The molecular interactions between CrClpS1 and possible N-degrons are undefined as well. Here, we build a reliable homology model of CrClpS1 and find a hydrophobic pocket for N-degron binding. We combine molecular docking, molecular dynamic simulations, and MM/PBSA, MM/GBSA binding free energy estimations to elucidate the molecular properties of CrClpS1-N-degron interactions. Besides, we investigate the conformational changes for CrClpS1-apo in water-solvent environment and analyze its possible biological significances through a long time molecular dynamic simulation. Specifically, the adaptor CrClpS1 displays the stronger interactions with Phe, Trp, Tyr, His and Ile with respect to other amino acids. Using the residue decomposition analysis, the interactions between CrClpS1 and N-degrons are heavily depended on several conservative residues, which are located around the hydrophobic pocket, implying that chloroplast isolated from Chlamydomonas reinhadtii adopts a relatively conservative N-degron recognition mode. Besides, the opening-closure of hydrophobic pocket of CrClpS1 might be beneficial for the N-degron selectivity.
Collapse
Affiliation(s)
- Ning Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian-Guo Gao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ming-Wei Wu
- University of Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
15
|
Hadjeras L, Heiniger B, Maaß S, Scheuer R, Gelhausen R, Azarderakhsh S, Barth-Weber S, Backofen R, Becher D, Ahrens CH, Sharma CM, Evguenieva-Hackenberg E. Unraveling the small proteome of the plant symbiont Sinorhizobium meliloti by ribosome profiling and proteogenomics. MICROLIFE 2023; 4:uqad012. [PMID: 37223733 PMCID: PMC10117765 DOI: 10.1093/femsml/uqad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 05/25/2023]
Abstract
The soil-dwelling plant symbiont Sinorhizobium meliloti is a major model organism of Alphaproteobacteria. Despite numerous detailed OMICS studies, information about small open reading frame (sORF)-encoded proteins (SEPs) is largely missing, because sORFs are poorly annotated and SEPs are hard to detect experimentally. However, given that SEPs can fulfill important functions, identification of translated sORFs is critical for analyzing their roles in bacterial physiology. Ribosome profiling (Ribo-seq) can detect translated sORFs with high sensitivity, but is not yet routinely applied to bacteria because it must be adapted for each species. Here, we established a Ribo-seq procedure for S. meliloti 2011 based on RNase I digestion and detected translation for 60% of the annotated coding sequences during growth in minimal medium. Using ORF prediction tools based on Ribo-seq data, subsequent filtering, and manual curation, the translation of 37 non-annotated sORFs with ≤ 70 amino acids was predicted with confidence. The Ribo-seq data were supplemented by mass spectrometry (MS) analyses from three sample preparation approaches and two integrated proteogenomic search database (iPtgxDB) types. Searches against standard and 20-fold smaller Ribo-seq data-informed custom iPtgxDBs confirmed 47 annotated SEPs and identified 11 additional novel SEPs. Epitope tagging and Western blot analysis confirmed the translation of 15 out of 20 SEPs selected from the translatome map. Overall, by combining MS and Ribo-seq approaches, the small proteome of S. meliloti was substantially expanded by 48 novel SEPs. Several of them are part of predicted operons and/or are conserved from Rhizobiaceae to Bacteria, suggesting important physiological functions.
Collapse
Affiliation(s)
- Lydia Hadjeras
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Benjamin Heiniger
- Molecular Ecology,
Agroscope and SIB Swiss Institute of Bioinformatics, 8046 Zurich, Switzerland
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Robina Scheuer
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Christian H Ahrens
- Molecular Ecology, Agroscope and SIB Swiss Institute of Bioinformatics, 8046 Zurich, Switzerland
| | - Cynthia M Sharma
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | | |
Collapse
|
16
|
The role of trehalose biosynthesis on mycolate composition and L-glutamate production in Corynebacterium glutamicum. Microbiol Res 2022; 267:127260. [PMID: 36463830 DOI: 10.1016/j.micres.2022.127260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Corynebacterium glutamicum has been widely utilized for the industrial production of various amino acids. Trehalose is a prerequisite for the biosynthesis of mycolates which are structurally important constituents of the cell envelope in C. glutamicum. In this study, C. glutamicum mutant ΔSYA, which is unable to synthesize trehalose was constructed by deleting genes treS, treY and otsA in the three pathways of trehalose biosynthesis. In the fermentation medium, ΔSYA grew as well as the control C. glutamicum ATCC13869, synthesized similar levels of glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids to ATCC13869, but produced 12.5 times more L-glutamate than ATCC13869. Transcriptional levels of the genes relevant to L-arginine biosynthesis, encoding ODHC and relevant to the biosynthesis of sulfur-containing amino acids were down-regulated in ΔSYA. In minimal medium with different concentrations of glucose, ΔSYA grew worse than ATCC13869 but excreted more L-glutamate. When grown in minimal medium, phospholipids are the major lipid in ΔSYA, while glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids are the major lipid in ATCC13869. The transcriptional levels of mscCG in ΔSYA was significantly up-regulated when grown in minimal medium.
Collapse
|
17
|
Halvorsen TM, Ricci DP, Park DM, Jiao Y, Yung MC. Comparison of Kill Switch Toxins in Plant-Beneficial Pseudomonas fluorescens Reveals Drivers of Lethality, Stability, and Escape. ACS Synth Biol 2022; 11:3785-3796. [PMID: 36346907 DOI: 10.1021/acssynbio.2c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kill switches provide a biocontainment strategy in which unwanted growth of an engineered microorganism is prevented by expression of a toxin gene. A major challenge in kill switch engineering is balancing evolutionary stability with robust cell killing activity in application relevant host strains. Understanding host-specific containment dynamics and modes of failure helps to develop potent yet stable kill switches. To guide the design of robust kill switches in the agriculturally relevant strain Pseudomonas fluorescens SBW25, we present a comparison of lethality, stability, and genetic escape of eight different toxic effectors in the presence of their cognate inactivators (i.e., toxin-antitoxin modules, polymorphic exotoxin-immunity systems, restriction endonuclease-methyltransferase pair). We find that cell killing capacity and evolutionary stability are inversely correlated and dependent on the level of protection provided by the inactivator gene. Decreasing the proteolytic stability of the inactivator protein can increase cell killing capacity, but at the cost of long-term circuit stability. By comparing toxins within the same genetic context, we determine that modes of genetic escape increase with circuit complexity and are driven by toxin activity, the protective capacity of the inactivator, and the presence of mutation-prone sequences within the circuit. Collectively, the results of our study reveal that circuit complexity, toxin choice, inactivator stability, and DNA sequence design are powerful drivers of kill switch stability and valuable targets for optimization of biocontainment systems.
Collapse
Affiliation(s)
- Tiffany M Halvorsen
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Dante P Ricci
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Dan M Park
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Yongqin Jiao
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Mimi C Yung
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| |
Collapse
|
18
|
Observing protein degradation in solution by the PAN-20S proteasome complex: Astate-of-the-art example of bio-macromolecular TR-SANS. Methods Enzymol 2022; 678:97-120. [PMID: 36641218 DOI: 10.1016/bs.mie.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present book chapter we illustrate the state-of-the-art of time-resolved small-angle neutron scattering (TR-SANS) by a concrete example of a dynamic bio-macromolecular system, i.e., regulated protein degradation by the archaeal PAN-20S proteasome complex. We present the specific and unique structural information that can be obtained by this approach, in combination with bio-macromolecular deuteration and online spectrophotometric measurements of a fluorescent substrate (GFP). The complementarity with atomic-resolution structural biology techniques (SAXS, NMR, crystallography and cryo-EM) and with the advent of atomic structure prediction are discussed, as well as the respective limitations and future perspectives.
Collapse
|
19
|
Abstract
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.
Collapse
Affiliation(s)
- Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| | - Arantxa Urchueguía
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.,Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| |
Collapse
|
20
|
Trachman RJ, Passalacqua LFM, Ferré-D'Amaré AR. The bacterial yjdF riboswitch regulates translation through its tRNA-like fold. J Biol Chem 2022; 298:101934. [PMID: 35427649 PMCID: PMC9142559 DOI: 10.1016/j.jbc.2022.101934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 10/27/2022] Open
Abstract
Unlike most riboswitches, which have one cognate effector, the bacterial yjdF riboswitch binds to diverse azaaromatic compounds, only a subset of which cause it to activate translation. We examined the yjdF aptamer domain by small-angle X-ray scattering, and found that in the presence of activating ligands, the RNA adopts an overall shape similar to that of tRNA. Sequence analyses suggested that the yjdF aptamer is a homolog of tRNALys, and that two of the conserved loops of the riboswitch are equivalent to the D- and T-loops of tRNA, associating to form an elbow-like tertiary interaction. Chemical probing indicated that this association is promoted by activating ligands such as chelerythrine and harmine. In its native mRNA context, activator ligands stabilize the tRNA-like fold of the yjdF aptamer, outcompeting the attenuated state in which its T-loop base-pairs to the Shine-Dalgarno element of the mRNA. Moreover, we demonstrate that the liganded aptamer itself activates translation, as authentic tRNAs, when grafted into mRNA, can potently activate translation. Taken together, our data demonstrate the ability of tRNA to function as a small-molecule responsive cis regulatory element.
Collapse
Affiliation(s)
- Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA.
| | - Luiz F M Passalacqua
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA
| |
Collapse
|
21
|
Whitman BT, Murray CRA, Whitford DS, Paul SS, Fahlman RP, Glover MJN, Owttrim GW. Degron-mediated proteolysis of CrhR-like DEAD-box RNA helicases in cyanobacteria. J Biol Chem 2022; 298:101925. [PMID: 35413287 PMCID: PMC9117542 DOI: 10.1016/j.jbc.2022.101925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022] Open
Abstract
Conditional proteolytic degradation is an irreversible and highly regulated process that fulfills crucial regulatory functions in all organisms. As proteolytic targets tend to be critical metabolic or regulatory proteins, substrates are targeted for degradation only under appropriate conditions through the recognition of an amino acid sequence referred to as a “degron”. DEAD-box RNA helicases mediate all aspects of RNA metabolism, contributing to cellular fitness. However, the mechanism by which abiotic-stress modulation of protein stability regulates bacterial helicase abundance has not been extensively characterized. Here, we provide in vivo evidence that proteolytic degradation of the cyanobacterial DEAD-box RNA helicase CrhR is conditional, being initiated by a temperature upshift from 20 to 30 °C in the model cyanobacterium, Synechocystis sp. PCC 6803. We show degradation requires a unique, highly conserved, inherently bipartite degron located in the C-terminal extension found only in CrhR-related RNA helicases in the phylum Cyanobacteria. However, although necessary, the degron is not sufficient for proteolysis, as disruption of RNA helicase activity and/or translation inhibits degradation. These results suggest a positive feedback mechanism involving a role for CrhR in expression of a crucial factor required for degradation. Furthermore, AlphaFold structural prediction indicated the C-terminal extension is a homodimerization domain with homology to other bacterial RNA helicases, and mass photometry data confirmed that CrhR exists as a dimer in solution at 22 °C. These structural data suggest a model wherein the CrhR degron is occluded at the dimerization interface but could be exposed if dimerization was disrupted by nonpermissive conditions.
Collapse
Affiliation(s)
- Brendan T Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R A Murray
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Denise S Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Simanta S Paul
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark J N Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
23
|
Zübert C, Ilic AM, Duduk B, Kube M. The Genome Reduction Excludes the Ribosomal Rescue System in Acholeplasmataceae. Microb Physiol 2022; 32:45-56. [PMID: 35100600 DOI: 10.1159/000520450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
The trans-translation process is a ribosomal rescue system for stalled ribosomes processing truncated mRNA. The genes ssrA and smpB fulfil the key functions in most bacteria, but some species have either lost these genes or the function of the ribosomal rescue system is taken over by other genes. To date, the ribosomal rescue system has not been analysed in detail for the Acholeplasmataceae. This family, in the Mollicutes class, comprises the genus Acholeplasma and the provisional taxon "Candidatus Phytoplasma". Despite their monophyletic origin, the two clades can be separated by traits such as not representing primary pathogens for acholeplasmas versus being phytopathogenic for the majority of phytoplasmas. Both taxa share reduced genomes, but only phytoplasma genomes are characterised by a remarkable level of instability and reduction. Despite the general relevance of the ribosomal rescue system, information is lacking on coding, the genomic context and pseudogenisation of smpB and ssrA and their possible application as a phylogenetic marker. Herein, we provide a comprehensive analysis of the ribosomal rescue system in members of Acholeplasmataceae. The examined Acholeplasmataceae genomes encode a ribosomal rescue system, which depends on tmRNA encoded by ssrA acting in combination with its binding protein SmpB. Conserved gene synteny is evident for smpB, while ssrA shows a less conserved genomic context. Analysis of the tmRNA sequences highlights the variability of proteolysis tag sequences and short conserved sites at the 5'- and 3'-ends. Analyses of smpB provided no hints regarding the coding of pseudogenes, but they did suggest its application as a phylogenetic marker of Acholeplasmataceae - in accordance with 16S rDNA topology. Sequence variability of smpB provides sufficient information for species assignment and phylogenetic analysis.
Collapse
Affiliation(s)
- Christina Zübert
- Integrative Infection Biology Crops-Livestock, University of Hohenheim, Stuttgart, Germany
| | - Anna-Marie Ilic
- Integrative Infection Biology Crops-Livestock, University of Hohenheim, Stuttgart, Germany
| | - Bojan Duduk
- Institute of Pesticides and Environmental Protection, Belgrade, Serbia
| | - Michael Kube
- Integrative Infection Biology Crops-Livestock, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
24
|
Campos-Silva R, D’Urso G, Delalande O, Giudice E, Macedo AJ, Gillet R. Trans-Translation Is an Appealing Target for the Development of New Antimicrobial Compounds. Microorganisms 2021; 10:3. [PMID: 35056452 PMCID: PMC8778911 DOI: 10.3390/microorganisms10010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/06/2023] Open
Abstract
Because of the ever-increasing multidrug resistance in microorganisms, it is crucial that we find and develop new antibiotics, especially molecules with different targets and mechanisms of action than those of the antibiotics in use today. Translation is a fundamental process that uses a large portion of the cell's energy, and the ribosome is already the target of more than half of the antibiotics in clinical use. However, this process is highly regulated, and its quality control machinery is actively studied as a possible target for new inhibitors. In bacteria, ribosomal stalling is a frequent event that jeopardizes bacterial wellness, and the most severe form occurs when ribosomes stall at the 3'-end of mRNA molecules devoid of a stop codon. Trans-translation is the principal and most sophisticated quality control mechanism for solving this problem, which would otherwise result in inefficient or even toxic protein synthesis. It is based on the complex made by tmRNA and SmpB, and because trans-translation is absent in eukaryotes, but necessary for bacterial fitness or survival, it is an exciting and realistic target for new antibiotics. Here, we describe the current and future prospects for developing what we hope will be a novel generation of trans-translation inhibitors.
Collapse
Affiliation(s)
- Rodrigo Campos-Silva
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil;
| | - Gaetano D’Urso
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
| | - Olivier Delalande
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
| | - Emmanuel Giudice
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
| | - Alexandre José Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil;
| | - Reynald Gillet
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
| |
Collapse
|
25
|
Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease. J Biol Chem 2021; 297:101407. [PMID: 34780718 PMCID: PMC8666677 DOI: 10.1016/j.jbc.2021.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
ClpAP, an ATP-dependent protease consisting of ClpA, a double-ring hexameric unfoldase of the ATPases associated with diverse cellular activities superfamily, and the ClpP peptidase, degrades damaged and unneeded proteins to support cellular proteostasis. ClpA recognizes many protein substrates directly, but it can also be regulated by an adapter, ClpS, that modifies ClpA’s substrate profile toward N-degron substrates. Conserved tyrosines in the 12 pore-1 loops lining the central channel of the stacked D1 and D2 rings of ClpA are critical for degradation, but the roles of these residues in individual steps during direct or adapter-mediated degradation are poorly understood. Using engineered ClpA hexamers with zero, three, or six pore-1 loop mutations in each ATPases associated with diverse cellular activities superfamily ring, we found that active D1 pore loops initiate productive engagement of substrates, whereas active D2 pore loops are most important for mediating the robust unfolding of stable native substrates. In complex with ClpS, active D1 pore loops are required to form a high affinity ClpA•ClpS•substrate complex, but D2 pore loops are needed to “tug on” and remodel ClpS to transfer the N-degron substrate to ClpA. Overall, we find that the pore-1 loop tyrosines in D1 are critical for direct substrate engagement, whereas ClpS-mediated substrate delivery requires unique contributions from both the D1 and D2 pore loops. In conclusion, our study illustrates how pore loop engagement, substrate capture, and powering of the unfolding/translocation steps are distributed between the two rings of ClpA, illuminating new mechanistic features that may be common to double-ring protein unfolding machines.
Collapse
|
26
|
Lindner F, Diepold A. Optogenetics in bacteria - applications and opportunities. FEMS Microbiol Rev 2021; 46:6427354. [PMID: 34791201 PMCID: PMC8892541 DOI: 10.1093/femsre/fuab055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria.
Collapse
Affiliation(s)
- Florian Lindner
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.,SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
27
|
HflX is a GTPase that controls hypoxia-induced replication arrest in slow-growing mycobacteria. Proc Natl Acad Sci U S A 2021; 118:2006717118. [PMID: 33723035 DOI: 10.1073/pnas.2006717118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GTPase high frequency of lysogenization X (HflX) is highly conserved in prokaryotes and acts as a ribosome-splitting factor as part of the heat shock response in Escherichia coli. Here we report that HflX produced by slow-growing Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a GTPase that plays a critical role in the pathogen's transition to a nonreplicating, drug-tolerant state in response to hypoxia. Indeed, HflX-deficient M. bovis BCG (KO) replicated markedly faster in the microaerophilic phase of a hypoxia model that resulted in premature entry into dormancy. The KO mutant displayed hallmarks of nonreplicating mycobacteria, including phenotypic drug resistance, altered morphology, low intracellular ATP levels, and overexpression of Dormancy (Dos) regulon proteins. Mice nasally infected with HflX KO mutant displayed increased bacterial burden in the lungs, spleen, and lymph nodes during the chronic phase of infection, consistent with the higher replication rate observed in vitro in microaerophilic conditions. Unlike fast growing mycobacteria, M. bovis BCG HlfX was not involved in antibiotic resistance under aerobic growth. Proteomics, pull-down, and ribo-sequencing approaches supported that mycobacterial HflX is a ribosome-binding protein that controls translational activity of the cell. With HflX fully conserved between M. bovis BCG and M. tuberculosis, our work provides further insights into the molecular mechanisms deployed by pathogenic mycobacteria to adapt to their hypoxic microenvironment.
Collapse
|
28
|
Stukenberg D, Hensel T, Hoff J, Daniel B, Inckemann R, Tedeschi JN, Nousch F, Fritz G. The Marburg Collection: A Golden Gate DNA Assembly Framework for Synthetic Biology Applications in Vibrio natriegens. ACS Synth Biol 2021; 10:1904-1919. [PMID: 34255476 DOI: 10.1021/acssynbio.1c00126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vibrio natriegens is known as the world's fastest growing organism with a doubling time of less than 10 min. This incredible growth speed empowers V. natriegens as a chassis for synthetic and molecular biology, potentially replacing E. coli in many applications. While first genetic parts have been built and tested for V. natriegens, a comprehensive toolkit containing well-characterized and standardized parts did not exist. To close this gap, we created the Marburg Collection-a highly flexible Golden Gate cloning toolbox optimized for the emerging chassis organism V. natriegens, containing 191 genetic parts. The Marburg Collection overcomes the paradigm of plasmid construction-integrating inserts into a backbone-by enabling the de novo assembly of plasmids from basic genetic parts. This allows users to select the plasmid replication origin and resistance part independently, which is highly advantageous when limited knowledge about the behavior of those parts in the target organism is available. Additional design highlights of the Marburg Collection are novel connector parts, which facilitate modular circuit assembly and, optionally, the inversion of individual transcription units to reduce transcriptional crosstalk in multigene constructs. To quantitatively characterize the genetic parts contained in the Marburg Collection in V. natriegens, we developed a reliable microplate reader measurement workflow for reporter experiments and overcame organism-specific challenges. We think the Marburg Collection with its thoroughly characterized parts will provide a valuable resource for the growing V. natriegens community.
Collapse
Affiliation(s)
- Daniel Stukenberg
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg 35032, Germany
- Max-Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Tobias Hensel
- Faculty of Chemistry, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Josef Hoff
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg 35032, Germany
- Max-Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Benjamin Daniel
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg 35032, Germany
- Institute of Microbiology, ETH Zurich, Zürich 8093, Switzerland
| | - René Inckemann
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg 35032, Germany
- Max-Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Jamie N. Tedeschi
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| | - Franziska Nousch
- Faculty of Chemistry, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Georg Fritz
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
29
|
Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 2021; 46:6354784. [PMID: 34410368 PMCID: PMC8767453 DOI: 10.1093/femsre/fuab046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Because the majority of bacterial species divide by binary fission, and do not have distinguishable somatic and germline cells, they could be considered to be immortal. However, bacteria ‘age’ due to damage to vital cell components such as DNA and proteins. DNA damage can often be repaired using efficient DNA repair mechanisms. However, many proteins have a functional ‘shelf life’; some are short lived, while others are relatively stable. Specific degradation processes are built into the life span of proteins whose activities are required to fulfil a specific function during a prescribed period of time (e.g. cell cycle, differentiation process, stress response). In addition, proteins that are irreparably damaged or that have come to the end of their functional life span need to be removed by quality control proteases. Other proteases are involved in performing a variety of specific functions that can be broadly divided into three categories: processing, regulation and feeding. This review presents a systematic account of the proteases of Bacillus subtilis and their activities. It reviews the proteases found in, or associated with, the cytoplasm, the cell membrane, the cell wall and the external milieu. Where known, the impacts of the deletion of particular proteases are discussed, particularly in relation to industrial applications.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University NE2 4AX, Newcastle upon Tyne, UK
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, JAPAN
| |
Collapse
|
30
|
Structures of tmRNA and SmpB as they transit through the ribosome. Nat Commun 2021; 12:4909. [PMID: 34389707 PMCID: PMC8363625 DOI: 10.1038/s41467-021-24881-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
In bacteria, trans-translation is the main rescue system, freeing ribosomes stalled on defective messenger RNAs. This mechanism is driven by small protein B (SmpB) and transfer-messenger RNA (tmRNA), a hybrid RNA known to have both a tRNA-like and an mRNA-like domain. Here we present four cryo-EM structures of the ribosome during trans-translation at resolutions from 3.0 to 3.4 Å. These include the high-resolution structure of the whole pre-accommodated state, as well as structures of the accommodated state, the translocated state, and a translocation intermediate. Together, they shed light on the movements of the tmRNA-SmpB complex in the ribosome, from its delivery by the elongation factor EF-Tu to its passage through the ribosomal A and P sites after the opening of the B1 bridges. Additionally, we describe the interactions between the tmRNA-SmpB complex and the ribosome. These explain why the process does not interfere with canonical translation.
Collapse
|
31
|
Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes (Basel) 2021; 12:1125. [PMID: 34440299 PMCID: PMC8394870 DOI: 10.3390/genes12081125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France; (L.A.); (R.B.-C.); (H.D.B.); (M.G.); (V.L.); (P.R.)
| |
Collapse
|
32
|
Howard CJ, Frost A. Ribosome-associated quality control and CAT tailing. Crit Rev Biochem Mol Biol 2021; 56:603-620. [PMID: 34233554 DOI: 10.1080/10409238.2021.1938507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translation is the set of mechanisms by which ribosomes decode genetic messages as they synthesize polypeptides of a defined amino acid sequence. While the ribosome has been honed by evolution for high-fidelity translation, errors are inevitable. Aberrant mRNAs, mRNA structure, defective ribosomes, interactions between nascent proteins and the ribosomal exit tunnel, and insufficient cellular resources, including low tRNA levels, can lead to functionally irreversible stalls. Life thus depends on quality control mechanisms that detect, disassemble and recycle stalled translation intermediates. Ribosome-associated Quality Control (RQC) recognizes aberrant ribosome states and targets their potentially toxic polypeptides for degradation. Here we review recent advances in our understanding of RQC in bacteria, fungi, and metazoans. We focus in particular on an unusual modification made to the nascent chain known as a "CAT tail", or Carboxy-terminal Alanine and Threonine tail, and the mechanisms by which ancient RQC proteins catalyze CAT-tail synthesis.
Collapse
Affiliation(s)
- Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Genome-Wide Essentiality Analysis of Mycobacterium abscessus by Saturated Transposon Mutagenesis and Deep Sequencing. mBio 2021; 12:e0104921. [PMID: 34126767 PMCID: PMC8262987 DOI: 10.1128/mbio.01049-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium abscessus is an emerging opportunistic human pathogen that naturally resists most major classes of antibiotics, making infections difficult to treat. Thus far, little is known about M. abscessus physiology, pathogenesis, and drug resistance. Genome-wide analyses have comprehensively catalogued genes with essential functions in Mycobacterium tuberculosis and Mycobacterium avium subsp. hominissuis (here, M. avium) but not in M. abscessus. By optimizing transduction conditions, we achieved full saturation of TA insertion sites with Himar1 transposon mutagenesis in the M. abscessus ATCC 19977T genome, as confirmed by deep sequencing prior to essentiality analyses of annotated genes and other genomic features. The overall densities of inserted TA sites (85.7%), unoccupied TA sites (14.3%), and nonpermissive TA sites (8.1%) were similar to results in M. tuberculosis and M. avium. Of the 4,920 annotated genes, 326 were identified as essential, 269 (83%) of which have mutual homology with essential M. tuberculosis genes, while 39 (12%) are homologous to genes that are not essential in M. tuberculosis and M. avium, and 11 (3.4%) only have homologs in M. avium. Interestingly, 7 (2.1%) essential M. abscessus genes have no homologs in either M. tuberculosis or M. avium, two of which were found in phage-like elements. Most essential genes are involved in DNA replication, RNA transcription and translation, and posttranslational events to synthesize important macromolecules. Some essential genes may be involved in M. abscessus pathogenesis and antibiotics response, including certain essential tRNAs and new short open reading frames. Our findings will help to pave the way for better understanding of M. abscessus and benefit development of novel bactericidal drugs against M. abscessus. IMPORTANCE Limited knowledge regarding Mycobacterium abscessus pathogenesis and intrinsic resistance to most classes of antibiotics is a major obstacle to developing more effective strategies to prevent and mitigate disease. Using optimized procedures for Himar1 transposon mutagenesis and deep sequencing, we performed a comprehensive analysis to identify M. abscessus genetic elements essential for in vitro growth and compare them to similar data sets for M. tuberculosis and M. avium subsp. hominissuis. Most essential M. abscessus genes have mutual homology with essential M. tuberculosis genes, providing a foundation for leveraging available knowledge from M. tuberculosis to develop more effective drugs and other interventions against M. abscessus. A small number of essential genes unique to M. abscessus deserve further attention to gain insights into what makes M. abscessus different from other mycobacteria. The essential genes and other genomic features such as short open reading frames and noncoding RNA identified here will provide useful information for future study of M. abscessus pathogenicity and new drug development.
Collapse
|
34
|
Abstract
A putative type II toxin-antitoxin (TA) module almost exclusively associated with conjugative IncC plasmids is homologous to the higBA family of TA systems found in chromosomes and plasmids of several species of bacteria. Despite the clinical significance and strong association with high-profile antimicrobial resistance (AMR) genes, the TA system of IncC plasmids remains largely uncharacterized. In this study, we present evidence that IncC plasmids encode a bona fide HigB-like toxin that strongly inhibits bacterial growth and results in cell elongation in Escherichia coli. IncC HigB toxin acts as a ribosome-dependent endoribonuclease that significantly reduces the transcript abundance of a subset of adenine-rich mRNA transcripts. A glycine residue at amino acid position 64 is highly conserved in HigB toxins from different bacterial species, and its replacement with valine (G64V) abolishes the toxicity and the mRNA cleavage activity of the IncC HigB toxin. The IncC plasmid higBA TA system functions as an effective addiction module that maintains plasmid stability in an antibiotic-free environment. This higBA addiction module is the only TA system that we identified in the IncC backbone and appears essential for the stable maintenance of IncC plasmids. We also observed that exposure to subinhibitory concentrations of ciprofloxacin, a DNA-damaging fluoroquinolone antibiotic, results in elevated higBA expression, which raises interesting questions about its regulatory mechanisms. A better understanding of this higBA-type TA module potentially allows for its subversion as part of an AMR eradication strategy. IMPORTANCE Toxin-antitoxin (TA) systems play vital roles in maintaining plasmids in bacteria. Plasmids with incompatibility group C are large plasmids that disseminate via conjugation and carry high-profile antibiotic resistance genes. We present experimental evidence that IncC plasmids carry a TA system that functions as an effective addiction module and maintains plasmid stability in an antibiotic-free environment. The toxin of IncC plasmids acts as an endoribonuclease that targets a subset of mRNA transcripts. Overexpressing the IncC toxin gene strongly inhibits bacterial growth and results in cell elongation in Escherichia coli hosts. We also identify a conserved amino acid residue in the toxin protein that is essential for its toxicity and show that the expression of this TA system is activated by a DNA-damaging antibiotic, ciprofloxacin. This mobile TA system may contribute to managing bacterial stress associated with DNA-damaging antibiotics.
Collapse
|
35
|
Abstract
The Borrelia spp. are tick-borne pathogenic spirochetes that include the agents of Lyme disease and relapsing fever. As part of their life cycle, the spirochetes traffic between the tick vector and the vertebrate host, which requires significant physiological changes and remodeling of their outer membranes and proteome. This crucial proteome resculpting is carried out by a diverse set of proteases, adaptor proteins, and related chaperones. Despite its small genome, Borrelia burgdorferi has dedicated a large percentage of its genome to proteolysis, including a full complement of ATP-dependent proteases. Energy-driven proteolysis appears to be an important physiological feature of this dual-life-cycle bacterium. The proteolytic arsenal of Borrelia is strategically deployed for disposal of proteins no longer required as they move from one stage to another or are transferred from one host to another. Likewise, the Borrelia spp. are systemic organisms that need to break down and move through host tissues and barriers, and so their unique proteolytic resources, both endogenous and borrowed, make movement more feasible. Both the Lyme disease and relapsing fever Borrelia spp. bind plasminogen as well as numerous components of the mammalian plasminogen-activating system. This recruitment capacity endows the spirochetes with a borrowed proteolytic competency that can lead to increased invasiveness.
Collapse
|
36
|
Wang CD, Mansky R, LeBlanc H, Gravel CM, Berry KE. Optimization of a bacterial three-hybrid assay through in vivo titration of an RNA-DNA adapter protein. RNA (NEW YORK, N.Y.) 2021; 27:513-526. [PMID: 33500316 PMCID: PMC7962490 DOI: 10.1261/rna.077404.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 05/25/2023]
Abstract
Noncoding RNAs regulate gene expression in every domain of life. In bacteria, small RNAs (sRNAs) regulate gene expression in response to stress and are often assisted by RNA-chaperone proteins, such as Hfq. We have recently developed a bacterial three-hybrid (B3H) assay that detects the strong binding interactions of certain E. coli sRNAs with proteins Hfq and ProQ. Despite the promise of this system, the signal-to-noise has made it challenging to detect weaker interactions. In this work, we use Hfq-sRNA interactions as a model system to optimize the B3H assay, so that weaker RNA-protein interactions can be more reliably detected. We find that the concentration of the RNA-DNA adapter is an important parameter in determining the signal in the system and have modified the plasmid expressing this component to tune its concentration to optimal levels. In addition, we have systematically perturbed the binding affinity of Hfq-RNA interactions to define, for the first time, the relationship between B3H signal and in vitro binding energetics. The new pAdapter construct presented here substantially expands the range of detectable interactions in the B3H assay, broadening its utility. This improved assay will increase the likelihood of identifying novel protein-RNA interactions with the B3H system and will facilitate exploration of the binding mechanisms of these interactions.
Collapse
Affiliation(s)
- Clara D Wang
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Rachel Mansky
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| |
Collapse
|
37
|
Baseggio L, Silayeva O, Buller N, Landos M, Englestädter J, Barnes AC. Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants. Microb Genom 2021; 7:000562. [PMID: 33885359 PMCID: PMC8208687 DOI: 10.1099/mgen.0.000562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the recent advances in sequencing technologies, the complete assembly of multi-chromosome genomes of the Vibrionaceae, often containing several plasmids, remains challenging. Using a combination of Oxford Nanopore MinION long reads and short Illumina reads, we fully sequenced, closed and curated the genomes of two strains of a primary aquatic pathogen Photobacterium damselae subsp. piscicida isolated in Australia. These are also the first genome sequences of P. damselae subsp. piscicida isolated in Oceania and, to our knowledge, in the Southern hemisphere. We also investigated the phylogenetic relationships between Australian and overseas isolates, revealing that Australian P. damselae subsp. piscicida are more closely related to the Asian and American strains rather than to the European ones. We investigated the mobilome and present new evidence showing that a host specialization process and progressive adaptive evolution to fish are ongoing in P. damselae subsp. piscicida, and are largely mediated by transposable elements, predominantly in chromosome 2, and by plasmids. Finally, we identified two novel potential virulence determinants in P. damselae subsp. piscicida - a chorismate mutase gene, which is ubiquitously retained and co-localized with the AIP56 apoptogenic toxin-encoding gene on the pPHDP10 plasmid, and transfer-messenger RNA gene ssrA located on the main chromosome, homologous to a critical-to-virulence determinant in Yersinia pseudotuberculosis. Our study describes, to our knowledge, the only fully closed and manually curated genomes of P. damselae subsp. piscicida available to date, offering new insights into this important fish pathogen and its evolution.
Collapse
Affiliation(s)
- Laura Baseggio
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Oleksandra Silayeva
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicky Buller
- Diagnostic and Laboratory Services (DDLS), Department of Primary Industries and Regional Development (DPIRD), 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Matt Landos
- Future Fisheries Veterinary Services, East Ballina, New South Wales 2478, Australia
| | - Jan Englestädter
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew C. Barnes
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
- *Correspondence: Andrew C. Barnes,
| |
Collapse
|
38
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
39
|
Joshi B, Singh B, Nadeem A, Askarian F, Wai SN, Johannessen M, Hegstad K. Transcriptome Profiling of Staphylococcus aureus Associated Extracellular Vesicles Reveals Presence of Small RNA-Cargo. Front Mol Biosci 2021; 7:566207. [PMID: 33521050 PMCID: PMC7838569 DOI: 10.3389/fmolb.2020.566207] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial extracellular vesicles (EVs) have a vital role in bacterial pathogenesis. However, to date, the small RNA-cargo of EVs released by the opportunistic pathogen Staphylococcus aureus has not been characterized. Here, we shed light on the association of small RNAs with EVs secreted by S. aureus MSSA476 cultured in iron-depleted bacteriologic media supplemented with a subinhibitory dosage of vancomycin to mimic infection condition. Confocal microscopy analysis on intact RNase-treated EVs indicated that RNA is associated with EV particles. Transcriptomic followed by bioinformatics analysis of EV-associated RNA revealed the presence of potential gene regulatory small RNAs and high levels of tRNAs. Among the EV-associated enriched small RNAs were SsrA, RsaC and RNAIII. Our finding invites new insights into the potential role of EV-associated RNA as a modulator of host-pathogen interaction.
Collapse
Affiliation(s)
- Bishnu Joshi
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bhupender Singh
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aftab Nadeem
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Fatemeh Askarian
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway.,Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sun Nyunt Wai
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mona Johannessen
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Department of Medical Biology, Research Group for Host-Microbe Interactions, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway
| |
Collapse
|
40
|
Functional cooperativity between the trigger factor chaperone and the ClpXP proteolytic complex. Nat Commun 2021; 12:281. [PMID: 33436616 PMCID: PMC7804408 DOI: 10.1038/s41467-020-20553-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
A functional association is uncovered between the ribosome-associated trigger factor (TF) chaperone and the ClpXP degradation complex. Bioinformatic analyses demonstrate conservation of the close proximity of tig, the gene coding for TF, and genes coding for ClpXP, suggesting a functional interaction. The effect of TF on ClpXP-dependent degradation varies based on the nature of substrate. While degradation of some substrates are slowed down or are unaffected by TF, surprisingly, TF increases the degradation rate of a third class of substrates. These include λ phage replication protein λO, master regulator of stationary phase RpoS, and SsrA-tagged proteins. Globally, TF acts to enhance the degradation of about 2% of newly synthesized proteins. TF is found to interact through multiple sites with ClpX in a highly dynamic fashion to promote protein degradation. This chaperone-protease cooperation constitutes a unique and likely ancestral aspect of cellular protein homeostasis in which TF acts as an adaptor for ClpXP.
Collapse
|
41
|
The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol 2020; 18:e3000934. [PMID: 33141816 PMCID: PMC7665748 DOI: 10.1371/journal.pbio.3000934] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
The regulatory noncoding small RNAs (sRNAs) of bacteria are key elements influencing gene expression; however, there has been little evidence that beneficial bacteria use these molecules to communicate with their animal hosts. We report here that the bacterial sRNA SsrA plays an essential role in the light-organ symbiosis between Vibrio fischeri and the squid Euprymna scolopes. The symbionts load SsrA into outer membrane vesicles, which are transported specifically into the epithelial cells surrounding the symbiont population in the light organ. Although an SsrA-deletion mutant (ΔssrA) colonized the host to a normal level after 24 h, it produced only 2/10 the luminescence per bacterium, and its persistence began to decline by 48 h. The host's response to colonization by the ΔssrA strain was also abnormal: the epithelial cells underwent premature swelling, and host robustness was reduced. Most notably, when colonized by the ΔssrA strain, the light organ differentially up-regulated 10 genes, including several encoding heightened immune-function or antimicrobial activities. This study reveals the potential for a bacterial symbiont's sRNAs not only to control its own activities but also to trigger critical responses promoting homeostasis in its host. In the absence of this communication, there are dramatic fitness consequences for both partners.
Collapse
|
42
|
Hsu PC, Chen CS, Wang S, Hashimoto M, Huang WC, Teng CH. Identification of MltG as a Prc Protease Substrate Whose Dysregulation Contributes to the Conditional Growth Defect of Prc-Deficient Escherichia coli. Front Microbiol 2020; 11:2000. [PMID: 32973722 PMCID: PMC7481392 DOI: 10.3389/fmicb.2020.02000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial proteases play pivotal roles in many aspects of bacterial physiological processes. Because a protease exerts its biological function by proteolytically regulating its substrates, the identification and characterization of the physiological substrates of a protease advance our understanding of the biological roles of the protease. Prc (also named Tsp) is an Escherichia coli periplasmic protease thought to be indispensable for E. coli to survive under low osmolality at 42°C. The accumulation of the Prc substrate MepS due to Prc deficiency contributes to the conditional growth defect. Because preventing MepS accumulation only partially restored the growth of Prc-deficient E. coli, we hypothesized that other unidentified Prc substrates intracellularly accumulate due to Prc deficiency and contribute to the conditional growth defect. To identify previously undiscovered substrates, 85 E. coli proteins able to physically interact with Prc were identified using E. coli proteome arrays. Ten proteins were shown to be cleavable by Prc in vitro. Among these candidates, MltG was able to interact with Prc in E. coli. Prc regulated the intracellular level of MltG, indicating that MltG is a physiological substrate of Prc. Prc deficiency induced the accumulation of MltG in the bacteria. Blocking MltG accumulation by deleting mltG partially restored the growth of Prc-deficient E. coli. In addition, Prc-deficient E. coli with blocked MltG and MepS expression exhibited higher growth levels than those with only the MltG or MepS expression blocked under low osmolality at 42°C, suggesting that these accumulated substrates additively contributed to the conditional growth defect. MltG is a lytic transglycosylase involved in the biogenesis of peptidoglycan (PG). In addition to MltG, the previously identified physiological Prc substrates MepS and PBP3 are involved in PG biogenesis, suggesting a potential role of Prc in regulating PG biogenesis.
Collapse
Affiliation(s)
- Po-Chuen Hsu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
43
|
Torres-Delgado A, Kotamarthi HC, Sauer RT, Baker TA. The Intrinsically Disordered N-terminal Extension of the ClpS Adaptor Reprograms Its Partner AAA+ ClpAP Protease. J Mol Biol 2020; 432:4908-4921. [PMID: 32687854 DOI: 10.1016/j.jmb.2020.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Adaptor proteins modulate substrate selection by AAA+ proteases. The ClpS adaptor delivers N-degron substrates to ClpAP but inhibits degradation of substrates bearing ssrA tags or other related degrons. How ClpS inhibits degradation of such substrates is poorly understood. Here, we demonstrate that ClpS impedes recognition of ssrA-tagged substrates by a non-competitive mechanism and also slows subsequent unfolding/translocation of these substrates as well as of N-degron substrates. This suppression of mechanical activity is largely a consequence of the ability of ClpS to repress ATP hydrolysis by ClpA, but several lines of evidence show that ClpS's inhibition of substrate binding and its ATPase repression are separable activities. Using ClpS mutants and ClpS-ClpA chimeras, we establish that engagement of the intrinsically disordered N-terminal extension of ClpS by ClpA is both necessary and sufficient to inhibit multiple steps of ClpAP-catalyzed degradation. These observations reveal how an adaptor can simultaneously modulate the catalytic activity of a AAA+ enzyme, efficiently promote recognition of some substrates, suppress recognition of other substrates, and thereby affect degradation of its menu of substrates in a specific manner. We propose that similar mechanisms are likely to be used by other adaptors to regulate substrate choice and the catalytic activity of molecular machines.
Collapse
Affiliation(s)
- Amaris Torres-Delgado
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Fritze J, Zhang M, Luo Q, Lu X. An overview of the bacterial SsrA system modulating intracellular protein levels and activities. Appl Microbiol Biotechnol 2020; 104:5229-5241. [PMID: 32342145 DOI: 10.1007/s00253-020-10623-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
In bacteria, the truncated forms of mRNAs, which usually lack a stop codon, are occasionally generated by premature termination of gene transcription and/or endo- or exonucleolytic cleavage events. Ribosomes proceeding on these molecules stall at the 3' end of the chain and are rescued by a widely distributed mechanism known as trans-translation, which includes two essential elements, ssrA RNA (a special RNA) and SmpB (a small protein). Through this mechanism, the polypeptides translated from truncated mRNAs are marked by a short peptide, known as SsrA tag, at their C-termini and directed to the specific endogenous proteases for C-terminal proteolysis. Based on the deep understanding of the SsrA tagging and degradation mechanisms, recently a series of SsrA-based genetic tools have been developed for gene regulation on the level of post-translation. They are successfully applied for controllable regulation of biological circuits in bacteria. In the present article, we systematically summarize the history, structural characteristics, and functional mechanisms of the SsrA tagging and degrading machineries, as well as their technical uses and limitations.Key Points• SsrA system plays an important role in ribosome rescue in bacteria.• SsrA-based genetic tools are useful for controlling protein levels and activities.
Collapse
Affiliation(s)
- Jacques Fritze
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Stuttgart, Stuttgart, Germany
| | - Mingyi Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quan Luo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China. .,School of Life Sciences, Hubei University, Wuhan, China.
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China. .,Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China. .,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China. .,Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
45
|
Guo L, Diao W, Gao C, Hu G, Ding Q, Ye C, Chen X, Liu J, Liu L. Engineering Escherichia coli lifespan for enhancing chemical production. Nat Catal 2020. [DOI: 10.1038/s41929-019-0411-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Höfig H, Yukhnovets O, Remes C, Kempf N, Katranidis A, Kempe D, Fitter J. Brightness-gated two-color coincidence detection unravels two distinct mechanisms in bacterial protein translation initiation. Commun Biol 2019; 2:459. [PMID: 31840104 PMCID: PMC6897966 DOI: 10.1038/s42003-019-0709-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/22/2019] [Indexed: 01/19/2023] Open
Abstract
Life on the molecular scale is based on a complex interplay of biomolecules under which the ability of binding is crucial. Fluorescence based two-color coincidence detection (TCCD) is commonly used to characterize molecular binding, but suffers from an underestimation of coincident events. Here, we introduce a brightness-gated TCCD which overcomes this limitation and benchmark our approach with two custom-made calibration samples. Applied to a cell-free protein synthesis assay, brightness-gated TCCD unraveled a previously disregarded mode of translation initiation in bacteria.
Collapse
Affiliation(s)
- Henning Höfig
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
| | - Olessya Yukhnovets
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
| | - Cristina Remes
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
- Present Address: Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Noemie Kempf
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
- Present Address: Laboratoire de Biologie Moléculaire Eucaryote LBME—Center for Integrative Biology CBI, University of Toulouse, Toulouse, France
| | | | - Daryan Kempe
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Present Address: EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Jörg Fitter
- I. Physikalisches Institut (IA), RWTH Aachen University, Aachen, Germany
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
47
|
Callahan N, Tullman J, Kelman Z, Marino J. Strategies for Development of a Next-Generation Protein Sequencing Platform. Trends Biochem Sci 2019; 45:76-89. [PMID: 31676211 DOI: 10.1016/j.tibs.2019.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Proteomic analysis can be a critical bottleneck in cellular characterization. The current paradigm relies primarily on mass spectrometry of peptides and affinity reagents (i.e., antibodies), both of which require a priori knowledge of the sample. An unbiased protein sequencing method, with a dynamic range that covers the full range of protein concentrations in proteomes, would revolutionize the field of proteomics, allowing a more facile characterization of novel gene products and subcellular complexes. To this end, several new platforms based on single-molecule protein-sequencing approaches have been proposed. This review summarizes four of these approaches, highlighting advantages, limitations, and challenges for each method towards advancing as a core technology for next-generation protein sequencing.
Collapse
Affiliation(s)
- Nicholas Callahan
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, and University of Maryland, Rockville, MD 20850, USA.
| | - Jennifer Tullman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, and University of Maryland, Rockville, MD 20850, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, and University of Maryland, Rockville, MD 20850, USA; Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - John Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, and University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
48
|
Thuronyi BW, Koblan LW, Levy JM, Yeh WH, Zheng C, Newby GA, Wilson C, Bhaumik M, Shubina-Oleinik O, Holt JR, Liu DR. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol 2019; 37:1070-1079. [PMID: 31332326 PMCID: PMC6728210 DOI: 10.1038/s41587-019-0193-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
Base editors use DNA-modifying enzymes targeted with a catalytically impaired CRISPR protein to precisely install point mutations. Here, we develop phage-assisted continuous evolution of base editors (BE-PACE) to improve their editing efficiency and target sequence compatibility. We used BE-PACE to evolve cytosine base editors (CBEs) that overcome target sequence context constraints of canonical CBEs. One evolved CBE, evoAPOBEC1-BE4max, is up to 26-fold more efficient at editing cytosine in the GC context, a disfavored context for wild-type APOBEC1 deaminase, while maintaining efficient editing in all other sequence contexts tested. Another evolved deaminase, evoFERNY, is 29% smaller than APOBEC1 and edits efficiently in all tested sequence contexts. We also evolved a CBE based on CDA1 deaminase with much higher editing efficiency at difficult target sites. Finally, we used data from evolved CBEs to illuminate the relationship between deaminase activity, base editing efficiency, editing window width and byproduct formation. These findings establish a system for rapid evolution of base editors and inform their use and improvement.
Collapse
Affiliation(s)
- B W Thuronyi
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Chemistry, Williams College, Williamstown, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Wei-Hsi Yeh
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Christine Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Christopher Wilson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Mantu Bhaumik
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga Shubina-Oleinik
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
49
|
Liu X, Tang K, Zhang D, Li Y, Liu Z, Yao J, Wood TK, Wang X. Symbiosis of a P2‐family phage and deep‐sea
Shewanella putrefaciens. Environ Microbiol 2019; 21:4212-4232. [DOI: 10.1111/1462-2920.14781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/12/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Dali Zhang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention Guangdong Provincial Institute of Public Health Guangzhou 511430 China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Thomas K. Wood
- Department of Chemical Engineering Pennsylvania State University University Park PA 16802‐4400 USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
50
|
Tsui HS, Pham NVB, Amer BR, Bradley MC, Gosschalk JE, Gallagher-Jones M, Ibarra H, Clubb RT, Blaby-Haas CE, Clarke CF. Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res 2019; 60:1293-1310. [PMID: 31048406 DOI: 10.1194/jlr.m093534] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Coenzyme Q (CoQ or ubiquinone) serves as an essential redox-active lipid in respiratory electron and proton transport during cellular energy metabolism. CoQ also functions as a membrane-localized antioxidant protecting cells against lipid peroxidation. CoQ deficiency is associated with multiple human diseases; CoQ10 supplementation in particular has noted cardioprotective benefits. In Saccharomyces cerevisiae, Coq10, a putative START domain protein, is believed to chaperone CoQ to sites where it functions. Yeast coq10 deletion mutants (coq10Δ) synthesize CoQ inefficiently during log phase growth and are respiratory defective and sensitive to oxidative stress. Humans have two orthologs of yeast COQ10, COQ10A and COQ10B Here, we tested the human co-orthologs for their ability to rescue the yeast mutant. We showed that expression of either human ortholog, COQ10A or COQ10B, rescues yeast coq10Δ mutant phenotypes, restoring the function of respiratory-dependent growth on a nonfermentable carbon source and sensitivity to oxidative stress induced by treatment with PUFAs. These effects indicate a strong functional conservation of Coq10 across different organisms. However, neither COQ10A nor COQ10B restored CoQ biosynthesis when expressed in the yeast coq10Δ mutant. The involvement of yeast Coq10 in CoQ biosynthesis may rely on its interactions with another protein, possibly Coq11, which is not found in humans. Coexpression analyses of yeast COQ10 and human COQ10A and COQ10B provide additional insights to functions of these START domain proteins and their potential roles in other biologic pathways.
Collapse
Affiliation(s)
- Hui S Tsui
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Nguyen V B Pham
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Brendan R Amer
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Jason E Gosschalk
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095.,UCLA-Department of Energy Institute of Genomics and Proteomics University of California, Los Angeles, Los Angeles, CA 90095
| | - Marcus Gallagher-Jones
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Hope Ibarra
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Robert T Clubb
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Catherine F Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|