1
|
Wang J, Xiang ZX, Luan MF, Gong JS, Su C, Li H, Xu ZH, Shi JS. High-level secretory expression of recombinant type III human-like collagen α1 in Pichia pastoris via multilevel systematic optimization. Int J Biol Macromol 2025; 313:144270. [PMID: 40381768 DOI: 10.1016/j.ijbiomac.2025.144270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Collagen is the main component that makes up the internal structure of animals and is extensively used in several industrial fields including food, materials, chemicals, and pharmaceuticals. Despite the variety of preparation methods available, there is significant potential for enhancing the yield of recombinant collagen produced through engineered Pichia pastoris (P. pastoris). Increasing the copy number of the recombinant type III human collagen α1 (hlCOLIII) gene to improve the level of expression of the recombinant protein and co-expression of molecular chaperones to alleviate the resulting endoplasmic reticulum stress further promotes hlCOLIII secretion. By optimizing transcription driven by the AOX1 promoter and improving translation efficiency, a strain of P. pastoris expressing hlCOLIII efficiently was constructed, achieving a yield of 10.3 g/L in a 5 L fermenter. Further, hlCOLIII demonstrated notable antioxidant capacity and performed well in bioactivity analyses, including cell proliferation, migration, and adhesion. This study lays a solid foundation for the scalable industrial production of recombinant collagen and opens new avenues for its exploration in advanced biomedical materials.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Meng-Fan Luan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
2
|
Li D, Wang Y, Zhu S, Hu X, Liang R. Recombinant fibrous protein biomaterials meet skin tissue engineering. Front Bioeng Biotechnol 2024; 12:1411550. [PMID: 39205856 PMCID: PMC11349559 DOI: 10.3389/fbioe.2024.1411550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Natural biomaterials, particularly fibrous proteins, are extensively utilized in skin tissue engineering. However, their application is impeded by batch-to-batch variance, limited chemical or physical versatility, and environmental concerns. Recent advancements in gene editing and fermentation technology have catalyzed the emergence of recombinant fibrous protein biomaterials, which are gaining traction in skin tissue engineering. The modular and highly customizable nature of recombinant synthesis enables precise control over biomaterial design, facilitating the incorporation of multiple functional motifs. Additionally, recombinant synthesis allows for a transition from animal-derived sources to microbial sources, thereby reducing endotoxin content and rendering recombinant fibrous protein biomaterials more amenable to scalable production and clinical use. In this review, we provide an overview of prevalent recombinant fibrous protein biomaterials (collagens, elastin, silk proteins and their chimeric derivatives) used in skin tissue engineering (STE) and compare them with their animal-derived counterparts. Furthermore, we discuss their applications in STE, along with the associated challenges and future prospects.
Collapse
Affiliation(s)
- Dipeng Li
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Yirong Wang
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Shan Zhu
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Xuezhong Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Renjie Liang
- Hangzhou Ninth People’s Hospital, Hangzhou, China
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Guo X, Ma Y, Wang H, Yin H, Shi X, Chen Y, Gao G, Sun L, Wang J, Wang Y, Fan D. Status and developmental trends in recombinant collagen preparation technology. Regen Biomater 2023; 11:rbad106. [PMID: 38173768 PMCID: PMC10761200 DOI: 10.1093/rb/rbad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineering technologies. These technological advancements have profound implications across diverse areas such as regenerative medicine, organ replacement, tissue engineering, cosmetics and more. Thus, recombinant collagen and its preparation methodologies rooted in genetically engineered cells mark pivotal milestones in medical product research. This article provides a comprehensive overview of the current genetic engineering technologies and methods used in the production of recombinant collagen, as well as the conventional production process and quality control detection methods for this material. Furthermore, the discussion extends to foresee the strides in physical transfection and magnetic control sorting studies, envisioning an enhanced preparation of recombinant collagen-seeded cells to further fuel recombinant collagen production.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Yiqin Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Daidi Fan
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
4
|
Zhao Z, Deng J, Fan D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems. Biomater Sci 2023; 11:5439-5461. [PMID: 37401335 DOI: 10.1039/d3bm00724c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Collagen, classically derived from animal tissue, is an all-important protein material widely used in biomedical materials, cosmetics, fodder, food, etc. The production of recombinant collagen through different biological expression systems using bioengineering techniques has attracted significant interest in consideration of increasing market demand and the process complexity of extraction. Green biomanufacturing of recombinant collagen has become one of the focus topics. While the bioproduction of recombinant collagens (type I, II, III, etc.) has been commercialized in recent years, the biosynthesis of recombinant collagen is extremely challenging due to protein immunogenicity, yield, degradation, and other issues. The rapid development of synthetic biology allows us to perform a heterologous expression of proteins in diverse expression systems, thus optimizing the production and bioactivities of recombinant collagen. This review describes the research progress in the bioproduction of recombinant collagen over the past two decades, focusing on different expression systems (prokaryotic organisms, yeasts, plants, insects, mammalian and human cells, etc.). We also discuss the challenges and future trends in developing market-competitive recombinant collagens.
Collapse
Affiliation(s)
- Zilong Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
5
|
Zhou N, Liu YD, Zhang Y, Gu TW, Peng LH. Pharmacological Functions, Synthesis, and Delivery Progress for Collagen as Biodrug and Biomaterial. Pharmaceutics 2023; 15:pharmaceutics15051443. [PMID: 37242685 DOI: 10.3390/pharmaceutics15051443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Collagen has been widely applied as a functional biomaterial in regulating tissue regeneration and drug delivery by participating in cell proliferation, differentiation, migration, intercellular signal transmission, tissue formation, and blood coagulation. However, traditional extraction of collagen from animals potentially induces immunogenicity and requires complicated material treatment and purification steps. Although semi-synthesis strategies such as utilizing recombinant E. coli or yeast expression systems have been explored as alternative methods, the influence of unwanted by-products, foreign substances, and immature synthetic processes have limited its industrial production and clinical applications. Meanwhile, macromolecule collagen products encounter a bottleneck in delivery and absorption by conventional oral and injection vehicles, which promotes the studies of transdermal and topical delivery strategies and implant methods. This review illustrates the physiological and therapeutic effects, synthesis strategies, and delivery technologies of collagen to provide a reference and outlook for the research and development of collagen as a biodrug and biomaterial.
Collapse
Affiliation(s)
- Nan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
6
|
Biocompatible Triple-Helical Recombinant Collagen Dressings for Accelerated Wound Healing in Microneedle-Injured and Photodamaged Skin. COSMETICS 2023. [DOI: 10.3390/cosmetics10010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Skin rejuvenation procedures such as microneedling and laser resurfacing have gained global popularity in medical cosmetology, leading to acute skin wounds with persistent pain, erythema, and edema. A variety of dressings have been explored to repair these postoperative skin injuries; however, their inadequate biocompatibility and bioactivity may raise concerns about undesirable efficacy and complications. Herein, we developed biocompatible and nonirritating triple-helical recombinant collagen (THRC) dressings for accelerated healing of microneedle-injured and photodamaged acute skin wounds. Circular dichroism (CD) measurements of THRC from various batches exhibited triple-helical structure characteristics of collagen. Cell experiments using L929 fibroblasts revealed that THRC dressings possess superior biocompatibility and bioactivity, significantly elevating the proliferation and adhesion of fibroblasts. In vivo, skin irritation tests of New Zealand rabbits demonstrated that the THRC dressings are gentle, safe, and non-irritating. Histological analysis of the animal model studies in photodamaged skin wounds using H&E and Masson’s trichrome staining revealed that 4 days of treatment with the THRC dressings effectively healed the damaged dermis by accelerating re-epithelialization and enhancing collagen deposition. In vivo studies of microneedle-injured rat defects showed that THRC dressings of varying concentrations exhibit the same rapid epithelialization rates at 48 h as commercial bovine collagen dressings. The highly biocompatible and bioactive recombinant collagen dressings may provide an advanced treatment of acute skin wounds, indicating attractive applications in postoperative care of facial rejuvenation.
Collapse
|
7
|
Wu W, Kim JS, Bailey AO, Russell WK, Richards SJ, Chen T, Chen T, Chen Z, Liang B, Yamauchi M, Guo H. Comparative genomic and biochemical analyses identify a collagen galactosylhydroxylysyl glucosyltransferase from Acanthamoeba polyphaga mimivirus. Sci Rep 2022; 12:16806. [PMID: 36207453 PMCID: PMC9546862 DOI: 10.1038/s41598-022-21197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Humans and Acanthamoeba polyphaga mimivirus share numerous homologous genes, including collagens and collagen-modifying enzymes. To explore this homology, we performed a genome-wide comparison between human and mimivirus using DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) and identified 52 new putative mimiviral proteins that are homologous with human proteins. To gain functional insights into mimiviral proteins, their human protein homologs were organized into Gene Ontology (GO) and REACTOME pathways to build a functional network. Collagen and collagen-modifying enzymes form the largest subnetwork with most nodes. Further analysis of this subnetwork identified a putative collagen glycosyltransferase R699. Protein expression test suggested that R699 is highly expressed in Escherichia coli, unlike the human collagen-modifying enzymes. Enzymatic activity assay and mass spectrometric analyses showed that R699 catalyzes the glucosylation of galactosylhydroxylysine to glucosylgalactosylhydroxylysine on collagen using uridine diphosphate glucose (UDP-glucose) but no other UDP-sugars as a sugar donor, suggesting R699 is a mimiviral collagen galactosylhydroxylysyl glucosyltransferase (GGT). To facilitate further analysis of human and mimiviral homologous proteins, we presented an interactive and searchable genome-wide comparison website for quickly browsing human and Acanthamoeba polyphaga mimivirus homologs, which is available at RRID Resource ID: SCR_022140 or https://guolab.shinyapps.io/app-mimivirus-publication/ .
Collapse
Affiliation(s)
- Wenhui Wu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Jeong Seon Kim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen J Richards
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tiantian Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tingfei Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zhenhang Chen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Houfu Guo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA. .,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
Abstract
Collagen and its derivative proteins have been widely used as a major component for cosmetic formulations as a natural ingredient and moisturizer. Most commercially available collagens are animal-derived collagen type I and other forms of collagen, such as type III collagen, are far less prevalent in animals, making extraction and purification extremely difficult and expensive. Here, we report the production of a 50 kDa protein produced in yeast that is 100% identical to the N-terminus of the human type III collagen. This recombinant protein has a larger molecular weight than most incumbent recombinant collagen proteins available for personal care applications. We report the industrialization of both the fermentation and purification processes to produce a final recombinant protein product. This final protein product was shown to be safe for general applications to human skin and compatible with common formulation protocols, including ethanol-based formulations. This recombinant collagen type III protein was also shown to uniquely stimulate both collagen type I and type III production and secretion by primary human dermal fibroblasts. The unique combination of biostimulation, compatibility with beauty product formulations and demonstrated commercial production, make this novel recombinant type III collagen a good candidate for broad application in the cosmetics industry.
Collapse
|
9
|
Merrett K, Wan F, Lee CJ, Harden JL. Enhanced Collagen-like Protein for Facile Biomaterial Fabrication. ACS Biomater Sci Eng 2021; 7:1414-1427. [PMID: 33733733 DOI: 10.1021/acsbiomaterials.1c00069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a collagen-mimetic protein of bacterial origin based upon a modified subdomain of the collagen-like Sc12 protein from Streptococcus pyogenes, as an alternative collagen-like biomaterial platform that is highly soluble, forms stable, homogeneous, fluid-like solutions at elevated concentrations, and that can be efficiently fabricated into hydrogel materials over a broad range of pH conditions. This extended bacterial collagen-like (eBCL) protein is expressed in a bacterial host and purified as a trimeric assembly exhibiting a triple helical secondary structure in its collagen-like subdomain that is stable near physiological solution conditions (neutral pH and 37 °C), as well as over a broad range of pH conditions. We also show how this sequence can be modified to include biofunctional attributes, in particular, the Arg-Gly-Asp (RGD) sequence to elicit integrin-specific cell binding, without loss of structural function. Furthermore, through the use of EDC-NHS chemistry, we demonstrate that members of this eBCL protein system can be covalently cross-linked to fabricate transparent hydrogels with high protein concentrations (at least to 20% w/w). These hydrogels are shown to possess material properties and resistance to enzymatic degradation that are comparable or superior to a type I collagen control. Moreover, such hydrogels containing the constructs with the RGD integrin-binding sequence are shown to promote the adhesion, spreading, and proliferation of C2C12 and 3T3 cells in vitro. Due to its enhanced solubility, structural stability, fluidity at elevated concentrations, ease of modification, and facility of cross-linking, this eBCL collagen-mimetic system has potential for numerous biomedical material applications, where the ease of processing and fabrication and the facility to tailor the sequence for specific biological functionality are desired.
Collapse
Affiliation(s)
- Kim Merrett
- Department of Physics, University of Ottawa, Ontario K1N 6N5, Canada
| | - Fan Wan
- Department of Physics, University of Ottawa, Ontario K1N 6N5, Canada
| | - Chyan-Jang Lee
- Department of Physics, University of Ottawa, Ontario K1N 6N5, Canada
| | - James L Harden
- Department of Physics, University of Ottawa, Ontario K1N 6N5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ontario K1H 8M5, Canada.,Centre for Advanced Materials Research, University of Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
10
|
Patil VA, Masters KS. Engineered Collagen Matrices. Bioengineering (Basel) 2020; 7:E163. [PMID: 33339157 PMCID: PMC7765577 DOI: 10.3390/bioengineering7040163] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Collagen is the most abundant protein in mammals, accounting for approximately one-third of the total protein in the human body. Thus, it is a logical choice for the creation of biomimetic environments, and there is a long history of using collagen matrices for various tissue engineering applications. However, from a biomaterial perspective, the use of collagen-only scaffolds is associated with many challenges. Namely, the mechanical properties of collagen matrices can be difficult to tune across a wide range of values, and collagen itself is not highly amenable to direct chemical modification without affecting its architecture or bioactivity. Thus, many approaches have been pursued to design scaffold environments that display critical features of collagen but enable improved tunability of physical and biological characteristics. This paper provides a brief overview of approaches that have been employed to create such engineered collagen matrices. Specifically, these approaches include blending of collagen with other natural or synthetic polymers, chemical modifications of denatured collagen, de novo creation of collagen-mimetic chains, and reductionist methods to incorporate collagen moieties into other materials. These advancements in the creation of tunable, engineered collagen matrices will continue to enable the interrogation of novel and increasingly complex biological questions.
Collapse
Affiliation(s)
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
11
|
Chen Z, Fan D, Shang L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: a short review. ACTA ACUST UNITED AC 2020; 16:012001. [PMID: 32679570 DOI: 10.1088/1748-605x/aba6fa] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural animal collagen and its recombinant collagen are favourable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is fundamental to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen, named recombinant human-like collagen (rHLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. Human-like collagen (HLC) was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross-link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property, and the ability of mass production, HLC has been widely used in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery, including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. At the end, future improvements are also discussed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China. Shaanxi Key Laboratory of Degradable Biomedical Materials; Shaanxi R&D Center of Biomaterial and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China
| | | | | |
Collapse
|
12
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Gulevsky AK. COLLAGEN: STRUCTURE, METABOLISM, PRODUCTION AND INDUSTRIAL APPLICATION. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.05.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This review presents the current scientific literature data about structure, properties, and functions of collagen, which is known as one of the most abundant human and animal proteins. The building of collagen molecule from the primary structure to submolecular formations, the main stages of its synthesis and biodegradation are briefly described. The information about collagen diversity, its features and metabolic ways in various tissues, including skin, tendons, bones, etc. is presented. The problems of pathologies caused by collagen synthesis and breakdown disorders as well as age-related changes in collagen properties and their causes are discussed. A comparative analysis of the advantages and disadvantages of collagen and its derivatives obtaining from various sources (animals, marine, and recombinant) is given. The most productive methods for collagen extraction from various tissues are shown. The concept of collagen hydrolysis conditions influence on the physicochemical properties and biological activity of the obtained products is described. The applications of collagen and its products in various fields of industrial activity, such as pharmaceutical, cosmetic industry and medicine, are discussed. Further prospective directions of fundamental and applied investigations in this area of research are outlined.
Collapse
|
14
|
Melatonin enhances atherosclerotic plaque stability by inducing prolyl-4-hydroxylase α1 expression. J Hypertens 2020; 37:964-971. [PMID: 30335670 DOI: 10.1097/hjh.0000000000001979] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Melatonin, an endogenous neurohormone secreted predominately by the pineal gland, has a variety of physiological functions. However, its protective role in atherosclerosis is not clear. In this study, we sought to investigate the potential effects of melatonin in modulating atherosclerotic plaque stability in apolipoprotein E knockout (ApoE) mice. METHOD AND RESULTS Smooth muscle cells were treated with melatonin, which significantly increased mRNA and protein levels of a key intracellular enzyme essential for collagen maturation and secretion, prolyl-4-hydroxylase α1 (P4Hα1). Mechanistically, melatonin increased Akt phosphorylation and transcriptional activation of specificity protein 1 (Sp1), which bound with the P4Hα1 promoter and then induced P4Hα1 expression. Pretreatment with either Akt inhibitor LY294002 or Sp1 inhibitor mithramycin A (MTM) could inhibit melatonin-induced P4Hα1 expression. Finally, atherosclerotic lesions were induced by placing a perivascular collar on the right common carotid artery of ApoE mice, which were received with or without different doses of melatonin or MTM. High-dose melatonin enhanced atherosclerotic plaque stability in ApoE mice in vivo by inducing the expression of P4Hα1, which was reversed by MTM. CONCLUSION We propose that melatonin supplementation may provide a novel and promising approach to atherosclerosis treatment.
Collapse
|
15
|
Sohutskay DO, Puls TJ, Voytik-Harbin SL. Collagen Self-assembly: Biophysics and Biosignaling for Advanced Tissue Generation. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Peng CA, Kozubowski L, Marcotte WR. Advances in Plant-Derived Scaffold Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:122. [PMID: 32161608 PMCID: PMC7052361 DOI: 10.3389/fpls.2020.00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/27/2020] [Indexed: 05/13/2023]
Abstract
Scaffold proteins form critical biomatrices that support cell adhesion and proliferation for regenerative medicine and drug screening. The increasing demand for such applications urges solutions for cost effective and sustainable supplies of hypoallergenic and biocompatible scaffold proteins. Here, we summarize recent efforts in obtaining plant-derived biosynthetic spider silk analogue and the extracellular matrix protein, collagen. Both proteins are composed of a large number of tandem block repeats, which makes production in bacterial hosts challenging. Furthermore, post-translational modification of collagen is essential for its function which requires co-transformation of multiple copies of human prolyl 4-hydroxylase. We discuss our perspectives on how the GAANTRY system could potentially assist the production of native-sized spider dragline silk proteins and prolyl hydroxylated collagen. The potential of recombinant scaffold proteins in drug delivery and drug discovery is also addressed.
Collapse
|
17
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 602] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
18
|
Wang T, Lew J, Premkumar J, Poh CL, Win Naing M. Production of recombinant collagen: state of the art and challenges. ENGINEERING BIOLOGY 2017. [DOI: 10.1049/enb.2017.0003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tianyi Wang
- Bio‐Manufacturing Programme Singapore Institute of Manufacturing Technology Singapore
| | - Jiewei Lew
- Bio‐Manufacturing Programme Singapore Institute of Manufacturing Technology Singapore
| | - Jayaraman Premkumar
- Department of Biomedical Engineering National University of Singapore Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering National University of Singapore Singapore
| | - May Win Naing
- Bio‐Manufacturing Programme Singapore Institute of Manufacturing Technology Singapore
| |
Collapse
|
19
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
20
|
Miranda-Nieves D, Chaikof EL. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomater Sci Eng 2016; 3:694-711. [PMID: 33440491 DOI: 10.1021/acsbiomaterials.6b00250] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collagen and elastin represent the two most predominant proteins in the body and are responsible for modulating important biological and mechanical properties. Thus, the focus of this review is the use of collagen and elastin as biomaterials for the fabrication of living tissues. Considering the importance of both biomaterials, we first propose the notion that many tissues in the human body represent a reinforced composite of collagen and elastin. In the rest of the review, collagen and elastin biosynthesis and biophysics, as well as molecular sources and biomaterial fabrication methodologies, including casting, fiber spinning, and bioprinting, are discussed. Finally, we summarize the current attempts to fabricate a subset of living tissues and, based on biochemical and biomechanical considerations, suggest that future tissue-engineering efforts consider direct incorporation of collagen and elastin biomaterials.
Collapse
Affiliation(s)
- David Miranda-Nieves
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
21
|
Wieczorek A, Rezaei N, Chan CK, Xu C, Panwar P, Brömme D, Merschrod S EF, Forde NR. Development and characterization of a eukaryotic expression system for human type II procollagen. BMC Biotechnol 2015; 15:112. [PMID: 26666739 PMCID: PMC4678704 DOI: 10.1186/s12896-015-0228-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Triple helical collagens are the most abundant structural protein in vertebrates and are widely used as biomaterials for a variety of applications including drug delivery and cellular and tissue engineering. In these applications, the mechanics of this hierarchically structured protein play a key role, as does its chemical composition. To facilitate investigation into how gene mutations of collagen lead to disease as well as the rational development of tunable mechanical and chemical properties of this full-length protein, production of recombinant expressed protein is required. Results Here, we present a human type II procollagen expression system that produces full-length procollagen utilizing a previously characterized human fibrosarcoma cell line for production. The system exploits a non-covalently linked fluorescence readout for gene expression to facilitate screening of cell lines. Biochemical and biophysical characterization of the secreted, purified protein are used to demonstrate the proper formation and function of the protein. Assays to demonstrate fidelity include proteolytic digestion, mass spectrometric sequence and posttranslational composition analysis, circular dichroism spectroscopy, single-molecule stretching with optical tweezers, atomic-force microscopy imaging of fibril assembly, and transmission electron microscopy imaging of self-assembled fibrils. Conclusions Using a mammalian expression system, we produced full-length recombinant human type II procollagen. The integrity of the collagen preparation was verified by various structural and degradation assays. This system provides a platform from which to explore new directions in collagen manipulation. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0228-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Wieczorek
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Naghmeh Rezaei
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Clara K Chan
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.,Present Address: Department of Bioengineering, University of California at Los Angeles, Los Angeles, USA
| | - Chuan Xu
- Department of Chemistry, Memorial University, St. John's, NL, A1B 3X7, Canada.,Present Address: Green Innovative Technologies R&D Centre Ltd, Vancouver, Canada
| | - Preety Panwar
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dieter Brömme
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.,Department of Biochemistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Erika F Merschrod S
- Department of Chemistry, Memorial University, St. John's, NL, A1B 3X7, Canada
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
22
|
Yigit S, Dinjaski N, Kaplan DL. Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications. Biotechnol Bioeng 2015; 113:913-29. [PMID: 26332660 DOI: 10.1002/bit.25820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Fibrous proteins, such as silk, elastin and collagen are finding broad impact in biomaterial systems for a range of biomedical and industrial applications. Some of the key advantages of biosynthetic fibrous proteins compared to synthetic polymers include the tailorability of sequence, protein size, degradation pattern, and mechanical properties. Recombinant DNA production and precise control over genetic sequence of these proteins allows expansion and fine tuning of material properties to meet the needs for specific applications. We review current approaches in the design, cloning, and expression of fibrous proteins, with a focus on strategies utilized to meet the challenges of repetitive fibrous protein production. We discuss recent advances in understanding the fundamental basis of structure-function relationships and the designs that foster fibrous protein self-assembly towards predictable architectures and properties for a range of applications. We highlight the potential of functionalization through genetic engineering to design fibrous protein systems for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sezin Yigit
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Chemistry, Tufts University, Somerville, Massachusetts, 02145
| | - Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.
| |
Collapse
|
23
|
Naruse K, Yoo SK, Kim SM, Choi YJ, Lee HM, Jin DI. Analysis of Tissue-Specific Expression of Human Type II Collagen cDNA Driven by Different Sizes of the Upstream Region of the β-Casein Promoter. Biosci Biotechnol Biochem 2014; 70:93-8. [PMID: 16428825 DOI: 10.1271/bbb.70.93] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the ability of 1.8 kb or 3.1 kb bovine beta-casein promoter sequences for the expression regulation of transgene in vivo, transgenic mice were produced with human type II collagen gene fused to 1.8 kb and 3.1 kb of bovine beta-casein promoter by DNA microinjection. Five and three transgenic founder mice were produced using transgene constructs with 1.8 kb and 3.1 kb of bovine beta-casein promoters respectively. Founder mice were outbred with the wild type to produce F1 and F2 progenies. Total RNAs were extracted from four tissues (mammary gland, liver, kidney, and muscle) of female F1 transgenic mice of each transgenic line following parturition. RT-PCR and Northern blot analysis revealed that the expression level of transgene was variable among the transgenic lines, but transgenic mice containing 1.8 kb of promoter sequences exhibited more leaky expression of transgene in other tissues compared to those with 3.1 kb promoter. Moreover, Western blot analysis of transgenic mouse milk showed that human type II collagen proteins secreted into the milk of lactating transgenic mice contained 1.8 kb and 3.1 kb of bovine beta-casein promoter. These results suggest that promoter sequences of 3.1 kb bovine beta-casein gene can be used for induction of mammary gland-specific expression of transgenes in transgenic animals.
Collapse
Affiliation(s)
- Kenji Naruse
- Research Center for Transgenic and Cloned Pigs, Chungnam National University, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Ramshaw JAM, Werkmeister JA, Dumsday GJ. Bioengineered collagens: emerging directions for biomedical materials. Bioengineered 2014; 5:227-33. [PMID: 24717980 DOI: 10.4161/bioe.28791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications.
Collapse
|
25
|
RAMSHAW JOHNAM, VAUGHAN PAULR, WERKMEISTER JEROMEA. APPLICATIONS OF COLLAGEN IN MEDICAL DEVICES. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237201000042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Collagen is the most abundant natural protein found in living systems. While there is a whole family of different collagen types, each differing in sequence, the properties that make this protein so attractive as the building blocks for medical devices, are reflected largely by the unique fibrillar structure of the molecule, as well as defined functional regions that interact with the surrounding cells and other matrix components. As a commercial medical product, collagen can be part of the natural tissue used in the device, or it can be fabricated as a reconstituted product from animal or recombinant sources. Both types of uses have distinct properties that convey advantages and disadvantages to the end product. This review examines the chemistry and biology of collagen and describes some well-documented examples of collagen-based medical devices produced in one or other of these formats.
Collapse
|
26
|
|
27
|
Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. Natural and Genetically Engineered Proteins for Tissue Engineering. Prog Polym Sci 2012; 37:1-17. [PMID: 22058578 PMCID: PMC3207498 DOI: 10.1016/j.progpolymsci.2011.07.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To overcome the limitations of traditionally used autografts, allografts and, to a lesser extent, synthetic materials, there is the need to develop a new generation of scaffolds with adequate mechanical and structural support, control of cell attachment, migration, proliferation and differentiation and with bio-resorbable features. This suite of properties would allow the body to heal itself at the same rate as implant degradation. Genetic engineering offers a route to this level of control of biomaterial systems. The possibility of expressing biological components in nature and to modify or bioengineer them further, offers a path towards multifunctional biomaterial systems. This includes opportunities to generate new protein sequences, new self-assembling peptides or fusions of different bioactive domains or protein motifs. New protein sequences with tunable properties can be generated that can be used as new biomaterials. In this review we address some of the most frequently used proteins for tissue engineering and biomedical applications and describe the techniques most commonly used to functionalize protein-based biomaterials by combining them with bioactive molecules to enhance biological performance. We also highlight the use of genetic engineering, for protein heterologous expression and the synthesis of new protein-based biopolymers, focusing the advantages of these functionalized biopolymers when compared with their counterparts extracted directly from nature and modified by techniques such as physical adsorption or chemical modification.
Collapse
Affiliation(s)
- Sílvia Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
28
|
Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 2011; 9:967-983. [PMID: 21747742 PMCID: PMC3131555 DOI: 10.3390/md9060967] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 01/06/2023] Open
Abstract
Fibrillar collagens are the more abundant extracellular proteins. They form a metazoan-specific family, and are highly conserved from sponge to human. Their structural and physiological properties have been successfully used in the food, cosmetic, and pharmaceutical industries. On the other hand, the increase of jellyfish has led us to consider this marine animal as a natural product for food and medicine. Here, we have tested different Mediterranean jellyfish species in order to investigate the economic potential of their collagens. We have studied different methods of collagen purification (tissues and experimental procedures). The best collagen yield was obtained using Rhizostoma pulmo oral arms and the pepsin extraction method (2–10 mg collagen/g of wet tissue). Although a significant yield was obtained with Cotylorhiza tuberculata (0.45 mg/g), R. pulmo was used for further experiments, this jellyfish being considered as harmless to humans and being an abundant source of material. Then, we compared the biological properties of R. pulmo collagen with mammalian fibrillar collagens in cell cytotoxicity assays and cell adhesion. There was no statistical difference in cytotoxicity (p > 0.05) between R. pulmo collagen and rat type I collagen. However, since heparin inhibits cell adhesion to jellyfish-native collagen by 55%, the main difference is that heparan sulfate proteoglycans could be preferentially involved in fibroblast and osteoblast adhesion to jellyfish collagens. Our data confirm the broad harmlessness of jellyfish collagens, and their biological effect on human cells that are similar to that of mammalian type I collagen. Given the bioavailability of jellyfish collagen and its biological properties, this marine material is thus a good candidate for replacing bovine or human collagens in selected biomedical applications.
Collapse
|
29
|
Adachi T, Wang X, Murata T, Obara M, Akutsu H, Machida M, Umezawa A, Tomita M. Production of a non-triple helical collagen alpha chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnol Bioeng 2010; 106:860-70. [PMID: 20589667 DOI: 10.1002/bit.22752] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We generated transgenic silkworms that synthesized human type I collagen alpha1 chain [alpha1(I) chain] in the middle silk glands and secreted it into cocoons. The initial content of the recombinant alpha1(I) chain in the cocoons of the transgenic silkworms was 0.8%. The IE1 gene, a trans-activator from the baculovirus, was introduced into the transgenic silkworm to increase the content of the chain. We also generated silkworms homozygous for the transgenes. These manipulations increased the alpha1(I) chain content to 8.0% (4.24 mg per cocoon). The alpha1(I) chain was extracted and purified from the cocoons using a very simple method. The alpha1(I) chain contained no hydroxyprolines due to the absence of prolyl-hydroxylase activity in the silk glands. Circular dichroism analysis showed that the secondary structure of the alpha1(I) chain is similar to that of denatured type I collagen, demonstrating the absence of the triple helical structure. Human skin fibroblasts were seeded on the alpha1(I) chain-coated dishes. The cells attached and spread, although at decreased chain concentrations the spreading rate was lower than that of the collagen and gelatin. Cynomolgus monkey embryonic stem cells cultured on the alpha1(I) chain-coated dishes maintained an undifferentiated state after 30 passages, and their pluripotency was confirmed by teratoma formation in severe combined immunodeficient mice. These results show that the recombinant human alpha1(I) chain is a promising candidate biomaterial as a high-quality and safe gelatin substitute for cell culture.
Collapse
Affiliation(s)
- Takahiro Adachi
- Neosilk Co., Ltd., 3-13-26 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Osmekhina E, Neubauer A, Klinzing K, Myllyharju J, Neubauer P. Sandwich ELISA for quantitative detection of human collagen prolyl 4-hydroxylase. Microb Cell Fact 2010; 9:48. [PMID: 20565744 PMCID: PMC2895579 DOI: 10.1186/1475-2859-9-48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/17/2010] [Indexed: 11/28/2022] Open
Abstract
Background We describe a method for specific, quantitative and quick detection of human collagen prolyl 4-hydroxylase (C-P4H), the key enzyme for collagen prolyl-4 hydroxylation, in crude samples based on a sandwich ELISA principle. The method is relevant to active C-P4H level monitoring during recombinant C-P4H and collagen production in different expression systems. The assay proves to be specific for the active C-P4H α2β2 tetramer due to the use of antibodies against its both subunits. Thus in keeping with the method C-P4H is captured by coupled to an anti-α subunit antibody magnetic beads and an anti-β subunit antibody binds to the PDI/β subunit of the protein. Then the following holoenzyme detection is accomplished by a goat anti-rabbit IgG labeled with alkaline phosphatase which AP catalyzes the reaction of a substrate transformation with fluorescent signal generation. Results We applied an experimental design approach for the optimization of the antibody concentrations used in the sandwich ELISA. The assay sensitivity was 0.1 ng of C-P4H. The method was utilized for the analysis of C-P4H accumulation in crude cell extracts of E. coli overexpressing C-P4H. The sandwich ELISA signals obtained demonstrated a very good correlation with the detected protein activity levels measured with the standard radioactive assay. The developed assay was applied to optimize C-P4H production in E. coli Origami in a system where the C-P4H subunits expression acted under control by different promoters. The experiments performed in a shake flask fed-batch system (EnBase®) verified earlier observations that cell density and oxygen supply are critical factors for the use of the inducer anhydrotetracycline and thus for the soluble C-P4H yield. Conclusions Here we show an example of sandwich ELISA usage for quantifying multimeric proteins. The method was developed for monitoring the amount of recombinant C-P4H tetramer in crude E. coli extracts. Due to the specificity of the antibodies used in the assay against the different C-P4H subunits, the method detects the entire holoenzyme, and the signal is not disturbed by background expression of the separate subunits.
Collapse
Affiliation(s)
- Ekaterina Osmekhina
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Finland.
| | | | | | | | | |
Collapse
|
31
|
Ramshaw JAM, Peng YY, Glattauer V, Werkmeister JA. Collagens as biomaterials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20 Suppl 1:S3-S8. [PMID: 18379858 DOI: 10.1007/s10856-008-3415-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 02/26/2008] [Indexed: 05/26/2023]
Abstract
This paper reviews the structure, function and applications of collagens as biomaterials. The various formats for collagens, either as tissue-based devices or as reconstituted soluble collagens are discussed. The major emphasis is on the new technologies that are emerging that will lead to new and improved collagen-based medical devices. In particular, the development of recombinant collagens, especially using microorganism systems, is allowing the development of safe and reproducible collagen products. These systems also allow for the development of novel, non-natural structures, for example collagen like structures containing repeats of key functional domains or as chimeric structures where a collagen domain is covalently linked to another biologically active component.
Collapse
Affiliation(s)
- John A M Ramshaw
- CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton, VIC 3168, Australia.
| | | | | | | |
Collapse
|
32
|
Eskelin K, Ritala A, Suntio T, Blumer S, Holkeri H, Wahlström EH, Baez J, Mäkinen K, Maria NA. Production of a recombinant full-length collagen type I alpha-1 and of a 45-kDa collagen type I alpha-1 fragment in barley seeds. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:657-672. [PMID: 19656332 DOI: 10.1111/j.1467-7652.2009.00432.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recombinant DNA technology can be used to design and express collagen and gelatin-related proteins with predetermined composition and structure. Barley seed was chosen as a production host for a recombinant full-length collagen type I alpha1 (rCIa1) and a related 45-kDa rCIa1 fragment. The transgenic barley seeds were shown to accumulate both the rCIa1 and the 45-kDa rCIa1 fragment. Even when the amount of the rCIa1 was just above the detection threshold, this work using rCIa1 as a model demonstrated for the first time that barley seed can be used as a production system for collagen-related structural proteins. The 45-kDa rCI1a fragment expression, targeted to the endoplasmic reticulum, was controlled by three different promoters (a constitutive maize ubiquitin, seed endosperm-specific rice glutelin and germination-specific barley alpha-amylase fusion) to compare their effects on rCIa1 accumulation. Highest accumulation of the 45-kDa rCIa1 was obtained with the glutelin promoter (140 mg/kg seed), whereas the lowest accumulation was obtained with the alpha-amylase promoter. To induce homozygosity for stable 45-kDa rCIa1 production in the transgenic lines, doubled haploid (DH) progeny was generated through microspore culture. The 45-kDa rCIa1 expression levels achieved from the best DH lines were 13 mg/kg dry seeds under the ubiquitin promoter and 45 mg/kg dry seeds under the glutelin promoter. Mass spectroscopy and amino acid composition analysis of the purified 45-kDa rCIa1 fragment revealed that a small percent of prolines were hydroxylated with no additional detectable post-translational modifications.
Collapse
Affiliation(s)
- Katri Eskelin
- Department of Applied Chemistry and Microbiology and Department of Applied Biology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kyle S, Aggeli A, Ingham E, McPherson MJ. Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol 2009; 27:423-33. [PMID: 19497631 PMCID: PMC2828541 DOI: 10.1016/j.tibtech.2009.04.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 11/24/2022]
Abstract
Self-assembling peptide-based biomaterials are being developed for use as 3D tissue engineering scaffolds and for therapeutic drug-release applications. Chemical synthesis provides custom-made peptides in small quantities, but production approaches based upon transgenic organisms might be more cost-effective for large-scale peptide production. Long lead times for developing appropriate animal clones or plant lines and potential negative public opinion are obstacles to these routes. Microbes, particularly safe organisms used in the food industry, offer a more rapid route to the large-scale production of recombinant self-assembling biomaterials. In this review, recent advances and challenges in the recombinant production of collagen, elastin and de novo designed self-assembling peptides are discussed.
Collapse
Affiliation(s)
- Stuart Kyle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
34
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol Rev 2009. [DOI: 10.1124/pr.109.001289 doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2009; 61:198-223. [PMID: 19549927 PMCID: PMC2830117 DOI: 10.1124/pr.109.001289] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent the excess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
36
|
Zhang C, Baez J, Glatz CE. Purification and characterization of a 44-kDa recombinant collagen I alpha 1 fragment from corn grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:880-887. [PMID: 19140684 DOI: 10.1021/jf8026205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This paper demonstrates that a fibrous, repetitive amino acid sequence collagen-related protein, a 44-kDa fragment of human collagen I alpha 1 (CIalpha1), was expressed in corn grain molecularly equivalent to that produced in recombinant yeast. The recombinant CIalpha1 was extracted and purified from early generation plants having low levels of recombinant protein accumulation. It was selectively extracted at low pH and purified by ion exchange and gel filtration chromatography, resulting in a 44-kDa CIalpha1 with >70% purity and 60% recovery. The N-terminal sequence, amino acid composition, and immunoreactivity closely matched those of an analogous 44-kDa CIalpha1 fragment produced by the yeast Pichia . The corn-derived 44-kDa CIalpha1 had an intact protein mass of 44088 Da, which is within 0.2% of the mass calculated from the expected sequence. Tandem mass spectrometry confirmed the primary sequence with 78% coverage. The amino acid composition analysis indicated a low level of prolyl hydroxylation. Glycoprotein staining revealed no glycosylation.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
37
|
Qi HH, Ongusaha PP, Myllyharju J, Cheng D, Pakkanen O, Shi Y, Lee SW, Peng J, Shi Y. Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 2008; 455:421-4. [PMID: 18690212 PMCID: PMC2661850 DOI: 10.1038/nature07186] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 06/20/2008] [Indexed: 01/12/2023]
Abstract
Human Argonaute (Ago) proteins are essential components of the RNA-induced silencing complexes (RISCs). Argonaute 2 (Ago2) has a P-element-induced wimpy testis (PIWI) domain, which folds like RNase H and is responsible for target RNA cleavage in RNA interference. Proteins such as Dicer, TRBP, MOV10, RHA, RCK/p54 and KIAA1093 associate with Ago proteins and participate in small RNA processing, RISC loading and localization of Ago proteins in the cytoplasmic messenger RNA processing bodies. However, mechanisms that regulate RNA interference remain obscure. Here we report physical interactions between Ago2 and the alpha-(P4H-alpha(I)) and beta-(P4H-beta) subunits of the type I collagen prolyl-4-hydroxylase (C-P4H(I)). Mass spectrometric analysis identified hydroxylation of the endogenous Ago2 at proline 700. In vitro, both Ago2 and Ago4 seem to be more efficiently hydroxylated than Ago1 and Ago3 by recombinant human C-P4H(I). Importantly, human cells depleted of P4H-alpha(I) or P4H-beta by short hairpin RNA and P4H-alpha(I) null mouse embryonic fibroblast cells showed reduced stability of Ago2 and impaired short interfering RNA programmed RISC activity. Furthermore, mutation of proline 700 to alanine also resulted in destabilization of Ago2, thus linking Ago2 P700 and hydroxylation at this residue to its stability regulation. These findings identify hydroxylation as a post-translational modification important for Ago2 stability and effective RNA interference.
Collapse
Affiliation(s)
- Hank H Qi
- Department of Pathology, Harvard Medical School, New Research Building 854, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Production of a recombinant industrial protein using barley cell cultures. Protein Expr Purif 2008; 59:274-81. [DOI: 10.1016/j.pep.2008.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 11/15/2022]
|
39
|
Ruggiero F, Koch M. Making recombinant extracellular matrix proteins. Methods 2008; 45:75-85. [DOI: 10.1016/j.ymeth.2008.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022] Open
|
40
|
Bhure S, Sharma B. Cloning and characterization of ovine alphaS1-casein gene promoter: a transfection study in rat mammary gland cell line. ACTA ACUST UNITED AC 2007; 18:39-46. [PMID: 17364812 DOI: 10.1080/10425170601017145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Promoter regions of milk protein genes are frequently used to produce pharmaceutically and medically important proteins in the mammary gland of transgenic animals and also can be used for the construction of an inducible eukaryotic expression vector. The aim of the present study was to clone, sequence and characterize the regulatory elements in ovine alphaS1-CSNGP. For the first time we have cloned and sequenced region extending from - 2136 to +49 bp containing 5'-flanking region and exon I. Computational analysis of the sequence showed presence of core promoter elements viz., TATA box, CAAT box and initiator sequence. Mammary gland specific sequences included MGF/STAT 5, MPBF, Yu Lee 2, 4 and 5, Oka box C and hormone responsive elements (HRE) viz., GRE, PRE, PRL, IRE and also Polyoma enhancer 3 sequences. Computational analysis data is validated by following the reporter gene expression studies in rat breast cell line. Six reporter gene constructs under the control of full length, proximal, distal, minimal and proximal-distal fused promoter segments were constructed to assess the effect of presence or absence of few selected regulatory elements on expression ability of the promoter. Based on qualitative evaluation of fluorescence, the pGFP-F/VspI showed highest fluorescence followed by pGFP-P, pGFP-F/SpeI, pGFPminimal and pGFP-D.
Collapse
Affiliation(s)
- Sanjeevkumar Bhure
- Project Directorate on Animal Disease Monitoring Surveillance (PD_ADMAS). Hebbal, Bangalore, Karnataka, 560 024. India.
| | | |
Collapse
|
41
|
Huang J, Wong Po Foo C, Kaplan DL. Biosynthesis and Applications of Silk‐like and Collagen‐like Proteins. POLYM REV 2007. [DOI: 10.1080/15583720601109560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Adachi T, Tomita M, Shimizu K, Ogawa S, Yoshizato K. Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase alpha-subunits and human collagens in posterior silk glands: Production of cocoons that contained collagens with hydroxylated proline residues. J Biotechnol 2006; 126:205-19. [PMID: 16766075 DOI: 10.1016/j.jbiotec.2006.04.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/16/2006] [Accepted: 04/07/2006] [Indexed: 11/16/2022]
Abstract
Prolyl 4-hydroxylase (P4H) is a heterotetramer enzyme consisting of alpha-subunits (P4Halpha) and beta-subunits (P4Hbeta), and is required for collagen biosynthesis. Previously, we generated transgenic silkworms that produced human type III collagen fragments (mini-collagens) in the posterior silk gland (PSG). However, prolyl 4-hydroxylation did not occur on the mini-collagens, because in spite of an abundant expression of P4Hbeta in PSGs, P4Halpha expression was quite low there, thus resulting in an insufficient activity of P4H. In this study we aimed at generating hybrid transgenic silkworms whose PSGs are capable of producing mini-collagens and enough P4H for their prolyl 4-hydroxylation. Isolated PSGs were bombarded with fibroin L-chain gene promoter-driven vectors containing Bombyx mori P4Halpha (BmP4Halpha) cDNAs and were transplanted into the hemolymphatic cavity. The P4H activity in the PSG cells significantly increased, indicating that the expressed BmP4Halpha formed active tetramers with endogenous BmP4Hbeta. Using germ-line transgenesis technology, silkworms were generated that synthesized BmP4Halpha in PSG cells. The P4H activity in the transgenic silkworms was 130-fold higher than that of wild-type counterparts. Finally, we generated hybrid transgenic silkworms that expressed cDNAs of both BmP4Halpha and mini-collagen in PSG cells. They spun cocoons that contained mini-collagens whose appropriate proline residues had been adequately hydroxylated.
Collapse
Affiliation(s)
- Takahiro Adachi
- Yoshizato Project, Cooperative Link of Unique Science and Technology for Economy Revitalization, Hiroshima Prefectural Institute of Industrial Science and Technology, 3-10-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | | | | | | | | |
Collapse
|
43
|
Ito H, Steplewski A, Alabyeva T, Fertala A. Testing the utility of rationally engineered recombinant collagen-like proteins for applications in tissue engineering. J Biomed Mater Res A 2006; 76:551-60. [PMID: 16278869 DOI: 10.1002/jbm.a.30551] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collagens are attractive proteins as materials for tissue engineering. Over the last decade, significant progress has been made in developing technologies for large-scale production of native-like human recombinant collagens. Yet, the rational design of customized collagen-like proteins for smart biomaterials to enhance the quality of engineered tissues has not been explored. We mapped the D4 domain of human collagen II as most critical for supporting migration of chondrocytes and used this information to genetically engineer a collagen-like protein consisting of tandem repeats of the D4 domain (mD4 collagen). This novel collagen has been utilized to fabricate a scaffold for support of chondrocytes. We determined superior qualities of cartilaginous constructs created by chondrocytes cultured in scaffolds containing the mD4 collagen in comparison to those formed by chondrocytes cultured in bare scaffolds or those coated with wild-type collagen II. Our results are a first attempt to rationally engineer collagen-like proteins with characteristics tailored for specific needs of cartilage engineering and provide a basis for rational engineering of similar proteins for a variety of biomedical applications.
Collapse
Affiliation(s)
- Hidetoshi Ito
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
44
|
Pakkanen O, Pirskanen A, Myllyharju J. Selective expression of nonsecreted triple-helical and secreted single-chain recombinant collagen fragments in the yeast Pichia pastoris. J Biotechnol 2006; 123:248-56. [PMID: 16388866 DOI: 10.1016/j.jbiotec.2005.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 11/07/2005] [Accepted: 11/23/2005] [Indexed: 11/17/2022]
Abstract
High-level recombinant expression systems for the production of stable triple-helical human collagens and collagen fragments have been developed in the yeast Pichia pastoris. Collagen fragments are secreted as single-chain polypeptides by the yeast alpha-mating factor pre-pro sequence, but secretion of full-length triple-helical procollagen molecules has not been achieved despite the use of the same secretory signal. We studied here the effects of the secretory signal and the conformation and size of the collagen polypeptide on its secretion in P. pastoris. Unlike the collagen signal sequence, the alpha-mating factor pre-pro sequence led to efficient secretion of single-chain 45 and 9 kDa type I collagen fragments. The efficiency was dependent on the length of the collagen polypeptide, as secretion of single-chain full-length 90 kDa alpha1(I) polypeptides was less efficient than that of the 45 kDa fragment. Furthermore, the conformation of the collagen polypeptides had a marked effect on secretion, as induction of trimerization of the 45 and 9 kDa fragments by either the C propeptide or the small trimerizing domain foldon led to an accumulation of triple-helical molecules inside the cells despite the presence of the alpha-mating factor pre-pro sequence. Our results show that P. pastoris is a suitable host for the development of tailored expression systems aimed at selective production of nonsecreted triple-helical and secreted single-chain collagen fragments of varying lengths for specific purposes.
Collapse
Affiliation(s)
- Outi Pakkanen
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, P.O. Box 5000, University of Oulu, FIN-90014 Oulu, Finland
| | | | | |
Collapse
|
45
|
Chen L, Shen YH, Wang X, Wang J, Gan Y, Chen N, Wang J, LeMaire SA, Coselli JS, Wang XL. Human prolyl-4-hydroxylase alpha(I) transcription is mediated by upstream stimulatory factors. J Biol Chem 2006; 281:10849-55. [PMID: 16488890 PMCID: PMC2819823 DOI: 10.1074/jbc.m511237200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolyl-4-hydroxylase alpha(I) (P4Halpha(I)) is the rate-limiting subunit for P4H enzyme activity, which is essential for procollagen hydroxylation and secretion. In the current study, we have characterized the human P4Halpha(I) promoter for transcription factors and DNA elements regulating P4Halpha(I) expression. Using a progressive deletion cloning approach, we have constructed pGL3-P4Halpha(I) recombinant plasmids. We have identified a positive regulatory region at the positions of bp -184 to -97 responsible for approximately 80% of the P4Halpha(I) promoter efficiency. Three E-boxes were located within this region, and the E-box at position bp -135 explains most of the regulatory capacity. Upstream stimulatory factors (USF1/USF2) were shown to bind on the E-box using chromatin immunoprecipitation assay. Suppression of USF1 and/or USF2 using specific short interference RNA resulted in a significant reduction in P4Halpha(I) promoter activity, and overexpressed USF1 or USF2 increased P4Halpha(I) promoter activity significantly. Although transforming growth factor beta1 increased the USF1/USF2-E-box binding and P4Halpha(I) promoter activity, this up-regulatory effect can be largely prevented by USF1/USF2-specific short interference RNA. On the other hand, cigarette smoking extracts, which have been shown to suppress P4Halpha(I) expression, inhibited the binding between the USF1/USF2 and E-box, resulting in a reduced P4Halpha(I) promoter activity. Furthermore, the E-box on the P4Halpha(I) promoter appeared to indiscriminately bind with either USF1 or USF2, with a similar outcome on the promoter efficiency. In conclusion, our study shows that USF1/USF2 plays a critical role in basal P4Halpha(I) expression, and both positive (transforming growth factor beta1) and negative (cigarette smoking extract) regulators appear to influence the USF-E-box interaction and affect P4Halpha(I) expression.
Collapse
Affiliation(s)
- Li Chen
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Ying H. Shen
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xinwen Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Jing Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Yehua Gan
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Nanyue Chen
- Department of Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jian Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Scott A. LeMaire
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph S. Coselli
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xing Li Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
46
|
Han R, Zwiefka A, Caswell CC, Xu Y, Keene DR, Lukomska E, Zhao Z, Höök M, Lukomski S. Assessment of prokaryotic collagen-like sequences derived from streptococcal Scl1 and Scl2 proteins as a source of recombinant GXY polymers. Appl Microbiol Biotechnol 2006; 72:109-115. [PMID: 16552563 DOI: 10.1007/s00253-006-0387-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/15/2006] [Accepted: 02/18/2006] [Indexed: 11/27/2022]
Abstract
Collagen triple helix, composed of the repeating Gly-Xaa-Yaa (GXY) sequence, is a structural element found in all multicellular animals and also in some prokaryotes. Long GXY polymers are highly regarded components used in food, cosmetic, biomedical, and pharmaceutical industries. In this study, we explore a new concept for the production of recombinant GXY polymers which are based on the sequence of "prokaryotic collagens", the streptococcal collagen-like proteins Scl1 and Scl2. Analysis of 50 Scl variants identified the amino acid distribution and GXY-repeat usage that are involved in the stabilization of the triple helix in Scls. Using circular dichroism spectroscopy and electron microscopy, we show that significantly different recombinant rScl polypeptides form stable, unhydroxylated homotrimeric triple helices that can be produced both intra- and extracellularly in the Escherichia coli. These rScl constructs containing 20 to 129 GXY repeats had mid-point melting temperatures between 32 and 39 degrees C. Altogether, Scl-derived collagens, which are different from the mammalian collagens, can form stable triple helices under physiological conditions and can be used for the production of recombinant GXY polymers with a wide variety of potential applications.
Collapse
Affiliation(s)
- Runlin Han
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Antoni Zwiefka
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Clayton C Caswell
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Yi Xu
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, 77030, USA
| | | | - Ewa Lukomska
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Zhihong Zhao
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Magnus Höök
- Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, 77030, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
| |
Collapse
|
47
|
Báez J, Olsen D, Polarek JW. Recombinant microbial systems for the production of human collagen and gelatin. Appl Microbiol Biotechnol 2005; 69:245-52. [PMID: 16240115 DOI: 10.1007/s00253-005-0180-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/12/2005] [Accepted: 09/02/2005] [Indexed: 11/28/2022]
Abstract
The use of genetically engineered microorganisms is a cost-effective, scalable technology for the production of recombinant human collagen (rhC) and recombinant gelatin (rG). This review will discuss the use of yeast (Pichia pastoris, Saccharomyces cerevisiae, Hansenula polymorpha) and of bacteria (Escherichia coli, Bacillus brevis) genetically engineered for the production of rhC and rG. P. pastoris is the preferred production system for rhC and rG. Recombinant strains of P. pastoris accumulate properly hydroxylated triple helical rhC intracellularly at levels up to 1.5 g/l. Coexpression of recombinant collagen with recombinant prolyl hydroxylase results in the synthesis of hydroxylated collagen with thermal stability similar to native collagens. The purified hydroxylated rhC forms fibrils that are structurally similar to fibrils assembled from native collagen. These qualities make rhC attractive for use in many medical applications. P. pastoris can also be engineered to secrete high levels (3 to 14 g/l ) of collagen fragments with defined length, composition, and physiochemical properties that serve as substitutes for animal-derived gelatins. The replacement of animal-derived collagen and gelatin with rhC and rG will result in products with improved safety, traceability, reproducibility, and quality. In addition, the rhC and rG can be engineered to improve the performance of products containing these biomaterials.
Collapse
Affiliation(s)
- Julio Báez
- FibroGen, Inc., 225 Gateway Boulevard, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
48
|
Niavarani A, Dehghanizadeh S, Zeinali S, Karimi M, Magliano M, Rassoulzadegan M. Development of Transgenic Mice Expressing Calcitonin as a Beta-lactoglobulin Fusion Protein in Mammary Gland. Transgenic Res 2005; 14:719-27. [PMID: 16245163 DOI: 10.1007/s11248-005-7217-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
Expression of foreign proteins in mammalian milk is becoming a widespread strategy for high-level production of recombinant pharmaceuticals, especially those with the most complex post-translational modifications. A milk-specific ovine beta-lactoglobulin (oBLG) promoter was used to drive expression of recombinant calcitonin in mouse milk. A gene construct was generated, consisting of 10.7 kbp of the oBLG gene including its promoter and 3' flanking region with the calcitonin coding sequences inserted in-frame into the oBLG fifth exon. After microinjection, six founder mice transmitted the transgene to their progeny. RT-PCR confirmed mammary-gland specific expression of recombinant mRNA in most transgenic mice and Western blot analysis confirmed expression of chimeric protein. Calcitonin can thus be expressed under the oBLG promoter and regulatory elements in a mammary-gland specific manner.
Collapse
|
49
|
Abstract
Collagen, a large insoluble protein with a characteristic triple helical structure, is found as the most prominent component of extracellular matrix. The functions of collagen are not limited to providing mechanical strength to various tissues and organs as a structural protein, as it has been pointed out that collagen exhibits various biological functions through specific interactions with other macromolecules. However, the use of native triple helical collagen is often troublesome because of its insolubility and gelating properties. Instead, triple helical collagen-like peptides have been designed and are used as collagen surrogates in studies on collagen structure, stability, and biological functions including binding to other proteins and cultured cells. This article reviews recent progress in peptide design, synthesis, and the applications of collagen-like peptides in current matrix biology, while emphasizing the advantages of the peptide-based strategy.
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Science, Niigata University of Science and Applied Life Sciences, Niigata, Japan.
| |
Collapse
|
50
|
Neubauer A, Neubauer P, Myllyharju J. High-level production of human collagen prolyl 4-hydroxylase in Escherichia coli. Matrix Biol 2004; 24:59-68. [PMID: 15749002 DOI: 10.1016/j.matbio.2004.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/23/2004] [Accepted: 11/23/2004] [Indexed: 11/29/2022]
Abstract
The collagen prolyl 4-hydroxylases (C-P4Hs), enzymes residing within the lumen of the endoplasmic reticulum, play a central role in the synthesis of all collagens. The vertebrate enzymes are alpha(2)beta(2) tetramers in which the two catalytic sites are located in the alpha subunits, and protein disulfide isomerase serves as the beta subunit. All attempts to assemble an active C-P4H tetramer from its subunits in in vitro cell-free systems have been unsuccessful, but assembly of a recombinant enzyme has been reported in several cell types by coexpression of the two types of subunit. An active type I C-P4H tetramer was obtained here by periplasmic expression in Escherichia coli strains BL21 and RB791. Further optimization for production by stepwise regulated coexpression of its subunits in the cytoplasm of a thioredoxin reductase and glutathione reductase mutant E. coli strain resulted in large amounts of human type I C-P4H tetramer. The specific activity of the C-P4H tetramer purified from the cytoplasmic expression was within the range of values reported for human type I C-P4H isolated as a nonrecombinant enzyme or produced in the endoplasmic reticulum of insect cells, but the expression level, about 25 mg/l in a fermenter, is about 5-10 times that obtained in insect cells. The enzyme expressed in E. coli differed from those present in vivo and those produced in other hosts in that it lacked the N glycosylation of its alpha subunits, which may be advantageous in crystallization experiments.
Collapse
Affiliation(s)
- Antje Neubauer
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, P. O. Box 5000, University of Oulu, FIN-90014 Oulu, Finland
| | | | | |
Collapse
|