1
|
Demir K, Turgut R, Şentürk S, Işıklar H, Günalan E. The Therapeutic Effects of Bioactive Compounds on Colorectal Cancer via PI3K/Akt/mTOR Signaling Pathway: A Critical Review. Food Sci Nutr 2024; 12:9951-9973. [PMID: 39723045 PMCID: PMC11666977 DOI: 10.1002/fsn3.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis. Therefore, inhibition of the mTOR signaling by numerous bioactive components may be effective against CRC. The study aims to discuss the therapeutic capacity of various polyphenols, terpenoids, and alkaloids on CRC via the PI3K/Akt/mTOR pathway. The potential molecular effects of bioactive compounds on the mTOR pathway's upstream and downstream targets are examined. Each bioactive component causes various physiological processes, such as triggering free radical production, disruption of mitochondrial membrane potential, cell cycle arrest, inhibition of CRC stem cell migration, and suppression of glycolysis through mTOR signaling inhibition. As a result, carcinogenesis is inhibited by inducing apoptosis and autophagy. However, it should be noted that studies are primarily in vitro dose-dependent treatment researchers. This study raises awareness about the role of phenolic compounds in treating CRC, contributing to their future use as anticancer agents. These bioactive compounds have the potential to be developed into food supplementation to prevent and treat various cancer types including CRC. This review has the potential to lead to further development of clinical studies. In the future, mTOR inhibition by applying several bioactive agents using advanced drug delivery systems may contribute to CRC treatment with 3D cell culture and in vivo clinical studies.
Collapse
Affiliation(s)
- Kübra Demir
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
- Faculty of Health Science, Department of Nutrition and DieteticsSabahattin Zaim UniversityIstanbulTürkiye
| | - Rana Turgut
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Selcen Şentürk
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Handan Işıklar
- Faculty of Medicine, Department of Internal MedicineYalova UniversityYalovaTürkiye
| | - Elif Günalan
- Faculty of Health Science, Department of Nutrition and DieteticsIstanbul Health and Technology UniversityIstanbulTürkiye
| |
Collapse
|
2
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Novel benzo[4,5]thiazolo[2,3-C][1,2,4]triazoles: Design, synthesis, anticancer evaluation, kinase profiling and molecular docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
He X, Nie Y, Zhong M, Li S, Li X, Guo Y, Liu Z, Gao Y, Ding F, Wen D, Zhang Y. New organoselenides (NSAIDs-Se derivatives) as potential anticancer agents: Synthesis, biological evaluation and in silico calculations. Eur J Med Chem 2021; 218:113384. [PMID: 33799070 DOI: 10.1016/j.ejmech.2021.113384] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Herein we reported the synthesis of twenty new organoselenium compounds (2a-2j and 3a-3j) based on the hybridization of nonsteroidal antiinflammatory drugs (NSAIDs) skeleton and organoselenium motif (-SeCN and -SeCF3), the anticancer activity was evaluated against four types of cancer cell lines, Caco-2 (human colon adenocarcinoma cells), BGC-823 (human gastric cancer cells), MCF-7 (human breast adenocarcinoma cells), PC-3 (human prostatic cancer cells). Interestingly, the introduction of the -SeCN or -SeCF3 moiety in corresponding parent NSAIDs results in the significant effect on cancer cell lines. Moreover, the most active compound 3a showed IC50 values lower than 5 μM against the four cancer cell lines, particularly to BGC-823 and MCF-7 with IC50 values of 2.5 and 2.7 μM, respectively. Furthermore, three compounds 3a, 3g and 3i were selected to investigate their ability to induce apoptosis in BGC-823 cells via modulating the expression of anti-apoptotic Bcl-2 protein, pro-inflammatory cytokines (IL-2) and proapoptotic caspase-8 protein. The redox properties of the NSAIDs-Se derivatives prepared herein were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), bleomycin dependent DNA damage and glutathione peroxidase (GPx)-like assays. Finally, molecular docking study revealed that an interaction with the active site of thioredoxin reductase 1 (TrxR1) and predicted the anticancer activity of the synthesized candidates. Overall, these results could serve a promising launch point for further design of NSAIDs-Se derivatives as potential anticancer agents.
Collapse
Affiliation(s)
- Xianran He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yousong Nie
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, LiuFang Campus, Guanggu 1st Road, Wuhan, 430205, China
| | - Min Zhong
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Shaolei Li
- Shenzhen Fushan Biological Technology Co., Ltd, Kexing Science Park A1 1005, Nanshan Zone, Shenzhen, 518057, China
| | - Xiaolong Li
- Shenzhen Fushan Biological Technology Co., Ltd, Kexing Science Park A1 1005, Nanshan Zone, Shenzhen, 518057, China
| | - Yi Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yangguang Gao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Fei Ding
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Dan Wen
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yongmin Zhang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China; Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
6
|
Mdkhana B, Zaher DM, Abdin SM, Omar HA. Tangeretin boosts the anticancer activity of metformin in breast cancer cells via curbing the energy production. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153470. [PMID: 33524703 DOI: 10.1016/j.phymed.2021.153470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Breast cancer is the first leading cause of women cancer-related deaths worldwide. While there are many proposed treatments for breast cancer, low efficacy, toxicity, and resistance are still major therapeutic obstacles. Thus, there is a need for safer and more effective therapeutic approaches. Because of the direct link between obesity and carcinogenesis, energy restriction mimetic agents (ERMAs) such as the antidiabetic agent, metformin was proposed as a novel antiproliferative agent. However, the anticancer dose of metformin alone is relatively high and impractical to be implemented safely in patients. The current work aimed to sensitize resistant breast cancer cells to metformin's antiproliferative effect using the natural potential anticancer agent, tangeretin. METHODS The possible synergistic combination between metformin and tangeretin was initially evaluated using MTT cell viability assay in different breast cancer cell lines (MCF-7, MDA-MB-231, and their resistant phenotype). The possible mechanisms of synergy were investigated via Western blotting analysis, reactive oxygen species (ROS) measurement, annexin/PI assay, cell cycle analysis, and wound healing assay. RESULTS The results indicated the ability of tangeretin to improve the anticancer activity of metformin. Interestingly, the improved activity was almost equally observed in both parental and resistant cancer cells, which underlines the importance of this combination in cases of the emergence of resistance. The synergy was mediated through the enhanced activation of AMPK and ROS generation in addition to the improved inhibition of cell migration, induction of cell cycle arrest, and apoptosis in cancer cells. CONCLUSION The current work underscores the importance of metformin as an ERMA in tackling breast cancer and as a novel approach to boost its anticancer activity via a synergistic combination with tangeretin.
Collapse
Affiliation(s)
- Bushra Mdkhana
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511 Egypt.
| |
Collapse
|
7
|
Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel SM, Büsselberg D, Kubatka P, Shakibaei M. Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers (Basel) 2021; 13:cancers13020188. [PMID: 33430318 PMCID: PMC7825813 DOI: 10.3390/cancers13020188] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prevention and treatment of cancer is an ongoing medical challenge. In the context of personalized medicine, the well-studied polyphenol resveratrol could complement classical tumor therapy. It may affect key processes such as inflammation, angiogenesis, proliferation, metastasis, glucose metabolism, and apoptosis in various cancers because resveratrol acts as a multi-targeting agent by modulating multiple signal transduction pathways. This review article focuses on resveratrol’s ability to modify tumor glucose metabolism and its associated therapeutic capacity. Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway. It also inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM. In addition, resveratrol induces apoptosis by targeting integrin, p53, LDH, and FAK. In conclusion, resveratrol has many potentials to intervene in tumor processes if bioavailability can be increased and this natural compound can be used selectively. Abstract Tumor cells develop several metabolic reprogramming strategies, such as increased glucose uptake and utilization via aerobic glycolysis and fermentation of glucose to lactate; these lead to a low pH environment in which the cancer cells thrive and evade apoptosis. These characteristics of tumor cells are known as the Warburg effect. Adaptive metabolic alterations in cancer cells can be attributed to mutations in key metabolic enzymes and transcription factors. The features of the Warburg phenotype may serve as promising markers for the early detection and treatment of tumors. Besides, the glycolytic process of tumors is reversible and could represent a therapeutic target. So-called mono-target therapies are often unsafe and ineffective, and have a high prevalence of recurrence. Their success is hindered by the ability of tumor cells to simultaneously develop multiple chemoresistance pathways. Therefore, agents that modify several cellular targets, such as energy restriction to target tumor cells specifically, have therapeutic potential. Resveratrol, a natural active polyphenol found in grapes and red wine and used in many traditional medicines, is known for its ability to target multiple components of signaling pathways in tumors, leading to the suppression of cell proliferation, activation of apoptosis, and regression in tumor growth. Here, we describe current knowledge on the various mechanisms by which resveratrol modulates glucose metabolism, its potential as an imitator of caloric restriction, and its therapeutic capacity in tumors.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Saba Sameri
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, 6517838678 Hamadan, Iran;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: ; Tel.: +49-892-1807-2624; Fax: +49-892-1807-2625
| |
Collapse
|
8
|
Abdelazeem AH, Alqahtani AM, Omar HA, Bukhari SNA, Gouda AM. Synthesis, biological evaluation and kinase profiling of novel S-benzo[4,5]thiazolo[2,3-c][1,2,4]triazole derivatives as cytotoxic agents with apoptosis-inducing activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Tilekar K, Upadhyay N, Hess JD, Macias LH, Mrowka P, Aguilera RJ, Meyer-Almes FJ, Iancu CV, Choe JY, Ramaa CS. Structure guided design and synthesis of furyl thiazolidinedione derivatives as inhibitors of GLUT 1 and GLUT 4, and evaluation of their anti-leukemic potential. Eur J Med Chem 2020; 202:112603. [PMID: 32634629 PMCID: PMC7451030 DOI: 10.1016/j.ejmech.2020.112603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
Cancer cells increase their glucose uptake and glycolytic activity to meet the high energy requirements of proliferation. Glucose transporters (GLUTs), which facilitate the transport of glucose and related hexoses across the cell membrane, play a vital role in tumor cell survival and are overexpressed in various cancers. GLUT1, the most overexpressed GLUT in many cancers, is emerging as a promising anti-cancer target. To develop GLUT1 inhibitors, we rationally designed, synthesized, structurally characterized, and biologically evaluated in-vitro and in-vivo a novel series of furyl-2-methylene thiazolidinediones (TZDs). Among 25 TZDs tested, F18 and F19 inhibited GLUT1 most potently (IC50 11.4 and 14.7 μM, respectively). F18 was equally selective for GLUT4 (IC50 6.8 μM), while F19 was specific for GLUT1 (IC50 152 μM in GLUT4). In-silico ligand docking studies showed that F18 interacted with conserved residues in GLUT1 and GLUT4, while F19 had slightly different interactions with the transporters. In in-vitro antiproliferative screening of leukemic/lymphoid cells, F18 was most lethal to CEM cells (CC50 of 1.7 μM). Flow cytometry analysis indicated that F18 arrested cell cycle growth in the subG0-G1 phase and lead to cell death due to necrosis and apoptosis. Western blot analysis exhibited alterations in cell signaling proteins, consistent with cell growth arrest and death. In-vivo xenograft study in a CEM model showed that F18 impaired tumor growth significantly.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Jessica D Hess
- The Cytometry, Screening and Imaging Core Facility & Border Biomedical Research Center & Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Lucasantiago Henze Macias
- The Cytometry, Screening and Imaging Core Facility & Border Biomedical Research Center & Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Piotr Mrowka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Chalubinskiego, Warsaw, Poland
| | - Renato J Aguilera
- The Cytometry, Screening and Imaging Core Facility & Border Biomedical Research Center & Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Darmstadt, Germany
| | - Cristina V Iancu
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, NC, USA
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, NC, USA; Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
10
|
Permuted 2,4-thiazolidinedione (TZD) analogs as GLUT inhibitors and their in-vitro evaluation in leukemic cells. Eur J Pharm Sci 2020; 154:105512. [PMID: 32801003 DOI: 10.1016/j.ejps.2020.105512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023]
Abstract
Cancer is a heterogeneous disease, and its treatment requires the identification of new ways to thwart tumor cells. Amongst such emerging targets are glucose transporters (GLUTs, SLC2 family), which are overexpressed by almost all types of cancer cells; their inhibition provides a strategy to disrupt tumor metabolism selectively, leading to antitumor effects. Here, novel thiazolidinedione (TZD) derivatives were designed, synthesized, characterized, and evaluated for their GLUT1, GLUT4, and GLUT5 inhibitory potential, followed by in-vitro cytotoxicity determination in leukemic cell lines. Compounds G5, G16, and G17 inhibited GLUT1, with IC50 values of 5.4 ± 1.3, 26.6 ± 1.8, and 12.6 ± 1.2 μM, respectively. G17 was specific for GLUT1, G16 inhibited GLUT4 (IC50 = 21.6 ± 4.5 μM) comparably but did not affect GLUT5. The most active compound, G5, inhibited all three GLUT types, with GLUT4 IC50 = 9.5 ± 2.8 μM, and GLUT5 IC50 = 34.5 ± 2.4 μM. Docking G5, G16, and G17 to the inward- and outward-facing structural models of GLUT1 predicted ligand binding affinities consistent with the kinetic inhibition data and implicated E380 and W388 of GLUT1 vs. their substitutions in GLUT5 (A388 and A396, respectively) in inhibitor preference for GLUT1. G5 inhibited the proliferation of leukemia CEM cells at low micromolar range (IC50 = 13.4 μM) while being safer for normal blood cells. Investigation of CEM cell cycle progression after treatment with G5 showed that cells accumulated in the G2/M phase. Flow cytometric apoptosis studies revealed that compound G5 induced both early and late-stage apoptosis in CEM cells.
Collapse
|
11
|
Xiao F, Li L, Fu JS, Hu YX, Luo R. Regulation of the miR-19b-mediated SOCS6-JAK2/STAT3 pathway by lncRNA MEG3 is involved in high glucose-induced apoptosis in hRMECs. Biosci Rep 2020; 40:BSR20194370. [PMID: 32519748 PMCID: PMC7327180 DOI: 10.1042/bsr20194370] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Diabetic retinopathy (DR) is one of the most severe and common complications of diabetes mellitus. The present study aimed to investigate the molecular mechanism of MEG3, miR-19b and SOCS6 in human retinal microvascular endothelial cells (hRMECs) under high glucose conditions. METHODS HRMECs were cultured in 5 or 30 mM D-glucose medium. qRT-PCR and Western blotting were used to determine the mRNA expression and protein levels. MTT assay and flow cytometry analysis were performed to detect the viability and apoptosis of hRMECs, respectively. TNF-α, IL-6 and IL-1β levels in cell supernatants were detected by ELISA. The activity of caspase-3/7 was also determined. A luciferase reporter assay was performed to confirm the targeting relationship between miR-19b and SOCS6, as well as MEG3 and miR-19b. RESULTS Our study demonstrated that miR-19b was increased and SOCS6 was decreased in HG-induced hRMECs. Knockdown of SOCS6 inhibited cell viability and reversed the promotion of cell viability induced by knockdown of miR-19b. Additionally, miR-19b directly targeted and negatively regulated SOCS6. Moreover, miR-19b promoted the cell apoptosis rate and caspase-3/7 activity and increased inflammatory factors through the SOCS6-mediated JAK2/STAT3 signalling pathway. In addition, MEG3 attenuated HG-induced apoptosis of hRMECs by targeting the miR-19b/SOCS6 axis. CONCLUSION These findings indicate that MEG3 inhibited HG-induced apoptosis and inflammation by regulating the miR-19b/SOCS6 axis through the JAK2/STAT3 signalling pathway in hRMECs. Thus, these findings might provide a new target for the treatment of DR.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lan Li
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jing-Song Fu
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yu-Xiang Hu
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Rong Luo
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
12
|
Nie Y, Zhong M, Li S, Li X, Zhang Y, Zhang Y, He X. Synthesis and Potential Anticancer Activity of Some Novel Selenocyanates and Diselenides. Chem Biodivers 2020; 17:e1900603. [DOI: 10.1002/cbdv.201900603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yousong Nie
- School of Environmental Ecology and Biological EngineeringWuhan Institute of Technology, LiuFang Campus Guanggu 1st road Wuhan 430205 P. R. China
| | - Min Zhong
- Institute for Interdisciplinary ResearchJianghan University Wuhan Economic and Technological Development Zone Wuhan 430056 P. R. China
| | - Shaolei Li
- Shenzhen Fushan Biological Technology Co.Ltd., Kexing Science Park A1 1005, Nanshan Zone Shenzhen 518057 P. R. China
| | - Xiaolong Li
- Shenzhen Fushan Biological Technology Co.Ltd., Kexing Science Park A1 1005, Nanshan Zone Shenzhen 518057 P. R. China
| | - Yongmin Zhang
- Institut Parisien de Chimie MoléculaireCNRS UMR 7201Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Youhong Zhang
- School of Environmental Ecology and Biological EngineeringWuhan Institute of Technology, LiuFang Campus Guanggu 1st road Wuhan 430205 P. R. China
| | - Xianran He
- Institute for Interdisciplinary ResearchJianghan University Wuhan Economic and Technological Development Zone Wuhan 430056 P. R. China
| |
Collapse
|
13
|
Hersi F, Omar HA, Al-Qawasmeh RA, Ahmad Z, Jaber AM, Zaher DM, Al-Tel TH. Design and synthesis of new energy restriction mimetic agents: Potent anti-tumor activities of hybrid motifs of aminothiazoles and coumarins. Sci Rep 2020; 10:2893. [PMID: 32076009 PMCID: PMC7031302 DOI: 10.1038/s41598-020-59685-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
The incidence of obesity-related diseases like diabetes, cardiovascular diseases, and different types of cancers shed light on the importance of dietary control as preventive and treatment measures. However, long-term dietary control is challenging to achieve in most individuals. The use of energy restriction mimetic agents (ERMAs) as an alternative approach to affect the energy machinery of cancer cells has emerged as a promising approach for cancer therapy. ERMAs limit the high need for energy in rapidly growing tumor cells, with their survival rate strongly dependent on the robust availability of energy. In this context, initial phenotypic screening of an in-house pilot compound library identified a new class of aminothiazole anchored on coumarin scaffold as potent anticancer lead drug candidates with potential activity as ERMA. The identified chemotypes were able to inhibit glucose uptake and increase ROS content in cancer cells. Compounds 9b, 9c, 9i, 11b, and 11c were highly active against colorectal cancer cell lines, HCT116 and HT-29, with half-maximal inhibitory concertation (IC50) range from 0.25 to 0.38 µM. Further biological evaluations of 9b and 9f using Western blotting, caspase activity, glucose uptake, ROS production, and NADPH/NADP levels revealed the ability of these lead drug candidates to induce cancer cell death via, at least in part, energy restriction. Moreover, the assessment of 9b and 9f synergistic activity with cisplatin showed promising outcomes. The current work highlights the significant potential of the lead compounds, 9b, and 9f as potential anticancer agents via targeting the cellular energy machinery in cancer cells.
Collapse
Affiliation(s)
- Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates. .,College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates. .,Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Raed A Al-Qawasmeh
- Department of Chemistry, Faculty of Science, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Zainab Ahmad
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Areej M Jaber
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates. .,College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
14
|
Synthesis and anticancer activity evaluation of novel oxacalix[2]arene[2]pyrimidine derivatives. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02321-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Wang G, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Targeting Strategies for Glucose Metabolic Pathways and T Cells in Colorectal Cancer. Curr Cancer Drug Targets 2018; 19:534-550. [PMID: 30360743 DOI: 10.2174/1568009618666181015150138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/23/2017] [Accepted: 12/24/2017] [Indexed: 11/22/2022]
Abstract
Colorectal cancer is a heterogeneous group of diseases that result from the accumulation of different sets of genomic alterations, together with epigenomic alterations, and it is influenced by tumor-host interactions, leading to tumor cell growth and glycolytic imbalances. This review summarizes recent findings that involve multiple signaling molecules and downstream genes in the dysregulated glycolytic pathway. This paper further discusses the role of the dysregulated glycolytic pathway in the tumor initiation, progression and the concomitant systemic immunosuppression commonly observed in colorectal cancer patients. Moreover, the relationship between colorectal cancer cells and T cells, especially CD8+ T cells, is discussed, while different aspects of metabolic pathway regulation in cancer cell proliferation are comprehensively defined. Furthermore, this study elaborates on metabolism in colorectal cancer, specifically key metabolic modulators together with regulators, glycolytic enzymes, and glucose deprivation induced by tumor cells and how they inhibit T-cell glycolysis and immunogenic functions. Moreover, metabolic pathways that are integral to T cell function, differentiation, and activation are described. Selective metabolic inhibitors or immunemodulation agents targeting these pathways may be clinically useful to increase effector T cell responses for colorectal cancer treatment. However, there is a need to identify specific antigens using a cancer patient-personalized approach and combination strategies with other therapeutic agents to effectively target tumor metabolic pathways.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province 442000, China
| | - Yan Sun
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province 212001, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province 212001, China
| |
Collapse
|
16
|
Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:251-273. [PMID: 31259695 DOI: 10.2478/acph-2018-0026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2018] [Indexed: 01/05/2023]
Abstract
Towards optimization of the pyrrolizine-5-carboxamide scaffold, a novel series of six derivatives (4a-c and 5a-c) was prepared and evaluated for their anti-inflammatory, analgesic and anticancer activities. The (EZ)-7-cyano-6-((4-hydroxybenzylidene)amino)-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (4b) and (EZ)-6-((4-chlorobenzylidene)-amino)-7-cyano-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (5b) bearing the electron donating methyl group showed the highest anti-inflammatory activity while (EZ)-6-((4-chlorobenzylidene)amino)-7-cyano-N-phenyl-2,3-dihydro-1H-pyrrolizine-5-carboxamide (5a) was the most active analgesic agent. Cytotoxicity of the new compounds was evaluated against the MCF-7, A2780 and HT29 cancer cell lines using the MTT assay. Compounds 4b and 5b displayed high anticancer activity with IC50 in the range of 0.30-0.92 μmol L-1 against the three cell lines, while compound (EZ)-N-(4-chlorophenyl)-7-cyano-6-((4-hydroxybenzylidene)-amino)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (4c) was the most active against MCF-7 cells (IC50 = 0.08 μmol L-1). Both the anti-inflammatory and anticancer activities of the new compounds were dependent on the type of substituent on the phenyl rings. Substituents with opposite electronic effects on the two phenyl rings are preferable for high cytotoxicity against the MCF-7 and A2780 cells. COX inhibition was suggested as the molecular mechanism of the anti-inflammatory activity of the new compounds while no clear relationship could be observed between COX inhibition and anticancer activity. Compound 5b, the most active against the three cell lines, induced dose-dependent early apoptosis with 0.1-0.2 % necrosis in MCF-7 cells. New compounds showed promising drug-likeness scores while the docking study revealed high binding affinity to COX-2. Taken together, this study highlighted the significant impact of the substituents on the anti-inflammatory and anticancer activity of pyrrolizine-5-carboxamides, which could help in further optimization to discover good leads for the treatment of cancer and inflammation.
Collapse
|
17
|
Antrodia cinnamomea boosts the anti-tumor activity of sorafenib in xenograft models of human hepatocellular carcinoma. Sci Rep 2018; 8:12914. [PMID: 30150684 PMCID: PMC6110745 DOI: 10.1038/s41598-018-31209-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been recognized worldwide as one of the major causes of cancer death. The medicinal fungus Antrodia cinnamomea (A. cinnamomea) has been served as a functional food for liver protection. The aim of the present study was to investigate the potential activity of A. cinnamomea extracts as a safe booster for the anticancer activity of sorafenib, a multi-kinase inhibitor approved for the treatment of HCC. The biologically active triterpenoids in the ethanolic extracts of A. cinnamomea (EAC) were initially identified by HPLC/LC/MS then the different extracts and sorafenib were assessed in vitro and in vivo. EAC could effectively sensitize HCC cells to low doses of sorafenib, which was perceived via the ability of the combination to repress cell viability and to induce cell cycle arrest and apoptosis in HCC cells. The ability of EAC to enhance sorafenib activity was mediated through targeting mitogen-activated protein (MAP) kinases, modulating cyclin proteins expression and inhibiting cancer cell invasion. Moreover, the proposed combination significantly suppressed ectopic tumor growth in mice with high safety margins compared to single-agent treatment. Thus, this study highlights the advantage of combining EAC with sorafenib as a potential adjuvant therapeutic strategy against HCC.
Collapse
|
18
|
Chen SY, Lee YR, Hsieh MC, Omar HA, Teng YN, Lin CY, Hung JH. Enhancing the Anticancer Activity of Antrodia cinnamomea in Hepatocellular Carcinoma Cells via Cocultivation With Ginger: The Impact on Cancer Cell Survival Pathways. Front Pharmacol 2018; 9:780. [PMID: 30072899 PMCID: PMC6058215 DOI: 10.3389/fphar.2018.00780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023] Open
Abstract
Antrodia cinnamomea (AC) is a medicinal fungal species that has been widely used traditionally in Taiwan for the treatment of diverse health-related conditions including cancer. It possesses potent anti-inflammatory and antioxidant properties in addition to its ability to promote cancer cell death in several human tumors. Our aim was to improve the anticancer activity of AC in hepatocellular carcinoma (HCC) through its cocultivation with ginger aiming at tuning the active ingredients. HCC cell lines, Huh-7 and HepG2 were used to study the in vitro anticancer activity of the ethanolic extracts of AC (EAC) alone or after the cocultivation in presence of ginger (EACG). The results indicated that the cocultivation of AC with ginger significantly induced the production of important triterpenoids and EACG was significantly more potent than EAC in targeting HCC cell lines. EACG effectively inhibited cancer cells growth via the induction of cell cycle arrest at G2/M phase and induction of apoptosis in Huh-7 and HepG2 cells as indicated by MTT assay, cell cycle analysis, Annexin V assay, and the activation of caspase-3. In addition, EACG modulated cyclin proteins expression and mitogen-activated protein kinase (MAPK) signaling pathways in favor of the inhibition of cancer cell survival. Taken together, the current study highlights an evidence that EACG is superior to EAC in targeting cancer cell survival and inducing apoptotic cell death in HCC. These findings support that EACG formula can serve as a potential candidate for HCC adjuvant therapy.
Collapse
Affiliation(s)
- San-Yuan Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ming-Chia Hsieh
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Ching-Yen Lin
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Jui-Hsiang Hung
- Drug Discovery and Development Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
19
|
Liu L, Li S, Li X, Zhong M, Lu Y, Jiajie Y, Yongmin Z, He X. Synthesis of NSAIDs–Se derivatives as potent anticancer agents. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2216-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Gouda AM, El-Ghamry HA, Bawazeer TM, Farghaly TA, Abdalla AN, Aslam A. Antitumor activity of pyrrolizines and their Cu(II) complexes: Design, synthesis and cytotoxic screening with potential apoptosis-inducing activity. Eur J Med Chem 2018; 145:350-359. [PMID: 29335201 DOI: 10.1016/j.ejmech.2018.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/19/2022]
Abstract
Two novel series including Schiff bases of the pyrrolizine-5-carboxamides and their Cu(II) complexes were designed, synthesized and analysed using spectral and analytical techniques. The analytical results indicated the formation of the complexes in 1:1 or 1:2 (Metal:Ligand) ratio. The geometry around the Cu centers was confirmed to be tetrahedral or octahedral. The cytotoxic activity of the new compounds was evaluated using MCF-7 (human breast adenocarcinoma), A2780 (human ovary adenocarcinoma) and HT29 (human colon adenocarcinoma), in addition to MRC5 (normal human fetal lung fibroblast) cells using the MTT cytotoxicity assay. The Schiff base 12c and the Cu complex 13b were the most active in the two series with IC50 values in the range of 0.14-2.54 μM against the three cell lines. Also, the Cu complex 13e showed excellent activity against HT29 with IC50 = 0.05μM. 7-Cyano-N-(4-methoxyphenyl)-6-((3-phenylallylidene) amino)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (12c) showed high selectivity (6-13 folds) for cancerous cells over normal cells; and it induced marginal increases in the G1 and S phases of MCF-7 cells during cell cycle analysis, while compound 13b increased the MCF-7 Sub-G1 proapoptotic population, and blocked cells in the G2-M phase in a dose dependent manner. The annexin V apoptosis assay revealed the ability of compounds 12c and 13b to increase the early apoptotic MCF-7 cell populations two and three fold, respectively. Furthermore, these findings were supported by data showing that the two compounds (12c and 13b) elicit cytotoxic activity. Taken together, the data presented in this study warrants further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hoda A El-Ghamry
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt; Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Tahani M Bawazeer
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia; Medical Applications of Nanobiotechnology Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thoraya A Farghaly
- Department of Chemistry Faculty of Science, Cairo University, Giza, Egypt.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmacology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Akhmed Aslam
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
21
|
Abdelazeem AH, El-Saadi MT, Said EG, Youssif BGM, Omar HA, El-Moghazy SM. Novel diphenylthiazole derivatives with multi-target mechanism: Synthesis, docking study, anticancer and anti-inflammatory activities. Bioorg Chem 2017; 75:127-138. [PMID: 28938224 DOI: 10.1016/j.bioorg.2017.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022]
Abstract
Over the last few decades, a growing body of studies addressed the anticancer activity of NSAIDs, particularly selective COX-2 inhibitors. However, their exact molecular mechanism is still unclear and is not fully investigated. In this regard, a novel series of compounds bearing a COXs privilege scaffold, diphenyl thiazole, was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. The most active compounds 10b, 14a,b, 16a, 17a,b and 18b were evaluated in vitro for COX-1/COX-2 inhibitory activity. These compounds were suggested to exert their anticancer activity through a multi-target mechanism based on their structural features. Thus, compounds 10b and 17b with the least IC50 values in MTT assay were tested against three known anticancer targets; EGFR, BRAF and tubulin. Compounds 10b and 17b showed remarkable activity against EGFR with IC50 values of 0.4 and 0.2μM, respectively and good activity against BRAF with IC50 values of 1.3 and 1.7μM, respectively. In contrast, they showed weak activity in tubulin polymerization assay. The in vivo anti-inflammatory potential was assessed and interestingly, compound 17b was the most potent compound. Together, this study offers some important insights into the correlation between COXs inhibition and cancer treatment. Additionally, the results demonstrated the promising activity of these compounds with a multi-target mechanism as good candidates for further development into potential anticancer agents.
Collapse
Affiliation(s)
- Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohammed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Eman G Said
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Samir M El-Moghazy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
22
|
Gouda AM, Abdelazeem AH, Omar HA, Abdalla AN, Abourehab MAS, Ali HI. Pyrrolizines: Design, synthesis, anticancer evaluation and investigation of the potential mechanism of action. Bioorg Med Chem 2017; 25:5637-5651. [PMID: 28916158 DOI: 10.1016/j.bmc.2017.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 02/08/2023]
Abstract
A novel set of pyrrolizine-5-carboxamides has been synthesized and evaluated for their anticancer potential against human breast MCF-7, lung carcinoma A549 and hepatoma Hep3B cancer cell lines. Compound 10c was the most active against MCF-7 with IC50 value of 4.72µM, while compound 12b was the most active against A549 and Hep3B cell lines. Moreover, kinases/COXs inhibition and apoptosis induction were suggested as potential molecular mechanisms for the anticancer activity of the novel pyrrolizines based on their structural features. The new compounds significantly inhibited COX-1 and COX-2 with IC50 values in the ranges of 5.78-11.96µM and 0.1-0.78µM, respectively with high COX-2 selectivity over COX-1. Interestingly, the most potent compound in MTT assay, compound 12b, exhibited high inhibitory activity against COX-2 with selectivity index (COX-1/COX-2)>100. Meanwhile, compound 12b displayed weak to moderate inhibition of six kinases with inhibition% (7-20%) compared to imatinib (inhibition%=1-38%). The results of cell cycle analysis, annexin V PI/FITC apoptosis assay and caspase-3/7 assay revealed that compound 12b has the ability to induce apoptosis. The docking results of compound 12b into the active sites of COXs, ALK1 and Aurora kinases indicated that it fits nicely inside their active sites. Overall, the current study highlighted the significant anticancer activity of the newly synthesized pyrrolizines with a potential multi-targeted mechanism which could serve as a base for future studies and further structural optimization into potential anticancer agents.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmacology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamed I Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt; Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, TX 78363, United States.
| |
Collapse
|
23
|
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2016; 38:226-256. [PMID: 28012700 DOI: 10.1016/j.tips.2016.11.009] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation whose expression is induced by heat shock or other stressors. The major groups are classified based on their molecular weights and include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. HSPs play a significant role in cellular proliferation, differentiation, and carcinogenesis. In this article we comprehensively review the roles of major HSPs in cancer biology and pharmacology. HSPs are thought to play significant roles in the molecular mechanisms leading to cancer development and metastasis. HSPs may also have potential clinical uses as biomarkers for cancer diagnosis, for assessing disease progression, or as therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA.
| | - Zechary Rios
- University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
24
|
Hung JH, Chen CY, Omar HA, Huang KY, Tsao CC, Chiu CC, Chen YL, Chen PH, Teng YN. Reactive oxygen species mediate Terbufos-induced apoptosis in mouse testicular cell lines via the modulation of cell cycle and pro-apoptotic proteins. ENVIRONMENTAL TOXICOLOGY 2016; 31:1888-1898. [PMID: 26370073 DOI: 10.1002/tox.22190] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 05/04/2023]
Abstract
Terbufos (S-t-butylthiomethyl-O,O-diethyl phosphorodithioate) is a highly toxic organophosphate which is extensively used as an insecticide and nematicide. Chronic exposure to terbufos causes neuronal injury and predisposes to neurodegenerative diseases. Accumulating evidence has shown that the exposure to terbufos, as an occupational risk factor, may also cause reproductive disorders. However, the exact mechanisms of reproductive toxicity remain unclear. The present study aimed to investigate the toxic effect of terbufos on testicular cells and to explore the mechanism of toxicity on a cellular level. The cytotoxic effects of terbufos on mouse immortalized spermatogonia (GC-1), spermatocytes (GC-2), Leydig (TM3), and Sertoli (TM4) cell lines were assessed by MTT assays, caspase activation, flow cytometry, TUNEL assay, Western blot, and cell cycle analysis. The exposure to different concentrations of terbufos ranging from 50 to 800 μM for 6 h caused significant death in all the used testicular cell lines. Terbufos increased reactive oxygen species (ROS) production, reduced mitochondrial membrane potential, and initiated apoptosis, which was confirmed by a dose-dependent increase in the number of TUNEL-positive apoptotic cells. Blocking ROS production by N-acetyl cysteine (NAC) protected GC-1 cells from terbufos-induced cell death. The results demonstrated that terbufos induces ROS, apoptosis, and DNA damage in testicular cell lines and it should be considered potentially hazardous to testis. Together, this study provided potential molecular mechanisms of terbufos-induced toxicity in testicular cells and suggests a possible protective measure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1888-1898, 2016.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Drug Discovery and Development Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chia-Yun Chen
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hany A Omar
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
- Department of Pharmacology, College of Pharmacy, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Che-Chia Tsao
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Po-Han Chen
- Department of Cosmetic Application & Management, Far East University, Tainan, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| |
Collapse
|
25
|
Omar HA, Tolba MF, Hung JH, Al-Tel TH. OSU-2S/Sorafenib Synergistic Antitumor Combination against Hepatocellular Carcinoma: The Role of PKCδ/p53. Front Pharmacol 2016; 7:463. [PMID: 27965580 PMCID: PMC5127788 DOI: 10.3389/fphar.2016.00463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Background: Sorafenib (Nexavar®) is an FDA-approved systemic therapy for advanced hepatocellular carcinoma (HCC). However, the low efficacy and adverse effects at high doses limit the clinical application of sorafenib and strongly recommend its combination with other agents aiming at ameliorating its drawbacks. OSU-2S, a PKCδ activator, was selected as a potential candidate anticancer agent to be combined with sorafenib to promote the anti-cancer activity through synergistic interaction. Methods: The antitumor effects of sorafenib, OSU-2S and their combination were assessed by MTT assay, caspase activation, Western blotting, migration/invasion assays in four different HCC cell lines. The synergistic interactions were determined by Calcusyn analysis. PKCδ knockdown was used to elucidate the role of PKCδ activation as a mechanism for the synergy. The knockdown/over-expression of p53 was used to explain the differential sensitivity of HCC cell lines to sorafenib and/or OSU-2S. Results: OSU-2S synergistically enhanced the anti-proliferative effects of sorafenib in the four used HCC cell lines with combination indices <1. This effect was accompanied by parallel increases in caspase 3/7 activity, PARP cleavage, PKCδ activation and inhibition of HCC cell migration/invasion. In addition, PKCδ knockdown abolished the synergy between sorafenib and OSU-2S. Furthermore, p53 restoration in Hep3B cells through the over-expression rendered them more sensitive to both agents while p53 knockdown from HepG2 cells increased their resistance to both agents. Conclusion: OSU-2S augments the anti-proliferative effect of sorafenib in HCC cell lines, in part, through the activation of PKCδ. The p53 status in HCC cells predicts their sensitivity toward both sorafenib and OSU-2S. The proposed combination represents a therapeutically relevant approach that can lead to a new HCC therapeutic protocol.
Collapse
Affiliation(s)
- Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef UniversityBeni-Suef, Egypt
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams UniversityCairo, Egypt; School of Pharmacy, Chapman University, IrvineCA, USA
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science Tainan, Taiwan
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|
26
|
Chen WC, Chang YS, Hsu HP, Yen MC, Huang HL, Cho CY, Wang CY, Weng TY, Lai PT, Chen CS, Lin YJ, Lai MD. Therapeutics targeting CD90-integrin-AMPK-CD133 signal axis in liver cancer. Oncotarget 2016; 6:42923-37. [PMID: 26556861 PMCID: PMC4767481 DOI: 10.18632/oncotarget.5976] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/12/2015] [Indexed: 12/28/2022] Open
Abstract
CD90 is used as a marker for cancer stem cell in liver cancer. We aimed to study the mechanism by which CD90 promoted liver cancer progression and identify the new therapeutic targets on CD90 signal pathway. Ectopic expression of CD90 in liver cancer cell lines enhanced anchorage-independent growth and tumor progression. Furthermore, CD90 promoted sphere formation in vitro and upregulated the expression of the cancer stem cell marker CD133. The CD133 expression was higher in CD45-CD90+ cells in liver cancer specimen. The natural carcinogenic molecules TGF-β-1, HGF, and hepatitis B surface antigen increased the expression of CD90 and CD133. Inhibition of CD90 by either shRNA or antibody attenuated the induction of CD133 and anchorage-independent growth. Lentiviral delivery of CD133 shRNA abolished the tumorigenicity induced by CD90. Ectopic expression of CD90 induced mTOR phosphorylation and AMPK dephosphorylation. Mutation of integrin binding-RLD domain in CD90 attenuated the induction of CD133 and anchorage-independent growth. Similar results were observed after silencing β3 integrin. Signaling analyses revealed that AMPK/mTOR and β3 integrin were required for the induction of CD133 and tumor formation by CD90. Importantly, the energy restriction mimetic agent OSU-CG5 reduced the CD90 population in fresh liver tumor sample and repressed the tumor growth. In contrast, sorafenib did not decrease the CD90+ population. In conclusion, the signal axis of CD90-integrin-mTOR/AMPK-CD133 is critical for promoting liver carcinogenesis. Molecules inhibiting the signal axis, including OSU-CG5 and other inhibitors, may serve as potential novel cancer therapeutic targets in liver cancer.
Collapse
Affiliation(s)
- Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Sheng Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Chi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hau-Lun Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Yu Cho
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Lai
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ching-Shih Chen
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yih-Jyh Lin
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Infectious Diseases and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
27
|
Fang S, Fang X. Advances in glucose metabolism research in colorectal cancer. Biomed Rep 2016; 5:289-295. [PMID: 27602209 PMCID: PMC4998148 DOI: 10.3892/br.2016.719] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer cells uptake glucose at a higher rate and produce lactic acid rather than metabolizing pyruvate through the tricarboxylic acid cycle. This adaptive metabolic shift is termed the Warburg effect. Recently progress had been made regarding the mechanistic understanding of glucose metabolism and associated diagnostic and therapeutic methods, which have been investigated in colorectal cancer. The majority of novel mechanisms involve important glucose metabolism associated genes and miRNA regulation. The present review discusses the contribution of these research results to facilitate with the development of novel diagnosis and anticancer treatment options.
Collapse
Affiliation(s)
- Sitian Fang
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China; Hangzhou No. 4 High School, Hangzhou, Zhejiang 310018, P.R. China
| | - Xiao Fang
- Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China; Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
28
|
Omega-3 fatty acids induce Ca(2+) mobilization responses in human colon epithelial cell lines endogenously expressing FFA4. Acta Pharmacol Sin 2015; 36:813-20. [PMID: 26005911 PMCID: PMC4648116 DOI: 10.1038/aps.2015.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 01/16/2023]
Abstract
AIM Free fatty acid receptor 4 (FFA4; formerly known as GPR120) is the G protein-coupled receptor (GPCR) for omega-3 polyunsaturated fatty acids. FFA4 has been found to express in the small intestines and colons of mice and humans. In this study we investigate the effects of omega-3 polyunsaturated fatty acids on FFA4 in human colon epithelial cells in vitro. METHODS HCT116 and HT-29 human colon epithelial cell lines endogenously expressing FFA4 were used. Intracellular Ca(2+) concentration ([Ca(2+)]i) was measured in fura 2-AM-loaded cells with fluorescence spectrophotometry. RT-PCR and immunohistochemistry were used to detect FFA4. RESULTS Ten to 100 μmol/L of omega-3 polyunsaturated fatty acids α-linolenic acid (αLA) or eicosapentaenoic acid (EPA) induced dose-dependent [Ca(2+)]i increase in HCT116 and HT-29 cells, whereas docosahexaenoic acid (DHA) had no effect. In addition, the omega-6 fatty acids linoleic acid and γ-linoleic acid also dose-dependently increase [Ca(2+)]i, but the mono-unsaturated fatty acid oleic acid and saturated fatty acids such as stearic acid and palmitic acid had no effect. In HCT116 and HT-29 cells, the αLA-induced [Ca(2+)]i increase was partially inhibited by pretreatment with EGTA, phospholipase C inhibitor edelfosine, cADPR inhibitors 8-bro-cADPR or DAB, and abolished by pretreatment with Ca(2+)ATPase inhibitor thapsigargin, but was not affected by Gi/o protein inhibitor PTX or IP3R inhibitor 2-APB. CONCLUSION Omega-3 and omega-6 long-chain polyunsaturated fatty acids (C18-20) induce Ca(2+) mobilization responses in human colonic epithelial cells in vitro through activation of FFA4 and PTX-insensitive Gi/o protein, followed by Ca(2+) release from thapsigargin-sensitive Ca(2+) stores and Ca(2+) influx across the plasma membrane.
Collapse
|
29
|
Omar HA, Tolba MF, Saber-Ayad MM. Potential targets of energy restriction mimetic agents in cancer cells. Future Oncol 2014; 10:2547-50. [DOI: 10.2217/fon.14.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Hany A Omar
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Egypt
- Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Mai F Tolba
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Biology Department, School of Science & Engineering, American University in Cairo, New Cairo, Egypt
| | - Maha M Saber-Ayad
- Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Department of Pharmacology, Faculty of Medicine, Cairo University, Kasr Al Ainy, Egypt
| |
Collapse
|
30
|
Abdelazeem AH, Gouda AM, Omar HA, Tolba MF. Design, synthesis and biological evaluation of novel diphenylthiazole-based cyclooxygenase inhibitors as potential anticancer agents. Bioorg Chem 2014; 57:132-141. [PMID: 25462989 DOI: 10.1016/j.bioorg.2014.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications as analgesics and antipyretics. Currently, there is a growing interest in their antitumor activity and their ability to reduce the risk and mortality of several cancers. While several studies revealed the ability of NSAIDs to induce apoptosis and inhibit angiogenesis in cancer cells, their exact anticancer mechanism is not fully understood. However, both cyclooxygenase (COX)-dependent and -independent pathways were reported to have a role. In an attempt to develop new anticancer agents, a series of diphenylthiazole substituted thiazolidinone derivatives was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. Additionally, the inhibitory activity of the synthesized derivatives against COX enzymes was investigated as a potential mechanism for the anticancer activity. Cytotoxicity assay results showed that compounds 15b and 16b were the most potent anticancer agents with half maximal inhibitory concentrations (IC50) between 8.88 and 19.25μM against five different human cancer cell lines. Interestingly, COX inhibition assay results were in agreement with that of the cytotoxicity assays where the most potent anticancer compounds showed good COX-2 inhibition comparable to that of celecoxib. Further support to our results were gained by the docking studies which suggested the ability of compound 15b to bind into COX-2 enzyme with low energy scores. Collectively, these results demonstrated the promising activity of the newly designed compounds as leads for subsequent development into potential anticancer agents.
Collapse
Affiliation(s)
- Ahmed H Abdelazeem
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany A Omar
- Department of Pharmacology, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
31
|
Kuntz S, Mazerbourg S, Boisbrun M, Cerella C, Diederich M, Grillier-Vuissoz I, Flament S. Energy restriction mimetic agents to target cancer cells: comparison between 2-deoxyglucose and thiazolidinediones. Biochem Pharmacol 2014; 92:102-11. [PMID: 25083915 DOI: 10.1016/j.bcp.2014.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/02/2023]
Abstract
The use of energy restriction mimetic agents (ERMAs) to selectively target cancer cells addicted to glycolysis could be a promising therapeutic approach. Thiazolidinediones (TZDs) are synthetic agonists of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ that were developed to treat type II diabetes. These compounds also display anticancer effects which appear mainly to be independent of their PPARγ agonist activity but the molecular mechanisms involved in the anticancer action are not yet well understood. Results obtained on ciglitazone derivatives, mainly in prostate cancer cell models, suggest that these compounds could act as ERMAs. In the present paper, we introduce how compounds like 2-deoxyglucose target the Warburg effect and then we discuss the possibility that the PPARγ-independent effects of various TZD could result from their action as ERMAs.
Collapse
Affiliation(s)
- Sandra Kuntz
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Sabine Mazerbourg
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Michel Boisbrun
- Université de Lorraine, SRSMC, UMR 7565, Vandœuvre-lès-Nancy, F-54506, France; CNRS, SRSMC, UMR 7565, Vandœuvre-lès-Nancy, F-54506, France
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer. Hôpital Kirchberg, L-2540, Luxembourg
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer. Hôpital Kirchberg, L-2540, Luxembourg; Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Isabelle Grillier-Vuissoz
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Stephane Flament
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France.
| |
Collapse
|