1
|
Wu B, Tang Y, Zhao L, Gao Y, Shen X, Xiao S, Yao S, Qi H, Shen F. Integrated network pharmacological analysis and multi-omics techniques to reveal the mechanism of polydatin in the treatment of silicosis via gut-lung axis. Eur J Pharm Sci 2025; 207:107030. [PMID: 39929376 DOI: 10.1016/j.ejps.2025.107030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/05/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Silicosis is a pulmonary disease characterized by inflammation and progressive fibrosis. Previous studies have shown that polydatin (PD) has potential biological activity in key signaling pathways regulating inflammation and apoptosis. To investigate the effect of PD on rats with silicosis, this study used network pharmacology and molecular docking methods to determine the target of PD treatment for silicosis. The therapeutic effect of PD on silicosis was confirmed by measuring the lung injury score, hydroxyproline content, and mRNA expression levels of key targets. In addition, metagenomic sequencing and gas chromatography-mass spectrometry were used to determine the gut microbiota composition and targeted metabolomics analysis, respectively. The results showed that PD could inhibit the expression of inflammation-related indexes and apoptosis-related indexes at protein and mRNA levels. PD also regulates the diversity of the intestinal flora and the content of short-chain fatty acids. In conclusion, the current data suggest that PD has a protective effect against silica-induced lung injury and plays a protective role in regulating intestinal flora diversity and short-chain fatty acid levels through the gut-lung axis.
Collapse
Affiliation(s)
- Bingbing Wu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Yiwen Tang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Liyuan Zhao
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Yan Gao
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Xi Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China
| | - Shuyu Xiao
- Tangshan Center of Disease Control and Prevention, Tangshan, Hebei, 063000, PR China
| | - Sanqiao Yao
- Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Huisheng Qi
- Tangshan City workers' Hospital, Tangshan, Hebei, 063000, PR China.
| | - Fuhai Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, PR China.
| |
Collapse
|
2
|
Gelgie AE, Gelalcha BD, Freeman T, Ault-Seay TB, Beever J, Kerro Dego O. Whole transcriptome analysis of Mycoplasma bovis-host interactions under in vitro and in vivo conditions. Vet Microbiol 2025; 303:110426. [PMID: 39951862 DOI: 10.1016/j.vetmic.2025.110426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Mycoplasma bovis mastitis is becoming increasingly problematic for dairy cattle farming. M. bovis is inherently resistant to beta-lactam antimicrobials and no effective vaccine is available. The major constraints to developing effective control tools are limited knowledge of M. bovis virulence factors and the underlying pathogenic mechanisms. The objective of this study was to determine virulence-associated genes of M. bovis and host immune response genes expressed during the early stages of host-pathogen interactions. We conducted in vitro infection of mammary epithelial cell (MAC-T) lines and in vivo intramammary infection of dairy cows with M. bovis strain PG45 and evaluated whole transcriptome differential gene expression. A total of 614 and 7161 genes of M. bovis and bovine host cells were differentially expressed, respectively. Insertion sequence (IS) genes that are involved in transposase activity such as ISMbov1, ISMbov2, ISMbov3, and ISMbov9 were significantly upregulated, whereas protein translation-associated genes were significantly downregulated. In MAC-T cells, genes involved in apoptosis pathways and proinflammatory cytokines were significantly upregulated, whereas genes involved in cell cycle, ribosome biogenesis, and steroid biosynthesis were significantly downregulated. Genes encoding formation of neutrophil extracellular traps and proinflammatory cytokines, were significantly upregulated in the mammary gland of M. bovis challenged cows, whereas genes involved in steroid biosynthesis and metabolism were significantly downregulated. Altogether, while our findings shed light on the simultaneous transcriptional changes in M. bovis and the host during infection, further studies are required to understand a complete picture of these interactions that lead to mastitis.
Collapse
Affiliation(s)
- Aga E Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Benti D Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; Department of Biomedical and Diagnostic Sciences College of Veterinary Medicine, The University of Tennessee, 2406 River Drive, Knoxville, TN 37996-4574, USA
| | - Trevor Freeman
- Genomics Center for the Advancement of Agriculture, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Taylor B Ault-Seay
- Genomics Center for the Advancement of Agriculture, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Jonathan Beever
- Genomics Center for the Advancement of Agriculture, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
3
|
Liu K, Cheng C, Yan J, Chi F, Wang W, Shen F, Zhang J, Zhang M, Hou Y, Bai G. Polydatin mitigates thrombosis by inhibiting PHD2-induced proline hydroxylation on collagen, reducing platelet adhesion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156392. [PMID: 39826283 DOI: 10.1016/j.phymed.2025.156392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Platelet adhesion to collagen, a critical initial step in thrombus formation, remains an underexplored therapeutic target in thrombosis. Current disease treatment strategies primarily focus on platelet activation and aggregation, often overlooking the crucial initial adhesion phase. Reynoutria japonica (Huzhang, HZ), utilized in traditional Chinese medicine to enhance blood circulation and resolve blood stasis, lacks comprehensive insights into its active components and their anti-thrombotic mechanisms. PURPOSE This study investigated the antithrombotic effects and mechanisms of polydatin, a stilbene derived from HZ, with a focus on its effect on platelet adhesion. METHODS An acute pulmonary infection model was used, along with metabolomic and proteomic analyses, to investigate the antithrombotic efficacy of the active component polydatin and identify its targets. Chemical biology, protein mass spectrometry analyses, and molecular interaction analysis were performed to investigate its mechanism. Multiple models of circulatory disorders, including disseminated intravascular coagulation (DIC) and atherosclerosis in mice, with or without targeted gene knockdown, were employed to assess the role of polydatin in modulating platelet adhesion. RESULTS Our investigation revealed that polydatin targets prolyl hydroxylase 2 (PHD2), thereby inhibiting hydroxylation of proline residues on collagen. This disruption in collagen assembly and the von Willebrand factor (VWF)-collagen interaction reduces platelet adhesion, significantly impacting circulation in both DIC and atherosclerosis. This represents a novel mechanism of antithrombotic action, distinct from currently available therapies. CONCLUSION Targeting PHD2 to modulate collagen structure and platelet adhesion presents a promising novel therapeutic strategy for thrombosis-related circulatory disorders.
Collapse
Affiliation(s)
- Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Jin Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Fuyun Chi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Wenshuang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China; Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Jinling Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| |
Collapse
|
4
|
Meng M, Huo R, Li Z, Wang X, Qiu Y, Shen X, Chang G. Protective effect of curcumin-loaded zeolitic imidazolate framework-8-based pH-responsive drug delivery system against Staphylococcus aureus infection. Microb Pathog 2025; 200:107336. [PMID: 39864761 DOI: 10.1016/j.micpath.2025.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Mastitis, generally caused by pathogenic microorganisms, is a serious disease in dairy farming. Staphylococcus aureus (S. aureus) is one of the main pathogens that induces mastitis in dairy cows. It evades the innate and adaptive immune responses of dairy cows, causing recessive transmission and harming the health of the mammary glands. Antibiotics remain the primary treatment; however, their excessive use can lead to antimicrobial resistance. Therefore, it is necessary to develop new strategies to replace antibiotic therapies. The zeolitic imidazolate framework (ZIF-8) is a metal-organic skeleton material with applications in biology and drug delivery. This study aimed to construct a novel nanodrug delivery system for S. aureus infection by combining ZIF-8 with curcumin (ZIF-8@CCM), which exhibits antibacterial and anti-inflammatory properties. Bovine mammary epithelial cells (BMECs) and mice were used to evaluate the therapeutic efficacy and biotoxicity of the system, and to explore the protective mechanism of ZIF-8@CCM. The results showed that ZIF-8@CCM exhibited high drug loading capacity, stability, and pH responsiveness. Both in vitro and in vivo experiments revealed that ZIF-8@CCM effectively released encapsulated curcumin in response to the acidic microenvironment induced by bacterial infection, which in turn enhanced the bactericidal efficacy. It not only prevents biofilm formation, but also mitigates the toxic side effects associated with drug treatments, showing excellent bioavailability and biocompatibility. Furthermore, ZIF-8@CCM also attenuated S. aureus-induced inflammatory through suppressing the activation of TLR2-NF-κB pathway. Consequently, ZIF-8@CCM is an effective targeted antibacterial and anti-inflammatory drug, showing promise as a novel therapeutic agent for the clinical management of S. aureus-induced mastitis in dairy cows.
Collapse
Affiliation(s)
- Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Zhixin Li
- Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia, PR China
| | - Xiaoliang Wang
- Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia, PR China
| | - Yawei Qiu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia, PR China.
| |
Collapse
|
5
|
Zhou L, Luoreng Z, Wang X. Profile of circular RNAs in bovine mammary tissues infected with Staphylococcus aureus. Arch Microbiol 2025; 207:67. [PMID: 39982455 DOI: 10.1007/s00203-025-04269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Mastitis is one of the most common diseases in cattle. The causes are complex, and the disease tends to recur and its difficult to cure, resulting in significant economic losses to the global dairy industry each year. Circular RNAs (circRNAs), a class of endogenous non-coding RNAs (ncRNAs), have recently been recognized as key regulators in inflammatory diseases. However, little is known about the roles of circRNAs in mastitis caused by Staphylococcus aureus (S. aureus) infection. In this study, bovine mammary gland tissue was treated with S. aureus (105 CFU/ml, M_S) and PBS (control, M_C) and RNA-sequencing was used to explore the effect of S. aureus on circRNA expression in the tissue. The results showed that compared with the M_C group, 202 differentially expressed circRNAs (DE circRNAs) were identified in the M_S group, including 105 up-regulated and 97 down-regulated circRNAs. Gene Ontology (GO) analysis showed that most of the DE circRNAs were enriched in categories such as transcription by RNA polymerase II, transcription factor complexes, and oxidoreductase activity, while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed significant enrichment in pathways involved in thyroid hormone, FoxO, and cell cycle functions. Seven circRNAs associated with bovine mastitis were also identified (novel_circ_0016953, novel_circ_0001266, novel_circ_0015099, novel_circ_0008169, novel_circ_0001807, novel_circ_0016220, and novel_circ_0009731). The results of this study lay a theoretical foundation for further investigation into the mechanism underlying bovine mastitis and provide valuable references for subsequent research on bovine mastitis.
Collapse
Affiliation(s)
- Li Zhou
- College of Animal Science and Technology, Ningxia University, Ningxia Hui Autonomous Region, Yinchuan, 750021, People's Republic of China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, People's Republic of China
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Ningxia Hui Autonomous Region, Yinchuan, 750021, People's Republic of China.
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, People's Republic of China.
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Ningxia Hui Autonomous Region, Yinchuan, 750021, People's Republic of China.
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
6
|
Zheng S, Yin J, Wang B, Ye Q, Huang J, Liang X, Wu J, Yue H, Zhang T. Polydatin protects against DSS-induced ulcerative colitis via Nrf2/Slc7a11/Gpx4-dependent inhibition of ferroptosis signalling activation. Front Pharmacol 2025; 15:1513020. [PMID: 39877390 PMCID: PMC11772288 DOI: 10.3389/fphar.2024.1513020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Ulcerative colitis (UC), a form of inflammatory irritable bowel disease, is characterized by a recurrent and persistent nonspecific inflammatory response. Polydatin (PD), a natural stilbenoid polyphenol with potent properties, exhibits unexpected beneficial effects beyond its well-documented anti-inflammatory and antioxidant activities. In this study, we presented evidence that PD confers protection against dextran sodium sulfate (DSS)-induced ulcerative colitis. Methods The protective effect of PD on colitis was examined in cultured caco-2 cells and DSS-induced colitis mouse model. Bulk RNA sequencing and differential gene expression analysis were used to investigate the protective mechanism of PD on DSS-induced colitis. Ferroptosis was determined by MDA levels, SOD levels, mitochondrial iron accumulation and ROS production. Ferroptosis-related proteins Slc7a11, Nrf2 and Gpx4 levels were measured by western blot, immunohistochemical and immunofluorescence staining. Results PD mitigated the DSS-induced increases in pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β), alleviated colon length shortening, reduced morphological damage to the intestinal mucosa, and preserved tight junction proteins (TJ) occludin and Zonula occludens-1 (ZO-1) in both caco-2 cells and murine models of colitis. Mechanistically, PD reversed the reduction of Nrf2, Slc7a11 and Gpx4, the degree of nuclear translocation of Nrf2 induced by DSS in vitro and in vivo significantly. Moreover, the protective effect of PD is attenuated by erastin and resembled that of Fer-1 in caco-2 cells model. Discussion Our study suggested that PD protects against DSS-induced ulcerative colitis via Nrf2/Slc7a11/Gpx4-dependent inhibition of ferroptosis signalling activation. Further investigation into the precise mechanisms underlying this phenomenon is warranted. The findings presented herein indicated that PD may serve as a potential therapeutic agent for patients with UC.
Collapse
Affiliation(s)
- Shimin Zheng
- Department of Gastroenterology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jianbin Yin
- Department of Orthopedics, The Third Afffliated Hospital of Southern Medical University, Guangzhou, China
| | - Bingbing Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qiujuan Ye
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jialuo Huang
- Department of Orthopedics, The Third Afffliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Orthopedics, The Third Afffliated Hospital of Southern Medical University, Guangzhou, China
| | - Junfeng Wu
- Department of Orthopedics, The Third Afffliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Yue
- Department of Gastroenterology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ting Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Lin X, Zhao Z, Cai Y, He Y, Wang J, Liu N, Qin Y, Wu Y. MyD88 deficiency in mammary epithelial cells attenuates lipopolysaccharide (LPS)-induced mastitis in mice. Biochem Biophys Res Commun 2024; 739:150569. [PMID: 39186869 DOI: 10.1016/j.bbrc.2024.150569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Lactation mastitis is a debilitating inflammatory mammary disease in postpartum animals. Myeloid differentiation primary response protein MyD88 is the key downstream adapter for innate pattern recognition receptor toll-like receptor 4 (TLR4), which plays an important role in inflammation. However, the specific role of MyD88 in mammary epithelial cells in the progression of mastitis has not been investigated. In this study, lipopolysaccharide (LPS)-induced mouse mastitis model was used and cytokines such as Tnf-α, Il-1β, Il-6, Cxcl1, Cxcl2 and Ccl2 were significantly increased in inflammatory mammary gland as shown by real time-qPCR. However, the mice with MyD88-deficienet in mammary epithelial cells (cKO) showed a reduction in the expression of Tnf-α, Il-1β, Il-6, Cxcl1 and Cxcl2 in mammary gland compared with control mice, when subjected to LPS induced mastitis. Immunohistochemical staining of cleaved caspase-3 showed that the cell apoptosis induced by inflammation were decreased in MyD88 cKO mice. Furthermore, there were significantly fewer infiltrating inflammatory cells in alveolar lumen of MyD88 cKO mice, including Ly6G-positive neutrophils and F4/80-positive macrophages. RNA-seq in LPS treated mammary glands showed that MyD88 cKO mice had significantly downregulated inflammation-related genes and upregulated genes related to anti-inflammation processes and lipid metabolism compared with control mice. Thus, these results demonstrate that MyD88 in mammary epithelial cells is essential for mastitis progression. And this study not only has important implications for understanding the innate immune response in mammary epithelial cells, but also potentially helps the development of new therapeutic drugs for treating mastitis.
Collapse
Affiliation(s)
- Xinyi Lin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhifeng Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifeilong He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Sajid GA, Uddin MJ, Al-Janabi SAA, Ibrahim AN, Cinar MU. MicroRNA expression profiling of ovine epithelial cells stimulated with the Staphylococcus aureus in vitro. Mamm Genome 2024; 35:673-682. [PMID: 39215776 DOI: 10.1007/s00335-024-10062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) act as key gene expression regulators, influencing intracellular biological and pathological processes. They are of significant interest in animal genetics as potential biomarkers for animal selection and health. This study aimed to unravel the complex miRNA signature involved in mastitis in in vitro cell culture. For this purpose, we constructed a control and treatment model in ovarian mammary epithelial cells to analyze miRNA responses upon Staphylococcus aureus (S. aureus) stimulation. The high-throughput Illumina Small RNA protocol was employed, generating an average of 7.75 million single-end reads per sample, totaling 46.54 million reads. Standard bioinformatics analysis, including cleaning, filtering, miRNA quantification, and differential expression was performed using the miRbase database as a reference for ovine miRNAs. The results indicated differential expression of 63 miRNAs, including 33 up-regulated and 30 down-regulated compared to the control group. Notably, miR-10a, miR-10b, miR-21, and miR-99a displayed a significant differential expression (p ≤ 0.05) associated to signal transduction, transcriptional pathways, diseases of signal transduction by growth factor receptors and second messengers, MAPK signaling pathway, NF-κB pathway, TNFα, Toll Like Receptor 4 (TLR4) cascade, and breast cancer. This study contributes expanding miRNA databases, especially for sheep miRNAs, and identifies potential miRNA candidates for further study in biomarker identification for mastitis resistance and diagnosis.
Collapse
Affiliation(s)
- Ghulam Asghar Sajid
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
| | - Muhammad Jasim Uddin
- Center for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
- The School of Veterinary Medicine, Murdoch University, South Street, Murdoch, 6150, Australia
| | - Saif Adil Abbood Al-Janabi
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
- Ministry of Agriculture, Office of Technical Deputy, Baghdad, Iraq
| | - Abdiaziz Nur Ibrahim
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye.
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
9
|
Jiang K, Chen Y, Wang K, Yang L, Sun S, Yang J, Li X. miR-331-depleted exosomes derived from injured endometrial epithelial cells promote macrophage activation during endometritis. Int J Biol Macromol 2024; 279:134967. [PMID: 39179075 DOI: 10.1016/j.ijbiomac.2024.134967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Exosomes are natural carriers of biological macromolecules that are involved in the pathogenesis of a wide variety of inflammatory diseases. The purpose of this study was to investigate the role of exosomes derived from injured endometrial epithelial cells (EECs) in the development of endometritis. We isolated exosomes derived from LPS-injured EECs and identified these exosomes as proinflammatory mediators that can be internalized by macrophages and thus induce proinflammatory macrophage activation. We further found that miR-331 expression was sharply downregulated in exosomes derived from LPS-injured EECs and that macrophages treated with these exosomes also presented a lower level of miR-331. Importantly, the pathogenic role of exosomal miR-331 in promoting endometrial inflammation was revealed by the ability of adoptively transferred EECs-derived exosomes to cause macrophage activation, and this was reversed by miR-331 overexpression. Mechanistically, overexpression of miR-331 in macrophages mitigated NF-κB p65 phosphorylation by inhibiting the Notch1/IKKα pathway, which in turn curbed macrophage activation. In vivo assays further unveiled that miR-331 expression is negatively correlated with proinflammatory macrophage activation and that miR-331 upregulation markedly slowed disease progression in mice with endometritis. The exosome/miR-331/Notch1 axis plays a critical pathological role in endometrial inflammation, representing a new therapeutic target for endometritis.
Collapse
Affiliation(s)
- Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yajing Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Kui Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Shumin Sun
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Jing Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
10
|
Bao L, Zhao Y, Duan S, Wu K, Shan R, Liu Y, Yang Y, Chen Q, Song C, Li W. Ferroptosis is involved in Staphylococcus aureus-induced mastitis through autophagy activation by endoplasmic reticulum stress. Int Immunopharmacol 2024; 140:112818. [PMID: 39083924 DOI: 10.1016/j.intimp.2024.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Cell death caused by severe Staphylococcus aureus (S. aureus) infection is a fatal threat to humans and animals. However, whether ferroptosis, an iron-dependent form of cell death, is involved in S. aureus-induced cell death and its role in S. aureus-induced diseases are unclear. Using a mouse mastitis model and mammary epithelial cells (MMECs), we investigated the role of ferroptosis in the pathogenesis of S. aureus infection. The results revealed that S. aureus-induced ferroptosis in vivo and in vitro as demonstrated by dose-dependent increases in cell death; the level of malondialdehyde (MDA), the final product of lipid peroxidation; and dose-dependent decrease the production of the antioxidant glutathione (GSH). Treatment with typical inhibitors of ferroptosis, including ferrostatin-1 (Fer-1) and deferiprone (DFO), significantly inhibited S. aureus-induced death in MMECs. Mechanistically, treatment with S. aureus activated the protein kinase RNA-like ER kinase (PERK)-eukaryotic initiation factor 2, α subunit (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) pathway, which subsequently upregulated autophagy and promoted S. aureus-induced ferroptosis. The activation of autophagy degraded ferritin, resulting in iron dysregulation and ferroptosis. In addition, we found that excessive reactive oxygen species (ROS) production induced ferroptosis and activated endoplasmic reticulum (ER) stress, manifesting as elevated p-PERK-p-eIF2α-ATF4-CHOP pathway protein levels. Collectively, our findings indicate that ferroptosis is involved in S. aureus-induced mastitis via ER stress-mediated autophagy activation, implying a potential strategy for the prevention of S. aureus-associated diseases by targeting ferroptosis. In conclusion, the ROS-ER stress-autophagy axis is involved in regulating S. aureus-induced ferroptosis in MMECs. These findings not only provide a new potential mechanism for mastitis induced by S. aureus but also provide a basis for the treatment of other ferroptotic-related diseases.
Collapse
Affiliation(s)
- Lijuan Bao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yihong Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Shiyu Duan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Keyi Wu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Ruping Shan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yi Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yang Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Qiujie Chen
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Changlong Song
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China.
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China.
| |
Collapse
|
11
|
Wang J, Li M, Wu W, Zhang H, Yang Y, Usman M, Aernouts B, Loor JJ, Xu C. Inflammatory Signaling via PEIZO1 Engages and Enhances the LPS-Mediated Apoptosis during Clinical Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20321-20330. [PMID: 39229907 DOI: 10.1021/acs.jafc.4c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bovine clinical mastitis is characterized by inflammation and immune responses, with apoptosis of mammary epithelial cells as a cellular reaction to infection. PIEZO1, identified as a mechanotransduction effector channel in nonruminant animals and sensitive to both mechanical stimuli or inflammatory signals like lipopolysaccharide (LPS). However, its role in inflammatory processes in cattle has not been well-documented. The aim of this study was to elucidate the in situ expression of PIEZO1 in bovine mammary gland and its potential involvement in clinical mastitis. We observed widespread distribution and upregulation of PIEZO1 in mammary epithelial cells in clinical mastitis cows and LPS-induced mouse models, indicating a conserved role across species. In vitro studies using mammary epithelial cells (MAC-T) revealed that LPS upregulates PIEZO1. Notably, the effects of PIEZO1 artificial activator Yoda1 increased apoptosis and NLRP3 expression, effects mitigated by PIEZO1 silencing or NLRP3 inhibition. In conclusion, the activation of the PIEZO1-NLRP3 pathway induces abnormal apoptosis in mammary epithelial cells, potentially serving as a regulatory mechanism to combat inflammatory responses to abnormal stimuli.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Ming Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Wenda Wu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - HuiJing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Yue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Muhammad Usman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Ben Aernouts
- Department of Biosystems, Division of Animal and Human Health Engineering, Faculty of Engineering Technology, KU Leuven University, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
12
|
de Matos RC, Bitencourt AFA, de Oliveira ADM, Prado VR, Machado RR, Scopel M. Evidence for the efficacy of anti-inflammatory plants used in Brazilian traditional medicine with ethnopharmacological relevance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118137. [PMID: 38574778 DOI: 10.1016/j.jep.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When exacerbated, inflammatory processes can culminate in physical and emotional disorders and, if not stopped, can be lethal. The high prevalence of inflammation has become a public health problem, and the need for new drugs to treat this pathology is imminent. The use of medicinal plants has emerged as an alternative, and a survey of data that corroborates its application in inflammatory diseases is the starting point. Furthermore, Brazil harbors a megadiversity, and the traditional use of plants is relevant and needs to be preserved and carefully explored for the discovery of new medicines. AIM OF THE STUDY This review sought to survey the medicinal plants traditionally used in Brazil for the treatment of inflammatory processes and to perform, in an integrative way, a data survey of these species and analysis of their phytochemical, pharmacological, and molecular approaches. MATERIALS AND METHODS Brazilian plants that are traditionally used for inflammation (ophthalmia, throat inflammation, orchitis, urinary tract inflammation, ear inflammation, and inflammation in general) are listed in the DATAPLAMT database. This database contains information on approximately 3400 native plants used by Brazilians, which were registered in specific documents produced until 1950. These inflammatory disorders were searched in scientific databases (PubMed/Medline, Scopus, Web of Science, Lilacs, Scielo, Virtual Health Library), with standardization of DECS/MESH descriptors for inflammation in English, Spanish, French, and Portuguese, without chronological limitations. For the inclusion criteria, all articles had to be of the evaluated plant species, without association of synthesized substances, and full articles free available in any of the four languages searched. Duplicated articles and those that were not freely available were excluded. RESULTS A total of 126 species were identified, culminating in 6181 articles in the search. After evaluation of the inclusion criteria, 172 articles representing 40 different species and 38 families were included in the study. Comparison of reproducibility in intra-species results became difficult because of the large number of extraction solvents tested and the wide diversity of evaluation models used. Although the number of in vitro and in vivo evaluations was high, only one clinical study was found (Abrus precatorius). In the phytochemical analyses, more than 225 compounds, mostly phenolic compounds, were identified. CONCLUSION This review allowed the grouping of preclinical and clinical studies of several Brazilian species traditionally used for the treatment of many types of inflammation, corroborating new searches for their pharmacological properties as a way to aid public health. Furthermore, the large number of plants that have not yet been studied has encouraged new research to revive traditional knowledge.
Collapse
Affiliation(s)
- Rafael C de Matos
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| | - Ana F A Bitencourt
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Alexsandro D M de Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Vanessa R Prado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Renes R Machado
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Marina Scopel
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, 31.270-901, Belo Horizonte, MG, Brazil; Centro Especializado Em Plantas Aromáticas, Medicinais e Tóxicas - CEPLAMT-Museu de História Natural e Jardim Botânico da Universidade Federal de Minas Gerais, Rua Gustavo da Silveira 1035, Horto, 31.080-010, Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Shen F, Zhang Y, Li C, Yang H, Yuan P. Network pharmacology and experimental verification of the mechanism of licochalcone A against Staphylococcus aureus pneumonia. Front Microbiol 2024; 15:1369662. [PMID: 38803378 PMCID: PMC11128579 DOI: 10.3389/fmicb.2024.1369662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Staphylococcus aureus strains cause the majority of pneumonia cases and are resistant to various antibiotics. Given this background, it is very important to discover novel host-targeted therapies. Licochalcone A (LAA), a natural plant product, has various biological activities, but its primary targets in S. aureus pneumonia remain unclear. Therefore, the purpose of this study was to identify its molecular target against S. aureus pneumonia. Network pharmacology analysis, histological assessment, enzyme-linked immunosorbent assays, and Western blotting were used to confirm the pharmacological effects. Network pharmacology revealed 33 potential targets of LAA and S. aureus pneumonia. Enrichment analysis revealed that these potential genes were enriched in the Toll-like receptor and NOD-like receptor signaling pathways. The results were further verified by experiments in which LAA alleviated histopathological changes, inflammatory infiltrating cells and inflammatory cytokines (TNF, IL-6, and IL-1β) in the serum and bronchoalveolar lavage fluid in vivo. Moreover, LAA treatment effectively reduced the expression levels of NF-κB, p-JNK, p-p38, NLRP3, ASC, caspase 1, IL-1β, and IL-18 in lung tissue. The in vitro experimental results were consistent with the in vivo results. Thus, our findings demonstrated that LAA exerts anti-infective effects on S. aureus-induced lung injury via suppression of the Toll-like receptor and NOD-like receptor signaling pathways, which provides a theoretical basis for understanding the function of LAA against S. aureus pneumonia and implies its potential clinical application.
Collapse
Affiliation(s)
- Fengge Shen
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yinghua Zhang
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunjie Li
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Yang
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
14
|
Wang X, Fei Y, Shao Y, Liao Q, Meng Q, Chen R, Deng L. Transcriptome analysis reveals immune function-related mRNA expression in donkey mammary glands during four developmental stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101169. [PMID: 38096640 DOI: 10.1016/j.cbd.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
The low susceptibility to mastitis of female donkey (jenny) mammary glands and the strong immune properties of donkey milk are acknowledged, but little is known about the genes involved in mammary gland immunity in jennies. Herein, we used RNA-sequencing and bioinformatics analyses to explore jenny mammary gland transcriptomes and detect potential functional differentially expressed (DE) mRNAs related to immunity during four specific developmental stages: foetal (F), pubertal (P), adult parous nonlactation (N) and lactation (L). A total of 2497, 583 and 1820 DE mRNAs were identified in jenny mammary glands at F vs. P, P vs. N, and N vs. L, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analyses revealed numerous GO terms related to immune function, especially between F and P. Seven significantly enriched profiles were identified, among which 497 and 1261 DE mRNAs were upregulated in profiles 19 and 17. Eleven mRNAs were enriched in over 10 KEGG pathways. β-2-microglobulin (B2M), immunoglobulin heavy constant mu (IGHM), toll like receptor 2 (TLR2), toll like receptor 4 (TLR4) and myeloid differentiation factor 88 (MYD88) were mainly involved in phosphoinositide 3-kinase (PI3K)-Akt signalling, phagosome and nuclear factor kappa-B (NF-kappa B) signalling pathways. The findings provide insight into the molecular features underpinning the low prevalence of intramammary infections (i.e., mastitis) in donkeys.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yaqi Fei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Shao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingchao Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingze Meng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ran Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Liang Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
15
|
Ke J, Li MT, Xu S, Ma J, Liu MY, Han Y. Advances for pharmacological activities of Polygonum cuspidatum - A review. PHARMACEUTICAL BIOLOGY 2023; 61:177-188. [PMID: 36620922 PMCID: PMC9833411 DOI: 10.1080/13880209.2022.2158349] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/22/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Polygonum cuspidatum Sieb. et Zucc (Polygonaceae), the root of which is included in the Chinese Pharmcopoeia under the name 'Huzhang', has a long history as a medicinal plant and vegetable. Polygonum cuspidatum has been used in traditional Chinese medicine for the treatment of inflammation, hyperlipemia, etc. OBJECTIVE This article reviews the pharmacological action and the clinical applications of Polygonum cuspidatum and its extracts, whether in vivo or in vitro. We also summarized the main phytochemical constituents and pharmacokinetics of Polygonum cuspidatum and its extracts. METHODS The data were retrieved from major medical databases, such as CNKI, PubMed, and SinoMed, from 2014 to 2022. Polygonum cuspidatum, pharmacology, toxicity, clinical application, and pharmacokinetics were used as keywords. RESULTS The rhizomes, leaves, and flowers of Polygonum cuspidatum have different phytochemical constituents. The plant contains flavonoids, anthraquinones, and stilbenes. Polygonum cuspidatum and the extracts have anti-inflammatory, antioxidation, anticancer, heart protection, and other pharmacological effects. It is used in the clinics to treat dizziness, headaches, traumatic injuries, and water and fire burns. CONCLUSIONS Polygonum cuspidatum has the potential to treat many diseases, such as arthritis, ulcerative colitis, asthma, and cardiac hypertrophy. It has a broad range of medicinal applications, but mainly focused on root medication; its aerial parts should receive more attention. Pharmacokinetics also need to be further investigated.
Collapse
Affiliation(s)
- Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyang Xu
- Monteverde Academy Shanghai, Shanghai, China
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Ming-Yuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Zhao J, Xu L, Lv L, Wang L, Wang X, Liang C, Wang C, Qiu Y, Pei X. Network pharmacology and in vivo and in vitro experiments to determine the mechanism behind the effects of Jiawei Yanghe decoction via TLR4/Myd88/NF-κB against mastitis. Heliyon 2023; 9:e21219. [PMID: 37964842 PMCID: PMC10641157 DOI: 10.1016/j.heliyon.2023.e21219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Background In the Qing dynasty, Yanghe decoction was as a therapeutic soup for effectively treating chronic inflammatory disorders. It was used as a therapeutic soup for effectively treating chronic inflammatory disorders. In the clinical use of Yanghe decoction, the adjustment of the medication for a variety of inflammatory diseases have therapeutic effect, including mastitis. Therefore, Jiawei Yanghe decoction (JWYHD) may be used to treat inflammatory breast diseases. Methods First, LM- and JWYHD-related components were retrieved from the database and analysis platform. Next, protein-protein interaction networks were constructed to screen the key targets, and gene ontology and Kyoto encyclopedia of gene and genome enrichment analyses were performed to predict the potential biological functions and mechanisms of JWYHD. Simultaneously, the JWYHD samples were collected and analyzed by UPLC-HRMS. Finally, in vivo and in vitro experiments were conducted to construct animal and cellular inflammation models of mastitis with LPS. Pathological changes in the mammary tissues were detected. Enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blotting was performed to determine the mRNA and protein levels of inflammatory cytokines and toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B signaling pathway in the breast tissues to elucidate the potential underlying mechanisms of anti-mastitis effects of JWYHD from different aspects. Results In total, 103 compounds were detected in JWYHD by UPLC-HRMS. 691 active ingredients of JWYHD were screened by network pharmacology, and 47 LM-related targets were identified. The PPI network analysis of the targets revealed the 5 core targets. The KEGG enrichment results established the NF-κB signaling pathways as the core. After JWYHD intervention, low inflammatory enrichment and mild inflammatory damage in breast tissues were observed. Furthermore, JWYHD treatment affected mammary gland inflammatory cytokines and the TLR4/Myd88/NF-κB signaling pathway by considerably reducing the respective protein levels and gene expression; thus, JWYHD alleviated LM symptoms. Conclusions We hypothesized and demonstrated the anti-inflammatory effects of JWYHD by cytokine regulation via the TLR4/Myd88/NF-κB signaling pathway. In conclusion, JWYHD showed its potential in LM treatment and in treating other acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jing Zhao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Liuyan Xu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Lingyan Lv
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Liuyi Wang
- Xiamen University, Xiamen, 361102, China
| | - Xuan Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Chen Liang
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Chunhui Wang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Xiamen, 361102, China
| | - Xiaohua Pei
- Xiamen Hospital of Beijing University of Traditional Chinese Medicine, Xiamen, 361015, China
| |
Collapse
|
17
|
Bao L, Sun H, Zhao Y, Feng L, Wu K, Shang S, Xu J, Shan R, Duan S, Qiu M, Zhang N, Hu X, Zhao C, Fu Y. Hexadecanamide alleviates Staphylococcus aureus-induced mastitis in mice by inhibiting inflammatory responses and restoring blood-milk barrier integrity. PLoS Pathog 2023; 19:e1011764. [PMID: 37948460 PMCID: PMC10664928 DOI: 10.1371/journal.ppat.1011764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
Subacute ruminal acidosis (SARA) has been demonstrated to promote the development of mastitis, one of the most serious diseases in dairy farming worldwide, but the underlying mechanism is unclear. Using untargeted metabolomics, we found hexadecanamide (HEX) was significantly reduced in rumen fluid and milk from cows with SARA-associated mastitis. Herein, we aimed to assess the protective role of HEX in Staphylococcus aureus (S. aureus)- and SARA-induced mastitis and the underlying mechanism. We showed that HEX ameliorated S. aureus-induced mastitis in mice, which was related to the suppression of mammary inflammatory responses and repair of the blood-milk barrier. In vitro, HEX depressed S. aureus-induced activation of the NF-κB pathway and improved barrier integrity in mouse mammary epithelial cells (MMECs). In detail, HEX activated PPARα, which upregulated SIRT1 and subsequently inhibited NF-κB activation and inflammatory responses. In addition, ruminal microbiota transplantation from SARA cows (S-RMT) caused mastitis and aggravated S. aureus-induced mastitis, while these changes were reversed by HEX. Our findings indicate that HEX effectively attenuates S. aureus- and SARA-induced mastitis by limiting inflammation and repairing barrier integrity, ultimately highlighting the important role of host or microbiota metabolism in the pathogenesis of mastitis and providing a potential strategy for mastitis prevention.
Collapse
Affiliation(s)
- Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Hao Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shan Shang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ruping Shan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shiyu Duan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
18
|
Guan X, Jin L, Zhou H, Chen J, Wan H, Bao Y, Yang J, Yu D, Wan H. Polydatin prevent lung epithelial cell from Carbapenem-resistant Klebsiella pneumoniae injury by inhibiting biofilm formation and oxidative stress. Sci Rep 2023; 13:17736. [PMID: 37853059 PMCID: PMC10584862 DOI: 10.1038/s41598-023-44836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes severe inflammation in various infectious diseases, such as bloodstream infections, respiratory and urinary tract infections, which leads to high mortality. Polydatin (PD), an active ingredient of Yinhuapinggan granule, has attracted worldwide attention for its powerful antioxidant, anti-inflammatory, antitumor, and antibacterial capacity. However, very little is known about the effect of PD on CRKP. In this research, we evaluated the inhibitory effects of PD on both the bacterial level and the bacterial-cell co-culture level on anti-biofilm and efflux pumps and the other was the inhibitory effect on apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) after CRKP induction. Additionally, we validated the mechanism of action by qRT-PCR and western blot in human lung epithelial cells. Firstly, PD was observed to have an inhibitory effect on the biofilm of CRKP and the efflux pump AcrAB-TolC. Mechanically, CRKP not only inhibited the activation of Nuclear Factor erythroid 2-Related Factor 2 (Nrf-2) but also increased the level of ROS in cells. These results showed that PD could inhibit ROS and activate Nrf-2 production. Together, our research demonstrated that PD inhibited bacterial biofilm formation and efflux pump AcrAB-TolC expression and inhibited CRKP-induced cell damage by regulating ROS and Nrf-2-regulated antioxidant pathways.
Collapse
Affiliation(s)
- Xiaodan Guan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Liang Jin
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jing Chen
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Haofang Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yida Bao
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Daojun Yu
- Hangzhou First People's Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Hasankhani A, Bakherad M, Bahrami A, Shahrbabak HM, Pecho RDC, Shahrbabak MM. Integrated analysis of inflammatory mRNAs, miRNAs, and lncRNAs elucidates the molecular interactome behind bovine mastitis. Sci Rep 2023; 13:13826. [PMID: 37620551 PMCID: PMC10449796 DOI: 10.1038/s41598-023-41116-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Mastitis is known as intramammary inflammation, which has a multifactorial complex phenotype. However, the underlying molecular pathogenesis of mastitis remains poorly understood. In this study, we utilized a combination of RNA-seq and miRNA-seq techniques, along with computational systems biology approaches, to gain a deeper understanding of the molecular interactome involved in mastitis. We retrieved and processed one hundred transcriptomic libraries, consisting of 50 RNA-seq and 50 matched miRNA-seq data, obtained from milk-isolated monocytes of Holstein-Friesian cows, both infected with Streptococcus uberis and non-infected controls. Using the weighted gene co-expression network analysis (WGCNA) approach, we constructed co-expressed RNA-seq-based and miRNA-seq-based modules separately. Module-trait relationship analysis was then performed on the RNA-seq-based modules to identify highly-correlated modules associated with clinical traits of mastitis. Functional enrichment analysis was conducted to understand the functional behavior of these modules. Additionally, we assigned the RNA-seq-based modules to the miRNA-seq-based modules and constructed an integrated regulatory network based on the modules of interest. To enhance the reliability of our findings, we conducted further analyses, including hub RNA detection, protein-protein interaction (PPI) network construction, screening of hub-hub RNAs, and target prediction analysis on the detected modules. We identified a total of 17 RNA-seq-based modules and 3 miRNA-seq-based modules. Among the significant highly-correlated RNA-seq-based modules, six modules showed strong associations with clinical characteristics of mastitis. Functional enrichment analysis revealed that the turquoise module was directly related to inflammation persistence and mastitis development. Furthermore, module assignment analysis demonstrated that the blue miRNA-seq-based module post-transcriptionally regulates the turquoise RNA-seq-based module. We also identified a set of different RNAs, including hub-hub genes, hub-hub TFs (transcription factors), hub-hub lncRNAs (long non-coding RNAs), and hub miRNAs within the modules of interest, indicating their central role in the molecular interactome underlying the pathogenic mechanisms of S. uberis infection. This study provides a comprehensive insight into the molecular crosstalk between immunoregulatory mRNAs, miRNAs, and lncRNAs during S. uberis infection. These findings offer valuable directions for the development of molecular diagnosis and biological therapies for mastitis.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Maryam Bakherad
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hossein Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | | - Mohammad Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
20
|
Li X, Xu C, Liang B, Kastelic JP, Han B, Tong X, Gao J. Alternatives to antibiotics for treatment of mastitis in dairy cows. Front Vet Sci 2023; 10:1160350. [PMID: 37404775 PMCID: PMC10315858 DOI: 10.3389/fvets.2023.1160350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Mastitis is considered the costliest disease on dairy farms and also adversely affects animal welfare. As treatment (and to a lesser extent prevention) of mastitis rely heavily on antibiotics, there are increasing concerns in veterinary and human medicine regarding development of antimicrobial resistance. Furthermore, with genes conferring resistance being capable of transfer to heterologous strains, reducing resistance in strains of animal origin should have positive impacts on humans. This article briefly reviews potential roles of non-steroidal anti-inflammatory drugs (NSAIDs), herbal medicines, antimicrobial peptides (AMPs), bacteriophages and their lytic enzymes, vaccination and other emerging therapies for prevention and treatment of mastitis in dairy cows. Although many of these approaches currently lack proven therapeutic efficacy, at least some may gradually replace antibiotics, especially as drug-resistant bacteria are proliferating globally.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Wu F, Kong Y, Chen W, Liang D, Xiao Q, Hu L, Tan X, Wei J, Liu Y, Deng X, Liu Z, Chen T. Improvement of vaginal probiotics Lactobacillus crispatus on intrauterine adhesion in mice model and in clinical practice. BMC Microbiol 2023; 23:78. [PMID: 36949381 PMCID: PMC10032012 DOI: 10.1186/s12866-023-02823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a frequent acquired endometrial condition, for which there is no effective preventive or treatment. Previous studies have found that vaginal microbiota dysregulation is closely related to endometrial fibrosis and IUA. Therefore, we wondered whether restoration of vaginal microbiota by vaginal administration of L. crispatus could prevent endometrial fibrosis and ameliorate IUA. RESULTS First, we created a mechanically injured mouse model of IUA and restored the mice's vaginal microbiota by the addition of L. crispatus convolvulus. The observations suggested that intrauterine injections of L. crispatus significantly decreased the degree of uterine fibrosis, the levels of IL-1β and TNF-α in blood, and downregulated the TGF-β1/SMADs signaling pathway in IUA mice. A therapy with L. crispatus considerably raised the abundance of the helpful bacteria Lactobacillus and Oscillospira and restored the balance of the vaginal microbiota in IUA mice, according to high-throughput sequencing. Then we conducted a randomized controlled trial to compare the therapeutic effect of L. crispatus with estrogen after transcervical resection of adhesion (TCRA). And the results showed that vaginal probiotics had a better potential to prevent intrauterine adhesion than estrogen. CONCLUSIONS This study confirmed that L. crispatus could restore vaginal microbiota after intrauterine surgery, inhibit endometrial fibrosis, and finally play a preventive and therapeutic role in IUA. At the same time, it is a new exploration for the treatment of gynecological diseases with vaginal probiotics. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn/ , identifier (ChiCTR1900022522), registration time: 15/04/2019.
Collapse
Affiliation(s)
- Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Qin Xiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijuan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yujuan Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China.
| |
Collapse
|
22
|
Che HY, Zhou CH, Lyu CC, Meng Y, He YT, Wang HQ, Wu HY, Zhang JB, Yuan B. Allicin Alleviated LPS-Induced Mastitis via the TLR4/NF-κB Signaling Pathway in Bovine Mammary Epithelial Cells. Int J Mol Sci 2023; 24:ijms24043805. [PMID: 36835218 PMCID: PMC9962488 DOI: 10.3390/ijms24043805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Dairy farming is the most important economic activity in animal husbandry. Mastitis is the most common disease in dairy cattle and has a significant impact on milk quality and yield. The natural extract allicin, which is the main active ingredient of the sulfur-containing organic compounds in garlic, has anti-inflammatory, anticancer, antioxidant, and antibacterial properties; however, the specific mechanism underlying its effect on mastitis in dairy cows needs to be determined. Therefore, in this study, whether allicin can reduce lipopolysaccharide (LPS)-induced inflammation in the mammary epithelium of dairy cows was investigated. A cellular model of mammary inflammation was established by pretreating bovine mammary epithelial cells (MAC-T) with 10 µg/mL LPS, and the cultures were then treated with varying concentrations of allicin (0, 1, 2.5, 5, and 7.5 µM) added to the culture medium. MAC-T cells were examined using RT-qPCR and Western blotting to determine the effect of allicin. Subsequently, the level of phosphorylated nuclear factor kappa-B (NF-κB) was measured to further explore the mechanism underlying the effect of allicin on bovine mammary epithelial cell inflammation. Treatment with 2.5 µM allicin considerably decreased the LPS-induced increase in the levels of the inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) and inhibited activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in cow mammary epithelial cells. Further research revealed that allicin also inhibited the phosphorylation of inhibitors of nuclear factor kappa-B-α (IκB-α) and NF-κB p65. In mice, LPS-induced mastitis was also ameliorated by allicin. Therefore, we hypothesize that allicin alleviated LPS-induced inflammation in the mammary epithelial cells of cows probably by affecting the TLR4/NF-κB signaling pathway. Allicin will likely become an alternative to antibiotics for the treatment of mastitis in cows.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jia-Bao Zhang
- Correspondence: (J.-B.Z.); (B.Y.); Tel.: +86-431-8783-6551 (J.-B.Z.); +86-431-8783-6536 (B.Y.)
| | - Bao Yuan
- Correspondence: (J.-B.Z.); (B.Y.); Tel.: +86-431-8783-6551 (J.-B.Z.); +86-431-8783-6536 (B.Y.)
| |
Collapse
|
23
|
Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced mastitis through the TGR5-cAMP-PKA-NF-κB/NLRP3 pathways in mice. NPJ Biofilms Microbiomes 2023; 9:8. [PMID: 36755021 PMCID: PMC9908919 DOI: 10.1038/s41522-023-00374-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Although emerging evidence shows that gut microbiota-mediated metabolic changes regulate intestinal pathogen invasions, little is known about whether and how gut microbiota-mediated metabolites affect pathogen infection in the distal organs. In this study, untargeted metabolomics was performed to identify the metabolic changes in a subacute ruminal acidosis (SARA)-associated mastitis model, a mastitis model with increased susceptibility to Staphylococcus aureus (S. aureus). The results showed that cows with SARA had reduced cholic acid (CA) and deoxycholic acid (DCA) levels compared to healthy cows. Treatment of mice with DCA, but not CA, alleviated S. aureus-induced mastitis by improving inflammation and the blood-milk barrier integrity in mice. DCA inhibited the activation of NF-κB and NLRP3 signatures caused by S. aureus in the mouse mammary epithelial cells, which was involved in the activation of TGR5. DCA-mediated TGR5 activation inhibited the NF-κB and NLRP3 pathways and mastitis caused by S. aureus via activating cAMP and PKA. Moreover, gut-dysbiotic mice had impaired TGR5 activation and aggravated S. aureus-induced mastitis, while restoring TGR5 activation by spore-forming bacteria reversed these changes. Furthermore, supplementation of mice with secondary bile acids producer Clostridium scindens also activated TGR5 and alleviated S. aureus-induced mastitis in mice. These results suggest that impaired secondary bile acid production by gut dysbiosis facilitates the development of S. aureus-induced mastitis and highlight a potential strategy for the intervention of distal infection by regulating gut microbial metabolism.
Collapse
|
24
|
Xu P, Xu X, Fotina H, Fotina T. Anti-inflammatory effects of chlorogenic acid from Taraxacum officinale on LTA-stimulated bovine mammary epithelial cells via the TLR2/NF-κB pathway. PLoS One 2023; 18:e0282343. [PMID: 36947494 PMCID: PMC10032541 DOI: 10.1371/journal.pone.0282343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
Mastitis is an inflammatory disease caused by microbial infection. Chlorogenic acid (CGA), one of the major phenolic acids in Taraxacum officinale, has natural antioxidant and anti-inflammatory properties in various cell types; however, the effects of CGA on Lipoteichoic acid (LTA)-induced bovine mammary epithelial cells (BMECs) have not been investigated. In this study, the CGA content in T. officinale was determined by High-performance liquid chromatography (HPLC). BMECs were infected with LTA to induce the mastitis model. Different concentrations of CGA were administered after establishing the LTA infection. The results showed that the T. officinale contained CGA 1.36 mg/g. CGA significantly reduced the pro-inflammatory gene and protein expression of TNF-α, IL-6, and IL-1β. In addition, CGA downregulated the NO, TLR2, and NF-κB signaling pathways in LTA-infected bovine mammary epithelial cells. Our results indicate that CGA reduced the expression of TNF-α, IL-6, IL-1β, and TLR2 by inhibiting the phosphorylation of proteins in the NF-κB signaling pathways in a dose-dependent manner. This finding suggests that CGA may be a potential agent for the treatment of mastitis in dairy cows.
Collapse
Affiliation(s)
- Ping Xu
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Xiaobo Xu
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, China
| | - Hanna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Tetiana Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| |
Collapse
|
25
|
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022; 27:6474. [PMID: 36235012 PMCID: PMC9572446 DOI: 10.3390/molecules27196474] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Polydatin is a natural potent stilbenoid polyphenol and a resveratrol derivative with improved bioavailability. Polydatin possesses potential biological activities predominantly through the modulation of pivotal signaling pathways involved in inflammation, oxidative stress, and apoptosis. Various imperative biological activities have been suggested for polydatin towards promising therapeutic effects, including anticancer, cardioprotective, anti-diabetic, gastroprotective, hepatoprotective, neuroprotective, anti-microbial, as well as health-promoting roles on the renal system, the respiratory system, rheumatoid diseases, the skeletal system, and women's health. In the present study, the therapeutic targets, biological activities, pharmacological mechanisms, and health benefits of polydatin are reviewed to provide new insights to researchers. The need to develop further clinical trials and novel delivery systems of polydatin is also considered to reveal new insights to researchers.
Collapse
Affiliation(s)
- Ahmad Karami
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Leila Kooshki
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
26
|
Li L, Niu H, Zhan J, Tu Y, Jiang L, Zhao Y. Matrine attenuates bovine mammary epithelial cells inflammatory responses induced by Streptococcus agalactiae through inhibiting NF-κB and MAPK signaling pathways. Int Immunopharmacol 2022; 112:109206. [PMID: 36058035 DOI: 10.1016/j.intimp.2022.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022]
Abstract
Streptococcus agalactiae is one of the main pathogens associated with bovine mastitis. The invasion of S. agalactiae in bovine mammary epithelial cells (BMECs) has been implicated as a key event in the pathogenesis of mastitis. Matrine is known for its various pharmacological activities, such as immune response regulation and anti-inflammation. The primary aim of the research was to investigate the preventive effect of matrine on S. agalactiae-induced inflammation in BMECs along with underlying molecular mechanisms. Our data showed matrine at the concentrations of 50-100 μg/mL promoted BMECs proliferation without infection, and decreased cytotoxicity induced by S. agalactiae. Subsequently, BMECs were pre-treated with matrine (50, 75, or 100 μg/mL) for 24 h, followed by the infection with S. agalactiae for an additional 6 h. Pretreatment with matrine followed by S. agalactiae treatment decreased cell apoptosis of BMECs. Also, pretreatment of matrine to BMECs prevented the invasion of S. agalactiae. The mRNA abundances of IL-1β, IL-6, IL-8, and TNF-α were down-regulated in S. agalactiae-infected cells pretreated with matrine. In addition, the greater ratios of protein NF-κB p-p65/p65, p-IκBα/IκBα, p-38/38, and p-ERK/ERK induced by S. agalactiae were attenuated due to matrine treatment. Furthermore, pretreatment of BMECs with matrine impeded the degradation of TAK1 induced by S. agalactiae infection. These results suggest matrine could be a potential modulator in immune response of the mammary gland. In conclusion, matrine prevents cellular damage due to S. agalactiae infection by the modulation of NF-κB and MAPK signaling pathways and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Niu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jingwei Zhan
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Tu
- Beijing Key Laboratory of Dairy Cow Nutrition, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; Beijing Beinong Enterprise Management Co., Ltd., Beijing 102206, China.
| |
Collapse
|
27
|
Wang FF, Zhao PY, He XJ, Jiang K, Wang TS, Xiao JW, Sun DB, Guo DH. Fusobacterium necrophorum Promotes Apoptosis and Inflammatory Cytokine Production Through the Activation of NF-κB and Death Receptor Signaling Pathways. Front Cell Infect Microbiol 2022; 12:827750. [PMID: 35774408 PMCID: PMC9237437 DOI: 10.3389/fcimb.2022.827750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Fusobacterium necrophorum can cause liver abscess, foot rot in ruminants, and Lemire syndrome in humans, Also, its virulence factors can induce the apoptosis of macrophages and neutrophils. However, the detailed mechanism has not been fully clarified. This study investigated the mechanisms of apoptosis and inflammatory factor production in F. necrophorum–induced neutrophils and macrophages (RAW246.7). After infection of macrophages with F. necrophorum, 5-ethynyl-2’-deoxyuridine labeling assays indicated that F. necrophorum inhibited macrophage proliferation in a time- and dose-dependent manner. Hoechst staining and DNA ladder assays showed significant condensation of the nucleus and fragmentation of genomic DNA in F. necrophorum–infected macrophages, Annexin V (FITC) and propidium iodide (PI) assay confirmed the emergence of apoptosis in the macrophages and sheep neutrophils with F. necrophorum compared with the control. The group with significant apoptosis was subjected to RNA sequencing (RNA-Seq), and the sequencing results revealed 2581 up– and 2907 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the differentially expressed genes showed that F. necrophorum drove apoptosis and production of inflammatory factors by activating genes related to the Nuclear Factor-κB (NF-κB) and death receptor pathways. Meanwhile, quantitative reverse transcription PCR and Western blot validation results were consistent with the results of transcriptome sequencing analysis. In conclusion, F. necrophorum induced apoptosis and production of pro-inflammatory factors through the NF-κB and death receptor signaling pathway, providing a theoretical basis for further mechanistic studies on the prevention and control of F. necrophorum disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong-Bo Sun
- *Correspondence: Dong-Bo Sun, ; Dong-Hua Guo,
| | | |
Collapse
|
28
|
Wang M, Qin K, Zhai X. Combined Network Pharmacology, Molecular Docking, and Experimental Verification Approach to Investigate the Potential Mechanisms of Polydatin Against COVID-19. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221095352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) has posed a serious threat to human health and there is an urgent need for drug development. In this study, we explored the potential mechanisms underlying the efficacy of polydatin against COVID-19. Methods: A combined approach of network pharmacology, molecular docking, and experimental verification were employed in this study. Potential targets of polydatin for treating COVID-19 were obtained from multiple drug and disease databases. Protein–protein interaction and enrichment analyses were performed to predict the potential mechanism of action of polydatin against COVID-19. The binding potential of polydatin and key targets was evaluated through molecular docking. Furthermore, experimental methods including flow cytometry and luciferase assay were used to validate the results of computational analyses. Results: The main diseases identified as polydatin targets included metabolic diseases, lung diseases, inflammation, infectious diseases, and tumors. Polydatin may be used to treat COVID-19 through interventions that alter the immune and inflammatory responses, including IL-17 signaling pathway, T-cell activation, cytokines and inflammatory response, lipopolysaccharide-mediated signaling pathway, as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) innate immunity evasion and cell-specific immune response. Polydatin can potentially bind to the target proteins related to COVID-19, such as SARS-CoV-2 Mpro, RdRp, and human angiotensin-converting enzyme 2 (ACE2), while directly exerting its regulatory or therapeutic functions. The experimental results showed that polydatin decreased the infectivity of the SARS-CoV-2 spike pseudovirus in HEK293T-ACE2 cells. Accordingly, polydatin may retard the entry of SARS-CoV-2 into cells by competitively binding to human ACE2. Conclusion: The potential targets and signaling pathways of polydatin against COVID-19 were preliminarily identified. The findings may benefit the development and application of polydatin as a treatment for COVID-19.
Collapse
Affiliation(s)
- Meng Wang
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kaijian Qin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Zhai
- Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
29
|
Shi M, Yue Y, Ma C, Dong L, Chen F. Pasteurized Akkermansia muciniphila Ameliorate the LPS-Induced Intestinal Barrier Dysfunction via Modulating AMPK and NF-κB through TLR2 in Caco-2 Cells. Nutrients 2022; 14:nu14040764. [PMID: 35215413 PMCID: PMC8879293 DOI: 10.3390/nu14040764] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Akkermansia muciniphila is well known for the amelioration of inflammatory responses and restoration of intestinal barrier function. The beneficial effect of A. muciniphila occurred through contacting Toll-like receptor 2 (TLR2) on intestinal epithelial cells by wall components. In this case, the downstream mechanism of pasteurized A. muciniphila stimulating TLR2 for ameliorated intestinal barrier function is worth investigating. In this study, we evaluated the effect of live and pasteurized A. muciniphila on protecting the barrier dysfunction of Caco-2 intestinal epithelial cells induced by lipopolysaccharide (LPS). We discovered that both live and pasteurized A. muciniphila could attenuate an inflammatory response and improve intestinal barrier integrity in Caco-2 monolayers. We demonstrated that A. muciniphila enhances AMP-activated protein kinase (AMPK) activation and inhibits Nuclear Factor-Kappa B (NF-κB) activation through the stimulation of TLR2. Overall, we provided a specific mechanism for the probiotic effect of A. muciniphila on the intestinal barrier function of Caco-2 cells.
Collapse
Affiliation(s)
- Mengxuan Shi
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.S.); (Y.Y.); (C.M.); (L.D.)
| | - Yunshuang Yue
- Beijing DaBeiNong Biotechnology Co., Ltd., Beijing 100193, China
| | - Chen Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.S.); (Y.Y.); (C.M.); (L.D.)
| | - Li Dong
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.S.); (Y.Y.); (C.M.); (L.D.)
| | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.S.); (Y.Y.); (C.M.); (L.D.)
- Correspondence: ; Tel.: +86-10-6273-7645
| |
Collapse
|
30
|
Wei MJ, Wang ZN, Yang Y, Zhang SJ, Tang H, Li H, Bi CL. Selenium Attenuates S. aureus-Induced Inflammation by Regulation TLR2 Signaling Pathway and NLRP3 Inflammasome in RAW 264.7 Macrophages. Biol Trace Elem Res 2022; 200:761-767. [PMID: 33754304 DOI: 10.1007/s12011-021-02676-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the effects of selenium (Se) on the expression of Toll-like receptor (TLR) 2 and pyrin domain-containing protein (NLRP)3 inflammasome in macrophages infected by Staphylococcus aureus (S. aureus). RAW 264.7 macrophages were treated with 2 μmol/L Na2SeO3 for 12 h before infection with S. aureus for 2 h. Through Western blot, qRT-PCR, and ELISA analysis, the core molecules of TLR2 signaling pathway and NLRP3 inflammasome in RAW 264.7 macrophages were detected. Results showed that Se significantly reduced the elevated mRNA expression of TLR2, myeloid differentiation factor-88 (Myd88), NLRP3, Caspase-recruitment domain (ASC), and Caspase-1 induced by S. aureus. Furthermore, compared with I group, the protein expression of TLR2, Myd88, NLRP3, ASC, and Caspase-1 were suppressed in T group. In addition, the mRNA and protein expression of interleukin-1 beta (IL-1β) induced by S. aureus were also decreased after Se treatment. In conclusion, Se inhibits S. aureus-induced inflammation by suppressing the activation of the TLR2 signaling pathway and NLRP3 inflammasome in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ming-Ji Wei
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Zhen-Nan Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Yan Yang
- Linyi Academy of Agricultural Sciences, Linyi, 276012, Shandong, China
| | - Shu-Jiu Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
- Drug Micro Vector Engineering Center of Linyi, Shuangling Road, Linyi, 276005, Shandong, China
| | - He Tang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Chong-Liang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China.
| |
Collapse
|
31
|
Therapeutic Role of miR-30a in Lipoteichoic Acid-Induced Endometritis via Targeting the MyD88/Nox2/ROS Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:5042048. [PMID: 35003515 PMCID: PMC8741357 DOI: 10.1155/2021/5042048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus (S. aureus), a notorious pathogenic bacterium prevalent in the environment, causes a wide range of inflammatory diseases such as endometritis. Endometritis is an inflammatory disease in humans and mammals, which prolongs uterine involution and causes great economic losses. MiR-30a plays an importan trole in the process of inflammation; however, the regulatory role of miR-30a in endometritis is still unknown. Here, we first noticed that there was an increased level of miR-30a in uterine samples of cows with endometritis. And then, bovine endometrial epithelial (BEND) cells stimulated with the virulence factor lipoteichoic acid (LTA) from S. aureus were used as an in vitro endometritis model to explore the potential role of miR-30a in the pathogenesis of endometritis. Our data showed that the induction of the miR-30a expression is dependent on NF-κB activation, and its overexpression significantly decreased the levels of IL-1β and IL-6. Furthermore, we observed that the overexpression of miR-30a inhibited its translation by binding to 3′−UTR of MyD88 mRNA, thus preventing the activation of Nox2 and NF-κB and ROS accumulation. Meanwhile, in vivo studies further revealed that upregulation of miR-30a using chemically synthesized agomirs alleviates the inflammatory conditions in an experimental mouse model of endometritis, as indicated by inhibition of ROS and NF-κB. Taken together, these findings highlight that miR-30a can attenuate LTA-elicited oxidative stress and inflammatory responses through the MyD88/Nox2/ROS/NF-κB pathway and may aid the future development of novel therapies for inflammatory diseases caused by S. aureus, including endometritis.
Collapse
|
32
|
Ye P, Wu H, Jiang Y, Xiao X, Song D, Xu N, Ma X, Zeng J, Guo Y. Old dog, new tricks: Polydatin as a multitarget agent for current diseases. Phytother Res 2021; 36:214-230. [PMID: 34936712 DOI: 10.1002/ptr.7306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Polydatin (PD) is a natural single-crystal product that is primarily extracted from the traditional plant Polygonum cuspidatum Sieb. et Zucc. Early research showed that PD exhibited a variety of biological activities. PD has attracted increasing research interest since 2014, but no review comprehensively summarized the new findings. A great gap between its biological activities and drug development remains. It is necessary to summarize new findings on the pharmacological effects of PD on current diseases. We propose that PD will most likely be used in cardiac and cerebral ischaemia/reperfusion-related diseases and atherosclerosis in the future. The present work classified these new findings according to diseases and summarized the main effects of PD via specific mechanisms of action. In summary, we found that PD played a therapeutic role in a variety of diseases, primarily via five mechanisms: antioxidative effects, antiinflammatory effects, regulation of autophagy and apoptosis, maintenance of mitochondrial function, and lipid regulation.
Collapse
Affiliation(s)
- Penghui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Liu C, Hao K, Liu Z, Liu Z, Guo N. Epigallocatechin gallate (EGCG) attenuates staphylococcal alpha-hemolysin (Hla)-induced NLRP3 inflammasome activation via ROS-MAPK pathways and EGCG-Hla interactions. Int Immunopharmacol 2021; 100:108170. [PMID: 34562843 DOI: 10.1016/j.intimp.2021.108170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Alpha-hemolysin (Hla), the virulence factor secreted by Staphylococcus aureus (S. aureus), plays a critical role in infection and inflammation, which is a severe health burden worldwide. Therefore, it is necessary to develop a drug against Hla. Epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, has excellent anti-inflammatory activity. In this study, we investigated the inhibitory effect of EGCG on Hla-induced NLRP3 inflammasome activation in vitro and in vivo and elucidated the potential molecular mechanism. We found that EGCG attenuated the hemolysis of Hla by inhibiting its secretion. Besides, EGCG significantly decreased overproduction of ROS and activation of MAPK signaling pathway induced by Hla, thereby markedly attenuating the expression of NLRP3 inflammasome-related proteins in THP-1 cells. Notably, EGCG could spontaneously bind to Hla with affinity constant of 1.71 × 10-4 M, thus blocking the formation of the Hla heptamer. Moreover, Hla-induced expression of NLRP3, ASC and caspase-1 protein and generation of IL-1β and IL-18 in the damaged liver tissue of mice were also significantly suppressed by EGCG in a dose-dependent manner. Collectively, EGCG could be a promising candidate for alleviating Hla-induced the activation of NLRP3 inflammasome, depending on ROS mediated MAPK signaling pathway, and inhibition of Hla secretion and heptamer formation. These findings will enlighten the applications of EGCG to reduce the S. aureus infection by targeting Hla in food and related pharmaceutical fields.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Kun Hao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zonghui Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
34
|
The Neuroprotective Role of Polydatin: Neuropharmacological Mechanisms, Molecular Targets, Therapeutic Potentials, and Clinical Perspective. Molecules 2021; 26:molecules26195985. [PMID: 34641529 PMCID: PMC8513080 DOI: 10.3390/molecules26195985] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are one of the leading causes of death and disability in humans. From a mechanistic perspective, the complexity of pathophysiological mechanisms contributes to NDDs. Therefore, there is an urgency to provide novel multi-target agents towards the simultaneous modulation of dysregulated pathways against NDDs. Besides, their lack of effectiveness and associated side effects have contributed to the lack of conventional therapies as suitable therapeutic agents. Prevailing reports have introduced plant secondary metabolites as promising multi-target agents in combating NDDs. Polydatin is a natural phenolic compound, employing potential mechanisms in fighting NDDs. It is considered an auspicious phytochemical in modulating neuroinflammatory/apoptotic/autophagy/oxidative stress signaling mediators such as nuclear factor-κB (NF-κB), NF-E2–related factor 2 (Nrf2)/antioxidant response elements (ARE), matrix metalloproteinase (MMPs), interleukins (ILs), phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), and the extracellular regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Accordingly, polydatin potentially counteracts Alzheimer’s disease, cognition/memory dysfunction, Parkinson’s disease, brain/spinal cord injuries, ischemic stroke, and miscellaneous neuronal dysfunctionalities. The present study provides all of the neuroprotective mechanisms of polydatin in various NDDs. Additionally, the novel delivery systems of polydatin are provided regarding increasing its safety, solubility, bioavailability, and efficacy, as well as developing a long-lasting therapeutic concentration of polydatin in the central nervous system, possessing fewer side effects.
Collapse
|
35
|
Wu YX, Jiang FJ, Liu G, Wang YY, Gao ZQ, Jin SH, Nie YJ, Chen D, Chen JL, Pang QF. Dehydrocostus Lactone Attenuates Methicillin-Resistant Staphylococcus aureus-Induced Inflammation and Acute Lung Injury via Modulating Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22189754. [PMID: 34575918 PMCID: PMC8472345 DOI: 10.3390/ijms22189754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Dehydrocostus lactone (DHL), a natural sesquiterpene lactone isolated from the traditional Chinese herbs Saussurea lappa and Inula helenium L., has important anti-inflammatory properties used for treating colitis, fibrosis, and Gram-negative bacteria-induced acute lung injury (ALI). However, the effects of DHL on Gram-positive bacteria-induced macrophage activation and ALI remains unclear. In this study, we found that DHL inhibited the phosphorylation of p38 MAPK, the degradation of IκBα, and the activation and nuclear translocation of NF-κB p65, but enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of Nrf2 and HO-1 in lipoteichoic acid (LTA)-stimulated RAW264.7 cells and primary bone-marrow-derived macrophages (BMDMs). Given the critical role of the p38 MAPK/NF-κB and AMPK/Nrf2 signaling pathways in the balance of M1/M2 macrophage polarization and inflammation, we speculated that DHL would also have an effect on macrophage polarization. Further studies verified that DHL promoted M2 macrophage polarization and reduced M1 polarization, then resulted in a decreased inflammatory response. An in vivo study also revealed that DHL exhibited anti-inflammatory effects and ameliorated methicillin-resistant Staphylococcus aureus (MRSA)-induced ALI. In addition, DHL treatment significantly inhibited the p38 MAPK/NF-κB pathway and activated AMPK/Nrf2 signaling, leading to accelerated switching of macrophages from M1 to M2 in the MRSA-induced murine ALI model. Collectively, these data demonstrated that DHL can promote macrophage polarization to an anti-inflammatory M2 phenotype via interfering in p38 MAPK/NF-κB signaling, as well as activating the AMPK/Nrf2 pathway in vitro and in vivo. Our results suggested that DHL might be a novel candidate for treating inflammatory diseases caused by Gram-positive bacteria.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Feng-Juan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Gang Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Ying-Ying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Zhi-Qi Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Si-Hao Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Yun-Juan Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Jun-Liang Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Qing-Feng Pang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
- Correspondence:
| |
Collapse
|
36
|
Kim K, Lee EY. Excessively Enlarged Mitochondria in the Kidneys of Diabetic Nephropathy. Antioxidants (Basel) 2021; 10:antiox10050741. [PMID: 34067150 PMCID: PMC8151708 DOI: 10.3390/antiox10050741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the most serious complication of diabetes and a leading cause of kidney failure and mortality in patients with diabetes. However, the exact pathogenic mechanisms involved are poorly understood. Impaired mitochondrial function and accumulation of damaged mitochondria due to increased imbalance in mitochondrial dynamics are known to be involved in the development and progression of DN. Accumulating evidence suggests that aberrant mitochondrial fission is involved in the progression of DN. Conversely, studies linking excessively enlarged mitochondria to DN pathogenesis are emerging. In this review, we summarize the current concepts of imbalanced mitochondrial dynamics and their molecular aspects in various experimental models of DN. We discuss the recent evidence of enlarged mitochondria in the kidneys of DN and examine the possibility of a therapeutic application targeting mitochondrial dynamics in DN.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
- Correspondence: (K.K.); (E.-Y.L.); Tel.: +82-41-413-5024 (K.K.); +82-41-570-3684 (E.-Y.L.); Fax: +82-41-413-5006 (K.K. & E.-Y.L.)
| | - Eun-Young Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (K.K.); (E.-Y.L.); Tel.: +82-41-413-5024 (K.K.); +82-41-570-3684 (E.-Y.L.); Fax: +82-41-413-5006 (K.K. & E.-Y.L.)
| |
Collapse
|
37
|
Jiang K, Yang J, Song C, He F, Yang L, Li X. Enforced expression of miR-92b blunts E. coli lipopolysaccharide-mediated inflammatory injury by activating the PI3K/AKT/β-catenin pathway via targeting PTEN. Int J Biol Sci 2021; 17:1289-1301. [PMID: 33867846 PMCID: PMC8040465 DOI: 10.7150/ijbs.56933] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endometritis is a reproductive disorder characterized by an inflammatory response in the endometrium, which causes significant economic losses to the dairy farming industry. MicroRNAs (miRNAs) are implicated in the inflammatory response and immune regulation following infection by pathogenic bacteria. Recent miRNA microarray analysis showed an altered expression of miR-92b in cows with endometritis. In the present study, we set out to investigate the regulatory mechanism of miR-92b in endometritis. Here, qPCR results first validated that miR-92b was down-regulated during endometritis. And then, bovine endometrial epithelial cells (BEND cells) stimulated by high concentration of lipopolysaccharide (LPS) were employed as an in vitro inflammatory injury model. Our data showed that overexpression of miR-92b significantly suppressed the activation of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF‐κB) in LPS-stimulated BEND cells, thereby reducing pro-inflammatory cytokines release and inhibiting cell apoptosis. Looking into the molecular mechanisms of regulation of inflammatory injury by miR-92b, we observed that overexpression of miR-92b restrained TLR4/NF‐κB by activating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/β-catenin pathway. Furthermore, the luciferase reporter assay suggested that miR-92b targeted inhibition of phosphatase and tensin homolog (PTEN), an inhibitor of the PI3K/AKT/β-catenin pathway. Importantly, in vivo experiments confirmed that up-regulation of miR-92b attenuated the pathological injury in an experimental murine model of LPS-induced endometritis. Collectively, these findings show that enforced expression of miR-92b alleviates LPS-induced inflammatory injury by activating the PI3K/AKT/β-catenin pathway via targeting PTEN, suggesting a potential application for miR-92b-based therapy to treat endometritis or other inflammatory diseases.
Collapse
Affiliation(s)
- Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chunlian Song
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| |
Collapse
|
38
|
Ge BJ, Zhao P, Li HT, Sang R, Wang M, Zhou HY, Zhang XM. Taraxacum mongolicum protects against Staphylococcus aureus-infected mastitis by exerting anti-inflammatory role via TLR2-NF-κB/MAPKs pathways in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113595. [PMID: 33212175 DOI: 10.1016/j.jep.2020.113595] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Taraxacum mongolicum has been widely used for the prevention and treatment of a variety of inflammatory and infectious diseases, and also clinically used as a remedy for mastitis. However, the scientific rationale and mechanism behind its use on mastitis in vivo are still unclear. AIM OF THE STUDY This study aimed to investigate the protective effect and potential mechanism of Taraxacum mongolicum Hand.-Mazz. (T. mongolicum) on mastitis infected by Staphylococcus aureus (S. aureus). MATERIALS AND METHODS Female ICR mice were given intragastrically 2.5, 5 and 10 g/kg of T. mongolicum extract twice per day for 6 consecutive days, and infected with S. aureus via teat canal to induce mastitis. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels were determined by ELISA. Myeloperoxidase (MPO) activity and distribution were measured by reagent kit and immunohistochemistry. Histopathological changes of mammary gland tissues were observed by H&E staining. Toll-like receptor 2 (TLR2) expression, phosphorylations of related proteins in nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways were detected by western blot. RESULTS T. mongolicum decreased TNF-α, IL-6 and IL-1β levels, and reduced MPO activity and distribution in sera and mammary glands with S. aureus-infected mastitis. In addition, T. mongolicum effectively attenuated histopathological damages and cell necrosis of mammary gland tissues infected by S. aureus. Moreover, T. mongolicum inhibited the expression of TLR2, and the phosphorylations of inhibitor κBα (IκBα), p65, p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) proteins in mammary glands with S. aureus-infected mastitis. CONCLUSIONS This study suggests that T. mongolicum protects against S. aureus-infected mastitis by exerting anti-inflammatory role, which is attributed to the inhibition of TLR2-NF-κB/MAPKs pathways.
Collapse
Affiliation(s)
- Bing-Jie Ge
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Peng Zhao
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Hai-Tao Li
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China; Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Juye Street, Changchun, Jilin 132109, China.
| | - Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Meng Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Hong-Yuan Zhou
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Xue-Mei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| |
Collapse
|
39
|
Akhtar M, Shaukat A, Zahoor A, Chen Y, Wang Y, Yang M, Umar T, Guo M, Deng G. Hederacoside-C Inhibition of Staphylococcus aureus-Induced Mastitis via TLR2 & TLR4 and Their Downstream Signaling NF-κB and MAPKs Pathways In Vivo and In Vitro. Inflammation 2021; 43:579-594. [PMID: 31845052 DOI: 10.1007/s10753-019-01139-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hederacoside-C (HDC) is a biological active ingredient, extracted from the leaves of Hedera helix. It has been reported to have anti-inflammatory properties. However, the effects of HDC on Staphylococcus aureus (S. aureus)-induced mastitis have not been reported yet. Here, we evaluated the anti-inflammatory effects of HDC on S. aureus-induced mastitis both in vivo on mammary gland tissues and in vitro on RAW 264.7 cells. The ascertained histopathological changes and MPO activity revealed that HDC defended mammary glands from tissue destruction and inflammatory cell infiltration induced by S. aureus. The results of ELISA, western blot, and qRT-PCR indicated that HDC significantly inhibited the expressions IL-6, IL-1β, and TNF-α and enhanced the IL-10 by downregulating and upregulating their relevant genes, respectively. Furthermore, HDC markedly suppressed the TLR2 and TLR4 expressions by attenuating the MAPKs (p38, ERK, JNK) and NF-κB (p65 and IκBα) pathways followed by decreasing the phosphorylation of p38, ERK, JNK, p65, and IκBα. The above parameters enhanced the mammary gland defense and reduced inflammation. These findings suggested that HDC may have the potential to be an effective anti-inflammatory drug for the S. aureus-induced mice mastitis and in RAW 264.7 cells.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Arshad Zahoor
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mei Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
40
|
Zhang PN, Zhou MQ, Guo J, Zheng HJ, Tang J, Zhang C, Liu YN, Liu WJ, Wang YX. Mitochondrial Dysfunction and Diabetic Nephropathy: Nontraditional Therapeutic Opportunities. J Diabetes Res 2021; 2021:1010268. [PMID: 34926696 PMCID: PMC8677373 DOI: 10.1155/2021/1010268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is a progressive microvascular diabetic complication. Growing evidence shows that persistent mitochondrial dysfunction contributes to the progression of renal diseases, including DN, as it alters mitochondrial homeostasis and, in turn, affects normal kidney function. Pharmacological regulation of mitochondrial networking is a promising therapeutic strategy for preventing and restoring renal function in DN. In this review, we have surveyed recent advances in elucidating the mitochondrial networking and signaling pathways in physiological and pathological contexts. Additionally, we have considered the contributions of nontraditional therapy that ameliorate mitochondrial dysfunction and discussed their molecular mechanism, highlighting the potential value of nontraditional therapies, such as herbal medicine and lifestyle interventions, in therapeutic interventions for DN. The generation of new insights using mitochondrial networking will facilitate further investigations on nontraditional therapies for DN.
Collapse
Affiliation(s)
- Ping Na Zhang
- Renal Research Institution of Beijing University of Chinese Medicine and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping Warehouse No. 5, Beijing 100700, China
| | - Meng Qi Zhou
- Renal Research Institution of Beijing University of Chinese Medicine and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping Warehouse No. 5, Beijing 100700, China
| | - Jing Guo
- Renal Research Institution of Beijing University of Chinese Medicine and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping Warehouse No. 5, Beijing 100700, China
| | - Hui Juan Zheng
- Renal Research Institution of Beijing University of Chinese Medicine and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping Warehouse No. 5, Beijing 100700, China
| | - Jingyi Tang
- Renal Research Institution of Beijing University of Chinese Medicine and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping Warehouse No. 5, Beijing 100700, China
| | - Chao Zhang
- Renal Research Institution of Beijing University of Chinese Medicine and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping Warehouse No. 5, Beijing 100700, China
| | - Yu Ning Liu
- Renal Research Institution of Beijing University of Chinese Medicine and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping Warehouse No. 5, Beijing 100700, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping Warehouse No. 5, Beijing 100700, China
- Institute of Nephrology and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, China
| | - Yao Xian Wang
- Renal Research Institution of Beijing University of Chinese Medicine and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping Warehouse No. 5, Beijing 100700, China
| |
Collapse
|
41
|
Biswas P, Dellanoce C, Vezzoli A, Mrakic-Sposta S, Malnati M, Beretta A, Accinni R. Antioxidant Activity with Increased Endogenous Levels of Vitamin C, E and A Following Dietary Supplementation with a Combination of Glutathione and Resveratrol Precursors. Nutrients 2020; 12:nu12113224. [PMID: 33105552 PMCID: PMC7690269 DOI: 10.3390/nu12113224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
The effects of two different dietary supplements on the redox status of healthy human participants were evaluated. The first supplement (GluS, Glutathione Synthesis) contains the precursors for the endogenous synthesis of glutathione and the second (GluReS, Glutathione and Resveratrol Synthesis) contains in addition polydatin, a precursor of resveratrol. To assess the influence of GluS and GluReS on the redox status, ten thiol species and three vitamins were measured before (t0) and after 8 weeks (t1) of dietary supplementation. An inflammatory marker, neopterin, was also assessed at the same time points. Both supplements were highly effective in improving the redox status by significantly increasing the reduced-glutathione (GSH) content and other reduced thiol species while significantly decreasing the oxidized species. The positive outcome of the redox status was most significant in the GluRes treatment group which also experienced a significant reduction in neopterin levels. Of note, the endogenous levels of vitamins C, E and A were significantly increased in both treatment groups, with best results in the GluReS group. While both dietary supplements significantly contributed to recognized antioxidant and anti-inflammatory outcomes, the effects of GluReS, the combination of glutathione and resveratrol precursors, were more pronounced. Thus, dietary supplementation with GluReS may represent a valuable strategy for maintaining a competent immune status and a healthy lifespan.
Collapse
Affiliation(s)
- Priscilla Biswas
- SoLongevity Research, 20121 Milan, Italy; (A.B.); (R.A.)
- Correspondence: ; Tel.: +39-02-26434903
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.D.); (A.V.); (S.M.-S.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.D.); (A.V.); (S.M.-S.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.D.); (A.V.); (S.M.-S.)
| | - Mauro Malnati
- Unit of Viral Evolution and Transmission, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | | | | |
Collapse
|
42
|
Zhang L, Sun Y, Xu W, Geng Y, Su Y, Wang Q, Wang J. Baicalin inhibits Salmonella typhimurium-induced inflammation and mediates autophagy through TLR4/MAPK/NF-κB signalling pathway. Basic Clin Pharmacol Toxicol 2020; 128:241-255. [PMID: 32955161 DOI: 10.1111/bcpt.13497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/23/2020] [Accepted: 09/13/2020] [Indexed: 01/08/2023]
Abstract
Baicalin has been reported to protect mice against Salmonella typhimurium (S. typhimurium) infection, while its molecular mechanisms are unclear. In this study, multiplicity of infection (MOI) and observation time were measured. Cell viability and LDH levels were examined in RAW264.7 cells and H9 cells. RAW264.7 cells were stimulated with S typhimurium in the presence or absence of Baicalin, and the levels of pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The changes in reactive oxygen species (ROS) production were determined by fluorescence microscopy and ELISA. The autophagy and TLR4/MAPK/NF-κB signalling pathway were examined by immunofluorescence microscopy, quantitative reverse transcription-polymerase chain reaction and Western blotting. The results indicated that MOI of 30 and duration of autophagy evident at 5 h were applicable to this study. Baicalin prevented death of macrophages, promoted bactericidal activity, decreased the levels of pro-inflammatory cytokines and ROS and reduced the changes of key biomarkers in autophagy and TLR4/MAPK/NF-κB signalling pathway infected by S typhimurium. TLR4-overexpressed cells, autophagy and TLR4/MAPK/NF-κB signalling pathway were activated by S typhimurium, which was suppressed by Baicalin. Our findings indicated that Baicalin exerts anti-inflammatory and cell-protective effects, and it mediates autophagy by down-regulating the activity of TLR4 infected by S typhimurium.
Collapse
Affiliation(s)
- Ling Zhang
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Yuan Sun
- First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Wei Xu
- First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Yu Geng
- Healthcare Management School, Jinzhou Medical University, Jinzhou, China
| | - Yuhong Su
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Qiuning Wang
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Jinli Wang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
43
|
Polydatin attenuates Mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway. Microb Pathog 2020; 149:104552. [PMID: 33010363 DOI: 10.1016/j.micpath.2020.104552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Mycoplasma gallisepticum (MG) infection is the main cause of chronic respiratory disease (CRD) characterized by severe respiratory inflammation in chickens. Polydatin (PD) is a resveratrol glycoside isolated from Polygonum cuspidatum, which has prominent anti-inflammatory effect. The purpose of this study was to investigate the therapeutic effect of PD against MG-induced inflammation in chicken and its underlying mechanism. Histopathological analysis showed that PD treatment (15, 30, and 45 mg/kg) apparently alleviated MG-induced pathological changes of chicken embryonic lung. In chicken embryo fibroblast (DF-1) cells, PD treatment (15, 30, and 60 μg/mL) could effectively suppress MG propagation, promote MG-infected cell proliferation and cell cycle progress, and inhibit MG-induced cell apoptosis. ELISA and qPCR assays showed that PD treatment significantly suppressed the expression of interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) induced by MG both in vivo and in vitro. Besides, molecular studies indicated that the MG-induced levels of toll-like receptor-6 TLR6, myeloid differentiation-88 (MyD88) and nuclear factor κB (NF-κB) were significantly decreased by PD treatment. Moreover, immunofluorescence analysis showed that PD treatment restrained the MG-induced NF-κB-p65 nuclear translocation. Taken together, these results indicate the protective effects of PD against MG-induced inflammation injury in chicken were mainly by inhibiting the TLR6/MyD88/NF-κB pathway.
Collapse
|
44
|
Khan MZ, Khan A, Xiao J, Ma J, Ma Y, Chen T, Shao D, Cao Z. Overview of Research Development on the Role of NF-κB Signaling in Mastitis. Animals (Basel) 2020; 10:E1625. [PMID: 32927884 PMCID: PMC7552152 DOI: 10.3390/ani10091625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mastitis is the inflammation of the mammary gland. Escherichia coli and Staphylococcus aureus are the most common bacteria responsible for mastitis. When mammary epithelial cells are infected by microorganisms, this activates an inflammatory response. The bacterial infection is recognized by innate pattern recognition receptors (PRRs) in the mammary epithelial cells, with the help of Toll-like receptors (TLRs). Upon activation by lipopolysaccharides, a virulent agent of bacteria, the TLRs further trigger nuclear factor-κB (NF-κB) signaling to accelerate its pathogenesis. The NF-κB has an essential role in many biological processes, such as cell survival, immune response, inflammation and development. Therefore, the NF-κB signaling triggered by the TLRs then regulates the transcriptional expression of specific inflammatory mediators to initiate inflammation of the mammary epithelial cells. Thus, any aberrant regulation of NF-κB signaling may lead to many inflammatory diseases, including mastitis. Hence, the inhibiting of NF-κB signaling has potential therapeutic applications in mastitis control strategies. In this review, we highlighted the regulation and function of NF-κB signaling in mastitis. Furthermore, the role of NF-κB signaling for therapeutic purposes in mastitis control has been explored in the current review.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Dafu Shao
- Institute of Agricultural Information of CAAS, Beijing 100081, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| |
Collapse
|
45
|
Liu K, Ding T, Fang L, Cui L, Li J, Meng X, Zhu G, Qian C, Wang H, Li J. Organic Selenium Ameliorates Staphylococcus aureus-Induced Mastitis in Rats by Inhibiting the Activation of NF-κB and MAPK Signaling Pathways. Front Vet Sci 2020; 7:443. [PMID: 32851026 PMCID: PMC7406644 DOI: 10.3389/fvets.2020.00443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Mastitis is an economically important disease in dairy cows, which is often caused by Staphylococcus aureus (S. aureus). Selenium is an indispensable element for physiological function and contributes to reduce injury of the mammary glands in mastitis. However, adequate sources of selenium have always been an important consideration for livestock. Therefore, the study aimed to explore the protective effect and mechanism of Selenohomolanthionine (SeHLan) on mastitis induced by S. aureus. The S. aureus-induced rat model was established and three doses (0.2, 2, 20 μg/kg body weight/day) of dietary OS were supplemented. The bacterial load, histopathology, and myeloperoxidase (MPO) of the mammary glands were performed and determined. Cytokines, including interleukin (IL)-1β, TNF-α, and IL-6, were detected using qRT-PCR. The key proteins of NF-κB and MAPK signaling pathways were analyzed by Western blot. The results revealed that OS supplementation could reduce the recruitment of neutrophils and macrophages in mammary tissues, but did not decrease S. aureus load in the tissues. The overexpression levels of IL-1β, TNF-α, and IL-6 induced by S. aureus were inhibited after OS treatment. Furthermore, the increased phosphorylation of NF-κB and MAPKs proteins were also suppressed. The results suggest that dietary supplementation with adequate OS during pregnancy contributes to protect the mammary glands from injury caused by S. aureus and alleviate the inflammatory response.
Collapse
Affiliation(s)
- Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Li Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
46
|
Akhtar M, Guo S, Guo YF, Zahoor A, Shaukat A, Chen Y, Umar T, Deng PG, Guo M. Upregulated-gene expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) via TLRs following NF-κB and MAPKs in bovine mastitis. Acta Trop 2020; 207:105458. [PMID: 32243879 DOI: 10.1016/j.actatropica.2020.105458] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022]
Abstract
Mastitis is the inflammation of mammary glands which causes huge economic loss in dairy cows. Inflammation, any tissue injury and pathogens in cow udder activate Toll-like Receptors (TLRs). Staphylococcus aureus (S. aureus) is the major cause of mastitis. In mastitis, activated TLRs initiate the NF-κB/MAPKs pathways which further trigger the gene expression associated with mastitis followed by innate immune response. In this study, pathogenic-induced gene expression profile of pro-inflammatory cytokines in mammary gland tissues, was investigated in mastitis. The Hematoxylin and Eosin (H & E) results indicated severe histopathological changes in infected tissues. Western blot results suggested the over expressions of TLR2/TLR4 with NF-κB/MAPKs pathways activation in infected tissues. qRT-PCR results revealed the gene expression associated with TLR2/TLR4-mediated NF-κB/MAPKs pathways in infected tissues in comparison with non-infected. Statistical analysis of mRNA and relative protein expression levels indicated the up-regulation of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in infected tissues rather than non-infected tissues. These results suggested that the up-regulation of gene expression levels implicated the underlying regulatory pathways for proper immune function in mammary glands. In conclusion, our study might give new insights for investigation and better understanding of mammary gland pathophysiology and TLRs and NF-κB/MAPKs-mediated gene expression of pro-inflammatory cytokines.
Collapse
|
47
|
Cathelicidins Mitigate Staphylococcus aureus Mastitis and Reduce Bacterial Invasion in Murine Mammary Epithelium. Infect Immun 2020; 88:IAI.00230-20. [PMID: 32341117 DOI: 10.1128/iai.00230-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus, an important cause of mastitis in mammals, is becoming increasingly problematic due to the development of resistance to conventional antibiotics. The ability of S. aureus to invade host cells is key to its propensity to evade immune defense and antibiotics. This study focuses on the functions of cathelicidins, small cationic peptides secreted by epithelial cells and leukocytes, in the pathogenesis of S. aureus mastitis in mice. We determined that endogenous murine cathelicidin (CRAMP; Camp) was important in controlling S. aureus infection, as cathelicidin knockout mice (Camp-/- ) intramammarily challenged with S. aureus had higher bacterial burdens and more severe mastitis than did wild-type mice. The exogenous administration of both a synthetic human cathelicidin (LL-37) and a synthetic murine cathelicidin (CRAMP) (8 μM) reduced the invasion of S. aureus into the murine mammary epithelium. Additionally, this exogenous LL-37 was internalized into cultured mammary epithelial cells and impaired S. aureus growth in vitro We conclude that cathelicidins may be potential therapeutic agents against mastitis; both endogenous and exogenous cathelicidins conferred protection against S. aureus infection by reducing bacterial internalization and potentially by directly killing this pathogen.
Collapse
|
48
|
Wu M, Li X, Wang S, Yang S, Zhao R, Xing Y, Liu L. Polydatin for treating atherosclerotic diseases: A functional and mechanistic overview. Biomed Pharmacother 2020; 128:110308. [PMID: 32480216 DOI: 10.1016/j.biopha.2020.110308] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
With the advancement of science and technology, the living standards of human beings have continuously improved, but the incidence and mortality from atherosclerosis worldwide have also increased by year. Although interventional surgery and the continuous development of new drugs have significant therapeutic effects, their side effects cannot be ignored. Polydatin, an active ingredient isolated from the natural medicine Polygonum cuspidatum, has been shown to have a prominent role in the treatment of cardiovascular diseases. Polydatin treats atherosclerosis mainly from three aspects: anti-inflammatory, regulating lipid metabolism and anti-oxidative stress. This article will review the pharmacological mechanism of polydatin in anti-atherosclerosis, the biological characteristics of Polygonum cuspidatum, the toxicology and pharmacokinetics of polydatin and will provide ideas for further research.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Songzi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
49
|
Xu J, Jia Z, Chen A, Wang C. Curcumin ameliorates Staphylococcus aureus-induced mastitis injury through attenuating TLR2-mediated NF-κB activation. Microb Pathog 2020; 142:104054. [PMID: 32061917 DOI: 10.1016/j.micpath.2020.104054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/13/2023]
Abstract
PROBLEM It has long been known that Staphylococcus aureus (S. aureus, serotype CP8) is associated with clinical mastitis in cows, and recent scientific studies have shown that curcumin (CUR) is effective in anti-inflammatory. However, the mechanism of action of curcumin on S. aureus-induced cows has not been fully understood. Therefore, this study investigated whether curcumin could improve the inflammation response in mice mastitis and to clarify the possible mechanism. METHOD of study: A mouse mastitis model was established. The mice were administered curcumin (125 mg/kg), ciprofloxacin (130 mg/kg, CIP), and water (model group) for 5 days. RESULTS CUR and CIP treatment prevented the S. aureus-induced mouse mastitis increase the levels of IL-2, IL-10, and IFN-γ and decrease levels of IL-6, IL-8, and TNF-α. Additionally, RT-PCR results showed that 20 μg/mL curcumin inhibited the mRNA expression of TNF-α, IL-6, IL-1β, TRAF6 and MEKK1 in murine mammary epithelial cells (MMECs). Likewise, Western blotting results showed that CUR inhibited the expression of TRAF6 and MEKK1. CONCLUSION These results indicated that CUR is superior to CIP in the prevention of mastitis, and the mechanism may be that the curative effect of CUR inhibits TLR-2 mediated NF-κB signaling pathway in mouse mastitis.
Collapse
Affiliation(s)
- Jin Xu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Henan Houyi Bio-Engineering, Inc., Zheng Zhou, 451161, PR China
| | - Zhifeng Jia
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| |
Collapse
|
50
|
Jiang K, Yang J, Yang C, Zhang T, Shaukat A, Yang X, Dai A, Wu H, Deng G. miR-148a suppresses inflammation in lipopolysaccharide-induced endometritis. J Cell Mol Med 2019; 24:405-417. [PMID: 31756048 PMCID: PMC6933404 DOI: 10.1111/jcmm.14744] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Endometritis is a postnatal reproductive disorder disease, which leads to great economic losses for the modern dairy industry. Emerging evidence indicates that microRNAs (miRNAs) play a pivotal role in a variety of diseases and have been identified as critical regulators of the innate immune response. Recent miRNome profile analysis revealed an altered expression level of miR‐148a in cows with endometritis. Therefore, the present study aims to investigate the regulatory role of miR‐148a in the innate immune response involved in endometritis and estimate its potential therapeutic value. Here, we found that miR‐148a expression in lipopolysaccharide (LPS)‐stimulated endometrial epithelial cells was significantly decreased. Our results also showed that overexpression of miR‐148a using agomiR markedly reduced the production of pro‐inflammatory cytokines, such as IL‐1β and TNF‐α. Moreover, overexpression of miR‐148a also suppressed NF‐κB p65 activation by targeting the TLR4‐mediated pathway. Subsequently, we further verified that miR‐148a repressed TLR4 expression by binding to the 3′‐UTR of TLR4 mRNA. Additionally, an experimental mouse endometritis model was employed to evaluate the therapeutic value of miR‐148a. In vivo studies suggested that up‐regulation of miR‐148a alleviated the inflammatory conditions in the uterus as evidenced by H&E staining, qPCR and Western blot assays, while inhibition of miR‐148a had inverse effects. Collectively, pharmacologic stabilization of miR‐148a represents a novel therapy for endometritis and other inflammation‐related diseases.
Collapse
Affiliation(s)
- Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,College of Life Sciences of Longyan University, Longyan, China
| | - Ailing Dai
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,College of Life Sciences of Longyan University, Longyan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|