1
|
Kwon N, Weng H, Rajora MA, Zheng G. Activatable Photosensitizers: From Fundamental Principles to Advanced Designs. Angew Chem Int Ed Engl 2025; 64:e202423348. [PMID: 39899458 PMCID: PMC11976215 DOI: 10.1002/anie.202423348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Photodynamic therapy (PDT) is a promising treatment that uses light to excite photosensitizers in target tissue, producing reactive oxygen species and localized cell death. It is recognized as a minimally invasive, clinically approved cancer therapy with additional preclinical applications in arthritis, atherosclerosis, and infection control. A hallmark of ideal PDT is delivering disease-specific cytotoxicity while sparing healthy tissue. However, conventional photosensitizers often suffer from non-specific photoactivation, causing off-target toxicity. Activatable photosensitizers (aPS) have emerged as more precise alternatives, offering controlled activation. Unlike traditional photosensitizers, they remain inert and photoinactive during circulation and off-target accumulation, minimizing collateral damage. These photosensitizers are designed to "turn on" in response to disease-specific biostimuli, enhancing therapeutic selectivity and reducing off-target effects. This review explores the principles of aPS, including quenching mechanisms stemming from activatable fluorescent probes and applied to activatable photosensitizers (RET, PeT, ICT, ACQ, AIE), as well as pathological biostimuli (pH, enzymes, redox conditions, cellular internalization), and bioresponsive constructs enabling quenching and activation. We also provide a critical assessment of unresolved challenges in aPS development, including limitations in targeting precision, selectivity under real-world conditions, and potential solutions to persistent issues (dual-lock, targeting moieties, biorthogonal chemistry and artificial receptors). Additionally, it provides an in-depth discussion of essential research design considerations needed to develop translationally relevant aPS with improved therapeutic outcomes and specificity.
Collapse
Affiliation(s)
- Nahyun Kwon
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
| | - Hanyi Weng
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
- Department of Medical BiophysicsUniversity of TorontoToronto, ONCanada
| | - Maneesha A. Rajora
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
- Department of MedicineUniversity of TorontoToronto, ONCanada
| | - Gang Zheng
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
- Department of Medical BiophysicsUniversity of TorontoToronto, ONCanada
| |
Collapse
|
2
|
Khan AEMA, Arutla V, Srivenugopal KS. Human NQO1 as a Selective Target for Anticancer Therapeutics and Tumor Imaging. Cells 2024; 13:1272. [PMID: 39120303 PMCID: PMC11311714 DOI: 10.3390/cells13151272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms. NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2. A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited. We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms. Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts. Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses. This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy.
Collapse
Affiliation(s)
| | | | - Kalkunte S. Srivenugopal
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 Amarillo Research Bldg., Rm. 1102, Amarillo, TX 79106, USA; (A.E.M.A.K.); (V.A.)
| |
Collapse
|
3
|
Tomar MS, Kumar A, Shrivastava A. Mitochondrial metabolism as a dynamic regulatory hub to malignant transformation and anti-cancer drug resistance. Biochem Biophys Res Commun 2024; 694:149382. [PMID: 38128382 DOI: 10.1016/j.bbrc.2023.149382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Glycolysis is the fundamental cellular process that permits cancer cells to convert energy and grow anaerobically. Recent developments in molecular biology have made it evident that mitochondrial respiration is critical to tumor growth and treatment response. As the principal organelle of cellular energy conversion, mitochondria can rapidly alter cellular metabolic processes, thereby fueling malignancies and contributing to treatment resistance. This review emphasizes the significance of mitochondrial biogenesis, turnover, DNA copy number, and mutations in bioenergetic system regulation. Tumorigenesis requires an intricate cascade of metabolic pathways that includes rewiring of the tricarboxylic acid (TCA) cycle, electron transport chain and oxidative phosphorylation, supply of intermediate metabolites of the TCA cycle through amino acids, and the interaction between mitochondria and lipid metabolism. Cancer recurrence or resistance to therapy often results from the cooperation of several cellular defense mechanisms, most of which are connected to mitochondria. Many clinical trials are underway to assess the effectiveness of inhibiting mitochondrial respiration as a potential cancer therapeutic. We aim to summarize innovative strategies and therapeutic targets by conducting a comprehensive review of recent studies on the relationship between mitochondrial metabolism, tumor development and therapeutic resistance.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, 462020, Madhya Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
4
|
Roy NJ, Save SN, Sharma VK, Abraham B, Kuttanamkuzhi A, Sharma S, Lahiri M, Talukdar P. NAD(P)H:Quinone Acceptor Oxidoreductase 1 (NQO1) Activatable Salicylamide H + /Cl - Transporters. Chemistry 2023; 29:e202301412. [PMID: 37345998 DOI: 10.1002/chem.202301412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a detoxifying enzyme overexpressed in tumors, plays a key role in protecting cancer cells against oxidative stress and thus has been considered an attractive candidate for activating prodrug(s). Herein, we report the first use of NQO1 for the selective activation of 'protransporter' systems in cancer cells leading to the induction of apoptosis. Salicylamides, easily synthesizable small molecules, have been effectively used for efficient H+ /Cl- symport across lipid membranes. The ion transport activity of salicylamides was efficiently abated by caging the OH group with NQO1 activatable quinones via either ether or ester linkage. The release of active transporters, following the reduction of quinone caged 'protransporters' by NQO1, was verified. Both the transporters and protransporters exhibited significant toxicity towards the MCF-7 breast cancer line, mediated via the induction of oxidative stress, mitochondrial membrane depolarization, and lysosomal deacidification. Induction of cell death via intrinsic apoptotic pathway was verified by monitoring PARP1 cleavage.
Collapse
Affiliation(s)
- Naveen J Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Shreyada N Save
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, Maharashtra, India
| | - Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Benchamin Abraham
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Abhijith Kuttanamkuzhi
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, Maharashtra, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
5
|
Wang D, Li M, Zhang H, Feng C, Wu L, Yan L. A Novel Redox-Sensitive Drug Delivery System Based on Trimethyl-Locked Polycarbonate. Biomacromolecules 2023; 24:4303-4315. [PMID: 37585690 DOI: 10.1021/acs.biomac.3c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Stimuli-responsive polymer nanocarriers, capable of exploiting subtle changes in the tumor microenvironment for controlled drug release, have gained significant attention in cancer therapy. Notably, NAD(P)H: quinone oxidoreductase 1 (NQO1), found to be upregulated in various solid tumors, represents a promising therapeutic target due to its effective capability to enzymatically reduce trimethyl-locked (TML) benzoquinone structures in a physiological condition. In this study, a novel redox-sensitive carbonate monomer, MTC, was synthesized, and its amphiphilic block copolymers were prepared through ring-opening polymerization. By successfully self-assembling poly(ethylene glycol)-b-PMTC micelles, the model drug doxorubicin (DOX) was encapsulated with high efficiency. The micelles exhibited redox-responsive behavior, leading to rapid drug release. In vitro assessments confirmed their excellent biocompatibility and hemocompatibility. Furthermore, the inhibition of the NQO1 enzyme reduced drug release in NQO1-overexpressed cells but not in control cells, resulting in decreased cytotoxicity in the presence of NQO1 enzyme inhibitors. Overall, this study showcases the potential of MTC-based polycarbonate micelles to achieve targeted and specific drug release in the NQO1 enzyme-mediated tumor microenvironment. Therefore, the self-assembly of MTC-based polymers into nanomicelles holds immense promise as intelligent nanocarriers in drug delivery applications.
Collapse
Affiliation(s)
- Dongdong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Mu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Hanning Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Congshu Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
6
|
Shen L, Jiang S, Yang Y, Yang H, Fang Y, Tang M, Zhu R, Xu J, Jiang H. Pan-cancer and single-cell analysis reveal the prognostic value and immune response of NQO1. Front Cell Dev Biol 2023; 11:1174535. [PMID: 37583897 PMCID: PMC10424457 DOI: 10.3389/fcell.2023.1174535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Overexpression of the NAD(P)H: Quinone Oxidoreductase 1 (NQOI) gene has been linked with tumor progression, aggressiveness, drug resistance, and poor patient prognosis. Most research has described the biological function of the NQO1 in certain types and limited samples, but a comprehensive understanding of the NQO1's function and clinical importance at the pan-cancer level is scarce. More research is needed to understand the role of NQO1 in tumor infiltration, and immune checkpoint inhibitors in various cancers are needed. Methods: The NQO1 expression data for 33 types of pan-cancer and their association with the prognosis, pathologic stage, gender, immune cell infiltration, the tumor mutation burden, microsatellite instability, immune checkpoints, enrichment pathways, and the half-maximal inhibitory concentration (IC50) were downloaded from public databases. Results: Our findings indicate that the NQO1 gene was significantly upregulated in most cancer types. The Cox regression analysis showed that overexpression of the NQO1 gene was related to poor OS in Glioma, uveal melanoma, head and neck squamous cell carcinoma, kidney renal papillary cell carcinoma, and adrenocortical carcinoma. NQO1 mRNA expression positively correlated with infiltrating immune cells and checkpoint molecule levels. The single-cell analysis revealed a potential relationship between the NQO1 mRNA expression levels and the infiltration of immune cells and stromal cells in bladder urothelial carcinoma, invasive breast carcinoma, and colorectal cancer. Conversely, a negative association was noted between various drugs (17-AAG, Lapatinib, Trametinib, PD-0325901) and the NQO1 mRNA expression levels. Conclusion: NQO1 expression was significantly associated with prognosis, immune infiltrates, and drug resistance in multiple cancer types. The inhibition of the NQO1-dependent signaling pathways may provide a promising strategy for developing new cancer-targeted therapies.
Collapse
Affiliation(s)
- Liping Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Shan Jiang
- Department of Radiology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Yu Yang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Hongli Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanchun Fang
- Department of Ultrasonography, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Meng Tang
- Department of Ultrasonography, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Rangteng Zhu
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Jiaqin Xu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Hantao Jiang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| |
Collapse
|
7
|
Gong Q, Wang P, Li T, Yu Z, Yang L, Wu C, Hu J, Yang F, Zhang X, Li X. Novel NQO1 substrates bearing two nitrogen redox centers: Design, synthesis, molecular dynamics simulations, and antitumor evaluation. Bioorg Chem 2023; 134:106480. [PMID: 36958178 DOI: 10.1016/j.bioorg.2023.106480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
By analyzing the crystal structure of NQO1, an additional binding region for the ligand was discovered. In this study, a series of derivatives with a novel skeleton bearing two nitrogen redox centers were designed by introducing amines or hydrazines to fit with the novel binding region of NQO1. Compound 24 with a (4-fluorophenyl)hydrazine substituent was identified as the most efficient substrate for NQO1 with the reduction rate and catalytic efficiency of 1972 ± 82 μmol NADPH/min/μmol NQO1 and 6.4 ± 0.4 × 106 M-1s-1, respectively. Molecular dynamics (MD) simulation revealed that the distances between the nitrogen atom of the redox centers and the key Tyr128 and Tyr126 residues were 3.5 Å (N1-Tyr128) and 3.4 Å (N2-Tyr126), respectively. Compound 24 (IC50/A549 = 0.69 ± 0.09 μM) showed potent antitumor activity against A549 cells both in vitro and in vivo through ROS generation via NQO1-mediated redox cycling, leading to a promising NQO1-targeting antitumor candidate.
Collapse
Affiliation(s)
- Qijie Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Pengfei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Tian Li
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhan Yu
- The Affiliated Jiangning Hospital of NJMU, Nanjing Medical University (NJMU), Nanjing 211199, China; Jiangning Clinical Medical College of Jiangsu University, Nanjing 211100, China.
| | - Le Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Chenyang Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fulai Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiang Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Jiao B, Liu K, Gong H, Ding Z, Xu X, Ren J, Zhang G, Yu Q, Gan Z. Bladder cancer selective chemotherapy with potent NQO1 substrate co-loaded prodrug nanoparticles. J Control Release 2022; 347:632-648. [PMID: 35618186 DOI: 10.1016/j.jconrel.2022.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
Currently, clinical intravesical instillation chemotherapy has been greatly compromised by the toxicological and physiological factors. New formulations that can specifically and efficiently kill bladder cancer cells are in urgent need to overcome the low residence efficiency and dose limiting toxicity of current ones. The combination of mucoadhesive nanocarriers and cancer cell selective prodrugs can to great extent address these limitations. However, the insignificant endogenous stimulus difference between cancer cells and normal cells in most cases and the high local drug concentration make it essential to develop new drugs with broader selectivity-window. Herein, based on the statistically different NQO1 expression between cancerous and normal bladder tissues, the reactive oxygen species (ROS) activatable epirubicin prodrug and highly potent NQO1 substrate, KP372-1, was co-delivered using a GSH-responsive mucoadhesive nanocarrier. After endocytosis, epirubicin could be promptly activated by the NQO1-dependent ROS production caused by KP372-1, thus specifically inhibiting the proliferation of bladder cancer cells. Since KP372-1 is much more potent than some commonly used NQO1 substrates, for example, β-lapachone, the cascade drug activation could occur under much lower drug concentration, thus greatly lowering the toxicity in normal cells and broadening the selectivity-window during intravesical bladder cancer chemotherapy.
Collapse
Affiliation(s)
- Binbin Jiao
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Kunpeng Liu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Haitao Gong
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Xu
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Ren
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Guan Zhang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Urology, China-Japan Friendship Hospital, Beijing, China.
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
9
|
Significance of Specific Oxidoreductases in the Design of Hypoxia-Activated Prodrugs and Fluorescent Turn Off–On Probes for Hypoxia Imaging. Cancers (Basel) 2022; 14:cancers14112686. [PMID: 35681666 PMCID: PMC9179281 DOI: 10.3390/cancers14112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Hypoxia-activated prodrugs (HAPs), selectively reduced by specific oxidoreductases under hypoxic conditions, form cytotoxic agents damaging the local cancer cells. On the basis of the reported clinical data concerning several HAPs, one can draw conclusions regarding their preclinical attractiveness and, regrettably, the low efficacy of Phase III clinical trials. Clinical failure may be explained, inter alia, by the lack of screening of patients on the basis of tumor hypoxia and low availability of specific oxidoreductases involved in HAP activation. There is surprisingly little information on the quantification of these enzymes in cells or tissues, compared to the advanced research associated with the use of HAPs. Our knowledge about the expression and activity of these enzymes in various cancer cell lines under hypoxic conditions is inadequate. Only in a few cases were researchers able to demonstrate the differences in the expression or activity of selected oxidoreductases, depending on the oxygen concentration. Additionally, it was cell line dependent. More systematic studies are required. The optical probes, based on turning on the fluorescence emission upon irreversible reduction catalyzed by the overexpressed oxidoreductases, can be helpful in this type of research. Ultimately, such sensors can estimate both the oxidoreductase activity and the degree of oxygenation in one step. To achieve this goal, their response must be correlated with the expression or activity of enzymes potentially involved in turning on their emissions, as determined by biochemical methods. In conclusion, the incorporation of biomarkers to identify hypoxia is a prerequisite for successful HAP therapies. However, it is equally important to assess the level of specific oxidoreductases required for their activation. Abstract Hypoxia is one of the hallmarks of the tumor microenvironment and can be used in the design of targeted therapies. Cellular adaptation to hypoxic stress is regulated by hypoxia-inducible factor 1 (HIF-1). Hypoxia is responsible for the modification of cellular metabolism that can result in the development of more aggressive tumor phenotypes. Reduced oxygen concentration in hypoxic tumor cells leads to an increase in oxidoreductase activity that, in turn, leads to the activation of hypoxia-activated prodrugs (HAPs). The same conditions can convert a non-fluorescent compound into a fluorescent one (fluorescent turn off–on probes), and such probes can be designed to specifically image hypoxic cancer cells. This review focuses on the current knowledge about the expression and activity of oxidoreductases, which are relevant in the activation of HAPs and fluorescent imaging probes. The current clinical status of HAPs, their limitations, and ways to improve their efficacy are briefly discussed. The fluorescence probes triggered by reduction with specific oxidoreductase are briefly presented, with particular emphasis placed on those for which the correlation between the signal and enzyme expression determined with biochemical methods is achievable.
Collapse
|
10
|
Gong Q, Yang F, Hu J, Li T, Wang P, Li X, Zhang X. Rational designed highly sensitive NQO1-activated near-infrared fluorescent probe combined with NQO1 substrates in vivo: An innovative strategy for NQO1-overexpressing cancer theranostics. Eur J Med Chem 2021; 224:113707. [PMID: 34303080 DOI: 10.1016/j.ejmech.2021.113707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022]
Abstract
Since NQO1 is overexpressed in many cancer cells, it can be used as a biomarker for cancer diagnosis and targeted therapy. NQO1 substrates show potent anticancer activity through the redox cycle mediated by NQO1, while the NQO1 probes can monitor NQO1 levels in cancers. High sensitivity of probes is needed for diagnostic imaging in clinic. In this study, based on the analysis of NQO1 catalytic pocket, the naphthoquinone trigger group 13 rationally designed by expanding the aromatic plane of the benzoquinone trigger group 10 shows significantly increased sensitivity to NQO1. The sensitivity of the naphthoquinone trigger group-based probe A was eight times higher than that of benzoquinone trigger group-based probe B in vivo. Probe A was selectively and efficiently sensitive to NQO1 with good safety profile and plasma stability, enabling its combination with NQO1 substrates in vivo for NQO1-overexpressing cancer theranostics for the first time.
Collapse
Affiliation(s)
- Qijie Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Fulai Yang
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiabao Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Tian Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Pengfei Wang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiang Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
11
|
Synthesis and biological evaluation of β-lapachone-monastrol hybrids as potential anticancer agents. Eur J Med Chem 2020; 203:112594. [DOI: 10.1016/j.ejmech.2020.112594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
|
12
|
Han J, Cheng L, Zhu Y, Xu X, Ge C. Covalent-Assembly Based Fluorescent Probes for Detection of hNQO1 and Imaging in Living Cells. Front Chem 2020; 8:756. [PMID: 33005608 PMCID: PMC7479225 DOI: 10.3389/fchem.2020.00756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Human NAD(P)H: quinone oxidoreductase (hNQO1) is an important biomarker for human malignant tumors. Detection of NQO1 accurately is of great significance to improve the early diagnosis of cancer and prognosis of cancer patients. In this study, based on the covalent assembly strategy, hNQO1-activated fluorescent probes 1 and 2 are constructed by introducing coumarin precursor 2-cyano-3-(4-(diethylamino)-2-hydroxyphenyl) acrylic acid and self-immolative linkers. Under reaction with hNQO1 and NADH, turn-on fluorescence appears due to in-situ formation of the organic fluorescent compound 7-diethylamino-3-cyanocoumarin, and fluorescent intensity changes significantly. Probe 1 and 2 for detection of hNQO1 are not interfered by other substances and have low toxicity in cells. In addition to quantitative detection of hNQO1 in vitro, they have also been successfully applied to fluorescent imaging in living cells.
Collapse
Affiliation(s)
| | - Longhao Cheng
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaowei Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chaoliang Ge
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Putnam WC, Kallem RR, Subramaniyan I, Beg MS, Edpuganti V. Bioanalytical method development and validation of a liquid chromatography-tandem mass spectrometry method for determination of β-lapachone in human plasma. J Pharm Biomed Anal 2020; 188:113466. [PMID: 32668395 DOI: 10.1016/j.jpba.2020.113466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
The purpose of this work was to develop and validate a rapid, sensitive and robust liquid chromatography tandem mass spectrometric method for the quantification of β-lapachone in human plasma and to use that method to analyze human clinical samples. Sample preparation for the developed method involved liquid-liquid extraction using ethyl acetate for extraction of β-lapachone and cryptotanshinone (internal standard) from human plasma. Chromatographic resolution was achieved on a Kinetex C18 column using a gradient elution and a chromatographic flow rate of 0.5 mL/min. The retention times of β-lapachone and cryptotanshinone were 1.98 and 2.28 min, respectively, and the method had a total run time of 4 min. Bioanalytical method validation was conducted in accordance with the United States Food and Drug Administration regulatory guidelines. The method was validated over 2 calibration ranges in order to support high- and low-dose clinical studies. Calibration curve-1 covered the range of 0.25-50 ng/mL and calibration curve-2 covered the range of 50-2000 ng/mL. The method was determined to be accurate (percent relative errors between -1.07 to 5.36 %), precise (percent relative standard deviations less than 7.4), and sensitive (LLOQ 0.25 ng/mL). β-lapachone was determined to be stable (% change from time = 0 between -11.6 and 12.6 %) across the autosampler, benchtop, freeze/thaw and long-term (63 days) stability studies. The validated bioanalytical method was employed to determine β-lapachone concentrations in human plasma samples from a clinical study.
Collapse
Affiliation(s)
- William C Putnam
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, TX, 75235, United States; Department of Pharmaceutical Science, Texas Tech University Health Sciences Center, Dallas, TX, 75235, United States.
| | - Raja Reddy Kallem
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, TX, 75235, United States; Clinical Pharmacology and Experimental Therapeutics Center, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, 75235, United States
| | - Indhumathy Subramaniyan
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, TX, 75235, United States; Clinical Pharmacology and Experimental Therapeutics Center, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, 75235, United States
| | - M Shaalan Beg
- Department of Internal Medicine (Division of Hematology-Oncology), University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Vindhya Edpuganti
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, TX, 75235, United States; Clinical Pharmacology and Experimental Therapeutics Center, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, 75235, United States
| |
Collapse
|
14
|
Design, synthesis, and biological evaluation of 4-substituted-3,4-dihydrobenzo[h]quinoline-2,5,6(1H)-triones as NQO1-directed antitumor agents. Eur J Med Chem 2020; 198:112396. [DOI: 10.1016/j.ejmech.2020.112396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 01/15/2023]
|
15
|
Tsao YC, Chang YJ, Wang CH, Chen L. Discovery of Isoplumbagin as a Novel NQO1 Substrate and Anti-Cancer Quinone. Int J Mol Sci 2020; 21:E4378. [PMID: 32575541 PMCID: PMC7352187 DOI: 10.3390/ijms21124378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/27/2022] Open
Abstract
Isoplumbagin (5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone from Lawsonia inermis and Plumbago europaea, has been reported to have anti-inflammatory and antimicrobial activity. Inflammation has long been implicated in cancer progression. In this study, we examined the anticancer effect of chemically synthesized isoplumbagin. Our results revealed that isoplumbagin treatment suppressed cell viability and invasion of highly invasive oral squamous cell carcinoma (OSCC) OC3-IV2 cells, glioblastoma U87 cells, non-small cell lung carcinoma H1299 cells, prostate cancer PC3 cells, and cervical cancer HeLa cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Boyden chamber assays. In vivo studies demonstrate the inhibitory effect of 2 mg/kg isoplumbagin on the growth of orthotopic xenograft tumors derived from OSCC cells. Mechanistically, isoplumbagin exerts its cytotoxic effect through acting as a substrate of reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] dehydrogenase quinone 1 (NQO1) to generate hydroquinone, which reverses mitochondrial fission phenotype, reduces mitochondrial complex IV activity, and thus compromises mitochondrial function. Collectively, this work reveals an anticancer activity of isoplumbagin mainly through modulating mitochondrial dynamics and function.
Collapse
Affiliation(s)
- Yen-Chi Tsao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.T.); (C.-H.W.)
| | - Yu-Jung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.T.); (C.-H.W.)
| | - Chun-Hsien Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.T.); (C.-H.W.)
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-C.T.); (C.-H.W.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
16
|
Yu J, Zhong B, Jin L, Hou Y, Ai N, Ge W, Li L, Liu S, Lu JJ, Chen X. 2-Methoxy-6-acetyl-7-methyljuglone (MAM) induced programmed necrosis in glioblastoma by targeting NAD(P)H: Quinone oxidoreductase 1 (NQO1). Free Radic Biol Med 2020; 152:336-347. [PMID: 32234332 DOI: 10.1016/j.freeradbiomed.2020.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. Temozolomide (TMZ), the only chemotherapeutic drug for GBM treatment, induced apoptosis but frequently developed resistance. Non-apoptotic cell death offers an alternative strategy to fight cancers. Our previous studies showed that 2-methoxy-6-acetyl-7-methyljuglone (MAM), a natural product, induced necroptosis in lung and colon cancer cells. The current study is designed to investigate its therapeutic potentials for GBM with in vitro and in vivo models. The protein expression of NAD(P)H: quinone oxidoreductase 1 (NQO1) in human GBM specimens were detected by immunohistochemistry. Effect of MAM on NQO1 was measured by recombinant protein and cellular thermal shift assay. The roles of NQO1 activation, superoxide (O2-) generation, calcium (Ca2+) accumulation, and c-Jun N-terminal kinase (JNK1/2) activation in MAM-induced cell death in U87 and U251 glioma cells were investigated. The effect of MAM on tumor growth was tested with a U251 tumor xenograft zebrafish model. Results showed that the NQO1 expression is positively correlated with the degree of malignancy in GBM tissues. MAM could directly bind and activate NQO1. Furthermore, MAM treatment induced rapid O2- generation, cytosolic Ca2+ accumulation, and sustained JNK1/2 activation. In addition, MAM significantly suppressed tumor growth in the zebrafish model. In conclusion, MAM induced GBM cell death by triggering an O2-/Ca2+/JNK1/2 dependent programmed necrosis. NQO1 might be the potential target for MAM and mediated its anticancer effect. This non-apoptotic necrosis might have therapeutic potentials for GBM treatment.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Long Jin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China; Department of Pathology, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Luoxiang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Shuqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
17
|
Digby EM, Sadovski O, Beharry AA. An Activatable Photosensitizer Targeting Human NAD(P)H: Quinone Oxidoreductase 1. Chemistry 2020; 26:2713-2718. [PMID: 31814180 DOI: 10.1002/chem.201904607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Indexed: 12/22/2022]
Abstract
Human NAD(P)H: Quinone Oxidoreductase 1 (hNQO1) is an attractive enzyme for cancer therapeutics due to its significant overexpression in tumors compared to healthy tissues. Its unique catalytic mechanism involving the two-electron reduction of quinone-based compounds has made it a useful target to exploit in the design of hNQO1 fluorescent chemosensors and hNQO1-activatable-prodrugs. In this work, hNQO1 is exploited for an optical therapeutic. The probe uses the photosensitizer, phenalenone, which is initially quenched via photo-induced electron transfer by the attached quinone. Native phenalenone is liberated in the presence of hNQO1 resulting in the production of cytotoxic singlet oxygen upon irradiation. hNQO1-mediated activation in A549 lung cancer cells containing high levels of hNQO1 induces a dose-dependent photo-cytotoxic response after irradiation. In contrast, no photo-cytotoxicity was observed in the normal lung cell line, MRC9. By targeting hNQO1, this scaffold can be used to enhance the cancer selectivity of photodynamic therapy.
Collapse
Affiliation(s)
- Elyse M Digby
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Oleg Sadovski
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
18
|
Guzel RM, Ogmen K, Ilieva KM, Fraser SP, Djamgoz MBA. Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. J Cell Physiol 2018; 234:6582-6593. [PMID: 30341901 DOI: 10.1002/jcp.27399] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022]
Abstract
Functional expression of voltage-gated Na+ channels (VGSCs) occurs in human carcinomas and promotes invasiveness in vitro and metastasis in vivo. Both neonatal and adult forms of Nav1.5 (nNav1.5 and aNav1.5, respectively) have been reported to be expressed at messenger RNA (mRNA) level in colorectal cancer (CRCa) cells. Here, three CRCa cell lines (HT29, HCT116 and SW620) were studied and found to express nNav1.5 mRNA and protein. In SW620 cells, adopted as a model, effects of gene silencing (by several small interfering RNAs [siRNAs]) selectively targeting nNav1.5 or aNav1.5 were determined on (a) channel activity and (b) invasiveness in vitro. Silencing nNav1.5 made the currents more "adult-like" and suppressed invasion by up to 73%. Importantly, subsequent application of the highly specific, general VGSC blocker, tetrodotoxin (TTX), had no further effect. Conversely, silencing aNav1.5 made the currents more "neonatal-like" but suppressed invasion by only 17% and TTX still induced a significant effect. Hypoxia increased invasiveness and this was also blocked completely by siRNA targeting nNav1.5. The effect of hypoxia was suppressed dose dependently by ranolazine, but its effect was lost in cells pretreated with nNav1.5-siRNA. We conclude that (a) functional nNav1.5 expression is common to human CRCa cells, (b) hypoxia increases the invasiveness of SW620 cells, (c) the VGSC-dependent invasiveness is driven predominantly by nNav1.5 under both normoxic and hypoxic conditions and (d) the hypoxia-induced increase in invasiveness is likely to be mediated by the persistent current component of nNav1.5.
Collapse
Affiliation(s)
- R Mine Guzel
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK
| | - Kazim Ogmen
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK
| | - Kristina M Ilieva
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Mersin 10, North Cyprus
| |
Collapse
|
19
|
Gerber DE, Beg MS, Fattah F, Frankel AE, Fatunde O, Arriaga Y, Dowell JE, Bisen A, Leff RD, Meek CC, Putnam WC, Kallem RR, Subramaniyan I, Dong Y, Bolluyt J, Sarode V, Luo X, Xie Y, Schwartz B, Boothman DA. Phase 1 study of ARQ 761, a β-lapachone analogue that promotes NQO1-mediated programmed cancer cell necrosis. Br J Cancer 2018; 119:928-936. [PMID: 30318513 PMCID: PMC6203852 DOI: 10.1038/s41416-018-0278-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND NAD(P)H:quinone oxidoreductase 1 (NQO1) is a two-electron oxidoreductase expressed in multiple tumour types. ARQ 761 is a β-lapachone (β-lap) analogue that exploits the unique elevation of NQO1 found in solid tumours to cause tumour-specific cell death. METHODS We performed a 3+3 dose escalation study of 3 schedules (weekly, every other week, 2/3 weeks) of ARQ 761 in patients with refractory advanced solid tumours. Tumour tissue was analysed for NQO1 expression. After 20 patients were analysed, enrolment was restricted to patients with NQO1-high tumours (H-score ≥ 200). RESULTS A total of 42 patients were treated. Median number of prior lines of therapy was 4. Maximum tolerated dose was 390 mg/m2 as a 2-h infusion every other week. Dose-limiting toxicity was anaemia. The most common treatment-related adverse events were anaemia (79%), fatigue (45%), hypoxia (33%), nausea (17%), and vomiting (17%). Transient grade 3 hypoxia, reflecting possible methemoglobinaemia, occurred in 26% of patients. Among 32 evaluable patients, best response was stable disease (n = 12); 6 patients had tumour shrinkage. There was a trend towards improved efficacy in NQO1-high tumours (P = 0.06). CONCLUSIONS ARQ 761 has modest single-agent activity, which appears associated with tumour NQO1 expression. Principal toxicities include anaemia and possible methemoglobinaemia.
Collapse
Affiliation(s)
- David E Gerber
- Department of Internal Medicine (Division of Hematology-Oncology), University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - M Shaalan Beg
- Department of Internal Medicine (Division of Hematology-Oncology), University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Farjana Fattah
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Arthur E Frankel
- Department of Internal Medicine (Division of Hematology-Oncology), University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Oluwatomilade Fatunde
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yull Arriaga
- Department of Internal Medicine (Division of Hematology-Oncology), University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan E Dowell
- Department of Internal Medicine (Division of Hematology-Oncology), University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ajit Bisen
- Department of Internal Medicine (Division of Hematology-Oncology), University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Richard D Leff
- Texas Tech University Health Sciences Center School of Pharmacy, Dallas, TX, 75390, USA
| | - Claudia C Meek
- Texas Tech University Health Sciences Center School of Pharmacy, Dallas, TX, 75390, USA
| | - William C Putnam
- Texas Tech University Health Sciences Center School of Pharmacy, Dallas, TX, 75390, USA
| | - Raja Reddy Kallem
- Texas Tech University Health Sciences Center School of Pharmacy, Dallas, TX, 75390, USA
| | | | - Ying Dong
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Joyce Bolluyt
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Venetia Sarode
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Luo
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - David A Boothman
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
20
|
Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem 2018; 61:6983-7003. [DOI: 10.1021/acs.jmedchem.8b00124] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dong Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kun Ma
- Center for Drug Evaluation, China Food and Drug Administration, Beijing 100038, China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
21
|
Beg MS, Huang X, Silvers MA, Gerber DE, Bolluyt J, Sarode V, Fattah F, Deberardinis RJ, Merritt ME, Xie XJ, Leff R, Laheru D, Boothman DA. Using a novel NQO1 bioactivatable drug, beta-lapachone (ARQ761), to enhance chemotherapeutic effects by metabolic modulation in pancreatic cancer. J Surg Oncol 2017; 116:83-88. [PMID: 28346693 PMCID: PMC5509448 DOI: 10.1002/jso.24624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/05/2017] [Indexed: 12/26/2022]
Abstract
Novel, tumor-selective therapies are needed to increase the survival rate of pancreatic cancer patients. K-Ras-mutant-driven NAD(P)H:quinone oxidoreductase 1 (NQO1) is over-expressed in pancreatic tumor versus associated normal tissue, while catalase expression is lowered compared to levels in associated normal pancreas tissue. ARQ761 undergoes a robust, futile redox cycle in NQO1+ cancer cells, producing massive hydrogen peroxide (H2 O2 ) levels; normal tissues are spared by low NQO1 and high catalase expression. DNA damage created by ARQ761 in pancreatic cancer cells "hyperactivates" PARP1, causing metabolic catastrophe and NAD ± keresis cell death. NQO1: catalase levels (high in tumor, low in normal tissue) are an attractive therapeutic window to treat pancreatic cancer. Based on a growing body of literature, we are leading a clinical trial to evaluate the combination of ARQ761 and chemotherapy in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Muhammad Shaalan Beg
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390
- Harold Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
| | - Xiumei Huang
- Harold Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
- Departments of Pharmacology and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Molly A. Silvers
- Harold Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
| | - David E. Gerber
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390
- Harold Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
| | - Joyce Bolluyt
- Harold Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
| | - Venetia Sarode
- Harold Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Farjana Fattah
- Harold Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
| | - Ralph J. Deberardinis
- Departments of Pharmacology and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX 75390
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida. University of Florida, Gainesville, FL
| | - Xian-Jin Xie
- Harold Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
| | - Richard Leff
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, School of Pharmacy Dallas, Texas 75235
| | - Daniel Laheru
- Sidney Kimmel Cancer Center at The Johns Hopkins University, Baltimore, MD
| | - David A. Boothman
- Harold Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
- Departments of Pharmacology and Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
22
|
Yang S, Jan YH, Mishin V, Heck DE, Laskin DL, Laskin JD. Diacetyl/l-Xylulose Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells. Chem Res Toxicol 2017; 30:1406-1418. [PMID: 28595002 DOI: 10.1021/acs.chemrestox.7b00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reactive carbonyls such as diacetyl (2,3-butanedione) and 2,3-pentanedione in tobacco and many food and consumer products are known to cause severe respiratory diseases. Many of these chemicals are detoxified by carbonyl reductases in the lung, in particular, dicarbonyl/l-xylulose reductase (DCXR), a multifunctional enzyme important in glucose metabolism. DCXR is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Using recombinant human enzyme, we discovered that DCXR mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity preferentially utilized NADH as a cosubstrate and was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione). Using 9,10-phenanthrenequinone as the substrate, quinone redox cycling was found to inhibit DCXR reduction of l-xylulose and diacetyl. Competitive inhibition of enzyme activity by the quinone was observed with respect to diacetyl (Ki = 190 μM) and l-xylulose (Ki = 940 μM). Abundant DCXR activity was identified in A549 lung epithelial cells when diacetyl was used as a substrate. Quinones inhibited reduction of this dicarbonyl, causing an accumulation of diacetyl in the cells and culture medium and a decrease in acetoin, the reduced product of diacetyl. The identification of DCXR as an enzyme activity mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. These activities, together with the inhibition of dicarbonyl/l-xylulose metabolism by redox-active chemicals, as well as consequent deficiencies in pentose metabolism, are likely to contribute to lung injury following exposure to dicarbonyls and quinones.
Collapse
Affiliation(s)
- Shaojun Yang
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| | - Vladimir Mishin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy , Piscataway, New Jersey 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College , Valhalla, New York 10595, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy , Piscataway, New Jersey 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| |
Collapse
|
23
|
Yang Y, Zhou X, Xu M, Piao J, Zhang Y, Lin Z, Chen L. β-lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers. Sci Rep 2017; 7:2681. [PMID: 28578385 PMCID: PMC5457413 DOI: 10.1038/s41598-017-02937-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/28/2023] Open
Abstract
NQO1 is a FAD-binding protein that can form homodimers and reduce quinones to hydroquinones, and a growing body of evidence currently suggests that NQO1 is dramatically elevated in solid cancers. Here, we demonstrated that NQO1 was elevated in breast cancer and that its expression level was positively correlated with invasion and reduced disease free survival (DFS) and overall survival (OS) rates. Next, we found that β-lapachone exerted significant anti-proliferation and anti-metastasis effects in breast cancer cell lines due to its effects on NQO1 expression. Moreover, we revealed that the anti-cancer effects of β-lapachone were mediated by the inactivation of the Akt/mTOR pathway. In conclusion, these results demonstrated that NQO1 could be a useful prognostic biomarker for patients with breast cancer, and its bioactivatable drug, β-lapachone represented a promising new development and an effective strategy for indicating the progression of NQO1-positive breast cancers.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Xianchun Zhou
- Department of Internal Medicine, Yanbian University Hospital, Yanji, 133000, China
| | - Ming Xu
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.,Department of Internal Medicine, Yanbian University Hospital, Yanji, 133000, China
| | - Yuan Zhang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| | - Liyan Chen
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| |
Collapse
|
24
|
Lundberg AP, Francis JM, Pajak M, Parkinson EI, Wycislo KL, Rosol TJ, Brown ME, London CA, Dirikolu L, Hergenrother PJ, Fan TM. Pharmacokinetics and derivation of an anticancer dosing regimen for the novel anti-cancer agent isobutyl-deoxynyboquinone (IB-DNQ), a NQO1 bioactivatable molecule, in the domestic felid species. Invest New Drugs 2016; 35:134-144. [PMID: 27975234 DOI: 10.1007/s10637-016-0414-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022]
Abstract
Isobutyl-deoxynyboquinone (IB-DNQ) is a selective substrate for NAD(P)H:quinone oxidoreductase (NQO1), an enzyme overexpressed in many solid tumors. Following activation by NQO1, IB-DNQ participates in a catalytic futile reduction/reoxidation cycle with consequent toxic reactive oxygen species generation within the tumor microenvironment. To elucidate the potential of IB-DNQ to serve as a novel anticancer agent, in vitro studies coupled with in vivo pharmacokinetic and toxicologic investigations in the domestic felid species were conducted to investigate the tractability of IB-DNQ as a translationally applicable anticancer agent. First, using feline oral squamous cell carcinoma (OSCC) as a comparative cancer model, expressions of NQO1 were characterized in not only human, but also feline OSCC tissue microarrays. Second, IB-DNQ mediated cytotoxicity in three immortalized feline OSCC cell lines were studied under dose-dependent and sequential exposure conditions. Third, the feasibility of administering IB-DNQ at doses predicted to achieve cytotoxic plasma concentrations and biologically relevant durations of exposure were investigated through pharmacokinetic and tolerability studies in healthy research felines. Intravenous administration of IB-DNQ at 1.0-2.0 mg/kg achieved peak plasma concentrations and durations of exposure reaching or exceeding predicted in vitro cytotoxic concentrations. Clinical adverse side effects including ptyalism and tachypnea exhibited during and post-IV infusion of IB-DNQ were transient and tolerable. Additionally, IB-DNQ administration did not produce acute or delayed-onset unacceptable hematologic, non-hematologic, or off-target oxidative toxicities. Collectively, the findings reported here within provide important safety and pharmacokinetic data to support the continued development of IB-DNQ as a novel anticancer strategy for NQO1 expressing cancers.
Collapse
Affiliation(s)
- Alycen P Lundberg
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.,Carle R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joshua M Francis
- Carle R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Malgorzata Pajak
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Elizabeth I Parkinson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kathryn L Wycislo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Megan E Brown
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Cheryl A London
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Levent Dirikolu
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Paul J Hergenrother
- Carle R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA. .,Carle R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
25
|
Li LS, Reddy S, Lin ZH, Liu S, Park H, Chun SG, Bornmann WG, Thibodeaux J, Yan J, Chakrabarti G, Xie XJ, Sumer BD, Boothman DA, Yordy JS. NQO1-Mediated Tumor-Selective Lethality and Radiosensitization for Head and Neck Cancer. Mol Cancer Ther 2016; 15:1757-67. [PMID: 27196777 PMCID: PMC5123441 DOI: 10.1158/1535-7163.mct-15-0765] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/14/2016] [Indexed: 01/30/2023]
Abstract
UNLABELLED Ionizing radiation (IR) is a key therapeutic regimen for many head and neck cancers (HNC). However, the 5-year overall survival rate for locally advanced HNCs is approximately 50% and better therapeutic efficacy is needed. NAD(P)H quinone oxidoreductase 1 (NQO1) is overexpressed in many cancers, and β-lapachone (β-lap), a unique NQO1 bioactivatable drug, exploits this enzyme to release massive reactive oxygen species (ROS) that synergize with IR to kill by programmed necrosis. β-Lap represents a novel therapeutic opportunity in HNC leading to tumor-selective lethality that will enhance the efficacy of IR. Immunohistochemical staining and Western blot assays were used to assess the expression levels of NQO1 in HNC cells and tumors. Forty-five percent of endogenous HNCs expressed elevated NQO1 levels. In addition, multiple HNC cell lines and tumors demonstrated elevated levels of NQO1 expression and activity and were tested for anticancer lethality and radiosensitization by β-lap using long-term survival assays. The combination of nontoxic β-lap doses and IR significantly enhanced NQO1-dependent tumor cell lethality, increased ROS, TUNEL-positive cells, DNA damage, NAD(+), and ATP consumption, and resulted in significant antitumor efficacy and prolonged survival in two xenograft murine HNC models, demonstrating β-lap radiosensitization of HNCs through a NQO1-dependent mechanism. This translational study offers a potential biomarker-driven strategy using NQO1 expression to select tumors susceptible to β-lap-induced radiosensitization. Mol Cancer Ther; 15(7); 1757-67. ©2016 AACR.
Collapse
Affiliation(s)
- Long-Shan Li
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Srilakshmi Reddy
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Zhen-Hua Lin
- Department of Pathology, Yanbian University Medical College, Yanji, Jilin, China
| | - Shuangping Liu
- Department of Pathology, Yanbian University Medical College, Yanji, Jilin, China
| | - Hyunsil Park
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Stephen G Chun
- Department of Radiation Oncology, MD Anderson Comprehensive Cancer Center, Houston, Texas
| | - William G Bornmann
- Department of Experimental Therapeutics, MD Anderson Comprehensive Cancer Center, Houston, Texas
| | - Joel Thibodeaux
- Department of Pathology, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Jingsheng Yan
- Department of Clinical Sciences, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Gaurab Chakrabarti
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Xian-Jin Xie
- Department of Clinical Sciences, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Baran D Sumer
- Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas. Department of Otolaryngology, Head and Neck Surgery, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - David A Boothman
- Department of Radiation Oncology, University of Texas at Southwestern Medical Center, Dallas, Texas. Harold C. Simmons NCI Designated Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas. Department of Pharmacology, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - John S Yordy
- Valley Radiation Therapy Center, Palmer, Alaska.
| |
Collapse
|
26
|
Šarlauskas J, Pečiukaitytė-Alksnė M, Misevičienė L, Marozienė A, Polmickaitė E, Staniulytė Z, Čėnas N, Anusevičius Ž. Naphtho[1′,2′:4,5]imidazo[1,2-a]pyridine-5,6-diones: Synthesis, enzymatic reduction and cytotoxic activity. Bioorg Med Chem Lett 2016; 26:512-517. [DOI: 10.1016/j.bmcl.2015.11.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022]
|
27
|
Abstract
One of the major goals of cancer therapy is the selective targeting of cancer cells over normal cells. Unfortunately, even with recent advances, the majority of chemotherapeutics still indiscriminately kill all rapidly dividing cells. Although these drugs are effective in certain settings, their inability to specifically target cancer results in significant dose-limiting toxicities. One way to avoid such toxicities is to target an aspect of the cancer cell that is not shared by normal cells. A potential cancer-specific target is the enzyme NAD(P)H quinone oxidoreductase 1 (NQO1). NQO1 is a 2-electron reductase responsible for the detoxification of quinones. Its expression is typically quite low in normal tissue, but it has been found to be greatly overexpressed in many types of solid tumors, including lung, breast, pancreatic, and colon cancers. This overexpression is thought to be in response to the higher oxidative stress of the cancer cell, and it is possible that NQO1 contributes to tumor progression. The overexpression of NQO1 and its correlation with poor patient outcome make it an intriguing target. Although some have explored inhibiting NQO1 as an anticancer strategy, this has generally been unsuccessful. A more promising strategy is to utilize NQO1 substrates that are activated upon reduction by NQO1. For example, in principle, reduction of a quinone can result in a hydroquinone that is a DNA alkylator, protein inhibitor, or reduction-oxidation cycler. Although there are many proposed NQO1 substrates, head-to-head assays reveal only two classes of compounds that convincingly induce cancer cell death through NQO1-mediated activation. In this Account, we describe the discovery and development of one of these compounds, the natural product deoxynyboquinone (DNQ), an excellent NQO1 substrate and anticancer agent. A modular synthesis of DNQ was developed that enabled access to the large compound quantities needed to conduct extensive mechanistic evaluations and animal experiments. During these evaluations, we found that DNQ is an outstanding NQO1 substrate that is processed much more efficiently than other putative NQO1 substrates. Importantly, its anticancer activity is strictly dependent on the overexpression of active NQO1. Using previous crystal structures of NQO1, novel DNQ derivatives were designed that are also excellent NQO1 substrates and possess properties that make them more attractive than the parent natural product for translational development. Given their selectivity, potency, outstanding pharmacokinetic properties, and the ready availability of diagnostics to assess NQO1 in patients, DNQ and its derivatives have considerable potential as personalized medicines for the treatment of cancer.
Collapse
Affiliation(s)
- Elizabeth I. Parkinson
- Department of Chemistry,
Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry,
Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Liu K, Jin B, Wu C, Yang J, Zhan X, Wang L, Shen X, Chen J, Chen H, Mao Z. NQO1 Stabilizes p53 in Response to Oncogene-Induced Senescence. Int J Biol Sci 2015; 11:762-71. [PMID: 26078718 PMCID: PMC4466457 DOI: 10.7150/ijbs.11978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a state of permanent cellular arrest that provides an initial barrier to cell transformation and tumorigenesis. In this study, we report that expression of NAD(P)H:quinone oxidoreductase 1 (NQO1), a cytoplasmic 2-electron reductase, is induced during oncogene-induced senescence (OIS). Depletion of NQO1 resulted in the delayed onset of senescence. In contrast, ectopic expression of NQO1 enhanced the senescence phenotype. Analysis of the mechanism underlying the up-regulation of NQO1 expression during senescence identified that NQO1 promotes p53 accumulation in an MDM2 and ubiquitin independent manner, which reinforces the cellular senescence phenotype. Specifically, we demonstrated that NRF2/KEAP1 signaling regulates NQO1 expression during OIS. More importantly, we confirmed that depletion of NQO1 facilitates cell transformation and tumorigenesis, which indicates that NQO1 takes part in the senescence barrier and has anti-oncogenic properties in cell transformation.
Collapse
Affiliation(s)
- Kaiyu Liu
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Bo Jin
- 2. Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034 People's Republic of China
| | - Chenglin Wu
- 3. Center of Basic Medical Sciences, Navy General Hospital; Beijing, 100048 People's Republic of China
| | - Jianming Yang
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Xiangwen Zhan
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Le Wang
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Xiaomeng Shen
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Jing Chen
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Hao Chen
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| | - Zebin Mao
- 1. Department of Biochemistry and Molecular Biology, Peking University Health Science Center; Beijing, 100191 People's Republic of China
| |
Collapse
|
29
|
Ma X, Huang X, Moore Z, Huang G, Kilgore JA, Wang Y, Hammer S, Williams NS, Boothman DA, Gao J. Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy. J Control Release 2014; 200:201-11. [PMID: 25542645 DOI: 10.1016/j.jconrel.2014.12.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022]
Abstract
UNLABELLED Lung cancer is one of the most lethal forms of cancer and current chemotherapeutic strategies lack broad specificity and efficacy. Recently, β-lapachone (β-lap) was shown to be highly efficacious in killing non-small cell lung cancer (NSCLC) cells regardless of their p53, cell cycle and caspase status. Pre-clinical and clinical use of β-lap (clinical form, ARQ501 or 761) is hampered by poor pharmacokinetics and toxicity due to hemolytic anemia. Here, we report the development and preclinical evaluation of β-lap prodrug nanotherapeutics consisting of diester derivatives of β-lap encapsulated in biocompatible and biodegradable poly(ethylene glycol)-b-poly(D,L-lactic acid) (PEG-b-PLA) micelles. Compared to the parent drug, diester derivatives of β-lap showed higher drug loading densities inside PEG-b-PLA micelles. After esterase treatment, micelle-delivered β-lap-dC3 and -dC6 prodrugs were converted to β-lap. Cytotoxicity assays using A549 and H596 lung cancer cells showed that both micelle formulations maintained NAD(P)H quinone oxidoreductase 1 (NQO1)-dependent cytotoxicity. However, antitumor efficacy study of β-lap-dC3 micelles against orthotopic A549 NSCLC xenograft-bearing mice showed significantly greater long-term survival over β-lap-dC6 micelles or β-lap-HPβCD complexes. Improved therapeutic efficacy of β-lap-dC3 micelles correlated with higher area under the concentration-time curves of β-lap in tumors, and enhanced pharmacodynamic endpoints (e.g., PARP1 hyperactivation, γH2AX, and ATP depletion). β-Lap-dC3 prodrug micelles provide a promising strategy for NQO1-targeted therapy of lung cancer with improved safety and antitumor efficacy.
Collapse
Affiliation(s)
- Xinpeng Ma
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Xiumei Huang
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Zachary Moore
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Jessica A Kilgore
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Yiguang Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Suntrea Hammer
- Department of Pathology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - David A Boothman
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| |
Collapse
|
30
|
Cao L, Li LS, Spruell C, Xiao L, Chakrabarti G, Bey EA, Reinicke KE, Srougi MC, Moore Z, Dong Y, Vo P, Kabbani W, Yang CR, Wang X, Fattah F, Morales JC, Motea EA, Bornmann WG, Yordy JS, Boothman DA. Tumor-selective, futile redox cycle-induced bystander effects elicited by NQO1 bioactivatable radiosensitizing drugs in triple-negative breast cancers. Antioxid Redox Signal 2014; 21:237-50. [PMID: 24512128 PMCID: PMC4060774 DOI: 10.1089/ars.2013.5462] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS β-Lapachone (β-lap), a novel radiosensitizer with potent antitumor efficacy alone, selectively kills solid cancers that over-express NAD(P)H quinone oxidoreductase 1 (NQO1). Since breast or other solid cancers have heterogeneous NQO1 expression, therapies that reduce the resistance (e.g., NQO1(low)) of tumor cells will have significant clinical advantages. We tested whether NQO1-proficient (NQO1(+)) cells generated sufficient hydrogen peroxide (H2O2) after β-lap treatment to elicit bystander effects, DNA damage, and cell death in neighboring NQO1(low) cells. RESULTS β-Lap showed NQO1-dependent efficacy against two triple-negative breast cancer (TNBC) xenografts. NQO1 expression variations in human breast cancer patient samples were noted, where ~60% cancers over-expressed NQO1, with little or no expression in associated normal tissue. Differential DNA damage and lethality were noted in NQO1(+) versus NQO1-deficient (NQO1(-)) TNBC cells and xenografts after β-lap treatment. β-Lap-treated NQO1(+) cells died by programmed necrosis, whereas co-cultured NQO1(-) TNBC cells exhibited DNA damage and caspase-dependent apoptosis. NQO1 inhibition (dicoumarol) or H2O2 scavenging (catalase [CAT]) blocked all responses. Only NQO1(-) cells neighboring NQO1(+) TNBC cells responded to β-lap in vitro, and bystander effects correlated well with H2O2 diffusion. Bystander effects in NQO1(-) cells in vivo within mixed 50:50 co-cultured xenografts were dramatic and depended on NQO1(+) cells. However, normal human cells in vitro or in vivo did not show bystander effects, due to elevated endogenous CAT levels. Innovation and Conclusions: NQO1-dependent bystander effects elicited by NQO1 bioactivatable drugs (β-lap or deoxynyboquinone [DNQ]) likely contribute to their efficacies, killing NQO1(+) solid cancer cells and eliminating surrounding heterogeneous NQO1(low) cancer cells. Normal cells/tissue are protected by low NQO1:CAT ratios.
Collapse
Affiliation(s)
- Lifen Cao
- 1 Department of General Surgery, The Second Xiangya Hospital of Central South University , Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kung HN, Weng TY, Liu YL, Lu KS, Chau YP. Sulindac compounds facilitate the cytotoxicity of β-lapachone by up-regulation of NAD(P)H quinone oxidoreductase in human lung cancer cells. PLoS One 2014; 9:e88122. [PMID: 24505400 PMCID: PMC3914905 DOI: 10.1371/journal.pone.0088122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 01/05/2014] [Indexed: 12/12/2022] Open
Abstract
β-lapachone, a major component in an ethanol extract of Tabebuia avellanedae bark, is a promising potential therapeutic drug for various tumors, including lung cancer, the leading cause of cancer-related deaths worldwide. In the first part of this study, we found that apoptotic cell death induced in lung cancer cells by high concentrations of β-lapachone was mediated by increased activation of the pro-apoptotic factor JNK and decreased activation of the cell survival/proliferation factors PI3K, AKT, and ERK. In addition, β-lapachone toxicity was positively correlated with the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in the tumor cells. In the second part, we found that the FDA-approved non-steroidal anti-inflammatory drug sulindac and its metabolites, sulindac sulfide and sulindac sulfone, increased NQO1 expression and activity in the lung adenocarcinoma cell lines CL1-1 and CL1-5, which have lower NQO1 levels and lower sensitivity to β-lapachone treatment than the A549 cell lines, and that inhibition of NQO1 by either dicoumarol treatment or NQO1 siRNA knockdown inhibited this sulindac-induced increase in β-lapachone cytotoxicity. In conclusion, sulindac and its metabolites synergistically increase the anticancer effects of β-lapachone primarily by increasing NQO1 activity and expression, and these two drugs may provide a novel combination therapy for lung cancers.
Collapse
Affiliation(s)
- Hsiu-Ni Kung
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (HK); (YC); (KL)
| | - Tsai-Yun Weng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Lin Liu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Shyan Lu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (HK); (YC); (KL)
| | - Yat-Pang Chau
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- * E-mail: (HK); (YC); (KL)
| |
Collapse
|
32
|
Parkinson EI, Bair JS, Cismesia M, Hergenrother PJ. Efficient NQO1 substrates are potent and selective anticancer agents. ACS Chem Biol 2013; 8:2173-83. [PMID: 23937670 DOI: 10.1021/cb4005832] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A major goal of personalized medicine in oncology is the identification of drugs with predictable efficacy based on a specific trait of the cancer cell, as has been demonstrated with gleevec (presence of Bcr-Abl protein), herceptin (Her2 overexpression), and iressa (presence of a specific EGFR mutation). This is a challenging task, as it requires identifying a cellular component that is altered in cancer, but not normal cells, and discovering a compound that specifically interacts with it. The enzyme NQO1 is a potential target for personalized medicine, as it is overexpressed in many solid tumors. In normal cells NQO1 is inducibly expressed, and its major role is to detoxify quinones via bioreduction; however, certain quinones become more toxic after reduction by NQO1, and these compounds have potential as selective anticancer agents. Several quinones of this type have been reported, including mitomycin C, RH1, EO9, streptonigrin, β-lapachone, and deoxynyboquinone (DNQ). However, no unified picture has emerged from these studies, and the key question regarding the relationship between NQO1 processing and anticancer activity remains unanswered. Here, we directly compare these quinones as substrates for NQO1 in vitro, and for their ability to kill cancer cells in culture in an NQO1-dependent manner. We show that DNQ is a superior NQO1 substrate, and we use computationally guided design to create DNQ analogues that have a spectrum of activities with NQO1. Assessment of these compounds definitively establishes a strong relationship between in vitro NQO1 processing and induction of cancer cell death and suggests these compounds are outstanding candidates for selective anticancer therapy.
Collapse
Affiliation(s)
- Elizabeth I. Parkinson
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Joseph S. Bair
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Megan Cismesia
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Flick HE, LaLonde JM, Malachowski WP, Muller AJ. The Tumor-Selective Cytotoxic Agent β-Lapachone is a Potent Inhibitor of IDO1. Int J Tryptophan Res 2013; 6:35-45. [PMID: 24023520 PMCID: PMC3762611 DOI: 10.4137/ijtr.s12094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
β-lapachone is a naturally occurring 1,2-naphthoquinone-based compound that has been advanced into clinical trials based on its tumor-selective cytotoxic properties. Previously, we focused on the related 1,4-naphthoquinone pharmacophore as a basic core structure for developing a series of potent indoleamine 2,3-dioxygenase 1 (IDO1) enzyme inhibitors. In this study, we identified IDO1 inhibitory activity as a previously unrecognized attribute of the clinical candidate β-lapachone. Enzyme kinetics-based analysis of β-lapachone indicated an uncompetitive mode of inhibition, while computational modeling predicted binding within the IDO1 active site consistent with other naphthoquinone derivatives. Inhibition of IDO1 has previously been shown to breach the pathogenic tolerization that constrains the immune system from being able to mount an effective anti-tumor response. Thus, the finding that β-lapachone has IDO1 inhibitory activity adds a new dimension to its potential utility as an anti-cancer agent distinct from its cytotoxic properties, and suggests that a synergistic benefit can be achieved from its combined cytotoxic and immunologic effects.
Collapse
Affiliation(s)
- Hollie E. Flick
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
- Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
34
|
Bey EA, Reinicke KE, Srougi MC, Varnes M, Anderson VE, Pink JJ, Li LS, Patel M, Cao L, Moore Z, Rommel A, Boatman M, Lewis C, Euhus DM, Bornmann WG, Buchsbaum DJ, Spitz DR, Gao J, Boothman DA. Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers. Mol Cancer Ther 2013; 12:2110-20. [PMID: 23883585 DOI: 10.1158/1535-7163.mct-12-0962] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Improving patient outcome by personalized therapy involves a thorough understanding of an agent's mechanism of action. β-Lapachone (clinical forms, Arq501/Arq761) has been developed to exploit dramatic cancer-specific elevations in the phase II detoxifying enzyme NAD(P)H:quinone oxidoreductase (NQO1). NQO1 is dramatically elevated in solid cancers, including primary and metastatic [e.g., triple-negative (ER-, PR-, Her2/Neu-)] breast cancers. To define cellular factors that influence the efficacy of β-lapachone using knowledge of its mechanism of action, we confirmed that NQO1 was required for lethality and mediated a futile redox cycle where ∼120 moles of superoxide were formed per mole of β-lapachone in 2 minutes. β-Lapachone induced reactive oxygen species (ROS), stimulated DNA single-strand break-dependent poly(ADP-ribose) polymerase-1 (PARP1) hyperactivation, caused dramatic loss of essential nucleotides (NAD(+)/ATP), and elicited programmed necrosis in breast cancer cells. Although PARP1 hyperactivation and NQO1 expression were major determinants of β-lapachone-induced lethality, alterations in catalase expression, including treatment with exogenous enzyme, caused marked cytoprotection. Thus, catalase is an important resistance factor and highlights H2O2 as an obligate ROS for cell death from this agent. Exogenous superoxide dismutase enhanced catalase-induced cytoprotection. β-Lapachone-induced cell death included apoptosis-inducing factor (AIF) translocation from mitochondria to nuclei, TUNEL+ staining, atypical PARP1 cleavage, and glyceraldehyde 3-phosphate dehydrogenase S-nitrosylation, which were abrogated by catalase. We predict that the ratio of NQO1:catalase activities in breast cancer versus associated normal tissue are likely to be the major determinants affecting the therapeutic window of β-lapachone and other NQO1 bioactivatable drugs.
Collapse
Affiliation(s)
- Erik A Bey
- Corresponding Authors: Erik A. Bey, West Virginia University, 1 Medical Center Drive, Box 9300, Room 1835, Morgantown, WV 26506.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang S, Jan YH, Gray JP, Mishin V, Heck DE, Laskin DL, Laskin JD. Sepiapterin reductase mediates chemical redox cycling in lung epithelial cells. J Biol Chem 2013; 288:19221-37. [PMID: 23640889 PMCID: PMC3696693 DOI: 10.1074/jbc.m112.402164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 04/18/2013] [Indexed: 11/06/2022] Open
Abstract
In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury.
Collapse
Affiliation(s)
- Shaojun Yang
- From the Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Yi-Hua Jan
- the Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854
| | - Joshua P. Gray
- the Department of Science, United States Coast Guard Academy, New London, Connecticut 06320, and
| | - Vladimir Mishin
- the Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854
| | - Diane E. Heck
- the Department of Environmental Health Science, New York Medical College, Valhalla, New York 10595
| | - Debra L. Laskin
- the Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854
| | - Jeffrey D. Laskin
- From the Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
36
|
Su XL, Yan MR, Yang L, Qimuge-Suyila. NQO1 C609T polymorphism correlated to colon cancer risk in farmers from western region of Inner Mongolia. Chin J Cancer Res 2012; 24:317-322. [DOI: 10.1007/s11670-012-0270-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Su XL, Yan MR, Yang L. NQO1 C609T polymorphism correlated to colon cancer risk in farmers from western region of Inner Mongolia. Chin J Cancer Res 2012; 24:317-322. [PMID: 23358185 PMCID: PMC3551316 DOI: 10.3978/j.issn.1000-9604.2012.08.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 02/08/2012] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To investigate the relationship between NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism and colon cancer risk in farmers from western region of Inner Mongolia. METHODS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to analyze NQO1 C609T polymorphism from 160 healthy controls and 76 colon cancer patients. RESULTS Among the colon cancer patients, the incidence of NQO1 T allele (53.29%) was significantly higher than it in control group (33.75%, P<0.001). The individuals with NQO1 T allele had higher risk [2.239 (95% CI:
1.510-3.321) times] to develop colon cancer than individuals with NQO1 C allele. The incidence of NQO1
(T/T) (34.21%) in colon cancer patients was higher than that in control group (15.62%, P<0.001). Odds ratios (OR) analysis suggested that NQO1 (T/T) and NQO1 (T/C) genotype carriers had 3.813 (95% CI: 1.836-7.920) times and 2.080 (1.026-4.219) times risk compared with wild-type NQO1 (C/C) gene carriers in developing colon cancer. Individuals with NQO1 (T/T) genotype had 2.541 (95% CI: 0.990-6.552) times, 3.713 (95% CI: 1.542-8.935) times, and 3.471 (95% CI: 1.356-8.886) times risk than individuals with NQO1 (T/C) or NQO1 (C/C) genotype in well-differentiated, moderately-differentiated, and poorly-differentiated colon cancer patients, respectively. CONCLUSIONS NQO1 gene C609T could be one of risk factors of colon cancer in farmers from western region of Inner Mongolia.
Collapse
Affiliation(s)
- Xiu-Lan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical College, Hohhot 010050, China
| | | | | |
Collapse
|
38
|
Lack of association between NADPH quinone oxidoreductase 1 (NQO1) gene C609T polymorphism and lung cancer: a case-control study and a meta-analysis. PLoS One 2012; 7:e47939. [PMID: 23110137 PMCID: PMC3480506 DOI: 10.1371/journal.pone.0047939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/25/2012] [Indexed: 11/21/2022] Open
Abstract
Background The association between NAD(P)H:quinone oxidoreductase 1 (NQO1) gene C609T polymorphism (rs1800566) and lung cancer has been widely evaluated, and a definitive answer so far is lacking. We first conducted a case-control study to assess this association in northeastern Han Chinese, and then performed a meta-analysis to further address this issue. Methodology/Principal Findings This case-control study involved 684 patients clinically diagnosed as lung cancer and 602 age-matched cancer-free controls from Harbin city, Heilongjiang province, China. Genotyping was conducted using the PCR-LDR (ligase detection reactions) method. Meta-analysis was managed by STATA software. Data and study quality were assessed in duplicate. Our case-control association study indicated no significant difference in the genotype and allele distributions of C609T polymorphism between lung cancer patients and controls, consistent with the results of the further meta-analysis involving 7286 patients and 9167 controls under both allelic (odds ratio (OR) = 0.99; 95% confidence interval (CI): 0.92–1.06; P = 0.692) and dominant (OR = 0.98; 95% CI: 0.89–1.08; P = 0.637) models. However, there was moderate evidence of between-study heterogeneity and low probability of publication bias. Further subgroup analyses by ethnicity, source of controls and sample size detected no positive associations in this meta-analysis. Conclusions Our study in northeastern Han Chinese, along with the meta-analysis, failed to confirm the association of NQO1 gene C609T polymorphism with lung cancer risk, even across different ethnic populations.
Collapse
|
39
|
Celik H, Arinç E. Evaluation of bioreductive activation of anticancer drugs idarubicin and mitomycin C by NADH-cytochrome b5 reductase and cytochrome P450 2B4. Xenobiotica 2012; 43:263-75. [PMID: 22928801 DOI: 10.3109/00498254.2012.715212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
This study attempted to investigate the ability of microsomal NADH-cytochrome b5 reductase and cytochrome P450 2B4 to reductively activate idarubicin and mitomycin C. In vitro plasmid DNA damage experiments and assays using purified hepatic enzymes were employed to examine their respective roles in the metabolic activation of anticancer drugs. Mitomycin C was found to be not a good substrate for microsomal b5 reductase unlike P450 reductase. It produced low amounts of strand breaks in DNA when incubated with b5 reductase and its one-electron reduction by purified enzyme was found as negligible. Our findings revealed that P450 reductase-mediated metabolism of idarubicin resulted in a large increase in single-strand DNA breaks, whereas, b5 reductase neither catalyzed the reduction of idarubicin nor mediated the formation of DNA damage in the presence of idarubicin. The reconstitution studies, on the other hand, have identified rabbit liver CYP2B4 isozyme as being a potential candidate enzyme for reductive bioactivation of idarubicin and mitomycin C. Thus, the present novel findings strongly suggest that while b5 reductase could not play a key role in the cytotoxic and/or antitumor effects of idarubicin and mitomycin C, CYP2B4 could potentiate their activity in combination with P450 reductase.
Collapse
Affiliation(s)
- Haydar Celik
- Biochemistry Graduate Programme and Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|
40
|
Huang X, Dong Y, Bey EA, Kilgore JA, Bair JS, Li LS, Patel M, Parkinson EI, Wang Y, Williams NS, Gao J, Hergenrother PJ, Boothman DA. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Cancer Res 2012; 72:3038-47. [PMID: 22532167 DOI: 10.1158/0008-5472.can-11-3135] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Agents, such as β-lapachone, that target the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce programmed necrosis in solid tumors have shown great promise, but more potent tumor-selective compounds are needed. Here, we report that deoxynyboquinone kills a wide spectrum of cancer cells in an NQO1-dependent manner with greater potency than β-lapachone. Deoxynyboquinone lethality relies on NQO1-dependent futile redox cycling that consumes oxygen and generates extensive reactive oxygen species (ROS). Elevated ROS levels cause extensive DNA lesions, PARP1 hyperactivation, and severe NAD+ /ATP depletion that stimulate Ca2+ -dependent programmed necrosis, unique to this new class of NQO1 "bioactivated" drugs. Short-term exposure of NQO1+ cells to deoxynyboquinone was sufficient to trigger cell death, although genetically matched NQO1- cells were unaffected. Moreover, siRNA-mediated NQO1 or PARP1 knockdown spared NQO1+ cells from short-term lethality. Pretreatment of cells with BAPTA-AM (a cytosolic Ca2+ chelator) or catalase (enzymatic H2O2 scavenger) was sufficient to rescue deoxynyboquinone-induced lethality, as noted with β-lapachone. Investigations in vivo showed equivalent antitumor efficacy of deoxynyboquinone to β-lapachone, but at a 6-fold greater potency. PARP1 hyperactivation and dramatic ATP loss were noted in the tumor, but not in the associated normal lung tissue. Our findings offer preclinical proof-of-concept for deoxynyboquinone as a potent chemotherapeutic agent for treatment of a wide spectrum of therapeutically challenging solid tumors, such as pancreatic and lung cancers.
Collapse
Affiliation(s)
- Xiumei Huang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yu H, Liu H, Wang LE, Wei Q. A functional NQO1 609C>T polymorphism and risk of gastrointestinal cancers: a meta-analysis. PLoS One 2012; 7:e30566. [PMID: 22272361 PMCID: PMC3260285 DOI: 10.1371/journal.pone.0030566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023] Open
Abstract
Background The functional polymorphism (rs1800566) in the NQO1 gene, a 609C>T substitution, leading to proline-to-serine amino-acid and enzyme activity changes, has been implicated in cancer risk, but individually published studies showed inconclusive results. Methodology/Principal Findings We performed a meta-analysis of 20 publications with a total of 5,491 cases and 5,917 controls, mainly on gastrointestinal (GI) cancers. We summarized the data on the association between the NQO1 609C>T polymorphism and risk of GI cancers and performed subgroup analyses by ethnicity, cancer site, and study quality. We found that the variant CT heterozygous and CT/TT genotypes of the NQO1 609 C>T polymorphism were associated with a modestly increased risk of GI cancers (CT vs. CC: OR = 1.10, 95% CI = 1.01 – 1.19, Pheterogeneity = 0.27, I2 = 0.15; CT/TT vs. CC: OR = 1.11, 95%CI = 1.02 – 1.20, Pheterogeneity = 0.14; I2 = 0.27). Following further stratified analyses, the increased risk was only observed in subgroups of Caucasians, colorectal cancer in Caucasians, and high quality studies. Conclusions This meta-analysis suggests that the NQO1 609T allele is a low-penetrance risk factor for GI cancers. Although the effect on GI cancers may be modified by ethnicity and cancer sites, small sample seizes of the subgroup analyses suggest that further larger studies are needed, especially for non-colorectal GI cancers in Caucasians and GI cancers in Asians.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Epidemiology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (HY); (QW)
| | - Hongliang Liu
- Department of Epidemiology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Li-E Wang
- Department of Epidemiology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (HY); (QW)
| |
Collapse
|
42
|
Abstract
In this chapter, the attention is put on Ca(2+) effect on Clusterin (CLU) activity. We showed that two CLU forms (secreted and nuclear) are differently regulated by Ca(2+) and that Ca(2+) fluxes affect CLU gene expression. A secretory form (sCLU) protects cell viability whereas nuclear form (nCLU) is proapoptotic. Based on available data we suggest, that different CLU forms play opposite roles, depending on intracellular Ca(2+) concentration, time-course of Ca(2+) current, intracellular Ca(2+) compartmentalization, and final Ca(2+) targets. Discussion will be motivated on how CLU acts on cell in response to Ca(2+) waves. The impact of Ca(2+) on CLU gene activity and transcription, posttranscriptional modifications, translation of CLU mRNA, and posttranslational changes as well as biological effects of CLU will be discussed. We will also examine how Ca(2+) signal and Ca(2+)-dependent proteins are attributable to changes in CLU characteristics. Some elucidation of CLU gene activity, CLU protein formation, maturation, secretion, and intracellular translocations in response to Ca(2+) is presented. In response to cell stress (i.e., DNA damage) CLU gene is activated. We assume that commonly upregulated mRNA for nCLU versus sCLU and vice versa are dependent on Ca(2+) accessibility and its intracellular distribution. It looks as if at low intracellular Ca(2+) the delay in cell cycle allows more time for DNA repair; otherwise, cells undergo nCLU-dependent apoptosis. If cells are about to survive, intrinsic apoptosis is abrogated by sCLU interacting with activated Bax. In conclusion, a narrow range of intracellular Ca(2+) concentrations is responsible for the decision whether nCLU is mobilized (apoptosis) or sCLU is appointed to improve survival. Since the discovery of CLU, a huge research progress has been done. Nonetheless we feel that much work is left ahead before remaining uncertainties related to Ca(2+) signal and the respective roles of CLU proteins are unraveled.
Collapse
Affiliation(s)
- Beata Pajak
- Department of Cell Ultrastructure, Mossakowski Medical Research Center, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | |
Collapse
|
43
|
|
44
|
Song CW, Chae JJ, Choi EK, Hwang TS, Kim C, Lim BU, Park HJ. Anti-cancer effect of bio-reductive drug β-lapachon is enhanced by activating NQO1 with heat shock. Int J Hyperthermia 2009; 24:161-9. [DOI: 10.1080/02656730701781895] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Chang W. Song
- Radiobiology Laboratory, Department of Therapeutic Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jongsun J. Chae
- Department of Therapeutic Radiology, College of Medicine, University of Ulsan, Seoul, South Korea
- Seoul International School, Sung Nam, Gyeong Gi66-Do, South Korea
| | - Eun K. Choi
- Department of Therapeutic Radiology, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Tae S. Hwang
- Department of Pathology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Kunkuk University, Seoul, South Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering, Hyperstructured Organic Materials Research Center, Inha University, Incheon 402-751, Korea
| | - Byung Uk Lim
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University Inchon, 400-712, Korea
| | - Heon Joo Park
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University Inchon, 400-712, Korea
| |
Collapse
|
45
|
Cowen RL, Garside EJ, Fitzpatrick B, Papadopoulou MV, Williams KJ. Gene therapy approaches to enhance bioreductive drug treatment. Br J Radiol 2008; 81 Spec No 1:S45-56. [DOI: 10.1259/bjr/55070206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
46
|
Michael M, Doherty MM. Drug metabolism by tumours: its nature, relevance and therapeutic implications. Expert Opin Drug Metab Toxicol 2008; 3:783-803. [PMID: 18028025 DOI: 10.1517/17425255.3.6.783] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug-metabolising enzymes (DMEs) are present in tumours and are capable of biotransforming a variety of antineoplastics. Tumoural drug metabolism is both a potential mechanism of resistance and a means of achieving optimal therapy. This review addresses the classes of DMEs, their cytotoxic substrates and distribution in specific malignancies. The limitations of preclinical and clinical studies are highlighted. Their role in predicting therapeutic response, the activation of prodrugs and the potential for their modulation for gain is also addressed. The contribution of tumoural DMEs to cancer therapy can only be ascertained through large prospective studies and supported by new technologies. Only then can efforts be concentrated in the design of better prodrugs or combination therapy to optimise individual therapy.
Collapse
Affiliation(s)
- Michael Michael
- Peter MacCallum Cancer Centre, Division of Haematology and Medical Oncology, Locked Bag 1, A'Beckett Street, Victoria, 8006, Australia.
| | | |
Collapse
|
47
|
Choi EK, Terai K, Ji IM, Kook YH, Park KH, Oh ET, Griffin RJ, Lim BU, Kim JS, Lee DS, Boothman DA, Loren M, Song CW, Park HJ. Upregulation of NAD(P)H:quinone oxidoreductase by radiation potentiates the effect of bioreductive beta-lapachone on cancer cells. Neoplasia 2007; 9:634-42. [PMID: 17786182 PMCID: PMC1950433 DOI: 10.1593/neo.07397] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 12/15/2022] Open
Abstract
We found that beta-lapachone (beta-lap), a novel bioreductive drug, caused rapid apoptosis and clonogenic cell death in A549 human lung epithelial cancer cells in vitro in a dose-dependent manner. The clonogenic cell death caused by beta-lap could be significantly inhibited by dicoumarol, an inhibitor of NAD(P)H:quinone oxido-reductase (NQO1), and also by siRNA for NQO1, demonstrating that NQO1-induced bioreduction of beta-lap is an essential step in beta-lap-induced cell death. Irradiation of A549 cells with 4 Gy caused a long-lasting upregulation of NQO1, thereby increasing NQO1-mediated beta-lap-induced cell deaths. Although the direct cause of beta-lap-induced apoptosis is not yet clear, beta-lap treatment reduced the expression of p53 and NF-kappaB, whereas it increased cytochrome C release, caspase-3 activity, and gammaH2AX foci formation. Importantly, beta-lap treatment immediately after irradiation enhanced radiation-induced cell death, indicating that beta-lap sensitizes cancer cells to radiation, in addition to directly killing some of the cells. The growth of A549 tumors induced in immunocompromised mice could be markedly suppressed by local radiation therapy when followed by beta-lap treatment. This is the first study to demonstrate that combined radiotherapy and beta-lap treatment can have a significant effect on human tumor xenografts.
Collapse
Affiliation(s)
- Eun K Choi
- Department of Therapeutic Radiology, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Kaoru Terai
- Radiobiology Laboratory, Department of Therapeutic Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - In-Mi Ji
- Department of Microbiology, and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Inchon 400-712, South Korea
| | - Yeon H Kook
- Department of Microbiology, and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Inchon 400-712, South Korea
| | - Kyung H Park
- Department of Microbiology, and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Inchon 400-712, South Korea
| | - Eun T Oh
- Department of Microbiology, and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Inchon 400-712, South Korea
| | - Robert J Griffin
- Radiobiology Laboratory, Department of Therapeutic Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Byung U Lim
- Department of Microbiology, and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Inchon 400-712, South Korea
| | - Jin-Seok Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Doo S Lee
- Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyungi-Do, South Korea
| | - David A Boothman
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melissa Loren
- Radiobiology Laboratory, Department of Therapeutic Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Chang W Song
- Radiobiology Laboratory, Department of Therapeutic Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Heon Joo Park
- Radiobiology Laboratory, Department of Therapeutic Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Microbiology, and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Inchon 400-712, South Korea
| |
Collapse
|
48
|
Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, Minna JD, Bornmann WG, Gao J, Boothman DA. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc Natl Acad Sci U S A 2007; 104:11832-7. [PMID: 17609380 PMCID: PMC1913860 DOI: 10.1073/pnas.0702176104] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the number one cause of cancer-related deaths in the world. Patients treated with current chemotherapies for non-small-cell lung cancers (NSCLCs) have a survival rate of approximately 15% after 5 years. Novel approaches are needed to treat this disease. We show elevated NAD(P)H:quinone oxidoreductase-1 (NQO1) levels in tumors from NSCLC patients. beta-Lapachone, an effective chemotherapeutic and radiosensitizing agent, selectively killed NSCLC cells that expressed high levels of NQO1. Isogenic H596 NSCLC cells that lacked or expressed NQO1 along with A549 NSCLC cells treated with or without dicoumarol, were used to elucidate the mechanism of action and optimal therapeutic window of beta-lapachone. NSCLC cells were killed in an NQO1-dependent manner by beta-lapachone (LD50, approximately 4 microM) with a minimum 2-h exposure. Kinetically, beta-lapachone-induced cell death was characterized by the following: (i) dramatic reactive oxygen species (ROS) formation, eliciting extensive DNA damage; (ii) hyperactivation of poly(ADP-ribose)polymerase-1 (PARP-1); (iii) depletion of NAD+/ATP levels; and (iv) proteolytic cleavage of p53/PARP-1, indicating mu-calpain activation and apoptosis. Beta-lapachone-induced PARP-1 hyperactivation, nucleotide depletion, and apoptosis were blocked by 3-aminobenzamide, a PARP-1 inhibitor, and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), a Ca2+ chelator. NQO1- cells (H596, IMR-90) or dicoumarol-exposed NQO1+ A549 cells were resistant (LD50, >40 microM) to ROS formation and all cytotoxic effects of beta-lapachone. Our data indicate that the most efficacious strategy using beta-lapachone in chemotherapy was to deliver the drug in short pulses, greatly reducing cytotoxicity to NQO1- "normal" cells. beta-Lapachone killed cells in a tumorselective manner and is indicated for use against NQO1+ NSCLC cancers.
Collapse
Affiliation(s)
- Erik A. Bey
- Departments of Pharmacology and Oncology, Laboratory of Molecular Stress Responses
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
- To whom correspondence may be addressed at:
Laboratory of Molecular Stress Responses, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, 5323 Harry Hines Boulevard, ND2.210K, Dallas, TX 75390-8807. E-mail: or
| | | | | | - Ying Dong
- Departments of Pharmacology and Oncology, Laboratory of Molecular Stress Responses
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
| | - Chin-Rang Yang
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - William G. Bornmann
- Department of Experimental Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Jinming Gao
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
| | - David A. Boothman
- Departments of Pharmacology and Oncology, Laboratory of Molecular Stress Responses
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
- To whom correspondence may be addressed at:
Laboratory of Molecular Stress Responses, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, 5323 Harry Hines Boulevard, ND2.210K, Dallas, TX 75390-8807. E-mail: or
| |
Collapse
|
49
|
McKeown SR, Cowen RL, Williams KJ. Bioreductive drugs: from concept to clinic. Clin Oncol (R Coll Radiol) 2007; 19:427-42. [PMID: 17482438 DOI: 10.1016/j.clon.2007.03.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 02/20/2007] [Accepted: 03/09/2007] [Indexed: 11/19/2022]
Abstract
One of the key issues for radiobiologists is the importance of hypoxia to the radiotherapy response. This review addresses the reasons for this and primarily focuses on one aspect, the development of bioreductive drugs that are specifically designed to target hypoxic tumour cells. Four classes of compound have been developed since this concept was first proposed: quinones, nitroaromatics, aliphatic and heteroaromatic N-oxides. All share two characteristics: (1) they require hypoxia for activation and (2) this activation is dependent on the presence of specific reductases. The most effective compounds have shown the ability to enhance the anti-tumour efficacy of agents that kill better-oxygenated cells, i.e. radiation and standard cytotoxic chemotherapy agents such as cisplatin and cyclophosphamide. Tirapazamine (TPZ) is the most widely studied of the lead compounds. After successful pre-clinical in vivo combination studies it entered clinical trial; over 20 trials have now been reported. Although TPZ has enhanced some standard regimens, the results are variable and in some combinations toxicity was enhanced. Banoxantrone (AQ4N) is another agent that is showing promise in early phase I/II clinical trials; the drug is well tolerated, is known to locate in the tumour and can be given in high doses without major toxicities. Mitomycin C (MMC), which shows some bioreductive activation in vitro, has been tested in combination trials. However, it is difficult to assign the enhancement of its effects to targeting of the hypoxic cells because of the significant level of its hypoxia-independent toxicity. More specific analogues of MMC, e.g. porfiromycin and apaziquone (EO9), have had variable success in the clinic. Other new drugs that have good pre-clinical profiles are PR 104 and NLCQ-1; data on their clinical safety/efficacy are not yet available. This paper reviews the pre-clinical data and discusses the clinical studies that have been reported.
Collapse
Affiliation(s)
- S R McKeown
- Institute of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
50
|
Pérez-Sacau E, Díaz-Peñate RG, Estévez-Braun A, Ravelo AG, García-Castellano JM, Pardo L, Campillo M. Synthesis and Pharmacophore Modeling of Naphthoquinone Derivatives with Cytotoxic Activity in Human Promyelocytic Leukemia HL-60 Cell Line. J Med Chem 2007; 50:696-706. [PMID: 17249647 DOI: 10.1021/jm060849b] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalyst/HypoGen pharmacophore modeling approach and three-dimensional quantitative structure-activity relationship (3D-QSAR)/comparative molecular similarity indices analysis (CoMSIA) methods have been successfully applied to explain the cytotoxic activity of a set of 51 natural and synthesized naphthoquinone derivatives tested in human promyelocytic leukemia HL-60 cell line. The computational models have facilitated the identification of structural elements of the ligands that are key for antitumoral properties. The four most salient features of the highly active beta-cycled-pyran-1,2-naphthoquinones [0.1 microM < IC50 < 0.6 microM] are the hydrogen-bond interactions of the carbonyl groups at C-1 (HBA1) and C-2 (HBA2), the hydrogen-bond interaction of the oxygen atom of the pyran ring (HBA3), and the interaction of methyl groups (HYD) at the pyran ring with a hydrophobic area at the receptor. The moderately active 1,4-naphthoquinone derivatives accurately fulfill only three of these features. The results of our study provide a valuable tool in designing new and more potent cytotoxic analogues.
Collapse
Affiliation(s)
- Elisa Pérez-Sacau
- Instituto Universitario de Bio-OrgAnica "Antonio GonzAlez", Universidad de La Laguna, Avda. Astrofísico Fco. SAnchez 2, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|