1
|
Du S, Wang Z, Zhu H, Tang Z, Li Q. Flavonoids attenuate inflammation of HGF and HBMSC while modulating the osteogenic differentiation based on microfluidic chip. J Transl Med 2024; 22:992. [PMID: 39488714 PMCID: PMC11531701 DOI: 10.1186/s12967-024-05808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND When inflammation occurs in periodontal tissues, a dynamic cellular crosstalk interacts between gingival fibroblasts and bone marrow mesenchymal stem cells (BMSCs), which plays a crucial role in the biological behaviour and differentiation of the cells. Recently, flavonoids are increasingly recognized for their therapeutic potential in modulating inflammation and osteogenic differentiation. Owing to their varied molecular structures and mechanisms, there are more needs that flavonoid compounds should be identified by extensive screening. However, current drug research mostly relies on static, single-type cell cultures. In this study, an innovative bionic microfluidic chip system tailored for both soft and hard tissues was developed to screen for flavonoids suitable for treating periodontitis. METHODS This study developed a microfluidic system that bionically simulates the soft and hard structures of periodontal tissues. Live/dead staining, reactive oxygen species (ROS) staining, and RT-qPCR analysis were employed. These techniques evaluated the effects of flavonoid compounds on the levels of inflammatory factors and ROS contents in HGF and HBMSC under LPS stimulation. Additionally, the impact of these compounds on osteogenic induction in HBMSC and the exploration of the underlying mechanisms were assessed. RESULTS The microfluidic chip used in this study features dual chambers separated by a porous membrane, allowing cellular signal communication via bioactive factors secreted by cells in both layers under perfusion. The inflammatory response within the chip under LPS stimulation was lower compared to individual static cultures of HGF and HBMSC. The selected flavonoids-myricetin, catechin, and quercetin-significantly reduced cellular inflammation, decreased ROS levels, and enhanced osteogenic differentiation of BMSCs. Additionally, fisetin, silybin, and icariside II also demonstrated favorable outcomes in reducing inflammation, lowering ROS levels, and promoting osteogenic differentiation through the Wnt/β-catenin pathway. CONCLUSIONS The bionic microfluidic chip system provides enhanced capabilities for drug screening and evaluation, delivering a more precise assessment of drug efficacy and safety compared to traditional in vitro methods. This study demonstrates the efficacy of flavonoids in influencing osteogenic processes in BMSCs primarily through the Wnt/β-catenin pathway. These results uncover the potential of flavonoids as therapeutic medicine for treating periodontitis, meriting further research and development.
Collapse
Affiliation(s)
- Sa Du
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhongyu Wang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Huilin Zhu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Qing Li
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
2
|
Prasanna PGS, Ahmed MM, Hong JA, Coleman CN. Best practices and novel approaches for the preclinical development of drug-radiotherapy combinations for cancer treatment. Lancet Oncol 2024; 25:e501-e511. [PMID: 39362261 DOI: 10.1016/s1470-2045(24)00199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 10/05/2024]
Abstract
Drug-radiation combination therapy is a practical approach to improving clinical outcomes for many tumours. Unfortunately, most clinical combination studies combine drugs with radiotherapy empirically and do not exploit mechanistic synergy in cell death and the interconnectivity of molecular pathways of tumours or rationale for selecting the dose, fractionation, and schedule, which can result in suboptimal efficacy and exacerbation of toxic effects. However, opportunities exist to generate compelling preclinical evidence for combination therapies from fit-for-purpose translational studies for simulating the intended clinical study use scenarios with standardised preclinical assays and algorithms to evaluate complex molecular interactions and analysis of synergy before clinical research. Here, we analyse and discuss the core issues in the translation of preclinical data to enhance the relevance of preclinical assays, in vitro clonogenic survival along with apoptosis, in vivo tumour regression and growth delay assays, and toxicology of organs at risk without creating barriers to innovation and provide a synopsis of emerging areas in preclinical radiobiology.
Collapse
Affiliation(s)
- Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mansoor M Ahmed
- Division of Radiation Biology and Molecular Therapeutics, Department of Radiation Oncology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Liao Z, Wang Y, Yang Y, Liu X, Yang X, Tian Y, Deng S, Hu Y, Meng J, Li J, Deng Y, Zhou Z, Wei W, Swift M, Wan C, Sun Y, Yang K. Targeting the Cascade Amplification of Macrophage Colony-stimulating Factor to Alleviate the Immunosuppressive Effects Following Radiotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0450. [PMID: 39165639 PMCID: PMC11334716 DOI: 10.34133/research.0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024]
Abstract
Radiotherapy (RT) serves as the primary treatment for solid tumors. Its potential to incite an immune response against tumors both locally and distally profoundly impacts clinical outcomes. However, RT may also promote the accumulation of immunosuppressive cytokines and immunosuppressive cells, greatly impeding the activation of antitumor immune responses and substantially limiting the effectiveness of RT. Therefore, regulating post-RT immunosuppression to steer the immune milieu toward heightened activation potentially enhances RT's therapeutic potential. Cytokines, potent orchestrators of diverse cellular responses, play a pivotal role in regulating this immunosuppressive response. Identifying and promptly neutralizing early released immunosuppressive cytokines are a crucial development in augmenting RT's immunomodulatory effects. To this end, we conducted a screen of immunosuppressive cytokines following RT and identified macrophage colony-stimulating factor (MCSF) as an early up-regulated and persistent immune suppressor. Single-cell sequencing revealed that the main source of up-regulated MCSF derived from tumor cells. Mechanistic exploration revealed that irradiation-dependent phosphorylation of the p65 protein facilitated its binding to the MCSF gene promoter, enhancing transcription. Knockdown and chemical inhibitor experiments conclusively demonstrated that suppressing tumor cell-derived MCSF amplifies RT's immune-activating effects, with optimal results achieved by early MCSF blockade after irradiation. Additionally, we validated that MCSF acted on macrophages, inducing the secretion of a large number of inhibitory cytokines. In summary, we propose a novel approach to enhance the immune activation effects of RT by blocking the MCSF-CSF1R signaling pathway early after irradiation.
Collapse
Affiliation(s)
- Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yuxin Yang
- Department of Biochemistry and Molecular Medicine,
University of Southern California, Los Angeles, CA 90089, USA
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China.
| |
Collapse
|
4
|
Shen LP, Zhang WC, Deng JR, Qi ZH, Lin ZW, Wang ZD. Advances in the mechanism of small nucleolar RNA and its role in DNA damage response. Mil Med Res 2024; 11:53. [PMID: 39118131 PMCID: PMC11308251 DOI: 10.1186/s40779-024-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.
Collapse
Affiliation(s)
- Li-Ping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen-Cheng Zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Rong Deng
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhen-Hua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhong-Wu Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Dong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Gilbert A, Samuel R, Cagney D, Sebag-Montefiore D, Brown J, Brown SR. The use of master protocols for efficient trial design to evaluate radiotherapy interventions: a systematic review. J Natl Cancer Inst 2024; 116:1220-1229. [PMID: 38720568 PMCID: PMC11308198 DOI: 10.1093/jnci/djae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 08/09/2024] Open
Abstract
The aim of this review was to highlight why the use of master protocols trial design is particularly useful for radiotherapy intervention trials where complex setup pathways (including quality assurance, user training, and integrating multiple modalities of treatment) may hinder clinical advances. We carried out a systematic review according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, reviewing the findings using a landscape analysis. Results were summarized descriptively, reporting on trial characteristics highlighting the benefits, limitations, and challenges of developing and implementing radiotherapy master protocols, with three case studies selected to explore these issues in more detail. Twelve studies were suitable for inclusion (4 platform trials, 3 umbrella trials, and 5 basket trials), evaluating a mix of solid tumor sites in both curative and palliative settings. The interventions were categorized into 1) novel agent and radiotherapy combinations; 2) radiotherapy dose personalization; and 3) device evaluation, with a case study provided for each intervention. Benefits of master protocol trials for radiotherapy intervention include protocol efficiency for implementation of novel radiotherapy techniques; accelerating the evaluation of novel agent drug and radiotherapy combinations; and more efficient translational research opportunities, leading to cost savings and research efficiency to improve patient outcomes. Master protocols offer an innovative platform under which multiple clinical questions can be addressed within a single trial. Due to the complexity of radiotherapy trial setup, cost and research efficiency savings may be more apparent than in systemic treatment trials. Use of this research approach may be the change needed to push forward oncological innovation within radiation oncology.
Collapse
Affiliation(s)
- Alexandra Gilbert
- Leeds Institute for Medical Research, University of Leeds, St James’s University Hospital, Leeds, UK
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Robert Samuel
- Leeds Institute for Medical Research, University of Leeds, St James’s University Hospital, Leeds, UK
| | - Daniel Cagney
- Radiation Oncology, Mater Private Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - David Sebag-Montefiore
- Leeds Institute for Medical Research, University of Leeds, St James’s University Hospital, Leeds, UK
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Julia Brown
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sarah R Brown
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Katifelis H, Gazouli M. RNA biomarkers in cancer therapeutics: The promise of personalized oncology. Adv Clin Chem 2024; 123:179-219. [PMID: 39181622 DOI: 10.1016/bs.acc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cancer therapy is a rapidly evolving and constantly expanding field. Current approaches include surgery, conventional chemotherapy and novel biologic agents as in immunotherapy, that together compose a wide armamentarium. The plethora of choices can, however, be clinically challenging in prescribing the most suitable treatment for any given patient. Fortunately, biomarkers can greatly facilitate the most appropriate selection. In recent years, RNA-based biomarkers have proven most promising. These molecules that range from small noncoding RNAs to protein coding gene transcripts can be valuable in cancer management and especially in cancer therapeutics. Compared to their DNA counterparts which are stable throughout treatment, RNA-biomarkers are dynamic. This allows prediction of success prior to treatment start and can identify alterations in expression that could reflect response. Moreover, improved nucleic acid technology allows RNA to be extracted from practically every biofluid/matrix and evaluated with exceedingly high analytic sensitivity. In addition, samples are largely obtained by minimally invasive procedures and as such can be used serially to assess treatment response real-time. This chapter provides the reader insight on currently known RNA biomarkers, the latest research employing Artificial Intelligence in the identification of such molecules and in clinical decisions driving forward the era of personalized oncology.
Collapse
Affiliation(s)
- Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
7
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
8
|
Song G, Zheng Z, Zhu Y, Wang Y, Xue S. A review and bibliometric analysis of global research on proton radiotherapy. Medicine (Baltimore) 2024; 103:e38089. [PMID: 38728501 PMCID: PMC11081588 DOI: 10.1097/md.0000000000038089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Proton beam therapy (PBT) has great advantages as tumor radiotherapy and is progressively becoming a more prevalent choice for individuals undergoing radiation therapy. The objective of this review is to pinpoint collaborative efforts among countries and institutions, while also exploring the hot topics and future outlook in the field of PBT. Data from publications were downloaded from the Web of Science Core Collection. CiteSpace and Excel 2016 were used to conduct the bibliometric and knowledge map analysis. A total of 6516 publications were identified, with the total number of articles steadily increasing and the United States being the most productive country. Harvard University took the lead in contributing the highest number of publications. Paganetti Harald published the most articles and had the most cocitations. PHYS MED BIOL published the greatest number of PBT-related articles, while INT J RADIAT ONCOL received the most citations. Paganetti Harald, 2012, PHYS MED BIOL can be classified as classic literature due to its high citation rate. We believe that research on technology development, dose calculation and relative biological effectiveness were the knowledge bases in this field. Future research hotspots may include clinical trials, flash radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Ge Song
- Department of Critical Care Medicine, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zhi Zheng
- Department of Stomatology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yingming Zhu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoting Wang
- Department of Oncology, Dongying People’s Hospital, Dongying, China
| | - Song Xue
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Kong A, Kirkham AJ, Savage JS, Mant R, Lax S, Good J, Forster MD, Sacco JJ, Schipani S, Harrington KJ, Yap C, Mehanna H. Results and lessons learnt from the WISTERIA phase I trial combining AZD1775 with cisplatin pre- or post-operatively in head and neck cancer. BJC REPORTS 2024; 2:6. [PMID: 39220748 PMCID: PMC11357979 DOI: 10.1038/s44276-023-00026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 09/04/2024]
Abstract
Background Pre-clinical studies suggest AZD1775, a WEE1 kinase inhibitor, potentiates the activity of various chemotherapeutic agents. Methods WISTERIA was a prospective, parallel two-group, open-label, dose-finding, phase I clinical trial. Eligible patients had histologically confirmed oral, laryngeal, or hypopharyngeal squamous cell carcinoma, ECOG performance status 0/1, and aged ≥18-to-≤70 years. Primary outcomes were adverse events and defining recommended dose and schedule of AZD1775 in combination with cisplatin in pre-operative (Group A), or with cisplatin/radiotherapy in post-operative (Group B) patients. Dose determination was guided by a modified time-to-event continual reassessment method (mTITE-CRM). Results Between 30-Oct-2017 and 15-Jul-2019, nine patients were registered: Three into Group A and six into Group B. WISTERIA was closed early due to poor recruitment. Five dose-limiting toxicities (DLTs) were reported in four Group B patients. Seven serious adverse events were reported in four patients: One in Group A, and three in Group B. Three were related to treatment. No treatment-related deaths were reported. Conclusions WISTERIA did not complete its primary objectives due to poor recruitment and toxicities reported in Group B. However, use of the novel mTITE-CRM improved flexibility in reducing accrual suspension periods and should be considered for future trials in complex patient populations. Clinical Trial Registration ISRCTN76291951.
Collapse
Affiliation(s)
| | - Amanda J. Kirkham
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Joshua S. Savage
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Rhys Mant
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Siân Lax
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - James Good
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Martin D. Forster
- UCL Cancer Institute / University College London Hospitals NHS Foundation Trust, London, UK
| | - Joseph J. Sacco
- The Clatterbridge Cancer Centre, Wirral/University of Liverpool, Liverpool, UK
| | - Stephano Schipani
- Beatson West of Scotland Cancer Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Christina Yap
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Hisham Mehanna
- InHANSE, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Da Silva J, Bienassis C, Schmitt P, Berjaud C, Guedj M, Paris S. Radiotherapy-activated NBTXR3 nanoparticles promote ferroptosis through induction of lysosomal membrane permeabilization. J Exp Clin Cancer Res 2024; 43:11. [PMID: 38173001 PMCID: PMC10762921 DOI: 10.1186/s13046-023-02938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Radiotherapy-activated NBTXR3 (NBTXR3 + RT) has demonstrated superior efficacy in cancer cell destruction and tumor growth control, compared to radiotherapy (RT), in preclinical and clinical settings. Previous studies highlighted the immunomodulatory properties of NBTXR3 + RT, such as modification of tumor cell immunogenicity/adjuvanticity, producing an effective local tumor control and abscopal effect, related to an enhanced antitumor immune response. Furthermore, NBTXR3 + RT has shown potential in restoring anti-PD1 efficacy in a refractory tumor model. However, the early events leading to these results, such as NBTXR3 endocytosis, intracellular trafficking and primary biological responses induced by NBTXR3 + RT remain poorly understood. METHODS We analyzed by transmission electron microscopy endocytosis and intracellular localization of NBTXR3 nanoparticles after endocytosis in various cell lines, in vitro and in vivo. A kinetic of NBTXR3 endocytosis and its impact on lysosomes was conducted using LysoTracker staining, and a RNAseq analysis was performed. We investigated the ability of NBTXR3 + RT to induce lysosomal membrane permeabilization (LMP) and ferroptosis by analyzing lipid peroxidation. Additionally, we evaluated the recapture by cancer cells of NBTXR3 released from dead cells. RESULTS NBTXR3 nanoparticles were rapidly internalized by cells mainly through macropinocytosis and in a less extend by clathrin-dependent endocytosis. NBTXR3-containing endosomes were then fused with lysosomes. The day following NBTXR3 addition, we measured a significant increase in LysoTracker lysosome labeling intensity, in vitro as in vivo. Following RT, a significant lysosomal membrane permeabilization (LMP) was measured exclusively in cells treated with NBTXR3 + RT, while RT had no effect. The day post-irradiation, a significant increase in lipid peroxidation, a biomarker of ferroptosis, was measured with NBTXR3 + RT compared to RT. Moreover, we demonstrated that NBTXR3 nanoparticles released from dead cells can be recaptured by cancer cells. CONCLUSIONS Our findings provide novel insights into the early and specific biological effects induced by NBTXR3 + RT, especially LMP, not induced by RT in our models. The subsequent significant increase in lipid peroxidation partially explains the enhanced cancer cell killing capacity of NBTXR3 + RT compared to RT, potentially by promoting ferroptosis. This study improves our understanding of the cellular mechanisms underlying NBTXR3 + RT and highlights its potential as an agnostic therapeutic strategy for solid cancers treatment.
Collapse
|
11
|
Aboussekhra A, Alraouji NN, Al-Mohanna FH, Al-Khalaf H. Ionizing radiation normalizes the features of active breast cancer stromal fibroblasts and suppresses their paracrine pro-carcinogenic effects. Transl Oncol 2023; 37:101780. [PMID: 37672859 PMCID: PMC10485626 DOI: 10.1016/j.tranon.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Radiotherapy is an important therapeutic strategy for breast cancer patients through reducing the chances of recurrence and metastasis, which are fueled by cancer-associated fibroblasts (CAFs). Thereby, we addressed here the effect of various doses of X-rays on breast CAFs and their adjacent counterparts. METHODS We have used WST1 and annexin V-associated with flow cytometry to test the cytotoxic effects of X-rays. Immunoblotting and ELISA was used to assess the expression/secretion of various proteins. Immunohistochemistry was utilized to determine the level of β-galactosidase and Ki-67. Sphere formation assay was used to test the ability of breast cancer cells to form tumorspheres. Orthotopic tumor xenografts were also used to evaluate the effect of X-ray-treated breast stromal fibroblasts on breast cancer tumor growth in vivo. RESULTS Breast stromal fibroblasts showed high resistance to X-rays. While the low dose (5 Gy) inhibited cell proliferation and the active features of CAFs, the higher doses (16 and 50 Gy) promoted senescence. However, this was not accompanied by the senescence-associated secretory phenotype (SASP), but rather a reduction in the synthesis/secretion of various cancer-associated cytokines. Additionally, X-rays suppressed the features of active breast stromal fibroblasts, and their paracrine pro-carcinogenic effects. The ablative dose (16 Gy) inhibited the capacity of active stromal fibroblasts to promote the pro-metastatic processes epithelial-to-mesenchymal transition, the formation of cancer stem cells, as well as the growth of humanized orthotopic breast tumor xenografts. CONCLUSION Together, these findings indicate that X-rays can normalize the features of active breast stromal fibroblasts through promoting senescence without SASP.
Collapse
Affiliation(s)
- Abdelilah Aboussekhra
- Department of Molecular Oncology, Cancer Biology and Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Center, MBC # 03, PO BOX 3354, Riyadh 11211, Saudi Arabia.
| | - Noura N Alraouji
- Department of Molecular Oncology, Cancer Biology and Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Center, MBC # 03, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Huda Al-Khalaf
- Department of Molecular Oncology, Cancer Biology and Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Center, MBC # 03, PO BOX 3354, Riyadh 11211, Saudi Arabia; The Healthy Aging Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11211, Saudi Arabia
| |
Collapse
|
12
|
Wang L, Du C, Jiang B, Chen L, Wang Z. Adjusting the dose of traditional drugs combined with immunotherapy: reshaping the immune microenvironment in lung cancer. Front Immunol 2023; 14:1256740. [PMID: 37901223 PMCID: PMC10600379 DOI: 10.3389/fimmu.2023.1256740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Immunotherapy is currently the most promising clinical treatment for lung cancer, not only revolutionizing second-line therapy but now also approved for first-line treatment. However, its clinical efficiency is not high and not all patients benefit from it. Thus, finding the best combination strategy to expand anti-PD-1/PD-L1-based immunotherapy is now a hot research topic. The conventional use of chemotherapeutic drugs and targeted drugs inevitably leads to resistance, toxic side effects and other problems. Recent research, however, suggests that by adjusting the dosage of drugs and blocking the activation of mutational mechanisms that depend on acquired resistance, it is possible to reduce toxic side effects, activate immune cells, and reshape the immune microenvironment of lung cancer. Here, we discuss the effects of different chemotherapeutic drugs and targeted drugs on the immune microenvironment. We explore the effects of adjusting the dosing sequence and timing, and the mechanisms of such responses, and show how the effectiveness and reliability of combined immunotherapy provide improved treatment outcomes.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Changqi Du
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Bing Jiang
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Lin Chen
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zibing Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
14
|
Liew LP, Shome A, Wong WW, Hong CR, Hicks KO, Jamieson SMF, Hay MP. Design, Synthesis and Anticancer Evaluation of Nitroimidazole Radiosensitisers. Molecules 2023; 28:molecules28114457. [PMID: 37298933 DOI: 10.3390/molecules28114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The role of hypoxic tumour cells in resistance to radiotherapy, and in suppression of immune response, continues to endorse tumour hypoxia as a bona fide, yet largely untapped, drug target. Radiotherapy innovations such as stereotactic body radiotherapy herald new opportunities for classical oxygen-mimetic radiosensitisers. Only nimorazole is used clinically as a radiosensitiser, and there is a dearth of new radiosensitisers in development. In this report, we augment previous work to present new nitroimidazole alkylsulfonamides and we document their cytotoxicity and ability to radiosensitise anoxic tumour cells in vitro. We compare radiosensitisation with etanidazole and earlier nitroimidazole sulfonamide analogues and we identify 2-nitroimidazole and 5-nitroimidazole analogues with marked tumour radiosensitisation in ex vivo assays of surviving clonogens and with in vivo tumour growth inhibition.
Collapse
Affiliation(s)
- Lydia P Liew
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Avik Shome
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
- Department of Ophthalmology, The University of Auckland, Auckland 1023, New Zealand
| | - Way W Wong
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
| | - Cho R Hong
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Kevin O Hicks
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland 1023, New Zealand
| | - Michael P Hay
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
15
|
Frankish J, Mukherjee D, Romano E, Billian-Frey K, Schröder M, Heinonen K, Merz C, Redondo Müller M, Gieffers C, Hill O, Thiemann M, Honeychurch J, Illidge T, Sykora J. The CD40 agonist HERA-CD40L results in enhanced activation of antigen presenting cells, promoting an anti-tumor effect alone and in combination with radiotherapy. Front Immunol 2023; 14:1160116. [PMID: 37304285 PMCID: PMC10251205 DOI: 10.3389/fimmu.2023.1160116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The ability to modulate and enhance the anti-tumor immune responses is critical in developing novel therapies in cancer. The Tumor Necrosis Factor (TNF) Receptor Super Family (TNFRSF) are potentially excellent targets for modulation which result in specific anti-tumor immune responses. CD40 is a member of the TNFRSF and several clinical therapies are under development. CD40 signaling plays a pivotal role in regulating the immune system from B cell responses to myeloid cell driven activation of T cells. The CD40 signaling axis is well characterized and here we compare next generation HERA-Ligands to conventional monoclonal antibody based immune modulation for the treatment of cancer. Methods & results HERA-CD40L is a novel molecule that targets CD40 mediated signal transduction and demonstrates a clear mode of action in generating an activated receptor complex via recruitment of TRAFs, cIAP1, and HOIP, leading to TRAF2 phosphorylation and ultimately resulting in the enhanced activation of key inflammatory/survival pathway and transcription factors such asNFkB, AKT, p38, ERK1/2, JNK, and STAT1 in dendritic cells. Furthermore, HERA-CD40L demonstrated a strong modulation of the tumor microenvironment (TME) via the increase in intratumoral CD8+ T cells and the functional switch from pro-tumor macrophages (TAMs) to anti-tumor macrophages that together results in a significant reduction of tumor growth in a CT26 mouse model. Furthermore, radiotherapy which may have an immunosuppressive modulation of the TME, was shown to have an immunostimulatory effect in combination with HERA-CD40L. Radiotherapy in combination with HERA-CD40L treatment resulted in an increase in detected intratumoral CD4+/8+ T cells compared to RT alone and, additionally, the repolarization of TAMs was also observed, resulting in an inhibition of tumor growth in a TRAMP-C1 mouse model. Discussion Taken together, HERA-CD40L resulted in activating signal transduction mechanisms in dendritic cells, resulting in an increase in intratumoral T cells and manipulation of the TME to be pro-inflammatory, repolarizing M2 macrophages to M1, enhancing tumor control.
Collapse
Affiliation(s)
| | - Debayan Mukherjee
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Erminia Romano
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tim Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
16
|
Hyytiäinen A, Mroueh R, Peltonen J, Wennerstrand P, Mäkitie A, Al-Samadi A, Ventelä S, Salo T. Prognostic histological markers in oral tongue squamous cell carcinoma patients treated with (chemo)radiotherapy. APMIS 2023; 131:142-151. [PMID: 36695633 DOI: 10.1111/apm.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Treatment of oral tongue squamous cell carcinoma (OTSCC) frequently includes surgery with postoperative radiotherapy (RT) or chemoradiotherapy (CRT). Resistance to RT or CRT remains a major clinical challenge and highlights the need to identify predictive markers for it. We included 71 OTSCC patients treated with surgery combined with RT or CRT. We evaluated the association between tumor budding, tumor-stroma ratio (TSR), depth of invasion (DOI), tumor-infiltrating lymphocytes (TILs), hypoxia-inducible factor-1alpha (HIF-1alpha) expression, octamer-binding transcription factor 4 (OCT4) expression, high-endothelial venules (HEVs), and disease-free survival (DFS) using uni- and multivariate analyses. No significant association was observed between the different histological and molecular markers (TSR, DOI, TILs, HEV, HIF-1alph, OCT4) and DFS. However, an associative trend between DOI, budding, and DFS was noted. Further studies with larger cohorts are needed to explore the prognostic value of DOI and budding for OTSCC patients treated with postoperative RT or CRT.
Collapse
Affiliation(s)
- Aini Hyytiäinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rayan Mroueh
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland.,Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer and Research, Helsinki, Finland
| | - Johanna Peltonen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Wennerstrand
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sami Ventelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department for Otorhinolaryngology, Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland.,FICAN West Cancer Centre, Turku, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Pathology, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
17
|
Hong JA, Vikram B, Buchsbaum J, Capala J, Livinski A, Teicher B, Prasanna P, Ahmed MM, Obcemea C, Coleman CN, Espey MG. The State of Preclinical Modeling for Early Phase Cancer Trials Using Molecularly Targeted Agents with Radiation. Radiat Res 2022; 198:625-631. [PMID: 35976726 DOI: 10.1667/rade-22-00077.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 01/11/2023]
Abstract
Preclinical studies inform and guide the development of novel treatment combination strategies that bridge the laboratory with the clinic. We aimed to evaluate approaches cancer researchers used to justify advancing new combinations of molecularly targeted agents and radiation treatment into early-phase human clinical trials. Unsolicited early phase clinical trial proposals submitted to the National Cancer Institute's Cancer Therapy Evaluation Program between January 2016 and July 2020 were curated to quantify key characteristics and proportion of preclinical data provided by trialists seeking to conduct molecularly targeted agent-radiation combination studies in cancer patients. These data elucidate the current landscape for how the rationale for a molecularly targeted agent-radiation combination therapy is supported by preclinical research and illustrate unique challenges faced in translation at the intersection of precision medicine and radiation oncology.
Collapse
Affiliation(s)
- Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Bhadrasian Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Jeffrey Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | | | - Alicia Livinski
- National Institutes of Health Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892
| | - Beverly Teicher
- Molecular Pharmacology Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Pataje Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Ceferino Obcemea
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Michael Graham Espey
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| |
Collapse
|
18
|
Brown SR, Hinsley S, Hall E, Hurt C, Baird RD, Forster M, Scarsbrook AF, Adams RA. A Road Map for Designing Phase I Clinical Trials of Radiotherapy-Novel Agent Combinations. Clin Cancer Res 2022; 28:3639-3651. [PMID: 35552622 PMCID: PMC9433953 DOI: 10.1158/1078-0432.ccr-21-4087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023]
Abstract
Radiotherapy has proven efficacy in a wide range of cancers. There is growing interest in evaluating radiotherapy-novel agent combinations and a drive to initiate this earlier in the clinical development of the novel agent, where the scientific rationale and preclinical evidence for a radiotherapy combination approach are high. Optimal design, delivery, and interpretation of studies are essential. In particular, the design of phase I studies to determine safety and dosing is critical to an efficient development strategy. There is significant interest in early-phase research among scientific and clinical communities over recent years, at a time when the scrutiny of the trial methodology has significantly increased. To enhance trial design, optimize safety, and promote efficient trial conduct, this position paper reviews the current phase I trial design landscape. Key design characteristics extracted from 37 methodology papers were used to define a road map and a design selection process for phase I radiotherapy-novel agent trials. Design selection is based on single- or dual-therapy dose escalation, dose-limiting toxicity categorization, maximum tolerated dose determination, subgroup evaluation, software availability, and design performance. Fifteen of the 37 designs were identified as being immediately accessible and relevant to radiotherapy-novel agent phase I trials. Applied examples of using the road map are presented. Developing these studies is intensive, highlighting the need for funding and statistical input early in the trial development to ensure appropriate design and implementation from the outset. The application of this road map will improve the design of phase I radiotherapy-novel agent combination trials, enabling a more efficient development pathway.
Collapse
Affiliation(s)
- Sarah R. Brown
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, United Kingdom
| | - Samantha Hinsley
- Clinical Trials Unit Glasgow, University of Glasgow, Glasgow, United Kingdom
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Chris Hurt
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | | | | | - Andrew F. Scarsbrook
- Radiotherapy Research Group, Leeds Institute of Medical Research at St James's, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Richard A. Adams
- Centre for Trials Research, Cardiff University and Velindre Cancer Centre, Cardiff, United Kingdom
| |
Collapse
|
19
|
Lu Z, Zheng X, Ding C, Zou Z, Liang Y, Zhou Y, Li X. Deciphering the Biological Effects of Radiotherapy in Cancer Cells. Biomolecules 2022; 12:biom12091167. [PMID: 36139006 PMCID: PMC9496570 DOI: 10.3390/biom12091167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy remains an effective conventional method of treatment for patients with cancer. However, the clinical efficacy of radiotherapy is compromised by the development of radioresistance of the tumor cells during the treatment. Consequently, there is need for a comprehensive understanding of the regulatory mechanisms of tumor cells in response to radiation to improve radiotherapy efficacy. The current study aims to highlight new developments that illustrate various forms of cancer cell death after exposure to radiation. A summary of the cellular pathways and important target proteins that are responsible for tumor radioresistance and metastasis is also provided. Further, the study outlines several mechanistic descriptions of the interaction between ionizing radiation and the host immune system. Therefore, the current review provides a reference for future research studies on the biological effects of new radiotherapy technologies, such as ultra-high-dose-rate (FLASH) radiotherapy, proton therapy, and heavy-ion therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| | - Xiaoan Li
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| |
Collapse
|
20
|
Xu LM, Yuan YJ, Yu H, Wang S, Wang P. LINC00665 knockdown confers sensitivity in irradiated non-small cell lung cancer cells through the miR-582-5p/UCHL3/AhR axis. J Transl Med 2022; 20:350. [PMID: 35918714 PMCID: PMC9344728 DOI: 10.1186/s12967-022-03516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background The resistance to radiotherapy remains a major obstacle that limits the efficacy of radiotherapy in non-small cell lung cancer (NSCLC). This study aims to illustrate the molecular mechanism underlying the role of LINC00665 in the radiosensitivity of NSCLC, which involves ubiquitin C-terminal hydrolase L3 (UCHL3). Methods and results The expression of UCHL3 was determined in clinical tissue samples collected from NSCLC patients and NSCLC cell lines. We found that UCHL3 overexpression occurred in both NSCLC tissues and cells, associated with poor prognosis in NSCLC patients. Mechanistically, UCHL3 stabilized aryl hydrocarbon receptor (AhR) protein through deubiquitination, thereby promoting PD-L1 expression. UCHL3 reduced the radiosensitivity of NSCLC cells by stabilizing AhR protein. Upstream microRNAs (miRNAs) and lncRNAs of UCHL3 were predicted by microarray profiling and validated by functional experiments. LINC00665 functioned as a sponge of miR-582-5p and thus up-regulated the expression of the miR-582-5p target UCHL3. Gain- and loss- of function assays were performed to assess the effects of LINC00665, UCHL3 and miR-582-5p on the in vitro cell malignant behaviors and immune escape as well as on the in vivo tumor growth. Silencing LINC00665 or overexpressing miR-582-5p enhanced the sensitivity of NSCLC cells to radiotherapy. LINC00665 augmented the immune escape of NSCLC cells in vitro and in vivo through stabilizing AhR protein via the miR-582-5p/UCHL3 axis. Conclusions Overall, LINC00665 reduced the radiosensitivity of NSCLC cells via stabilization of AhR through the miR-582-5p/UCHL3 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03516-2.
Collapse
Affiliation(s)
- Li-Ming Xu
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Ya-Jing Yuan
- Department of Anesthesia, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Hao Yu
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Shuai Wang
- Department of Hepatobiliary Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Ping Wang
- Department of Radiotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Tiyuanbei, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
21
|
Zhao Y, Feng Y, Li J, Cui C, Wang A, Fang J, Zhang Y, Ye S, Mao Q, Wang X, Shi H. Endogenous ROS-Mediated Covalent Immobilization of Gold Nanoparticles in Mitochondria: A “Sharp Sword” in Tumor Radiotherapy. ACS Chem Biol 2022; 17:2355-2365. [DOI: 10.1021/acschembio.2c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoyan Wang
- Department of Ultrasound, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
22
|
Xin H, Liu Y, Chen P, Yin T, Wang M, Liu T, Wen Z, Cheng Y. CD155 promotes radioresistance and malignancy of esophageal cancer by regulating Hippo-YAP pathway. Discov Oncol 2022; 13:53. [PMID: 35768666 PMCID: PMC9243211 DOI: 10.1007/s12672-022-00515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
The expression of CD155 has been observed to increase in various human cancers, but its role in the development of esophageal cancer (EC) is unclear. Radiotherapy is one of the primary therapeutic options for EC. However, radioresistance is still a severe issue in EC treatment. In this study, Oncomine database mining, immunohistochemistry, and survival analysis showed that higher expression of CD155 in patients with EC than in healthy controls. In vitro and in vivo, we found for the first time that irradiation increased the expression of CD155 in EC cells. CD155 knockdown inhibited cell proliferation and migration and tumor formation, and significantly increased radiosensitivity in EC. The in vivo model with high CD155 expression significantly promoted the proliferation and migration of EC cells. Furthermore, increased CD155 expression was associated with poor prognosis in patients with EC. CD155 regulated the Hippo-Yap pathway, influencing cell proliferation and migration. Therefore, CD155 is essential for the proliferation, migration, and radioresistance of EC. CD155 inhibition may be a viable strategy for improving radiation treatment efficacy in individuals with EC.
Collapse
Affiliation(s)
- Huixian Xin
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Yuchen Liu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Tianwen Yin
- Department of Radiation Oncology, Shandong Cancer Hospital, and Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Meijie Wang
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Tianyu Liu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Zhihua Wen
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China.
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
23
|
Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS, Nagrath D. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer 2022; 8:855-869. [PMID: 35750630 DOI: 10.1016/j.trecan.2022.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Radiation is frequently administered for cancer treatment, but resistance or remission remains common. Cancer cells alter their metabolism after radiotherapy to reduce its cytotoxic effects. The influence of altered cancer metabolism extends to the tumor microenvironment (TME), where components of the TME exchange metabolites to support tumor growth. Combining radiotherapy with metabolic targets in the TME can improve therapy response. We review the metabolic rewiring of cancer cells following radiotherapy and put these observations in the context of the TME to describe the metabolic hallmarks of radiotherapy in the TME.
Collapse
Affiliation(s)
- Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minal Nenwani
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Itisam Sarangi
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
24
|
Carr MI, Chiu LY, Guo Y, Xu C, Lazorchak AS, Yu H, Qin G, Qi J, Marelli B, Lan Y, Sun Q, Czauderna F, Zenke FT, Blaukat A, Vassilev LT. DNA-PK Inhibitor Peposertib Amplifies Radiation-Induced Inflammatory Micronucleation and Enhances TGFβ/PD-L1 Targeted Cancer Immunotherapy. Mol Cancer Res 2022; 20:568-582. [PMID: 34980594 PMCID: PMC9381110 DOI: 10.1158/1541-7786.mcr-21-0612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 01/07/2023]
Abstract
Radiotherapy is the most widely used cancer treatment and improvements in its efficacy and safety are highly sought-after. Peposertib (also known as M3814), a potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor, effectively suppresses the repair of radiation-induced DNA double-strand breaks (DSB) and regresses human xenograft tumors in preclinical models. Irradiated cancer cells devoid of p53 activity are especially sensitive to the DNA-PK inhibitor, as they lose a key cell-cycle checkpoint circuit and enter mitosis with unrepaired DSBs, leading to catastrophic consequences. Here, we show that inhibiting the repair of DSBs induced by ionizing radiation with peposertib offers a powerful new way for improving radiotherapy by simultaneously enhancing cancer cell killing and response to a bifunctional TGFβ "trap"/anti-PD-L1 cancer immunotherapy. By promoting chromosome misalignment and missegregation in p53-deficient cancer cells with unrepaired DSBs, DNA-PK inhibitor accelerated micronuclei formation, a key generator of cytosolic DNA and activator of cGAS/STING-dependent inflammatory signaling as it elevated PD-L1 expression in irradiated cancer cells. Triple combination of radiation, peposertib, and bintrafusp alfa, a fusion protein simultaneously inhibiting the profibrotic TGFβ and immunosuppressive PD-L1 pathways was superior to dual combinations and suggested a novel approach to more efficacious radioimmunotherapy of cancer. IMPLICATIONS Selective inhibition of DNA-PK in irradiated cancer cells enhances inflammatory signaling and activity of dual TGFβ/PD-L1 targeted therapy and may offer a more efficacious combination option for the treatment of locally advanced solid tumors.
Collapse
Affiliation(s)
- Michael I. Carr
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Li-Ya Chiu
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Yige Guo
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Chunxiao Xu
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Adam S. Lazorchak
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Huakui Yu
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Guozhong Qin
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Jin Qi
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Bo Marelli
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Yan Lan
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Qing Sun
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Frank Czauderna
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts
| | - Frank T. Zenke
- Translational Innovation Platform Oncology and Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Andree Blaukat
- Translational Innovation Platform Oncology and Immuno-Oncology, Merck KGaA, Darmstadt, Germany
| | - Lyubomir T. Vassilev
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts.,Corresponding Author: Lyubomir T. Vassilev, Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821. Phone: 978-294-1115; E-mail:
| |
Collapse
|
25
|
Mahmoud AS, Abu Bakar MZ, Hamzah H, Tengkue Ahmad TA, Mohd Noor MH. Octreotide acetate enhanced radio sensitivity and induced apoptosis in MCF7 breast cancer cell line. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022; 148:1015-1031. [PMID: 35113235 DOI: 10.1007/s00432-022-03923-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radioresistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understanding mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresistance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia.
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Tomsk, Russia
| | - Elena Ivanyuk
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Yulia Trushchuk
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Alena Chernyshova
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| |
Collapse
|
27
|
Inamasu E, Tsuchiya T, Yamauchi M, Nishi K, Matsuda K, Sugawara F, Sakaguchi K, Mori R, Matsumoto K, Miyazaki T, Hatachi G, Doi R, Watanabe H, Tomoshige K, Matsuda N, Higami Y, Shimokawa I, Nakashima M, Nagayasu T. Anticancer agent α-sulfoquinovosyl-acylpropanediol enhances the radiosensitivity of human malignant mesothelioma in nude mouse models. JOURNAL OF RADIATION RESEARCH 2022; 63:19-29. [PMID: 34738103 PMCID: PMC8776698 DOI: 10.1093/jrr/rrab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly malignant disease that develops after asbestos exposure. Although the number of MPM cases is predicted to increase, no effective standard therapies have been established. The novel radiosensitizer α-sulfoquinovosyl-acylpropanediol (SQAP) enhances the effects of γ-radiation in human lung and prostate cancer cell lines and in animal models. In this study, we explored the radiosensitizing effect of SQAP and its mechanisms in MPM. The human MPM cell lines MSTO-211H and MESO-4 were implanted subcutaneously into the backs and thoracic cavities of immunodeficient KSN/Slc mice, then 2 mg/kg SQAP was intravenously administered with or without irradiation with a total body dose of 8 Gy. In both the orthotopic and ectopic xenograft murine models, the combination of irradiation plus SQAP delayed the implanted human MSTO-211H tumor growth. The analysis of the changes in the relative tumor volume of the MSTO-211H indicated a statistically significant difference after 8 Gy total body combined with 2 mg/kg SQAP, compared to both the untreated control (P = 0.0127) and the radiation treatment alone (P = 0.0171). After the treatment in each case, immunostaining of the harvested tumors revealed decreased cell proliferation, increased apoptosis and normalization of tumor blood vessels in the SQAP- and irradiation-treated group. Furthermore, hypoxia-inducible factor (HIF) 1 mRNA and protein expression were decreased, indicating reoxygenation in this group. In conclusion, SQAP improved hypoxic conditions in tumor tissue and may elicit a radiosensitizing effect in malignant mesothelioma models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Takeshi Nagayasu
- Corresponding author. Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan. Tel: +81-95-819-7304; Fax: +81-95-819-7306;
| |
Collapse
|
28
|
Rabe L, Wenz F, Ehmann M, Lohr F, Dieter Hofheinz R, Buergy D. Radiotherapy and newly approved cancer drugs – A quantitative analysis of registered protocols for drugs approved for the treatment of solid tumors. Radiother Oncol 2022; 168:69-74. [DOI: 10.1016/j.radonc.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
29
|
Yao Y, Qi Z, Zhu Q, Zhao Q, Zhang Z, Fu S, Zhou L, Zhu J, Liu Z, Xu H, Huang Y, Xue J, Qin S. Erb‐(IL10)
2
induces abscopal antitumor effects of radiotherapy through the activation and recruitment of lymph node CD8
+
T cells. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yimin Yao
- Department of Radiation Oncology The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Ziwei Qi
- State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou Jiangsu China
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Soochow University Suzhou Jiangsu China
| | - Qingqing Zhu
- Department of Pulmonary and Critical Care Medicine First Affiliated Hospital of Soochow University Suzhou China
| | - Qi Zhao
- Department of Radiation Oncology The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Zheng Zhang
- Department of Radiation Oncology The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
- Department of Radiotherapy Suzhou Ninth People's Hospital Suzhou Jiangsu China
| | - Shilong Fu
- Suzhou Dingfu Biotarget Co., Ltd Suzhou Jiangsu China
| | - Liyao Zhou
- Suzhou Dingfu Biotarget Co., Ltd Suzhou Jiangsu China
| | - Jiaxing Zhu
- Department of Radiation Oncology The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Zhenhua Liu
- Department of Radiation Oncology The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Haiyan Xu
- Department of Radiation Oncology The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Yuhui Huang
- State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou Jiangsu China
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Soochow University Suzhou Jiangsu China
| | - Jiao Xue
- Department of Radiation Oncology The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
- State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou Jiangsu China
- Department of Pulmonary and Critical Care Medicine First Affiliated Hospital of Soochow University Suzhou China
| | - Songbing Qin
- Department of Radiation Oncology The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
- State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou Jiangsu China
| |
Collapse
|
30
|
Xu Q, Zhang H, Liu H, Han Y, Qiu W, Li Z. Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials 2021; 280:121287. [PMID: 34864449 DOI: 10.1016/j.biomaterials.2021.121287] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022]
Abstract
Radio-resistance of glioblastoma (GBM) remains a leading cause of radiotherapy failure because of the protective autophagy induced by X-Ray irradiation and tumor cells' strong capability of repairing damaged DNA. It is of great importance to overcome the radio-resistance for improving the efficacy of radiotherapy. Herein, we report the novel mechanism of core-shell copper selenide coated gold nanoparticles (Au@Cu2-xSe NPs) inhibiting the protective autophagy and DNA repair of tumor cells to drastically boost the radiotherapy efficacy of glioblastoma. We reveal that the core-shell Au@Cu2-xSe NPs can inhibit the autophagy flux by effectively alkalizing lysosomes. They can increase the SQSTM1/p62 protein levels of tumor cells without influencing their mRNA. We also reveal that Au@Cu2-xSe NPs can increase the ubiquitination of DNA repair protein Rad51, and promote the degradation of Rad51 by proteasomes to prevent the DNA repair. The simultaneous inhibition of protective autophagy and DNA repair significantly suppress the growth of orthotopic GBM by using radiotherapy and our novel Au@Cu2-xSe NPs. Our work provides a new insight and paradigm to significantly improve the efficacy of radiotherapy by rationally designing theranostic nano-agents to simultaneously inhibit protective autophagy and DNA repair of tumor cells.
Collapse
Affiliation(s)
- Qi Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China.
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China.
| |
Collapse
|
31
|
Ye R, Qiao Y, Singh PK, Wang Y, He J, Li N, Krishnan S, Lin SH. High-Content Clonogenic Survival Screen to Identify Chemoradiation Sensitizers. Int J Radiat Oncol Biol Phys 2021; 111:e27-e37. [PMID: 34348174 PMCID: PMC9986843 DOI: 10.1016/j.ijrobp.2021.07.1712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE The combination of cytotoxic chemotherapy with radiation therapy (CRT) has resulted in significant improvements in clinical outcomes for patients with many locally advanced unresectable cancers. Only a small proportion of patients achieve pathologic complete responses to CRT; combination of CRT with targeted agents offers the promise of further improving treatment responses. However, numerous clinical trials have failed to show an improvement in clinical outcomes with the addition of targeted agents. To increase the accessibility of our screening method and accelerate the pace at which novel combinations with CRT are identified and incorporated into standard practices for treatments, we report details on screening method optimization, data generation, and downstream data analysis. METHODS In part, the gap in translation to large, expensive, and ultimately unsuccessful clinical trials reflects the shortcomings of inconsistently designed, executed, and reported preclinical data on which these studies are based. In an effort to standardize the selection of agents for future clinical testing, we have designed, optimized and validated a high throughput, high content, clonogenic assay platform for step-wise progression of preclinical studies from in vitro to in vivo in non-small cell lung cancer and pancreatic ductal adenocarcinoma. RESULTS This highly stable in vitro method was standardized for identification of the most promising CTEP drugs that could best be combined with CRT from among as screen of multiple agents tested in an unbiased manner using 96-well plates. The methodology lends itself to seamless testing of multiple agents in a similar fashion allowing cross-comparisons, evaluation of CRT, or radiation therapy alone, and testing multiple concentrations of test agents sequenced at different times before and after radiation. The method identified Trametinib as a strong CRT sensitizer in KRAS-mutant non-small cell lung cancer and pancreatic ductal adenocarcinoma cell lines. This platform has enabled the screening and identification of several chemoradiation sensitizers. CONCLUSIONS High throughput, high content clonogenic drug screening assay allows for the rapid identification of targets and agents to be translated to the clinic to help improve the effectiveness of current standard of care CRT in various solid tumors.
Collapse
Affiliation(s)
- Rui Ye
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biological Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yawei Qiao
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pankaj K. Singh
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Yifan Wang
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianzhong He
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nan Li
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - Steven H. Lin
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biological Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Lin SH, Willers H, Krishnan S, Sarkaria JN, Baumann M, Lawrence TS. Moving Beyond the Standard of Care: Accelerate Testing of Radiation-Drug Combinations. Int J Radiat Oncol Biol Phys 2021; 111:1131-1139. [PMID: 34454045 PMCID: PMC9159468 DOI: 10.1016/j.ijrobp.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
Radiation therapy is a major treatment modality used in > 60% of cancer patients as definitive local treatment for inoperable locoregionally confined tumors and as palliative therapy. Although cytotoxic chemotherapy enhances the effectiveness of treatment, the benefit over radiation therapy alone is modest. There is a need to enhance the effectiveness of local tumor control over what sequentially or concurrently administered cytotoxic chemotherapy provides. Although many biological pathways are known to enhance the effectiveness of radiation therapy, there is currently a paucity of drugs approved for use in combination. Several clinical trials have tested the effectiveness of combining targeted agents or immunotherapies with radiation therapy, but the results of these trials have been negative, likely stemming from the relative lack of preclinical evidence using appropriate experimental standardization or model systems. Accelerating the identification of agents tested in an appropriate clinical context and experimental systems or models would greatly enhance the potential to bring forward early testing of drugs that would not only be safe but also more effective. This article provides an overview of the opportunities and challenges of developing therapeutics to combine with radiation therapy, and some guidance toward preclinical and early clinical testing to improve the chance that advanced phase testing of drug-radiation combinations would be successful in the long term.
Collapse
Affiliation(s)
- Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, Florida
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota
| | | | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Liao WC, Lin TJ, Liu YC, Wei YS, Chen GY, Feng HP, Chang YF, Chang HT, Wang CL, Chi HC, Wang CI, Lin KH, Ou Yang WT, Yu CJ. Nuclear accumulation of KPNA2 impacts radioresistance through positive regulation of the PLSCR1-STAT1 loop in lung adenocarcinoma. Cancer Sci 2021; 113:205-220. [PMID: 34773335 PMCID: PMC8748229 DOI: 10.1111/cas.15197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (ADC) is the predominant histological type of lung cancer, and radiotherapy is one of the current therapeutic strategies for lung cancer treatment. Unfortunately, biological complexity and cancer heterogeneity contribute to radioresistance development. Karyopherin α2 (KPNA2) is a member of the importin α family that mediates the nucleocytoplasmic transport of cargo proteins. KPNA2 overexpression is observed across cancer tissues of diverse origins. However, the role of KPNA2 in lung cancer radioresistance is unclear. Herein, we demonstrated that high expression of KPNA2 is positively correlated with radioresistance and cancer stem cell (CSC) properties in lung ADC cells. Radioresistant cells exhibited nuclear accumulation of KPNA2 and its cargos (OCT4 and c‐MYC). Additionally, KPNA2 knockdown regulated CSC‐related gene expression in radioresistant cells. Next‐generation sequencing and bioinformatic analysis revealed that STAT1 activation and nuclear phospholipid scramblase 1 (PLSCR1) are involved in KPNA2‐mediated radioresistance. Endogenous PLSCR1 interacting with KPNA2 and PLSCR1 knockdown suppressed the radioresistance induced by KPNA2 expression. Both STAT1 and PLSCR1 were found to be positively correlated with dysregulated KPNA2 in radioresistant cells and ADC tissues. We further demonstrated a potential positive feedback loop between PLSCR1 and STAT1 in radioresistant cells, and this PLSCR1‐STAT1 loop modulates CSC characteristics. In addition, AKT1 knockdown attenuated the nuclear accumulation of KPNA2 in radioresistant lung cancer cells. Our results collectively support a mechanistic understanding of a novel role for KPNA2 in promoting radioresistance in lung ADC cells.
Collapse
Affiliation(s)
- Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Tsung-Jen Lin
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chin Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shan Wei
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Guan-Ying Chen
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Pu Feng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsin-Tzu Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsinag-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chun-I Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Wei-Ting Ou Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
34
|
Wang J, Xu Z, Wang Z, Du G, Lun L. TGF-beta signaling in cancer radiotherapy. Cytokine 2021; 148:155709. [PMID: 34597918 DOI: 10.1016/j.cyto.2021.155709] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
Transforming growth factor beta (TGF-β) plays key roles in regulating cellular proliferation and maintaining tissue homeostasis. TGF-β exerts tumor-suppressive effects in the early stages of carcinogenesis, but it also plays tumor-promoting roles in established tumors. Additionally, it plays a critical role in cancer radiotherapy. TGF-β expression or activation increases in irradiated tissues, and studies have shown that TGF-β plays dual roles in cancer radiosensitivity and is involved in ionizing radiation-induced fibrosis in different tumor microenvironments (TMEs). Furthermore, TGF-β promotes radioresistance by inducing the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and cancer-associated fibroblasts (CAFs), suppresses the immune system and facilitates cancer resistance. In particular, the links between TGF-β and the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) axis play a critical role in cancer therapeutic resistance. Growing evidence has shown that TGF-β acts as a radiation protection agent, leading to heightened interest in using TGF-β as a therapeutic target. The future of anti-TGF-β signaling therapy for numerous diseases appears bright, and the outlook for the use of TGF-β inhibitors in cancer radiotherapy as TME-targeting agents is promising.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China
| | - Zhonghang Xu
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Zhe Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China
| | - Guoqiang Du
- Department of Otolaryngology Head and Neck Surgery, Qingdao Municipal Hospital (Group), Qingdao 266071, Shandong, China.
| | - Limin Lun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong, China.
| |
Collapse
|
35
|
Regulatory Considerations in the Development of Radiation-Drug Combinations. Int J Radiat Oncol Biol Phys 2021; 111:1140-1144. [PMID: 34348173 DOI: 10.1016/j.ijrobp.2021.07.1710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
Radiation therapy remains a fundamental treatment for patients with cancer. Despite an increasing number of targeted molecular therapies that are FDA-approved for the treatment of patients with metastatic disease, there has been very little progress made in terms of drugs used concurrently with radiation. This article reviews the existing regulatory framework in which cancer drugs may be developed for use in combination with radiation therapy from the perspective of the US Food and Drug Administration (FDA). To briefly summarize: 1) Nonclinical studies are a critical first step to ensure that drugs are safe for use in humans; however, additional nonclinical studies of a drug with radiation may not be required prior to a clinical trial in combination with radiation as long as the safety profile of the drug has been characterized in humans. The FDA determines the quality of evidence required prior to studying a drug in combination with radiation on a case-by-case basis. 2) While often impractical to consider late toxicities during dose-escalation, late adverse events should be captured and taken into consideration when determining the final dose and schedule to take forward during drug development. 3) There are a number of expedited programs for cancer drug development, including Accelerated Approval, a conditional approval that allows for use of earlier clinical endpoints when the data suggests a clinically meaningful improvement over available therapy. 4) The Agency encourages sponsors to discuss their development plan with the appropriate FDA review division in formal regulatory meetings.
Collapse
|
36
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
37
|
Bibby BAS, Thiruthaneeswaran N, Yang L, Pereira RR, More E, McArt DG, O'Reilly P, Bristow RG, Williams KJ, Choudhury A, West CML. Repurposing FDA approved drugs as radiosensitizers for treating hypoxic prostate cancer. BMC Urol 2021; 21:96. [PMID: 34210300 PMCID: PMC8247203 DOI: 10.1186/s12894-021-00856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023] Open
Abstract
Background The presence of hypoxia is a poor prognostic factor in prostate cancer and the hypoxic tumor microenvironment promotes radioresistance. There is potential for drug radiotherapy combinations to improve the therapeutic ratio. We aimed to investigate whether hypoxia-associated genes could be used to identify FDA approved drugs for repurposing for the treatment of hypoxic prostate cancer. Methods Hypoxia associated genes were identified and used in the connectivity mapping software QUADrATIC to identify FDA approved drugs as candidates for repurposing. Drugs identified were tested in vitro in prostate cancer cell lines (DU145, PC3, LNCAP). Cytotoxicity was investigated using the sulforhodamine B assay and radiosensitization using a clonogenic assay in normoxia and hypoxia. Results Menadione and gemcitabine had similar cytotoxicity in normoxia and hypoxia in all three cell lines. In DU145 cells, the radiation sensitizer enhancement ratio (SER) of menadione was 1.02 in normoxia and 1.15 in hypoxia. The SER of gemcitabine was 1.27 in normoxia and 1.09 in hypoxia. No radiosensitization was seen in PC3 cells. Conclusion Connectivity mapping can identify FDA approved drugs for potential repurposing that are linked to a radiobiologically relevant phenotype. Gemcitabine and menadione could be further investigated as potential radiosensitizers in prostate cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-021-00856-x.
Collapse
Affiliation(s)
- Becky A S Bibby
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Niluja Thiruthaneeswaran
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK. .,Sydney Medical School, University of Sydney, Camperdown, Australia.
| | - Lingjian Yang
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Ronnie R Pereira
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.,Translational Oncogenomics, CRUK Manchester Institute and CRUK Manchester Centre, Manchester, UK
| | - Elisabet More
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Darragh G McArt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paul O'Reilly
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Robert G Bristow
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.,Translational Oncogenomics, CRUK Manchester Institute and CRUK Manchester Centre, Manchester, UK
| | - Kaye J Williams
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
38
|
Jin L, Duan W, Cai Z, Lim D, Feng Z. Valproic acid triggers radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment in a rat model of breast cancer. JOURNAL OF RADIATION RESEARCH 2021:rrab037. [PMID: 34050356 DOI: 10.1093/jrr/rrab037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/18/2021] [Indexed: 06/12/2023]
Abstract
An abscopal effect occurs when localized radiotherapy causes the regression of tumors distant from the irradiated site. However, such a clinically detectable abscopal effect from radiotherapy alone is rare. This study investigated whether valproic acid ([VPA], a histone deacetylase inhibitor [HDACi]) treatment can stimulate radiation-induced abscopal effect. We used 7,12-dimethylbenz[a]anthracene, a typical environmental carcinogen, to establish a rat model with multiple breast tumors. Only one tumor received 8 Gy fractionated doses of X-rays (2 Gy daily fractions over four days) and 200 mg/kg VPA was administered intraperitoneally. We monitored the growth of both irradiated and unirradiated tumors after treatments. The unirradiated tumor was collected for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC) (CD8, Granzyme B, Cleaved Caspase-3, BrdU, Ki67, F4/80 and CD68), double immunofluorescence (F4/80 and CD86), Western blot (Cleaved Caspase-3) and qRT-PCR (CD86, CD163, IL-1β, IL-6, IL-12, IL-23, IL-10, TGF-β) analysis. We found ionizing radiation (IR) + VPA treatment inhibited both irradiated and unirradiated tumor growth as compared to IR alone. Such observe abscopal effect was mediated by the recruitment of activated CD8+ T cells into the unirradiated tumor sites, which released Granzyme B to cause tumor cell apoptosis. Furthermore, IR + VPA treatment led to macrophages infiltration into the unirradiated tumor sites and polarization to M1 phenotype, resulted in increased levels of pro-inflammatory cytokines such as IL-1β and IL-12, and decreased levels of anti-inflammatory cytokines such as IL-10 and TGF-β. Our data supports the proposition that VPA may be a potential therapeutic candidate to trigger radiation-induced abscopal effect by modulating the unirradiated tumor immune microenvironment.
Collapse
Affiliation(s)
- Liya Jin
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenhua Duan
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown 2560, Australia
- College of Medicine and Public Health, Flinders University, Bedford Place 5042, Australia
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
39
|
Waller V, Pruschy M. Combined Radiochemotherapy: Metalloproteinases Revisited. Front Oncol 2021; 11:676583. [PMID: 34055644 PMCID: PMC8155607 DOI: 10.3389/fonc.2021.676583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022] Open
Abstract
Besides cytotoxic DNA damage irradiation of tumor cells triggers multiple intra- and intercellular signaling processes, that are part of a multilayered, treatment-induced stress response at the unicellular and tumor pathophysiological level. These processes are intertwined with intrinsic and acquired resistance mechanisms to the toxic effects of ionizing radiation and thereby co-determine the tumor response to radiotherapy. Proteolysis of structural elements and bioactive signaling moieties represents a major class of posttranslational modifications regulating intra- and intercellular communication. Plasma membrane-located and secreted metalloproteinases comprise a family of metal-, usually zinc-, dependent endopeptidases and sheddases with a broad variety of substrates including components of the extracellular matrix, cyto- and chemokines, growth and pro-angiogenic factors. Thereby, metalloproteinases play an important role in matrix remodeling and auto- and paracrine intercellular communication regulating tumor growth, angiogenesis, immune cell infiltration, tumor cell dissemination, and subsequently the response to cancer treatment. While metalloproteinases have long been identified as promising target structures for anti-cancer agents, previous pharmaceutical approaches mostly failed due to unwanted side effects related to the structural similarities among the multiple family members. Nevertheless, targeting of metalloproteinases still represents an interesting rationale alone and in combination with other treatment modalities. Here, we will give an overview on the role of metalloproteinases in the irradiated tumor microenvironment and discuss the therapeutic potential of using more specific metalloproteinase inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
- Verena Waller
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Wang H, Jia D, Yuan D, Yin X, Yuan F, Wang F, Shi W, Li H, Zhu LM, Fan Q. Dimeric Her2-specific affibody mediated cisplatin-loaded nanoparticles for tumor enhanced chemo-radiotherapy. J Nanobiotechnology 2021; 19:138. [PMID: 33985511 PMCID: PMC8120847 DOI: 10.1186/s12951-021-00885-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Solid tumor hypoxic conditions prevent the generation of reactive oxygen species (ROS) and the formation of DNA double-strand breaks (DSBs) induced by ionizing radiation, which ultimately contributes to radiotherapy (RT) resistance. Recently, there have been significant technical advances in nanomedicine to reduce hypoxia by facilitating in situ O2 production, which in turn serves as a "radiosensitizer" to increase the sensitivity of tumor cells to ionizing radiation. However, off-target damage to the tumor-surrounding healthy tissue by high-energy radiation is often unavoidable, and tumor cells that are further away from the focal point of ionizing radiation may avoid damage. Therefore, there is an urgent need to develop an intelligent targeted nanoplatform to enable precise enhanced RT-induced DNA damage and combined therapy. RESULTS Human epidermal growth factor receptor 2 (Her2)-specific dimeric affibody (ZHer2) mediated cisplatin-loaded mesoporous polydopamine/MnO2/polydopamine nanoparticles (Pt@mPDA/MnO2/PDA-ZHer2 NPs) for MRI and enhanced chemo-radiotherapy of Her2-positive ovarian tumors is reported. These NPs are biodegradable under a simulated tumor microenvironment, resulting in accelerated cisplatin release, as well as localized production of O2. ZHer2, produced using the E. coli expression system, endowed NPs with Her2-dependent binding ability in Her2-positive SKOV-3 cells. An in vivo MRI revealed obvious T1 contrast enhancement at the tumor site. Moreover, these NPs achieved efficient tumor homing and penetration via the efficient internalization and penetrability of ZHer2. These NPs exhibited excellent inhibition of tumor growth with X-ray irradiation. An immunofluorescence assay showed that these NPs significantly reduced the expression of HIF-1α and improved ROS levels, resulting in radiosensitization. CONCLUSIONS The nanocarriers described in the present study integrated Her2 targeting, diagnosis and RT sensitization into a single platform, thus providing a novel approach for translational tumor theranostics.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.,School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Dandan Yuan
- Department of Digestive Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaolei Yin
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Feifei Wang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
41
|
Poon DJJ, Tay LM, Ho D, Chua MLK, Chow EKH, Yeo ELL. Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Lett 2021; 511:56-67. [PMID: 33933554 DOI: 10.1016/j.canlet.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
Despite numerous advances in cancer radiotherapy, tumor radioresistance remain one of the major challenges limiting treatment efficacy of radiotherapy. Conventional strategies to overcome radioresistance involve understanding the underpinning molecular mechanisms, and subsequently using combinatorial treatment strategies involving radiation and targeted drug combinations against these radioresistant tumors. These strategies exploit and target the molecular fingerprint and vulnerability of the radioresistant clones to achieve improved efficacy in tumor eradication. However, conventional drug-screening approaches for the discovery of new drug combinations have been proven to be inefficient, limited and laborious. With the increasing availability of computational resources in recent years, novel approaches such as Quadratic Phenotypic Optimization Platform (QPOP), CURATE.AI and Drug Combination and Prediction and Testing (DCPT) platform have emerged to aid in drug combination discovery and the longitudinally optimized modulation of combination therapy dosing. These platforms could overcome the limitations of conventional screening approaches, thereby facilitating the discovery of more optimal drug combinations to improve the therapeutic ratio of combinatorial treatment. The use of better and more accurate models and methods with rapid turnover can thus facilitate a rapid translation in the clinic, hence, resulting in a better patient outcome. Here, we reviewed the clinical observations, molecular mechanisms and proposed treatment strategies for tumor radioresistance and discussed how novel approaches may be applied to enhance drug combination discovery, with the aim to further improve the therapeutic ratio and treatment efficacy of radiotherapy against radioresistant cancers.
Collapse
Affiliation(s)
- Dennis Jun Jie Poon
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore.
| | - Li Min Tay
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Dean Ho
- The N.1 Institute of Health (N.1), National University of Singapore, 117456, Singapore; Department of Bioengineering, National University of Singapore, 117583, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Oncology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Edward Kai-Hua Chow
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; The N.1 Institute of Health (N.1), National University of Singapore, 117456, Singapore; Department of Bioengineering, National University of Singapore, 117583, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.
| | - Eugenia Li Ling Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore.
| |
Collapse
|
42
|
Ding J, Mao Q, Zhao M, Gao Y, Wang A, Ye S, Wang X, Xie W, Shi H. Protein sulfenic acid-mediated anchoring of gold nanoparticles for enhanced CT imaging and radiotherapy of tumors in vivo. NANOSCALE 2020; 12:22963-22969. [PMID: 33206090 DOI: 10.1039/d0nr06440h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Radiotherapy (RT) has become one of the most widely used treatments for malignant tumors in clinics. Developing a novel radiosensitizer for the integration of precise diagnosis and effective radiotherapy against hypoxic tumors is desirable but remains a great challenge. Herein, protein sulfenic acid reactive gold nanoparticles as effective radiosensitizers were for the first time reported for enhanced X-ray computed tomography (CT) imaging and radiotherapy of tumors in vivo. The gold nanoparticles were decorated with biocompatible poly(ethylene glycol), folic acid (FA), and sulfenic acid reactive groups 1,3-cyclohexanedione (CHD). Such a nanostructure enables on-site immobilization within tumors under oxidative stress through the specific reaction between CHD and endogenous protein sulfenic acids resulting in enhanced accumulation and retention of gold nanoparticles within tumors, which remarkably improves the sensitivity of CT imaging and the radiotherapeutic efficacy of tumors in living mice. This study thus is the first to demonstrate that protein sulfenic acid reactive gold nanoparticles with a tumor anchoring function may serve as effective radiosensitizers for clinical X-ray theranostic application in the future.
Collapse
Affiliation(s)
- Jianan Ding
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lu SL, Liu WW, Cheng JCH, Lin LC, Wang CRC, Li PC. Enhanced Radiosensitization for Cancer Treatment with Gold Nanoparticles through Sonoporation. Int J Mol Sci 2020; 21:ijms21218370. [PMID: 33171604 PMCID: PMC7664670 DOI: 10.3390/ijms21218370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
We demonstrate the megavoltage (MV) radiosensitization of a human liver cancer line by combining gold-nanoparticle-encapsulated microbubbles (AuMBs) with ultrasound. Microbubbles-mediated sonoporation was administered for 5 min, at 2 h prior to applying radiotherapy. The intracellular concentration of gold nanoparticles (AuNPs) increased with the inertial cavitation of AuMBs in a dose-dependent manner. A higher inertial cavitation dose was also associated with more DNA damage, higher levels of apoptosis markers, and inferior cell surviving fractions after MV X-ray irradiation. The dose-modifying ratio in a clonogenic assay was 1.56 ± 0.45 for a 10% surviving fraction. In a xenograft mouse model, combining vascular endothelial growth factor receptor 2 (VEGFR2)-targeted AuMBs with sonoporation significantly delayed tumor regrowth. A strategy involving the spatially and temporally controlled release of AuNPs followed by clinically utilized MV irradiation shows promising results that make it worthy of further translational investigations.
Collapse
Affiliation(s)
- Shao-Lun Lu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
| | - Jason Chia-Hsien Cheng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei 100229, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100229, Taiwan
| | - Lien-Chieh Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
| | - Churng-Ren Chris Wang
- Department of Chemistry and Biochemistry, National Chung-Cheng University, Chia-Yi 621301, Taiwan;
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-3551
| |
Collapse
|
44
|
Zhang H, Zhou F, Wang Y, Xie H, Luo S, Meng L, Su B, Ye Y, Wu K, Xu Y, Gong X. Eliminating Radiation Resistance of Non-Small Cell Lung Cancer by Dihydroartemisinin Through Abrogating Immunity Escaping and Promoting Radiation Sensitivity by Inhibiting PD-L1 Expression. Front Oncol 2020; 10:595466. [PMID: 33194761 PMCID: PMC7656009 DOI: 10.3389/fonc.2020.595466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Radiation resistance is linked to immune escaping and radiation sensitivity. In this study, we found that the PD-L1 expressions of non-killed tumor cells in NSCLC were enhanced after radiotherapy, and dihydroartemisinin (DHA) could synergistically enhance the antitumor effect of radiotherapy in NSCLC. A total of 48 NSCLC patients with sufficient tumor tissues for further analyses were enrolled. The PD-L1 expressions of NSCLC were evaluated by immunohistochemistry. Cell apoptosis was measured by flow cytometry, and the relationship between the PD-L1 expression and radiation resistance was investigated in patient specimens, xenograft model, and cell lines. First, the results indicate that the PD-L1 expression of NSCLC was positively related with the radiation resistance. Second, we found that DHA could eliminate the radiation resistance and synergistically enhance the antitumor effect of radiotherapy in the NSCLC cells lines and xenograft model. Finally, mechanistically, DHA could inhibit the PD-L1 expression to avoid immune escaping by inhibiting TGF-β, PI3K/Akt, and STAT3 signaling pathways. In addition, DHA could activate TRIM21 and regulate the EMT-related proteins by inhibiting the PD-L1 so as to enhance the radiation sensitivity and eliminate radiation resistance to NSCLC. Collectively, this study established a basis for the rational design of integrated radiotherapy and DHA for the treatment of NSCLC.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Wang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Su
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Ye
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kailiang Wu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release 2020; 326:396-407. [PMID: 32681947 DOI: 10.1016/j.jconrel.2020.07.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 01/21/2023]
Abstract
The application of bacteria and bacteria-derived membrane vesicles (MVs) has promising potential to make a great impact on the development of controllable targeted drug delivery for combatting cancer. Comparing to most other traditional drug delivery systems, bacteria and their MVs have unique capabilities as drug carriers for cancer treatment. They can overcome physical barriers to target and accumulate in tumor tissues and initiate antitumor immune responses. Furtherly, they are able to be modified both genetically and chemically, to produce and transport anticancer agents into tumor tissues with improved safety and efficacy of cancer treatment but decreased cytotoxic effects to normal cells. In this review, we present some examples of tumor-targeting bacteria and bacteria-derived MVs for the delivery of anticancer drugs, including chemo-therapeutic, radio-therapeutic, photothermal-therapeutic, and immuno-therapeutic agents. We also discuss the advantages as well as the limitations of these tumor-targeting bacteria and their MVs used as platforms for controlled delivery of anticancer therapeutic agents, and further highlight their great potential on clinical translation.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
46
|
van Werkhoven E, Hinsley S, Frangou E, Holmes J, de Haan R, Hawkins M, Brown S, Love SB. Practicalities in running early-phase trials using the time-to-event continual reassessment method (TiTE-CRM) for interventions with long toxicity periods using two radiotherapy oncology trials as examples. BMC Med Res Methodol 2020; 20:162. [PMID: 32571298 PMCID: PMC7477911 DOI: 10.1186/s12874-020-01012-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Awareness of model-based designs for dose-finding studies such as the Continual Reassessment Method (CRM) is now becoming more commonplace amongst clinicians, statisticians and trial management staff. In some settings toxicities can occur a long time after treatment has finished, resulting in extremely long, interrupted, CRM design trials. The Time-to-Event CRM (TiTE-CRM), a modification to the original CRM, accounts for the timing of late-onset toxicities and results in shorter trial duration. In this article, we discuss how to design and deliver a trial using this method, from the grant application stage through to dissemination, using two radiotherapy trials as examples. METHODS The TiTE-CRM encapsulates the dose-toxicity relationship with a statistical model. The model incorporates observed toxicities and uses a weight to account for the proportion of completed follow-up of participants without toxicity. This model uses all available data to determine the next participant's dose and subsequently declare the maximum tolerated dose. We focus on two trials designed by the authors to illustrate practical issues when designing, setting up, and running such studies. RESULTS In setting up a TiTE-CRM trial, model parameters need to be defined and the time element involved might cause complications, therefore looking at operating characteristics through simulations is essential. At the grant application stage, we suggest resources to fund statisticians' time before funding is awarded and make recommendations for the level of detail to include in funding applications. While running the trial, close contact of all involved staff is required as a dose decision is made each time a participant is recruited. We suggest ways of capturing data in a timely manner and give example code in R for design and delivery of the trial. Finally, we touch upon dissemination issues while the trial is running and upon completion. CONCLUSION Model-based designs can be complex. We hope this paper will help clinical trial teams to demystify the conduct of TiTE-CRM trials and be a starting point for using this methodology in practice.
Collapse
Affiliation(s)
| | - Samantha Hinsley
- Cancer Research UK Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Clinical Trials Research Unit, University of Leeds, Leeds, UK
| | | | - Jane Holmes
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | | | - Maria Hawkins
- CRUK MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - Sarah Brown
- Clinical Trials Research Unit, University of Leeds, Leeds, UK
| | | |
Collapse
|
47
|
Zhang P, Darmon A, Marill J, Mohamed Anesary N, Paris S. Radiotherapy-Activated Hafnium Oxide Nanoparticles Produce Abscopal Effect in a Mouse Colorectal Cancer Model. Int J Nanomedicine 2020; 15:3843-3850. [PMID: 32581534 PMCID: PMC7280060 DOI: 10.2147/ijn.s250490] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose Despite tremendous results achieved by immune checkpoint inhibitors, most patients are not responders, mainly because of the lack of a pre-existing anti-tumor immune response. Thus, solutions to efficiently prime this immune response are currently under intensive investigations. Radiotherapy elicits cancer cell death, generating an antitumor-specific T cell response, turning tumors in personalized in situ vaccines, with potentially systemic effects (abscopal effect). Nonetheless, clinical evidence of sustained anti-tumor immunity as abscopal effect are rare. Methods Hafnium oxide nanoparticles (NBTXR3) have been designed to increase energy dose deposit within cancer cells. We examined the effect of radiotherapy-activated NBTXR3 on anti-tumor immune response activation and abscopal effect production using a mouse colorectal cancer model. Results We demonstrate that radiotherapy-activated NBTXR3 kill more cancer cells than radiotherapy alone, significantly increase immune cell infiltrates both in treated and in untreated distant tumors, generating an abscopal effect dependent on CD8+ lymphocyte T cells. Conclusion These data show that radiotherapy-activated NBTXR3 could increase local and distant tumor control through immune system priming. Our results may have important implications for immunotherapeutic agent combination with radiotherapy.
Collapse
|
48
|
Wanigasooriya K, Tyler R, Barros-Silva JD, Sinha Y, Ismail T, Beggs AD. Radiosensitising Cancer Using Phosphatidylinositol-3-Kinase (PI3K), Protein Kinase B (AKT) or Mammalian Target of Rapamycin (mTOR) Inhibitors. Cancers (Basel) 2020; 12:E1278. [PMID: 32443649 PMCID: PMC7281073 DOI: 10.3390/cancers12051278] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is routinely used as a neoadjuvant, adjuvant or palliative treatment in various cancers. There is significant variation in clinical response to radiotherapy with or without traditional chemotherapy. Patients with a good response to radiotherapy demonstrate better clinical outcomes universally across different cancers. The PI3K/AKT/mTOR pathway upregulation has been linked to radiotherapy resistance. We reviewed the current literature exploring the role of inhibiting targets along this pathway, in enhancing radiotherapy response. We identified several studies using in vitro cancer cell lines, in vivo tumour xenografts and a few Phase I/II clinical trials. Most of the current evidence in this area comes from glioblastoma multiforme, non-small cell lung cancer, head and neck cancer, colorectal cancer, and prostate cancer. The biological basis for radiosensitivity following pathway inhibition was through inhibited DNA double strand break repair, inhibited cell proliferation, enhanced apoptosis and autophagy as well as tumour microenvironment changes. Dual PI3K/mTOR inhibition consistently demonstrated radiosensitisation of all types of cancer cells. Single pathway component inhibitors and other inhibitor combinations yielded variable outcomes especially within early clinical trials. There is ample evidence from preclinical studies to suggest that direct pharmacological inhibition of the PI3K/AKT/mTOR pathway components can radiosensitise different types of cancer cells. We recommend that future in vitro and in vivo research in this field should focus on dual PI3K/mTOR inhibitors. Early clinical trials are needed to assess the feasibility and efficacy of these dual inhibitors in combination with radiotherapy in brain, lung, head and neck, breast, prostate and rectal cancer patients.
Collapse
Affiliation(s)
- Kasun Wanigasooriya
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Robert Tyler
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Joao D. Barros-Silva
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
| | - Yashashwi Sinha
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Tariq Ismail
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| | - Andrew D. Beggs
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.D.B.-S.); (Y.S.); (A.D.B.)
- The New Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK; (R.T.); (T.I.)
| |
Collapse
|
49
|
Zhang Z, Wang L, Ding Y, Wu J, Hu Y, Yuan A. Synergy of hypoxia relief and chromatin remodeling to overcome tumor radiation resistance. Biomater Sci 2020; 8:4739-4749. [DOI: 10.1039/d0bm00119h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We combined chromatin remodeling and hypoxia relief to synergistically overcome tumor radioresistance.
Collapse
Affiliation(s)
- Zhicheng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School & School of Life Sciences
- Nanjing University
- Nanjing 210093
- PR China
| | - Li Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School & School of Life Sciences
- Nanjing University
- Nanjing 210093
- PR China
| | - Yawen Ding
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School & School of Life Sciences
- Nanjing University
- Nanjing 210093
- PR China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School & School of Life Sciences
- Nanjing University
- Nanjing 210093
- PR China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School & School of Life Sciences
- Nanjing University
- Nanjing 210093
- PR China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology
- Medical School & School of Life Sciences
- Nanjing University
- Nanjing 210093
- PR China
| |
Collapse
|
50
|
Type 1 IGF receptor associates with adverse outcome and cellular radioresistance in paediatric high-grade glioma. Br J Cancer 2019; 122:624-629. [PMID: 31857716 PMCID: PMC7054265 DOI: 10.1038/s41416-019-0677-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/26/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
High-grade glioma (HGG) is highly resistant to therapy, prompting us to investigate the contribution of insulin-like growth factor receptor (IGF-1R), linked with radioresistance in other cancers. IGF-1R immunohistochemistry in 305 adult HGG (aHGG) and 103 paediatric/young adult HGG (pHGG) cases revealed significant association with adverse survival in pHGG, with median survival of 13.5 vs 29 months for pHGGs with moderate/strong vs negative/weak IGF-1R (p = 0.011). Secondly, we tested IGF-1R inhibitor BMS-754807 in HGG cells, finding minimal radiosensitisation of 2/3 aHGG cell lines (dose enhancement ratios DERs < 1.60 at 2–8 Gy), and greater radiosensitisation of 2/2 pHGG cell lines (DERs ≤ 4.16). BMS-754807 did not influence radiation-induced apoptosis but perturbed the DNA damage response with altered induction/resolution of γH2AX, 53BP1 and RAD51 foci. These data indicate that IGF-1R promotes radioresistance in pHGG, potentially contributing to the association of IGF-1R with adverse outcome and suggesting IGF-1R as a candidate treatment target in pHGG.
Collapse
|