1
|
Ota Y, Gao T, Fujisawa M, Sumardika IW, Sakaguchi M, Toyooka S, Yoshimura T, Matsukawa A. Expression of SPRED2 in the lung adenocarcinoma. Pathol Res Pract 2025; 265:155721. [PMID: 39580880 DOI: 10.1016/j.prp.2024.155721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
SPRED2 (Sprouty-related, EVH1 domain-containing protein 2), a negative regulator of the ERK1/2 pathway, is downregulated in several cancers; however, the significance of SPRED2 expression in lung adenocarcinoma (LUAD) remains unclear. Here, we investigated the pathological expression of SPRED2 and its relationship with ERK1/2 activation (ERK1/2 phosphorylation), Ki67 index and clinicopathological features in 77 LUAD tissues from clinical patients. Immunohistochemically, SPRED2 expression was decreased in invasive adenocarcinoma (IA) compared to adenocarcinoma in situ (AIS). There was a negative correlation between SPRED2 expression and pERK1/2 levels and a positive correlation between SPRED2 expression and Ki67 index. In the database analysis, the survival probability was higher in patients with higher SPRED2 expression than in those with lower expression. In vitro, SPRED2 deletion increased cell proliferation, migration and invasion of three LUAD cell lines (A549:KRAS mutation, H1993:METamplification, and HCC4006:EGFR mutation), whereas SPRED2 overexpression decreased these responses. Thus, SPRED2 appears to be a regulator of LUAD progression and a potential target for the treatment of LUAD.
Collapse
Affiliation(s)
- Yoko Ota
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tong Gao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - I Wayan Sumardika
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
| |
Collapse
|
2
|
Wang T, Gao T, Fujisawa M, Ohara T, Sakaguchi M, Yoshimura T, Matsukawa A. SPRED2 Is a Novel Regulator of Autophagy in Hepatocellular Carcinoma Cells and Normal Hepatocytes. Int J Mol Sci 2024; 25:6269. [PMID: 38892460 PMCID: PMC11172722 DOI: 10.3390/ijms25116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Sprouty-related enabled/vasodilator-stimulated phosphoprotein homology 1 domain containing 2 (SPRED2) is an inhibitor of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and has been shown to promote autophagy in several cancers. Here, we aimed to determine whether SPRED2 plays a role in autophagy in hepatocellular carcinoma (HCC) cells. The Cancer Genome Atlas (TCGA) Liver Cancer Database showed a negative association between the level of SPRED2 and p62, a ubiquitin-binding scaffold protein that accumulates when autophagy is inhibited. Immunohistochemically, accumulation of p62 was detected in human HCC tissues with low SPRED2 expression. Overexpression of SPRED2 in HCC cells increased the number of autophagosomes and autophagic vacuoles containing damaged mitochondria, decreased p62 levels, and increased levels of light-chain-3 (LC3)-II, an autophagy marker. In contrast, SPRED2 deficiency increased p62 levels and decreased LC3-II levels. SPRED2 expression levels were negatively correlated with translocase of outer mitochondrial membrane 20 (TOM20) expression levels, suggesting its role in mitophagy. Mechanistically, SPRED2 overexpression reduced ERK activation followed by the mechanistic or mammalian target of rapamycin complex 1 (mTORC1)-mediated signaling pathway, and SPRED2 deficiency showed the opposite pattern. Finally, hepatic autophagy was impaired in the liver of SPRED2-deficient mice with hepatic lipid droplet accumulation in response to starvation. These results indicate that SPRED2 is a critical regulator of autophagy not only in HCC cells, but also in hepatocytes, and thus the manipulation of this process may provide new insights into liver pathology.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tong Gao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
3
|
Toro AU, Shukla SK, Bansal P. Emerging role of MicroRNA-Based theranostics in Hepatocellular Carcinoma. Mol Biol Rep 2023; 50:7681-7691. [PMID: 37418086 DOI: 10.1007/s11033-023-08586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Hepatocellular carcinoma (HCC), with its high mortality and short survival rate, continues to be one of the deadliest malignancies despite relentless efforts and several technological advances. The poor prognosis of HCC and the few available treatments are to blame for the low survival rate, which emphasizes the importance of creating new, effective diagnostic markers and innovative therapy strategies. In-depth research is being done on the potent biomarker miRNAs, a special class of non-coding RNA and has shown encouraging results in the early identification and treatment of HCC in order to find more viable and successful therapeutics for the disease. It is beyond dispute that miRNAs control cell differentiation, proliferation, and survival and, depending on the genes they target, can either promote tumorigenesis or suppress it. Given the vital role miRNAs play in the biological system and their potential to serve as ground-breaking treatments for HCC, more study is required to fully examine their theranostic potential.
Collapse
Affiliation(s)
- Abdulhakim Umar Toro
- Department of Biomedical Engineering, Shobhit institute of Engineering and Technology (Deemed to-be-University), Modipuram, Meerut, 250110, India
| | - Sudheesh K Shukla
- Department of Biomedical Engineering, Shobhit institute of Engineering and Technology (Deemed to-be-University), Modipuram, Meerut, 250110, India.
| | - Parveen Bansal
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, 151203, India.
| |
Collapse
|
4
|
Zohar Y, Mabjeesh NJ. Targeting HIF-1 for prostate cancer: a synthesis of preclinical evidence. Expert Opin Ther Targets 2023; 27:715-731. [PMID: 37596912 DOI: 10.1080/14728222.2023.2248381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
INTRODUCTION Hypoxia-inducible factor (HIF) mediates multiple intracellular processes that drive cellular metabolism and induce proliferation. Dysregulated HIF expression is associated with oncogenic cellular transformation. Moreover, high HIF levels correlate with tumor aggressiveness and chemoresistance, indicating the vital effect of HIF-1α on tumorigenicity. Currently, widespread in-vitro and in-vivo research is focusing on targeting HIF with drugs that have already been approved for use by the FDA, such as belzutifan, in renal cell carcinoma. HIF inhibition is mostly associated with tumor size reduction; however, drug toxicity remains a challenge. AREA COVERED In this review, we focus on the potential of targeting HIF in prostate cancer (PC) and summarize the scientific background of HIF activity in PC. This finding emphasizes the rationale for using HIF as a therapeutic target in this malignancy. We have listed known HIF inhibitors that are being investigated in preclinical studies and their potential as anticancer drugs for PC. EXPERT OPINION Although HIF-targeting agents have been investigated for over a decade, their use in therapy-resistant cancers remains relevant and should be explored further. In addition, the use of naturally occurring HIF inhibitors should be considered as an add-on therapy for the currently used regimens.
Collapse
Affiliation(s)
- Yarden Zohar
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Nicola J Mabjeesh
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
5
|
Gao T, Yang X, Fujisawa M, Ohara T, Wang T, Tomonobu N, Sakaguchi M, Yoshimura T, Matsukawa A. SPRED2: A Novel Regulator of Epithelial-Mesenchymal Transition and Stemness in Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:ijms24054996. [PMID: 36902429 PMCID: PMC10003366 DOI: 10.3390/ijms24054996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The downregulation of SPRED2, a negative regulator of the ERK1/2 pathway, was previously detected in human cancers; however, the biological consequence remains unknown. Here, we investigated the effects of SPRED2 loss on hepatocellular carcinoma (HCC) cell function. Human HCC cell lines, expressing various levels of SPRED2 and SPRED2 knockdown, increased ERK1/2 activation. SPRED2-knockout (KO)-HepG2 cells displayed an elongated spindle shape with increased cell migration/invasion and cadherin switching, with features of epithelial-mesenchymal transition (EMT). SPRED2-KO cells demonstrated a higher ability to form spheres and colonies, expressed higher levels of stemness markers and were more resistant to cisplatin. Interestingly, SPRED2-KO cells also expressed higher levels of the stem cell surface markers CD44 and CD90. When CD44+CD90+ and CD44-CD90- populations from WT cells were analyzed, a lower level of SPRED2 and higher levels of stem cell markers were detected in CD44+CD90+ cells. Further, endogenous SPRED2 expression decreased when WT cells were cultured in 3D, but was restored in 2D culture. Finally, the levels of SPRED2 in clinical HCC tissues were significantly lower than those in adjacent non-HCC tissues and were negatively associated with progression-free survival. Thus, the downregulation of SPRED2 in HCC promotes EMT and stemness through the activation of the ERK1/2 pathway, and leads to more malignant phenotypes.
Collapse
Affiliation(s)
- Tong Gao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Xu Yang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tianyi Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7141
| |
Collapse
|
6
|
Ney G, Gross A, Livinski A, Kratz CP, Stewart DR. Cancer incidence and surveillance strategies in individuals with RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:530-540. [PMID: 36533693 PMCID: PMC9825668 DOI: 10.1002/ajmg.c.32018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022]
Abstract
RASopathies are a set of clinical syndromes that have molecular and clinical overlap. Genetically, these syndromes are defined by germline pathogenic variants in RAS/MAPK pathway genes resulting in activation of this pathway. Clinically, their common molecular signature leads to comparable phenotypes, including cardiac anomalies, neurologic disorders and notably, elevated cancer risk. Cancer risk in individuals with RASopathies has been estimated from retrospective reviews and cohort studies. For example, in Costello syndrome, cancer incidence is significantly elevated over the general population, largely due to solid tumors. In some forms of Noonan syndrome, cancer risk is also elevated over the general population and is enriched for hematologic malignancies. Thus, cancer surveillance guidelines have been developed to monitor for the occurrence of such cancers in individuals with some RASopathies. These include abdominal ultrasound and urinalyses for individuals with Costello syndrome, while complete blood counts and splenic examination are recommended in Noonan syndrome. Improved cancer risk estimates and refinement of surveillance recommendations will improve the care of individuals with RASopathies.
Collapse
Affiliation(s)
- Gina Ney
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland, USA
| | - Andrea Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Alicia Livinski
- National Institutes of Health Library, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland, USA
| |
Collapse
|
7
|
Liu T, Zhao J, Lin C. Sprouty-related proteins with EVH1 domain (SPRED2) prevents high-glucose induced endothelial-mesenchymal transition and endothelial injury by suppressing MAPK activation. Bioengineered 2022; 13:13882-13892. [PMID: 35707829 PMCID: PMC9275976 DOI: 10.1080/21655979.2022.2086351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes, and the leading cause of blindness in adults. Sprouty-related proteins with EVH1 domain (SPRED2) play an important role in diabetes and are closely related to the lens and eye morphogenesis. This study attempted to investigate the role and related mechanism of SPRED2 in DR. DR rat model was established by administration streptozocin. Human retinal endothelial cells (HRECs) were treated with high glucose (HG) to mimic DR. The results showed that SPRED2 expression was decreased in the retinal tissues of DR rats and HG-treated HRECs. MTT assay and flow cytometry data showed that SPRED2 overexpression reduced cell viability of HG-treated HRECs. SPRED2 overexpression enhanced Caspase-3 activity and promoted apoptosis of HG-treated HRECs. Furthermore, the expressions of endothelial cell markers CD31 and E-cad were down-regulated, whereas the expressions of mesenchymal cell markers FSP1, SM22, and α-SMA were up-regulated in the HG-treated HRECs. SPRED2 overexpression reversed HG-induced endothelial–mesenchymal transition in HRECs. The expressions of tight junction components claudin 3, occludin, and ZO-1 were increased in HG-treated HRECs following SPRED2 up-regulation. In addition, SPRED2 overexpression downregulated the expression of p-ERK1/2, p-p38, and p-JNK in the HG-treated HRECs. In conclusion, this study demonstrated that SPRED2 overexpression repressed endothelial–mesenchymal transition and endothelial injury in HG-treated HRECs by suppressing MAPK signaling pathway. These findings suggested that SPRED2 may be a novel potential therapeutic target implicated in DR progression.
Collapse
Affiliation(s)
- Tian Liu
- Department of Ophthalmology, The First People's Hospital of Jingmen, Jingmen, China
| | - Jing Zhao
- Department of Ophthalmology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Chengmin Lin
- Department of Ophthalmology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| |
Collapse
|
8
|
Vafeiadou V, Hany D, Picard D. Hyperactivation of MAPK Induces Tamoxifen Resistance in SPRED2-Deficient ERα-Positive Breast Cancer. Cancers (Basel) 2022; 14:954. [PMID: 35205702 PMCID: PMC8870665 DOI: 10.3390/cancers14040954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the number one cause of cancer-related mortality in women worldwide. Most breast tumors depend on the expression of the estrogen receptor α (ERα) for their growth. For this reason, targeting ERα with antagonists such as tamoxifen is the therapy of choice for most patients. Although initially responsive to tamoxifen, about 40% of the patients will develop resistance and ultimately a recurrence of the disease. Thus, finding new biomarkers and therapeutic approaches to treatment-resistant tumors is of high significance. SPRED2, an inhibitor of the MAPK signal transduction pathway, has been found to be downregulated in various cancers. In the present study, we found that SPRED2 is downregulated in a large proportion of breast-cancer patients. Moreover, the knockdown of SPRED2 significantly increases cell proliferation and leads to tamoxifen resistance of breast-cancer cells that are initially tamoxifen-sensitive. We found that resistance occurs through increased activation of the MAPKs ERK1/ERK2, which enhances the transcriptional activity of ERα. Treatment of SPRED2-deficient breast cancer cells with a combination of the ERK 1/2 inhibitor ulixertinib and 4-hydroxytamoxifen (4-OHT) can inhibit cell growth and proliferation and overcome the induced tamoxifen resistance. Taken together, these results indicate that SPRED2 may also be a tumor suppressor for breast cancer and that it is a key regulator of cellular sensitivity to 4-OHT.
Collapse
Affiliation(s)
- Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| |
Collapse
|
9
|
Berglund A, Matta J, Encarnación-Medina J, Ortiz-Sanchéz C, Dutil J, Linares R, Marcial J, Abreu-Takemura C, Moreno N, Putney R, Chakrabarti R, Lin HY, Yamoah K, Osterman CD, Wang L, Dhillon J, Kim Y, Kim SJ, Ruiz-Deya G, Park JY. Dysregulation of DNA Methylation and Epigenetic Clocks in Prostate Cancer among Puerto Rican Men. Biomolecules 2021; 12:2. [PMID: 35053153 PMCID: PMC8773891 DOI: 10.3390/biom12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
In 2021, approximately 248,530 new prostate cancer (PCa) cases are estimated in the United States. Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. The objective of this study was to assess DNA methylation patterns between aggressive and indolent PCa along with ancestry proportions in 49 H/L men from Puerto Rico (PR). Prostate tumors were classified as aggressive (n = 17) and indolent (n = 32) based on the Gleason score. Genomic DNA samples were extracted by macro-dissection. DNA methylation patterns were assessed using the Illumina EPIC DNA methylation platform. We used ADMIXTURE to estimate global ancestry proportions. We identified 892 differentially methylated genes in prostate tumor tissues as compared with normal tissues. Based on an epigenetic clock model, we observed that the total number of stem cell divisions (TNSC) and stem cell division rate (SCDR) were significantly higher in tumor than adjacent normal tissues. Regarding PCa aggressiveness, 141 differentially methylated genes were identified. Ancestry proportions of PR men were estimated as African, European, and Indigenous American; these were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation profiles associated with risk and aggressiveness of PCa in PR H/L men will shed light on potential mechanisms contributing to PCa disparities in PR population.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jarline Encarnación-Medina
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Carmen Ortiz-Sanchéz
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Raymond Linares
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Joshua Marcial
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Caren Abreu-Takemura
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Natasha Moreno
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Ryan Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Carlos Diaz Osterman
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Liang Wang
- Department of Molecular Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Seung Joon Kim
- Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Korea;
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Oda S, Fujisawa M, Chunning L, Ito T, Yamaguchi T, Yoshimura T, Matsukawa A. Expression of Spred2 in the urothelial tumorigenesis of the urinary bladder. PLoS One 2021; 16:e0254289. [PMID: 34818323 PMCID: PMC8612556 DOI: 10.1371/journal.pone.0254289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of the Ras/Raf/ERK (extracellular-signal-regulated kinase)-MAPK (mitogen-activated protein kinase) pathway is involved in the progression of cancer, including urothelial carcinoma; but the negative regulation remains unclear. In the present study, we investigated pathological expression of Spred2 (Sprouty-related EVH1 domain-containing protein 2), a negative regulator of the Ras/Raf/ERK-MAPK pathway, and the relation to ERK activation and Ki67 index in various categories of 275 urothelial tumors obtained from clinical patients. In situ hybridization demonstrated that Spred2 mRNA was highly expressed in high-grade non-invasive papillary urothelial carcinoma (HGPUC), and the expression was decreased in carcinoma in situ (CIS) and infiltrating urothelial carcinoma (IUC). Immunohistochemically, membranous Spred2 expression, important to interact with Ras/Raf, was preferentially found in HGPUC. Interestingly, membranous Spred2 expression was decreased in CIS and IUC relative to HGPUC, while ERK activation and the expression of the cell proliferation marker Ki67 index were increased. HGPUC with membranous Spred2 expression correlated significantly with lower levels of ERK activation and Ki67 index as compared to those with negative Spred2 expression. Thus, our pathological findings suggest that Spred2 counters cancer progression in non-invasive papillary carcinoma possibly through inhibiting the Ras/Raf/ERK-MAPK pathway, but this regulatory mechanism is lost in cancers with high malignancy. Spred2 appears to be a key regulator in the progression of non-invasive bladder carcinoma.
Collapse
Affiliation(s)
- Shinsuke Oda
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Li Chunning
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Japan
| | - Takahiro Yamaguchi
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
11
|
Kumar S, Sarthi P, Mani I, Ashraf MU, Kang MH, Kumar V, Bae YS. Epitranscriptomic Approach: To Improve the Efficacy of ICB Therapy by Co-Targeting Intracellular Checkpoint CISH. Cells 2021; 10:2250. [PMID: 34571899 PMCID: PMC8466810 DOI: 10.3390/cells10092250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular immunotherapy has recently emerged as a fourth pillar in cancer treatment co-joining surgery, chemotherapy and radiotherapy. Where, the discovery of immune checkpoint blockage or inhibition (ICB/ICI), anti-PD-1/PD-L1 and anti-CTLA4-based, therapy has revolutionized the class of cancer treatment at a different level. However, some cancer patients escape this immune surveillance mechanism and become resistant to ICB-therapy. Therefore, a more advanced or an alternative treatment is required urgently. Despite the functional importance of epitranscriptomics in diverse clinico-biological practices, its role in improving the efficacy of ICB therapeutics has been limited. Consequently, our study encapsulates the evidence, as a possible strategy, to improve the efficacy of ICB-therapy by co-targeting molecular checkpoints especially N6A-modification machineries which can be reformed into RNA modifying drugs (RMD). Here, we have explained the mechanism of individual RNA-modifiers (editor/writer, eraser/remover, and effector/reader) in overcoming the issues associated with high-dose antibody toxicities and drug-resistance. Moreover, we have shed light on the importance of suppressor of cytokine signaling (SOCS/CISH) and microRNAs in improving the efficacy of ICB-therapy, with brief insight on the current monoclonal antibodies undergoing clinical trials or already approved against several solid tumor and metastatic cancers. We anticipate our investigation will encourage researchers and clinicians to further strengthen the efficacy of ICB-therapeutics by considering the importance of epitranscriptomics as a personalized medicine.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Parth Sarthi
- University Department of Botany, M.Sc. Biotechnology, Ranchi University, Ranchi 834008, India;
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India;
| | - Muhammad Umer Ashraf
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Vishal Kumar
- Department of Pharmaceutical Science, Dayananda Sagar University, Bengaluru 560078, India;
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| |
Collapse
|
12
|
Ge X, Frank-Bertoncelj M, Klein K, McGovern A, Kuret T, Houtman M, Burja B, Micheroli R, Shi C, Marks M, Filer A, Buckley CD, Orozco G, Distler O, Morris AP, Martin P, Eyre S, Ospelt C. Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability. Genome Biol 2021; 22:247. [PMID: 34433485 PMCID: PMC8385949 DOI: 10.1186/s13059-021-02460-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genome-wide association studies have reported more than 100 risk loci for rheumatoid arthritis (RA). These loci are shown to be enriched in immune cell-specific enhancers, but the analysis so far has excluded stromal cells, such as synovial fibroblasts (FLS), despite their crucial involvement in the pathogenesis of RA. Here we integrate DNA architecture, 3D chromatin interactions, DNA accessibility, and gene expression in FLS, B cells, and T cells with genetic fine mapping of RA loci. RESULTS We identify putative causal variants, enhancers, genes, and cell types for 30-60% of RA loci and demonstrate that FLS account for up to 24% of RA heritability. TNF stimulation of FLS alters the organization of topologically associating domains, chromatin state, and the expression of putative causal genes such as TNFAIP3 and IFNAR1. Several putative causal genes constitute RA-relevant functional networks in FLS with roles in cellular proliferation and activation. Finally, we demonstrate that risk variants can have joint-specific effects on target gene expression in RA FLS, which may contribute to the development of the characteristic pattern of joint involvement in RA. CONCLUSION Overall, our research provides the first direct evidence for a causal role of FLS in the genetic susceptibility for RA accounting for up to a quarter of RA heritability.
Collapse
Affiliation(s)
- Xiangyu Ge
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Mojca Frank-Bertoncelj
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kerstin Klein
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Amanda McGovern
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tadeja Kuret
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia
| | - Miranda Houtman
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Blaž Burja
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia
| | - Raphael Micheroli
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Andrew Filer
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - Christopher D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Martin
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK
| | - Caroline Ospelt
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Abstract
The roles of SPRED proteins in signaling, development, and cancer are becoming increasingly recognized. SPRED proteins comprise an N-terminal EVH-1 domain, a central c-Kit-binding domain, and C-terminal SROUTY domain. They negatively regulate signaling from tyrosine kinases to the Ras-MAPK pathway. SPRED1 binds directly to both c-KIT and to the RasGAP, neurofibromin, whose function is completely dependent on this interaction. Loss-of-function mutations in SPRED1 occur in human cancers and cause the developmental disorder, Legius syndrome. Genetic ablation of SPRED genes in mice leads to behavioral problems, dwarfism, and multiple other phenotypes including increased risk of leukemia. In this review, we summarize and discuss biochemical, structural, and biological functions of these proteins including their roles in normal cell growth and differentiation and in human disease.
Collapse
Affiliation(s)
- Claire Lorenzo
- Helen Diller Family Comprehensive Cancer, University of California at San Francisco, San Francisco, California 94158, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
14
|
Lewis M, Prouzet‐Mauléon V, Lichou F, Richard E, Iggo R, Turcq B, Mahon F. A genome-scale CRISPR knock-out screen in chronic myeloid leukemia identifies novel drug resistance mechanisms along with intrinsic apoptosis and MAPK signaling. Cancer Med 2020; 9:6739-6751. [PMID: 38831555 PMCID: PMC7520295 DOI: 10.1002/cam4.3231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding resistance mechanisms in cancer is of utmost importance for the discovery of novel "druggable" targets. Efficient genetic screening, now even more possible with CRISPR-Cas9 gene-editing technology, next-generation sequencing and bioinformatics, is an important tool for deciphering novel cellular processes, such as resistance to treatment in cancer. Imatinib specifically eliminates chronic myeloid leukemia (CML) cells by targeting and blocking the kinase activity of BCR-ABL1; however, resistance to treatment exists. In order to discover BCR-ABL1 independent mechanisms of imatinib resistance, we utilized the genome-scale CRISPR knock-out library to screen for imatinib-sensitizing genes in vitro on K562 cells. We revealed genes that seem essential for imatinib-induced cell death, such as proapoptotic genes (BIM, BAX) or MAPK inhibitor SPRED2. Specifically, reestablishing apoptosis in BIM knock-out (KO) cells with BH3 mimetics, or inhibiting MAPK signaling in SPRED2 KO cells with MEK inhibitors restores sensitivity to imatinib. In this work, we discovered previously identified pathways and novel pathways that modulate response to imatinib in CML cell lines, such as the implication of the Mediator complex, mRNA processing and protein ubiquitinylation. Targeting these specific genetic lesions with combinational therapy can overcome resistance phenotypes and paves the road for the use of precision oncology.
Collapse
Affiliation(s)
- Matthieu Lewis
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Valérie Prouzet‐Mauléon
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Florence Lichou
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Elodie Richard
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Richard Iggo
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Béatrice Turcq
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - François‐Xavier Mahon
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| |
Collapse
|
15
|
Gong J, Yan Z, Liu Q. Progress in experimental research on SPRED protein family. J Int Med Res 2020; 48:300060520929170. [PMID: 32851895 PMCID: PMC7457668 DOI: 10.1177/0300060520929170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology-1 (EVH-1) domain (SPRED) family of proteins was discovered in 2001. These Sprouty-related tyrosine kinase-binding proteins negatively regulate a variety of growth factor-induced Ras/ERK signaling pathways. In recent years, SPRED proteins have been found to regulate vital activities such as cell development, movement, and proliferation, and to participate in pathophysiological processes such as tumor metastasis, hematopoietic regulation, and allergic reactions. The findings of these studies have important implications regarding the involvement of SPRED proteins in disease. Early studies of SPRED proteins focused mainly on various tumors, cardiovascular diseases, and organ development. However, in recent years, great progress has been made in elucidating the role of SPRED proteins in neuropsychiatric, inflammatory, endocrine, and ophthalmic diseases. This article provides a review of the experimental studies performed in recent years on the SPRED proteins and their role in the pathogenesis of certain diseases.
Collapse
Affiliation(s)
- Jian Gong
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Zhangren Yan
- Department of Dermatology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Qiao Liu
- Department of Dermatology, The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
16
|
Wang H, Liu S, Kong F, Xiao F, Li Y, Wang H, Zhang S, Huang D, Wang L, Yang Y. Spred2 inhibits epithelial‑mesenchymal transition of colorectal cancer cells by impairing ERK signaling. Oncol Rep 2020; 44:174-184. [PMID: 32319644 PMCID: PMC7251656 DOI: 10.3892/or.2020.7586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
Downregulation of the sprouty-related EVH1 domain protein 2 (Spred2) is closely associated with highly metastatic phenotypes in various tumors. However, the roles of Spred2 in the development and progression of colorectal cancer (CRC) are still largely unexplored. As anticipated, Spred2 expression was significantly downregulated in clinical tumor tissues. To restore Spred2 levels, Ad.Spred2, an adenoviral vector expressing Spred2, was transduced into CRC cells. It was revealed that Ad.Spred2 inhibited the proliferation and decreased the survival and migration of SW480 cells. Epithelial-mesenchymal transition (EMT) is an essential event during tumor metastasis to distant sites. It was revealed that Ad.Spred2 markedly inhibited EMT by promoting F-actin reorganization, upregulating E-cadherin levels and reducing vimentin protein expression. Notably, extracellular-regulated kinase (ERK) signaling inhibition by PD98059 induced similar effects on EMT in CRC cells, indicating that Ad.Spred2 regulated EMT in CRC cells in an ERK-dependent manner. Transforming growth factor β (TGF-β), a well-known inducer of EMT, increased E-cadherin expression, decreased vimentin expression and promoted migration in CRC cells. However, neither Ad.Spred2 nor PD98059 had an obvious effect on the expression of SMAD2/3 or SMAD4 in SW480 cells, indicating that Ad.Spred2 inhibited EMT in a SMAD-independent manner. Notably, Ad.Spred2 transduction downregulated SAMD2/3 and SMAD4 levels in HCT116 cells in an ERK-independent manner. It was speculated that Ad.Spred2 inhibited the EMT of HCT116 cells by both blocking ERK signaling and reducing SMAD signaling. It was concluded that Spred2 inhibited EMT in CRC cells by interfering with ERK signaling, with or without reduced SMAD signaling. Therefore, the introduction of the clinical application of Spred2 has great potential for development as a gene therapy approach for CRC.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Fanxuan Kong
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuxiang Li
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hua Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shun Zhang
- Department of Experimental Medical Science and Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Dandan Huang
- Department of Experimental Medical Science and Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Lisheng Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuefeng Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
17
|
Weidle UH, Schmid D, Birzele F, Brinkmann U. MicroRNAs Involved in Metastasis of Hepatocellular Carcinoma: Target Candidates, Functionality and Efficacy in Animal Models and Prognostic Relevance. Cancer Genomics Proteomics 2020; 17:1-21. [PMID: 31882547 PMCID: PMC6937123 DOI: 10.21873/cgp.20163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is responsible for the second-leading cancer-related death toll worldwide. Although sorafenib and levantinib as frontline therapy and regorafenib, cabazantinib and ramicurimab have now been approved for second-line therapy, the therapeutic benefit is in the range of only a few months with respect to prolongation of survival. Aggressiveness of HCC is mediated by metastasis. Intrahepatic metastases and distant metastasis to the lungs, lymph nodes, bones, omentum, adrenal gland and brain have been observed. Therefore, the identification of metastasis-related new targets and treatment modalities is of paramount importance. In this review, we focus on metastasis-related microRNAs (miRs) as therapeutic targets for HCC. We describe miRs which mediate or repress HCC metastasis in mouse xenograft models. We discuss 18 metastasis-promoting miRs and 35 metastasis-inhibiting miRs according to the criteria as outlined. Six of the metastasis-promoting miRs (miR-29a, -219-5p, -331-3p, 425-5p, -487a and -1247-3p) are associated with unfavourable clinical prognosis. Another set of six down-regulated miRs (miR-101, -129-3p, -137, -149, -503, and -630) correlate with a worse clinical prognosis. We discuss the corresponding metastasis-related targets as well as their potential as therapeutic modalities for treatment of HCC-related metastasis. A subset of up-regulated miRs -29a, -219-5p and -425-5p and down-regulated miRs -129-3p and -630 were evaluated in orthotopic metastasis-related models which are suitable to mimic HCC-related metastasis. Those miRNAs may represent prioritized targets emerging from our survey.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Daniela Schmid
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
18
|
Peng W, Li J, Chen R, Gu Q, Yang P, Qian W, Ji D, Wang Q, Zhang Z, Tang J, Sun Y. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:393. [PMID: 31492150 PMCID: PMC6729001 DOI: 10.1186/s13046-019-1408-4] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND m6A modification has been proved to play an important role in many biological processes. METTL3 as the main methyltransferase for methylation process has been found to be upregulated in many cancers, including CRC. Here, we investigate m6A modification and the underlying mechanism of METTL3 in the development of CRC. METHODS The expression of METTL3 was detected in large clinical patient samples. To evaluate the function of METTL3 in vitro and in vivo, colony formation, CCK-8, cell migration and invasion assays were performed. To find out the downstream target of METTL3, GEO dataset was re-mined. We analyzed expression and metastasis-related miRNA by Pearson correlation, and miR-1246 was selected. Here, to identify the downstream target of miR-1246, Targetscan and miRWalk were used. RIP and luciferase reporter assay further confirmed SPRED2 as the direct target of miR-1246. RESULTS We found that upregulated METTL3 is responsible for abnormal m6A modification in CRC and correlates positively with tumor metastasis. The gain- and loss-of-function indicates that METTL3 promotes cell migration and invasion in vitro and in vivo. Additionally, we confirmed that METTL3 can methylate pri-miR-1246, which further promotes the maturation of pri-miR-1246. By using bioinformatics tools, anti-oncogene SPRED2 was identified as the downstream target of miR-1246, wherein downregulated SPRED2 further reverses the inhibition of the MAPK pathway. CONCLUSIONS The present study demonstrates that the METTL3/miR-1246/SPRED2 axis plays an important role in tumor metastasis and provides a new m6A modification pattern in CRC development.
Collapse
Affiliation(s)
- Wen Peng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Jie Li
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Ranran Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Qiou Gu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Peng Yang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Wenwei Qian
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Dongjian Ji
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Qingyuan Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Zhiyuan Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Junwei Tang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| | - Yueming Sun
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
19
|
Kawazoe T, Taniguchi K. The Sprouty/Spred family as tumor suppressors: Coming of age. Cancer Sci 2019; 110:1525-1535. [PMID: 30874331 PMCID: PMC6501019 DOI: 10.1111/cas.13999] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023] Open
Abstract
The Ras/Raf/ERK pathway is one of the most frequently dysregulated signaling pathways in various cancers. In some such cancers, Ras and Raf are hotspots for mutations, which cause continuous activation of this pathway. However, in some other cancers, it is known that negative regulators of the Ras/Raf/ERK pathway are responsible for uncontrolled activation. The Sprouty/Spred family is broadly recognized as important negative regulators of the Ras/Raf/ERK pathway, and its expression is downregulated in many malignancies, leading to hyperactivation of the Ras/Raf/ERK pathway. After the discovery of this family, intensive research investigated the mechanism by which it suppresses the Ras/Raf/ERK pathway and its roles in developmental and pathophysiological processes. In this review, we discuss the complicated roles of the Sprouty/Spred family in tumor initiation, promotion, and progression and its future therapeutic potential.
Collapse
Affiliation(s)
- Tetsuro Kawazoe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Boucherie C, Boutin C, Jossin Y, Schakman O, Goffinet AM, Ris L, Gailly P, Tissir F. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice. Mol Psychiatry 2018; 23:723-734. [PMID: 29257130 PMCID: PMC5822457 DOI: 10.1038/mp.2017.236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023]
Abstract
The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex.
Collapse
Affiliation(s)
- C Boucherie
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - C Boutin
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Y Jossin
- Université catholique de Louvain, Institute of Neuroscience, Mammalian Development and Cell Biology, Brussels, Belgium
| | - O Schakman
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, Brussels, Belgium
| | - A M Goffinet
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - L Ris
- Neuroscience Unit Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - P Gailly
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, Brussels, Belgium
| | - F Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
21
|
Jiang K, Liu M, Lin G, Mao B, Cheng W, Liu H, Gal J, Zhu H, Yuan Z, Deng W, Liu Q, Gong P, Bi X, Meng S. Tumor suppressor Spred2 interaction with LC3 promotes autophagosome maturation and induces autophagy-dependent cell death. Oncotarget 2018; 7:25652-67. [PMID: 27028858 PMCID: PMC5041934 DOI: 10.18632/oncotarget.8357] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 03/12/2016] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor Spred2 (Sprouty-related EVH1 domain-2) induces cell death in a variety of cancers. However, the underlying mechanism remains to be elucidated. Here we show that Spred2 induces caspase-independent but autophagy-dependent cell death in human cervical carcinoma HeLa and lung cancer A549 cells. We demonstrate that ectopic Spred2 increased both the conversion of microtubule-associated protein 1 light chain 3 (LC3), GFP-LC3 puncta formation and p62/SQSTM1 degradation in A549 and HeLa cells. Conversely, knockdown of Spred2 in tumor cells inhibited upregulation of autophagosome maturation induced by the autophagy inducer Rapamycin, which could be reversed by the rescue Spred2. These data suggest that Spred2 promotes autophagy in tumor cells. Mechanistically, Spred2 co-localized and interacted with LC3 via the LC3-interacting region (LIR) motifs in its SPR domain. Mutations in the LIR motifs or deletion of the SPR domain impaired Spred2-mediated autophagosome maturation and tumor cell death, indicating that functional LIR is required for Spred2 to trigger tumor cell death. Additionally, Spred2 interacted and co-localized with p62/SQSTM1 through its SPR domain. Furthermore, the co-localization of Spred2, p62 and LAMP2 in HeLa cells indicates that p62 may be involved in Spred2-mediated autophagosome maturation. Inhibition of autophagy using the lysosomal inhibitor chloroquine, reduced Spred2-mediated HeLa cell death. Silencing the expression of autophagy-related genes ATG5, LC3 or p62 in HeLa and A549 cells gave similar results, suggesting that autophagy is required for Spred2-induced tumor cell death. Collectively, these data indicate that Spred2 induces tumor cell death in an autophagy-dependent manner.
Collapse
Affiliation(s)
- Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Min Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Guibin Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Beibei Mao
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Jozsef Gal
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zengqiang Yuan
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wuguo Deng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Peng Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaolin Bi
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| |
Collapse
|
22
|
Chang RM, Xiao S, Lei X, Yang H, Fang F, Yang LY. miRNA-487a Promotes Proliferation and Metastasis in Hepatocellular Carcinoma. Clin Cancer Res 2016; 23:2593-2604. [PMID: 27827315 DOI: 10.1158/1078-0432.ccr-16-0851] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Hepatocellular carcinoma (HCC) harbors highly metastatic properties, accounting for postoperative recurrence and metastasis. However, the mechanisms for metastasis and recurrence remain incompletely clear. This study aimed to investigate the role of hsa-miR-487a (miR-487a) in promoting the proliferation and metastasis of HCC and to elucidate the underlying molecular mechanisms.Experimental Design: 198 HCC samples were analyzed for association between miR-487a expression and patient clinicopathological features and prognosis. The roles of miR-487a in proliferation and metastasis were validated both in vivo and in vitro The upstream regulator and downstream targets of miR-487a were determined using a dual luciferase reporter assay, chromatin immunoprecipitation and immunohistochemistry.Results: Our results demonstrate that upregulated miR-487a correlates with a poor prognosis for HCC patients. miR-487a enhances proliferation and metastasis of HCC cells by directly binding to sprouty-related EVH1 domain containing 2 (SPRED2) or phosphoinositide-3-Kinase regulatory subunit 1 (PIK3R1). Interestingly, miR-487a mainly promotes metastasis via SPRED2 induced mitogen activated protein kinase signaling and promotes proliferation via PIK3R1 mediated AKT signaling. Transcription of miR-487a was found to be activated by up-regulated heat shock factor 1, which we previously demonstrated to be an important metastasis-associated transcription factor in a previous study. Phosphorodiamidate morpholino oligomers effectively silenced miR-487a and inhibited HCC tumor progression in mouse models.Conclusions: Our findings show that miR-487a, mediated by heat shock factor 1, promotes proliferation and metastasis of HCC by PIK3R1 and SPRED2 binding, respectively. Our study provides a rationale for developing miR-487a as a potential prognostic marker or a potential therapeutic target against HCC. Clin Cancer Res; 23(10); 2593-604. ©2016 AACR.
Collapse
Affiliation(s)
- Rui-Min Chang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Xiao
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong Lei
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Fang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Lim FT, Ogawa S, Parhar IS. Spred-2 expression is associated with neural repair of injured adult zebrafish brain. J Chem Neuroanat 2016; 77:176-186. [PMID: 27427471 DOI: 10.1016/j.jchemneu.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 01/11/2023]
Abstract
Sprouty-related protein-2 (Spred-2) is a negative regulator of extracellular signal-regulated kinases (ERK) pathway, which is important for cell proliferation, neuronal differentiation, plasticity and survival. Nevertheless, its general molecular characteristics such as gene expression patterns and potential role in neural repair in the brain remain unknown. Thus, this study aimed to characterise the expression of spred-2 in the zebrafish brain. Digoxigenin-in situ hybridization showed spred-2 mRNA-expressing cells were mainly seen in the proliferative zones such as the olfactory bulb, telencephalon, optic tectum, cerebellum, and the dorsal and ventral hypothalamus, and most of which were neuronal cells. To evaluate the potential role of spred-2 in neuro-regeneration, spred-2 gene expression was examined in the dorsal telencephalon followed by mechanical-lesion. Real-time PCR showed a significant reduction of spred-2 mRNA levels in the telencephalon on 1-day till 2-days post-lesion and gradually increased to normal levels as compared with intact. Furthermore, to confirm involvement of Spred-2 signalling in the cell proliferation after brain injury, double-labelling of spred-2 in-situ hybridization with immunofluorescence of BrdU and phosphorylated-ERK1/2 (p-ERK1/2), a downstream of Spred-2 was performed. Increase of BrdU and p-ERK1/2 immunoreactive cells suggest that a decrease in spred-2 after injury might associated with activation of the ERK pathway to stimulate cell proliferation in the adult zebrafish brain. The present study demonstrates the possible role of Spred-2 signalling in cell proliferative phase during the neural repair in the injured zebrafish brain.
Collapse
Affiliation(s)
- Fei Tieng Lim
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
24
|
Lv X, Feng L, Ge X, Lu K, Wang X. Interleukin-9 promotes cell survival and drug resistance in diffuse large B-cell lymphoma. J Exp Clin Cancer Res 2016; 35:106. [PMID: 27364124 PMCID: PMC4929715 DOI: 10.1186/s13046-016-0374-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022] Open
Abstract
Background Interleukin-9 (IL-9) was discovered as a helper T cell growth factor. It has long been recognized as an important regulator in allergic inflammation. Recent years it was discovered to induce cell growth and differentiation of multiple transformed cells. However, its oncogenic activities in B-cell lymphomas have not been reported in detail. Methods Serum levels of IL-9 in DLBCL patients were quantified by ELISA, and its clinical significance was analysed. The expression of IL-9 receptor (IL-9R) was investigated in lymphoma cell lines by RT-PCR and western blot, respectively. In DLBCL cell lines LY1 and LY8, IL-9R genes were knocked down by RNA interference and stable transfected cells were selected with puromycin. Normal and final siIL-9R (and siControl) LY1 and LY8 cells were treated with IL-9 alone and in synergy with chemotherapeutic drugs. Cell proliferation and apoptosis were assessed by Brdu incorporation and flow cytometric analysis. The mRNA of apoptosis regulation genes were measured with real-time PCR. Results Elevated serum levels of IL-9 were detected in DLBCL patients (24/30) compared to healthy controls (0/15). Positive expression of IL-9 (defined as a serum level ≥1 pg/ml) was correlated with lower serum albumin levels and high international prognostic index (IPI) scores. IL-9R was expressed in both mRNA and protein levels in the five lymphoma cell lines, including LY1, LY8, MINO, SP53 and Jurkat. In vitro studies showed that IL-9 directly induced proliferation and inhibited apoptosis in LY1 and LY8 cells. It protects LY1 and LY8 cells from prednisolone induced apoptosis, and promotes their proliferation that were inhibited by rituximab, vincristine and prednisolone. Its molecular mechanism may be concerned with upregulating expression of p21CIP1 gene. Knock-down of IL-9R gene could reverse the effects of IL-9 on LY1 and LY8 cells. Conclusions IL-9 is associated with clinical features of DLBCL patients. It promotes survival of DLBCL cells and reduces the sensitivities of tumor cells to chemotherapeutic drugs via upregulation of p21CIP1 genes. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0374-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Lili Feng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
25
|
Chen KC, Liao YC, Wang JY, Lin YC, Chen CH, Juo SHH. Oxidized low-density lipoprotein is a common risk factor for cardiovascular diseases and gastroenterological cancers via epigenomical regulation of microRNA-210. Oncotarget 2015; 6:24105-24118. [PMID: 26254226 PMCID: PMC4695173 DOI: 10.18632/oncotarget.4152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/21/2015] [Indexed: 01/11/2023] Open
Abstract
Hyperlipidemia, including the oxidized low-density lipoprotein (oxLDL) accumulation, is a risk and highly associated with the development of cancers and cardiovascular diseases. microRNA-210 (miR-210), a hypoxia-responsive microRNA regulated by HIF-1α, has been implicated in cancer and cardiovascular disease formation. Furthermore, Bioinformatics analysis revealed that the promoter of the miR-210 gene contains CpG-rich regions. It is unclear whether miR-210 expression could be epigenetically regulated in these disease progresses. The study aimed to explore the relationships between lipid and miR-210 in the context of cardiovascular disease and gastrointestinal cancer. We demonstrated oxLDL can decrease methylation in the miR-210 promoter to up-regulate miR-210. HIF-1α can bind to miR-210 promoter, but this HIF-1α binding site can be blocked by methylation. We showed that subjects of carotid atherosclerosis, stroke patients and cancer patients had hypomethylation in the miR-210 promoter, especially the HIF-1α binding site. Furthermore, miR-210 can directly inhibit sprouty-related EVH1 domain 2 (SPRED2) expressions, and SPRED2 reduces cell migration via ERK/c-Fos/MMPs pathways. Increased miR-210 and reduced SPRED2 levels were found in aorta of mice under high-fat diet and tumor tissues, which implied that miR-210 can be an underlying mechanism to explain oxLDL as a common risk factor for cardiovascular disease and gastrointestinal cancer.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Suh-Hang Hank Juo
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Assinder SJ, Beniamen D, Lovicu FJ. Cosuppression of Sprouty and Sprouty-related negative regulators of FGF signalling in prostate cancer: a working hypothesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:827462. [PMID: 26075267 PMCID: PMC4449890 DOI: 10.1155/2015/827462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/14/2014] [Indexed: 11/17/2022]
Abstract
Deregulation of FGF receptor tyrosine kinase (RTK) signalling is common in prostate cancer. Normally, to moderate RTK signalling, induction of Sprouty (SPRY) and Sprouty-related (SPRED) antagonists occurs. Whilst decreased SPRY and SPRED has been described in some cancers, their role in prostate cancer is poorly understood. Therefore, we hypothesise that due to the need for tight regulation of RTK signalling, SPRY and SPRED negative regulators provide a degree of redundancy which ensures that a suppression of one or more family member does not lead to disease. Contrary to this, our analyses of prostates from 24-week-old Spry1- or Spry2-deficientmice, either hemizygous (+/-) or homozygous (-/-) for the null allele, revealed a significantly greater incidence of PIN compared to wild-type littermates. We further investigated redundancy of negative regulators in the clinical setting in a preliminary analysis of Gene Expression Omnibus and Oncomine human prostate cancer datasets. Consistent with our hypothesis, in two datasets analysed a significant cosuppression of SPRYs and SPREDs is evident. These findings demonstrate the importance of negative regulators of receptor tyrosine signalling, such as Spry, in the clinical setting, and highlight their importance for future pharmacopeia.
Collapse
Affiliation(s)
- Stephen J. Assinder
- Disciplines of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniella Beniamen
- Disciplines of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank J. Lovicu
- Anatomy and Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Kachroo N, Warren AY, Gnanapragasam VJ. Multi-transcript profiling in archival diagnostic prostate cancer needle biopsies to evaluate biomarkers in non-surgically treated men. BMC Cancer 2014; 14:673. [PMID: 25227682 PMCID: PMC4174634 DOI: 10.1186/1471-2407-14-673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/04/2014] [Indexed: 11/24/2022] Open
Abstract
Background Most biomarkers in prostate cancer have only been evaluated in surgical cohorts. The value of these biomarkers in a different therapy context remains unclear. Our objective was to test a panel of surgical biomarkers for prognostic value in men treated by external beam radiotherapy (EBRT) and primary androgen deprivation therapy (PADT). Methods The Fluidigm® PCR array was used for multi-transcript profiling of laser microdissected tumours from archival formalin-fixed diagnostic biopsies of patients treated by EBRT or PADT. Cases were matched for disease characteristics and had known 5 year biochemical relapse outcomes (n = 60). Results were validated by immunohistochemistry in a custom needle biopsy tissue microarray. Six biomarkers previously tested only in surgical cohorts were analysed (PTEN, E-Cadherin, EGFR, EZH2, PSMA, MSMB). Transcript and protein expression was correlated with clinical outcome analysed using Kruskal Wallis, Fisher’s test and Cox proportional hazard model. Results Altered expression of E-Cadherin (p = 0.008) was associated with early relapse after EBRT. In PADT treated men however only altered MSMB transcript was prognostic for early relapse (p = 0.001). The remaining biomarkers however did not demonstrate prognostic ability in either cohort. In a separate tissue array we validated altered E-Cadherin protein as a predictor of early relapse after EBRT (n = 47) (HR 0.34, CI p = 0.02) but not in PADT treated men (n = 63). Conclusion We demonstrate proof of principle of multiple transcript profiling in archival diagnostic biopsies of non-surgically treated men for biomarker discovery. We identify a role for E-Cadherin as a novel biomarker of early relapse following EBRT.
Collapse
Affiliation(s)
| | | | - Vincent J Gnanapragasam
- Translational Prostate Cancer Group, Hutchison/MRC research centre, University of Cambridge, Hills Road, CB1 0XZ Cambridge, UK.
| |
Collapse
|