1
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
2
|
Paolino G, Pampena R, Di Ciaccio SM, Carugno A, Cantisani C, Di Nicola MR, Losco L, Bortone G, Mercuri SR, Costanzo A, Ardigò M, Valenti M. Thin Amelanotic and Hypomelanotic Melanoma: Clinicopathological and Dermoscopic Features. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1239. [PMID: 39202520 PMCID: PMC11356094 DOI: 10.3390/medicina60081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Amelanotic/hypomelanotic melanomas (AHMs) account for 2-8% of all cutaneous melanomas. Due to their clinical appearance and the lack of specific dermoscopic indicators, AHMs are challenging to diagnose, particularly in thinner cutaneous lesions. The aim of our study was to evaluate the clinicopathological and dermoscopic features of thin AHMs. Identifying the baseline clinical-pathological features and dermoscopic aspects of thin AHMs is crucial to better understand this entity. Materials and Methods: We divided the AHM cohort into two groups based on Breslow thickness: thin (≤1.00 mm) and thick (>1.00 mm). This stratification helped identify any significant clinicopathological differences between the groups. For dermoscopic analysis, we employed the "pattern analysis" approach, which involves a simultaneous and subjective assessment of different criteria. Results: Out of the 2.800 melanomas analyzed for Breslow thickness, 153 were identified as AHMs. Among these, 65 patients presented with thin AHMs and 88 with thick AHMs. Red hair color and phototype II were more prevalent in patients with thin AHMs. The trunk was the most common anatomic site for thin AHMs. Patients with thin AHMs showed a higher number of multiple melanomas. Dermoscopic analysis revealed no significant difference between thin AHMs and thick AHMs, except for a more frequent occurrence of residual reticulum in thin AHMs. Conclusions: Thin AHMs typically affect individuals with lower phototypes and red hair color. These aspects can be related to the higher presence of pheomelanin, which provides limited protection against sun damage. This also correlates with the fact that the trunk, a site commonly exposed to intermittent sun exposure, is the primary anatomical location for thin AHMs. Multiple primary melanomas are more common in patients with thin AHMs, likely due to an intrinsic predisposition as well as greater periodic dermatologic follow-ups in this class of patients. Apart from the presence of residual reticulum, no other significant dermoscopic differences were observed, complicating the differential diagnosis between thin and thick AHMs based on dermoscopy alone.
Collapse
Affiliation(s)
- Giovanni Paolino
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.P.); (S.R.M.)
| | - Riccardo Pampena
- La Sapienza University of Rome, 00185 Rome, Italy; (R.P.); (S.M.D.C.)
| | | | - Andrea Carugno
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Carmen Cantisani
- Dermatologic Clinic, La Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (G.B.)
| | - Matteo Riccardo Di Nicola
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.P.); (S.R.M.)
| | - Luigi Losco
- Plastic Surgery Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Baronissi, Italy;
| | - Giulio Bortone
- Dermatologic Clinic, La Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (G.B.)
| | - Santo Raffaele Mercuri
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (G.P.); (S.R.M.)
- UniSr Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Antonio Costanzo
- Dermatology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.C.); (M.A.); (M.V.)
| | - Marco Ardigò
- Dermatology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.C.); (M.A.); (M.V.)
| | - Mario Valenti
- Dermatology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.C.); (M.A.); (M.V.)
| |
Collapse
|
3
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Stevenson VB, Klahn S, LeRoith T, Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front Vet Sci 2023; 9:1046636. [PMID: 36686160 PMCID: PMC9853198 DOI: 10.3389/fvets.2022.1046636] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma.
Collapse
Affiliation(s)
- Valentina B. Stevenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Shawna Klahn
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - William R. Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Carotenuto P, Romano A, Barbato A, Quadrano P, Brillante S, Volpe M, Ferrante L, Tammaro R, Morleo M, De Cegli R, Iuliano A, Testa M, Andreone F, Ciliberto G, Clery E, Troncone G, Palma G, Arra C, Barbieri A, Capone M, Madonna G, Ascierto PA, Lanfrancone L, Indrieri A, Franco B. Targeting the MITF/APAF-1 axis as salvage therapy for MAPK inhibitors in resistant melanoma. Cell Rep 2022; 41:111601. [DOI: 10.1016/j.celrep.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/09/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
|
6
|
Hua W, Huang X, Li J, Feng W, Sun Y, Guo C. 2-methoxyestradiol inhibits melanoma cell growth by activating adaptive immunity. Immunopharmacol Immunotoxicol 2022; 44:541-547. [PMID: 35451929 DOI: 10.1080/08923973.2022.2062380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background: The overall survival of melanoma patients remains poor despite advancements in surgical treatment and targeted therapies. Therefore, there is a need to develop new therapeutic strategies for melanoma. 2-methoxyestradiol (2-ME) is a major metabolite of estrogen that has been shown to have anti-tumor effects against many malignancies. However, the effects and mechanisms of action of 2-ME against melanoma remain unclear.Materials and methods: Melanoma cells (B16) were treated with 2-ME in vitro. Cell proliferation was detected by CCK8 and clone formation, transwell was carried out to measure the migration of B16 cells with or without 2-ME. Flow cytometry was performed to measure the apoptosis and cell cycle. C57BL/6 mice were used for tumor-bearing of B16 cells, tumor volumes were measured once a day, and sacrificed after it was over 2000 mm3, then immunofluorescence was implemented to examine the marker of CD3, CD8 and PD-L1.Results: In our study, we found that 2-ME significantly affected the proliferation, migration, apoptosis, and cell cycle of melanoma in vitro. Our results also showed that 2-ME had strong anti-tumor effects against melanoma in vivo and increased the infiltration of tumor-specific cytotoxic lymphocytes CD8+ T cells in the tumor microenvironment. Besides, PD-L1 expression in tumor cells was significantly higher in the 2-ME-treated group than in the control group, indicating that 2-ME could exhibit stronger anti-tumor effects against melanoma if combined with PD-1 blockade therapy.Conclusion: 2-ME suppresses melanoma in vivo and in vitro and is a promising synergistic enhancer of PD-1 blockade immunotherapy.
Collapse
Affiliation(s)
- Weitian Hua
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| | - Xingfeng Huang
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| | - Jingyu Li
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| | - Wei Feng
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| | - Chengrui Guo
- Center for Plastic & Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Castro KADF, Prandini JA, Biazzotto JC, Tomé JPC, da Silva RS, Lourenço LMO. The Surprisingly Positive Effect of Zinc-Phthalocyanines With High Photodynamic Therapy Efficacy of Melanoma Cancer. Front Chem 2022; 10:825716. [PMID: 35360535 PMCID: PMC8964275 DOI: 10.3389/fchem.2022.825716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
Phthalocyanine (Pc) dyes are photoactive molecules that can absorb and emit light in the visible spectrum, especially in the red region of the spectrum, with great potential for biological scopes. For this target, it is important to guarantee a high Pc solubility, and the use of suitable pyridinium units on their structure can be a good strategy to use effective photosensitizers (PSs) for photodynamic therapy (PDT) against cancer cells. Zn(II) phthalocyanines (ZnPcs) conjugated with thiopyridinium units (1–3) were evaluated as PS drugs against B16F10 melanoma cells, and their photophysical, photochemical, and in vitro photobiological properties were determined. The photodynamic efficiency of the tetra- and octa-cationic ZnPcs 1–3 was studied and compared at 1, 2, 5, 10, and 20 µM. The different number of charge units, and the presence/absence of a-F atoms on the Pc structure, contributes for their PDT efficacy. The 3-(4′,5′-dimethylthiazol-2′-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays on B16F10 melanoma cells show a moderate to high capacity to be photoinactivated by ZnPcs 1–3 (ZnPc 1 > ZnPc 2 > ZnPc 3). The best PDT conditions were found at a Pc concentration of 20 μM, under red light (λ = 660 ± 20 nm) at an irradiance of 4.5 mW/cm2 for 667 s (light dose of 3 J/cm2). In these conditions, it is noteworthy that the cationic ZnPc 1 shows a promising photoinactivation ratio, reaching the detection limit of the MTT method. Moreover, these results are comparable to the better ones in the literature.
Collapse
Affiliation(s)
- Kelly A. D. F. Castro
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana A. Prandini
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Cristina Biazzotto
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João P. C. Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Roberto S. da Silva
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Roberto S. da Silva, ; Leandro M. O. Lourenço,
| | - Leandro M. O. Lourenço
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
- *Correspondence: Roberto S. da Silva, ; Leandro M. O. Lourenço,
| |
Collapse
|
8
|
Huo J, Wang Y, Zhang Y, Wang W, Yang P, Zhao W, Zhang M, Cui L, Zhang D. The LncRNA MIR155HG is Upregulated by SP1 in Melanoma Cells and Drives Melanoma Progression via Modulating the MiR-485-3p/PSIP1 Axis. Anticancer Agents Med Chem 2022; 22:152-159. [PMID: 34225636 DOI: 10.2174/1871520621666210322092906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND MIR155HG is a long non-coding RNA (lncRNA) that has been shown to be dysregulated in a range of tumor types, but the functions of this lncRNA in melanoma remain to be explored. OBJECTIVES We explored the functions of lncRNA MIR155HG in melanoma progression. METHODS The expression of miR155HG was analyzed in clinical melanoma. Bioinformatics analysis was performed to assess the potential tumor-related functions of miR155HG. The interaction of miR155HG and SP1 and the inhibition of PSIP1 by miR-485-3p were analyzed by ChIP, luciferase reporter experiments, and the biological effects in melanoma were explored by colony formation assays, EdU cell proliferation assays, Transwell analysis, and intracranial melanoma mouse model. RESULTS Herein, we found that MIR155HG was markedly upregulated in melanoma cell lines and tissues. We further determined that the SP1 transcription factor was responsible for driving MIR155HG upregulation in melanoma. Elevated MIR155HG levels were linked to decreased overall survival (OS) in melanoma patients, and we further determined that MIR155HG expression was an independent predictor of melanoma patient prognosis. When MIR155HG was knocked down in melanoma cells, this impaired their proliferative, migratory, and invasive activity. By using predictive bioinformatics analyses, we identified miR-485-3p as a microRNA (miRNA) capable of binding to both MIR155HG and the 3' UTR of PSIP1. CONCLUSION Together, these results suggest that MIR155HG is capable of promoting melanoma cell proliferation via the miR-485-3p/PSIP1 axis. These novel findings provide new insights into the development of melanoma, potentially highlighting future avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Jia Huo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuan Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yanfei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Wei Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Peiwen Yang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Wenwei Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Miaomiao Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Lu Cui
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Dingwei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
9
|
Road to Metastasis: The TWEAK Pathway as a Discriminant between Metastasizing and Non-Metastasizing Thick Melanomas. Int J Mol Sci 2021; 22:ijms221910568. [PMID: 34638912 PMCID: PMC8508767 DOI: 10.3390/ijms221910568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cutaneous melanoma (CM) is the most aggressive form of skin cancer, and its worldwide incidence is rapidly increasing. Early stages can be successfully treated by surgery, but once metastasis has occurred, the prognosis is poor. However, some 5-10% of thick (≥2 mm) melanomas do not follow this scenario and run an unpredictable course. Little is known about the factors that contribute to metastasis in some patient with thick melanomas and the lack thereof in thick melanoma patients who never develop metastatic disease. We were therefore interested to study differential gene expression and pathway analysis and compare non-metastatic and metastatic thick melanomas. We found that the TNF-like weak inducer of apoptosis (TWEAK) pathway was upregulated in thick non-metastasizing melanomas. MAP3K14 (NIK1), BIRC2 (cIAP1), RIPK1, CASP7, CASP8, and TNF play an important role in inhibiting proliferation and invasion of tumor cells via the activation of the non-canonical NF-κB signaling pathway. In particular, this pathway sensitizes melanoma cells to TNF-alpha and activates the apoptosis module of the TWEAK pathway in thick non-metastasizing melanomas. Hence, our study suggests a potential role of the TWEAK pathway in inhibiting thick melanoma from metastasis. Exploitation of these genes and the pathway they control may open future therapeutic avenues.
Collapse
|
10
|
Stevenson VB, Perry SN, Todd M, Huckle WR, LeRoith T. PD-1, PD-L1, and PD-L2 Gene Expression and Tumor Infiltrating Lymphocytes in Canine Melanoma. Vet Pathol 2021; 58:692-698. [PMID: 34169800 DOI: 10.1177/03009858211011939] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Melanoma in humans and dogs is considered highly immunogenic; however, the function of tumor-infiltrating lymphocytes (TILs) is often suppressed in the tumor microenvironment. In humans, current immunotherapies target checkpoint molecules (such as PD-L1, expressed by tumor cells), inhibiting their suppressive effect over TILs. The role of PD-L2, an alternative PD-1 ligand also overexpressed in malignant tumors and in patients with anti-PD-L1 resistance, remains poorly understood. In the current study, we evaluated the expression of checkpoint molecule mRNAs in canine melanoma and TILs. Analysis of checkpoint molecule gene expression was performed by RT-qPCR (real-time quantitative polymerase chain reaction) using total RNA isolated from formalin-fixed and paraffin-embedded melanomas (n = 22) and melanocytomas (n = 9) from the Virginia Tech Animal Laboratory Services archives. Analysis of checkpoint molecule expression revealed significantly higher levels of PDCD1 (PD-1) and CD274 (PD-L1) mRNAs and an upward trend in PDCD1LG2 (PD-L2) mRNA in melanomas relative to melanocytomas. Immunohistochemistry revealed markedly increased numbers of CD3+ T cells in the highest PD-1-expressing subgroup of melanomas compared to the lowest PD-1 expressors, whereas densities of IBA1+ cells (macrophages) were similar in both groups. CD79a+ cell numbers were low for both groups. As in human melanoma, overexpression of the PD-1/PD-L1/PD-L2 axis is a common feature of canine melanoma. High expression of PD-1 and PD-L1 correlates with increased numbers of CD3+ cells. Additionally, the high level of IBA1+ cells in melanomas with low PD-1 expression and low CD3+ cells levels suggest that the expression of checkpoint molecules is modulated by interactions between T cells and cancer cells rather than histiocytes.
Collapse
|
11
|
El Meskini R, Atkinson D, Kulaga A, Abdelmaksoud A, Gumprecht M, Pate N, Hayes S, Oberst M, Kaplan IM, Raber P, Van Dyke T, Sharan SK, Hollingsworth R, Day CP, Merlino G, Weaver Ohler Z. Distinct Biomarker Profiles and TCR Sequence Diversity Characterize the Response to PD-L1 Blockade in a Mouse Melanoma Model. Mol Cancer Res 2021; 19:1422-1436. [PMID: 33888600 DOI: 10.1158/1541-7786.mcr-20-0881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/09/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Only a subset of patients responds to immune checkpoint blockade (ICB) in melanoma. A preclinical model recapitulating the clinical activity of ICB would provide a valuable platform for mechanistic studies. We used melanoma tumors arising from an Hgftg;Cdk4R24C/R24C genetically engineered mouse (GEM) model to evaluate the efficacy of an anti-mouse PD-L1 antibody similar to the anti-human PD-L1 antibodies durvalumab and atezolizumab. Consistent with clinical observations for ICB in melanoma, anti-PD-L1 treatment elicited complete and durable response in a subset of melanoma-bearing mice. We also observed tumor growth delay or regression followed by recurrence. For early treatment assessment, we analyzed gene expression profiles, T-cell infiltration, and T-cell receptor (TCR) signatures in regressing tumors compared with tumors exhibiting no response to anti-PD-L1 treatment. We found that CD8+ T-cell tumor infiltration corresponded to response to treatment, and that anti-PD-L1 gene signature response indicated an increase in antigen processing and presentation, cytokine-cytokine receptor interaction, and natural killer cell-mediated cytotoxicity. TCR sequence data suggest that an anti-PD-L1-mediated melanoma regression response requires not only an expansion of the TCR repertoire that is unique to individual mice, but also tumor access to the appropriate TCRs. Thus, this melanoma model recapitulated the variable response to ICB observed in patients and exhibited biomarkers that differentiate between early response and resistance to treatment, providing a valuable platform for prediction of successful immunotherapy. IMPLICATIONS: Our melanoma model recapitulates the variable response to anti-PD-L1 observed in patients and exhibits biomarkers that characterize early antibody response, including expansion of the TCR repertoire.
Collapse
Affiliation(s)
- Rajaa El Meskini
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Alan Kulaga
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research (CCR), National Cancer Institute, Bethesda, Maryland.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Michelle Gumprecht
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nathan Pate
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | | | | | - Terry Van Dyke
- Mouse Cancer Genetics Program, CCR, NCI/NIH, Frederick, Maryland
| | - Shyam K Sharan
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland.,Mouse Cancer Genetics Program, CCR, NCI/NIH, Frederick, Maryland
| | | | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, CCR, NCI/NIH, Bethesda, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, CCR, NCI/NIH, Bethesda, Maryland
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
12
|
Di Martile M, Farini V, Consonni FM, Trisciuoglio D, Desideri M, Valentini E, D'Aguanno S, Tupone MG, Buglioni S, Ercolani C, Gallo E, Amadio B, Terrenato I, Foddai ML, Sica A, Del Bufalo D. Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages. J Immunother Cancer 2021; 8:jitc-2019-000489. [PMID: 32269145 PMCID: PMC7254128 DOI: 10.1136/jitc-2019-000489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background A bidirectional crosstalk between tumor cells and the surrounding microenvironment contributes to tumor progression and response to therapy. Our previous studies have demonstrated that bcl-2 affects melanoma progression and regulates the tumor microenvironment. The aim of this study was to evaluate whether bcl-2 expression in melanoma cells could influence tumor-promoting functions of tumor-associated macrophages, a major constituent of the tumor microenvironment that affects anticancer immunity favoring tumor progression. Methods THP-1 monocytic cells, monocyte-derived macrophages and melanoma cells expressing different levels of bcl-2 protein were used. ELISA, qRT-PCR and Western blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Chromatin immunoprecipitation assay was performed to evaluate transcription factor recruitment at specific promoters. Boyden chamber was used for migration experiments. Cytofluorimetric and immunohistochemical analyses were carried out to evaluate infiltrating macrophages and T cells in melanoma specimens from patients or mice. Results Higher production of tumor-promoting and chemotactic factors, and M2-polarized activation was observed when macrophages were exposed to culture media from melanoma cells overexpressing bcl-2, while bcl-2 silencing in melanoma cells inhibited the M2 macrophage polarization. In agreement, the number of melanoma-infiltrating macrophages in vivo was increased, in parallel with a greater expression of bcl-2 in tumor cells. Tumor-derived interleukin-1β has been identified as the effector cytokine of bcl-2-dependent macrophage reprogramming, according to reduced tumor growth, decreased number of M2-polarized tumor-associated macrophages and increased number of infiltrating CD4+IFNγ+ and CD8+IFNγ+ effector T lymphocytes, which we observed in response to in vivo treatment with the IL-1 receptor antagonist kineret. Finally, in tumor specimens from patients with melanoma, high bcl-2 expression correlated with increased infiltration of M2-polarized CD163+ macrophages, hence supporting the clinical relevance of the crosstalk between tumor cells and microenvironment. Conclusions Taken together, our results show that melanoma-specific bcl-2 controls an IL-1β-driven axis of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma development. Interfering with this pathway might provide novel therapeutic strategies.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Farini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Marianna Desideri
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Tupone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simonetta Buglioni
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bruno Amadio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Irene Terrenato
- Biostatistics and Bioinformatic Unit-Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Foddai
- Immunohematology and Transfusional Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Sica
- Molecular Immunology Lab, Humanitas Clinical and Research Center, Milan, Italy .,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
13
|
Netanely D, Leibou S, Parikh R, Stern N, Vaknine H, Brenner R, Amar S, Factor RH, Perluk T, Frand J, Nizri E, Hershkovitz D, Zemser-Werner V, Levy C, Shamir R. Classification of node-positive melanomas into prognostic subgroups using keratin, immune, and melanogenesis expression patterns. Oncogene 2021; 40:1792-1805. [PMID: 33564068 PMCID: PMC7946641 DOI: 10.1038/s41388-021-01665-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023]
Abstract
Cutaneous melanoma tumors are heterogeneous and show diverse responses to treatment. Identification of robust molecular biomarkers for classifying melanoma tumors into clinically distinct and homogenous subtypes is crucial for improving the diagnosis and treatment of the disease. In this study, we present a classification of melanoma tumors into four subtypes with different survival profiles based on three distinct gene expression signatures: keratin, immune, and melanogenesis. The melanogenesis expression pattern includes several genes that are characteristic of the melanosome organelle and correlates with worse survival, suggesting the involvement of melanosomes in melanoma aggression. We experimentally validated the secretion of melanosomes into surrounding tissues by melanoma tumors, which potentially affects the lethality of metastasis. We propose a simple molecular decision tree classifier for predicting a tumor's subtype based on representative genes from the three identified signatures. Key predictor genes were experimentally validated on melanoma samples taken from patients with varying survival outcomes. Our three-pattern approach for classifying melanoma tumors can contribute to advancing the understanding of melanoma variability and promote accurate diagnosis, prognostication, and treatment.
Collapse
Affiliation(s)
- Dvir Netanely
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Stav Leibou
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Stern
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Hananya Vaknine
- Department of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Ronen Brenner
- Department of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Sarah Amar
- Department of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Rivi Haiat Factor
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Eran Nizri
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Surgery A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dov Hershkovitz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Integrated Genomics Identifies miR-181/TFAM Pathway as a Critical Driver of Drug Resistance in Melanoma. Int J Mol Sci 2021; 22:ijms22041801. [PMID: 33670365 PMCID: PMC7918089 DOI: 10.3390/ijms22041801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets and promising candidates as molecular biomarkers for various therapy-resistant tumors. However, the association between miRNAs and drug resistance in melanoma remains to be elucidated. We used an integrative genomic analysis to comprehensively study the miRNA expression profiles of drug-resistant melanoma patients and cell lines. MicroRNA-181a and -181b (miR181a/b) were identified as the most significantly down-regulated miRNAs in resistant melanoma patients and cell lines. Re-establishment of miR-181a/b expression reverses the resistance of melanoma cells to the BRAF inhibitor dabrafenib. Introduction of miR-181 mimics markedly decreases the expression of TFAM in A375 melanoma cells resistant to BRAF inhibitors. Furthermore, melanoma growth was inhibited in A375 and M14 resistant melanoma cells transfected with miR-181a/b mimics, while miR-181a/b depletion enhanced resistance in sensitive cell lines. Collectively, our study demonstrated that miR-181a/b could reverse the resistance to BRAF inhibitors in dabrafenib resistant melanoma cell lines. In addition, miR-181a and -181b are strongly down-regulated in tumor samples from patients before and after the development of resistance to targeted therapies. Finally, melanoma tissues with high miR-181a and -181b expression presented favorable outcomes in terms of Progression Free Survival, suggesting that miR-181 is a clinically relevant candidate for therapeutic development or biomarker-based therapy selection.
Collapse
|
15
|
Anderson TS, Wooster AL, La-Beck NM, Saha D, Lowe DB. Antibody-drug conjugates: an evolving approach for melanoma treatment. Melanoma Res 2021; 31:1-17. [PMID: 33165241 DOI: 10.1097/cmr.0000000000000702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanoma continues to be an aggressive and deadly form of skin cancer while therapeutic options are continuously developing in an effort to provide long-term solutions for patients. Immunotherapeutic strategies incorporating antibody-drug conjugates (ADCs) have seen varied levels of success across tumor types and represent a promising approach for melanoma. This review will explore the successes of FDA-approved ADCs to date compared to the ongoing efforts of melanoma-targeting ADCs. The challenges and opportunities for future therapeutic development are also examined to distinguish how ADCs may better impact individuals with malignancies such as melanoma.
Collapse
Affiliation(s)
| | | | - Ninh M La-Beck
- Departments of Immunotherapeutics and Biotechnology
- Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | | | - Devin B Lowe
- Departments of Immunotherapeutics and Biotechnology
| |
Collapse
|
16
|
Le Poole IC. Myron Gordon Award paper: Microbes, T-cell diversity and pigmentation. Pigment Cell Melanoma Res 2021; 34:244-255. [PMID: 33438345 DOI: 10.1111/pcmr.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Melanocytes are static, minimally proliferative cells. This leaves them vulnerable in vitiligo. Yet upon malignant transformation, they form vicious tumors. This profound switch in physiology is accompanied by genetic change and is driven by environmental factors. If UV exposure in younger years supports malignant transformation and melanoma formation, it can likewise impart mutations on melanocytes that reduce their viability, to initiate vitiligo. A wide variety of microbes can influence these diametrically opposed outcomes before either disease takes hold. These microbes are vehicles of change that we are only beginning to study. Once a genetic modification occurs, there is a wide variety of immune cells ready to respond. Though it does not act alone, the T cell is among the most decisive responders in this process. The same biochemical process that offered the skin protection by producing melanin can become an Achilles heel for the cell when the T cells target melanosomal enzymes or, on occasion, neoantigens. T cells are precise, determined, and consequential when they strike. Here, we probe the relationship between the microbiome and its metabolites, epithelial integrity, and the activation of T cells that target benign and malignant melanocytes in vitiligo and melanoma.
Collapse
Affiliation(s)
- I Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
18
|
Zhang X, Wen X, Feng N, Chen A, Yao S, Ding X, Zhang L. Increased Expression of T-Box Transcription Factor Protein 21 (TBX21) in Skin Cutaneous Melanoma Predicts Better Prognosis: A Study Based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) Databases. Med Sci Monit 2020; 26:e923087. [PMID: 32561704 PMCID: PMC7325556 DOI: 10.12659/msm.923087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND T-box transcription factor protein 21 (TBX21) is expressed in immune cells and some tumor cells. Defects in TBX21 gene can cause Th1/Th2 imbalance, which is closely related to tumorigenesis. The expression and clinical value of TBX21 in skin cutaneous melanoma (SKCM) are not clear. MATERIAL AND METHODS RNA-Seq expression and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Wilcoxon signed-rank test and logistic regression were used to explore the relationship between TBX21 expression and clinical parameters such as gender, stage, etc. The correlation between clinicopathological characteristics and overall survival of SKCM patients was estimated by Cox regression and the Kaplan-Meier method. Gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) were conducted to analyze the potential mechanism of TBX21 in the progression of SKCM. RESULTS Compared with normal samples, TBX21 was significantly upregulated in SKCM tissues. SKCM patients with lower TBX21 expression might have a worse prognosis than those with higher TBX21 expression according to Kaplan-Meier survival analysis. Cox analysis also reached the same conclusion: TBX21 was an independent prognostic indicator. GSEA showed that the highly expressed phenotypes in TBX21 were enriched to varying degrees with various signaling pathways. PPI network showed the top 10 proteins that were closely related to TBX21. CONCLUSIONS TBX21 expression was significantly correlated with the prognosis of SKCM patients and was found to be involved in a great many immunological pathways that affect the occurrence and development of tumors.
Collapse
|
19
|
Garg S, Grenier S, Misyura M, Sukhai MA, Thomas M, Kamel-Reid S, Stockley T. Assessing the Diagnostic Yield of Targeted Next-Generation Sequencing for Melanoma and Gastrointestinal Tumors. J Mol Diagn 2020; 22:467-475. [PMID: 32036084 DOI: 10.1016/j.jmoldx.2019.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/19/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
A common rationale in molecular diagnostic laboratories is that implementation of next-generation sequencing (NGS) enables simultaneous multigene testing, allowing increased information benefit compared with non-NGS assays. However, minimal published data exist to support this justification. The current study compared clinical diagnostic yield of TruSight Tumor 26 Sequencing Panel (TST26) in melanoma, colorectal (CRC), and gastrointestinal stromal (GIST) tumors with non-NGS assays. A total of 1041 formalin-fixed, paraffin-embedded tumors, of melanoma, CRC, and GIST, were profiled. NGS results were compared with non-NGS single-gene or single-variant assays with respect to variant output and diagnostic yield. A total of 79% melanoma and 94% CRC tumors were variant positive by panel testing. TST26 panel improved serine/threonine-protein kinase B-raf (BRAF) variant detection in melanoma compared with single-variant BRAF Val600Glu/Lys (V600E/K) routine tests by 24% and detected variants in genes other than BRAF, NRAS, and KIT, which could impact patient management in 20% additional cases. NGS enhanced diagnostic yield in CRC by 36% when compared with routine single-gene assays. In contrast, no added benefit of NGS-based testing for GIST tumors was observed. TST26 panel either missed or inaccurately called complex insertion/deletion variants in KIT exon 11, which were accurately identified by non-NGS methods. Findings of this study demonstrate the differential impact of cancer site and variant type on diagnostic test information yield from NGS assays.
Collapse
Affiliation(s)
- Swati Garg
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Sylvie Grenier
- Division of Genome Diagnostics, Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Maksym Misyura
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Mahadeo A Sukhai
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Mariam Thomas
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Suzanne Kamel-Reid
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Division of Genome Diagnostics, Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Stockley
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Division of Genome Diagnostics, Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Germano A, Cardili L, Carapeto FCL, Landman G. BRAFV600E and KIT immunoexpression in early-stage melanoma. An Bras Dermatol 2019; 94:458-460. [PMID: 31644622 PMCID: PMC7007021 DOI: 10.1590/abd1806-4841.20198349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2018] [Indexed: 02/03/2023] Open
Abstract
Melanoma is widely known as the most lethal skin cancer. Specific tumor-related mortality can be significantly reduced if diagnosis and treatment are properly performed during initial phases of the disease. The current search for biomarkers in early-stage melanomas is a high-priority challenge for physicians and researchers. We aimed to assess the immunoexpression of BRAFV600E and KIT in a case series consisting of 44 early-stage melanomas. Formalin-fixed paraffin-embedded samples were systematically evaluated using a semi-quantitative method based on scores of percentage and intensity for immunostained tumor cells. We observed significant concordance between BRAFV600E and KIT immunoexpression in thin invasive melanomas. Our findings corroborate previous evidence showing abnormal expression of proteins associated with MAPK intracellular signaling pathway in early-stage melanomas.
Collapse
Affiliation(s)
- Andressa Germano
- Graduate Studies Program in Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Leonardo Cardili
- Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernando Cintra Lopes Carapeto
- Graduate Studies Program in Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Gilles Landman
- Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
21
|
Pawlikowska M, Piotrowski J, Jędrzejewski T, Kozak W, Slominski AT, Brożyna AA. Coriolus versicolor-derived protein-bound polysaccharides trigger the caspase-independent cell death pathway in amelanotic but not melanotic melanoma cells. Phytother Res 2019; 34:173-183. [PMID: 31515931 DOI: 10.1002/ptr.6513] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
We have investigated the potential cell death mechanism promoted by Coriolus versicolor fungus-derived protein-bound polysaccharides (PBPs) in melanoma cells. Knowing that melanogenesis has the potential to affect the tumor behavior and melanoma therapy outcome, the cytotoxic effects of PBPs were evaluated in human SKMel-188 melanoma cell line, whose phenotype, amelanotic versus pigmented, depends on the concentration of melanin precursors in the culture medium. Our results showed that inhibitory effect of PBPs (100 and 200 μg/ml) towards melanoma cells is inversely associated with the pigmentation level. This cytotoxicity induced in nonpigmented melanoma cells by PBPs was caspase-independent; however, it was accompanied by an increased intracellular reactive oxygen species (ROS) generation. The ROS production was controlled by c-Jun N-terminal kinase (JNK) because SP600125, a JNK inhibitor, significantly reduced ROS generation and protected cells against PBPs-induced death. We also found that PBPs-induced lactate dehydrogenase release in amelanotic melanoma cells was abolished by co-treatment with receptor-interacting serine/threonine-protein kinase 1 inhibitor, implying engagement of this kinase in PBPs-induced death pathway. The results suggest that PBPs induce an alternative programmed cell death, regulated by receptor-interacting protein-1 and ROS and that this process is modified by melanin content in melanoma cells. These findings are remarkable when considering the use of commercially available Coriolus versicolor by patients who suffer from melanoma cancer.
Collapse
Affiliation(s)
- Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Jakub Piotrowski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Wiesław Kozak
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama.,Laboratory Service of the VA Medical Center, Birmingham, Alabama
| | - Anna A Brożyna
- Department of Medical Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
22
|
Madera-Sandoval RL, Tóvári J, Lövey J, Ranđelović I, Jiménez-Orozco A, Hernández-Chávez VG, Reyes-Maldonado E, Vega-López A. Combination of pentoxifylline and α-galactosylceramide with radiotherapy promotes necro-apoptosis and leukocyte infiltration and reduces the mitosis rate in murine melanoma. Acta Histochem 2019; 121:680-689. [PMID: 31213291 DOI: 10.1016/j.acthis.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
Abstract
Despite the success for the treatment of melanoma such as targeted molecular therapy, the use of such treatments are expensive For this reason, this study was carried out to explore the anti-cancer properties of available drugs that are able to modify the melanoma prognosis. The study was conducted in two phases: Evaluation of pharmacological effects of pentoxifylline (PTX) administered above (60 mg/kg) which is the therapeutic dose that is aimed at reducing the side-effect of radiotherapy, and of α- galactosylceramide (GalCer) administered at 100 μg/kg, as well as their combination using a murine model (BDF1 mice) of melanoma cell line (B16-F1, ATCC). For the radiotherapy phase, 9 Gy was applied in the tumor area, before (3 days), during (30 min) and after (3 days) the PTX + GalCer treatment. In both study phases, the mitosis rate, leukocyte infiltration and necro-apoptosis were assessed using histological and immunohistochemical approach and tumor volume evaluation as biomarkers. All treatments showed good prognosis results estimated as reduction of mitosis rate (PTX + GalCer after radiotherapy and GalCer), increased leukocyte infiltrate (PTX + GalCer after radiotherapy and GalCer) and necro-apoptosis augmentation (PTX + GalCer after radiotherapy and radiotherapy control). Nevertheless, a lower development of tumor volume was found in GalCer treatment. In this way, it is possible to suggest that the integrated treatment with immuno-stimulators such as GalCer, plus drug used for peripheral vascular disease (PTX) after radiotherapy is probably an alternative for controlling aggressive melanoma in murine model.
Collapse
Affiliation(s)
- Ruth L Madera-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City, CP 07320, Mexico
| | - József Tóvári
- National Institute of Oncology, Department of Experimental Pharmacology, Budapest, Hungary
| | - József Lövey
- National Institute of Oncology, Center of Radiotherapy, Budapest, Hungary
| | - Ivan Ranđelović
- National Institute of Oncology, Department of Experimental Pharmacology, Budapest, Hungary
| | - Alejandro Jiménez-Orozco
- Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Farmacología Celular y Molecular, Mexico City, Mexico
| | - Victor G Hernández-Chávez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hematopatología. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City, CP 11340, Mexico
| | - Elba Reyes-Maldonado
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hematopatología. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City, CP 11340, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City, CP 07320, Mexico.
| |
Collapse
|
23
|
Li X, Cai Y. Better prognostic determination and feature characterization of cutaneous melanoma through integrative genomic analysis. Aging (Albany NY) 2019; 11:5081-5107. [PMID: 31322504 PMCID: PMC6746212 DOI: 10.18632/aging.102099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/11/2019] [Indexed: 01/10/2023]
Abstract
Melanoma is the most dangerous type of skin cancer and has highly heterogeneous features. Despite progress in melanoma classification, interpatient heterogeneity remains difficult to predict, especially in terms of long-term survival. Here, based on mRNA-seq, miRNA-seq and DNA methylation data from 447 cutaneous melanoma patients in the Cancer Genome Atlas, we performed integrative and single-dataset clustering analyses. A novel group of patients was identified, including 301 with better, 55 with poorer and 91 with intermediate prognoses. Immune genes were upregulated in the better prognostic group, and higher immune scores (representing a greater extent of immune cell infiltration into tumor tissues) were associated with better prognoses. Higher expression of 115 genes was determined to predict better outcomes. The better prognostic group also exhibited DNA hypomethylation, and immune pathways were enriched among the hypomethylated genes. Using exome-seq data from the same patients, we observed that the better prognostic group harbored the highest number of mutations. The mutational signature in the better prognostic group was associated with ultraviolet light exposure. These integrated investigations have potential therapeutic significance, as they clarify the molecular heterogeneity of cutaneous melanoma and enhance its classification.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Yunpeng Cai
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| |
Collapse
|
24
|
Mancera N, Smalley KSM, Margo CE. Melanoma of the eyelid and periocular skin: Histopathologic classification and molecular pathology. Surv Ophthalmol 2019; 64:272-288. [PMID: 30578807 DOI: 10.1016/j.survophthal.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022]
Abstract
Cutaneous melanoma, a potentially lethal malignancy of the periocular skin, represents only a small proportion of the roughly 87,000 new cases of cutaneous melanoma diagnosed annually in the United States. Most of our understanding of melanoma of the eyelid skin is extrapolated from studies of cutaneous melanoma located elsewhere. Recent years have witnessed major breakthroughs in molecular biology and genomics of cutaneous melanoma, some of which have led to the development of targeted therapies. The molecular insights have also kindled interest in rethinking how cutaneous melanomas are classified and assessed for risk. We provide a synopsis of the epidemiology, histopathologic classification, and clinical experience of eyelid melanoma since 1990 and then review major advances in the molecular biology of cutaneous melanoma, exploring how this impacts our understanding of classification and predicting risk.
Collapse
Affiliation(s)
- Norberto Mancera
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
| | - Keiran S M Smalley
- Departments of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA; Cutaneous Oncology The Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Curtis E Margo
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
25
|
Valli F, García Vior MC, Roguin LP, Marino J. Oxidative stress generated by irradiation of a zinc(II) phthalocyanine induces a dual apoptotic and necrotic response in melanoma cells. Apoptosis 2019; 24:119-134. [DOI: 10.1007/s10495-018-01512-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Bacolod MD, Barany F, Pilones K, Fisher PB, de Castro RJ. Pathways- and epigenetic-based assessment of relative immune infiltration in various types of solid tumors. Adv Cancer Res 2019; 142:107-143. [PMID: 30885360 DOI: 10.1016/bs.acr.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent clinical studies document the power of immunotherapy in treating subsets of patients with advanced cancers. In this context and with multiple cancer immunotherapeutics already evaluated in the clinic and a large number in various stages of clinical trials, it is imperative to comprehensively examine genomics data to better comprehend the role of immunity in different cancers in predicting response to therapy and in directing appropriate therapies. The approach we chose is to scrutinize the pathways and epigenetic factors predicted to drive immune infiltration in different cancer types using publicly available TCGA transcriptional and methylation datasets, along with accompanying clinico-pathological data. We observed that the relative activation of T cells and other immune signaling pathways differs across cancer types. For example, pathways related to activation and proliferation of helper and cytotoxic T cells appear to be more highly enriched in kidney, skin, head and neck, and esophageal cancers compared to those of lung, colorectal, and liver or bile duct cancers. The activation of these immune-related pathways positively associated with prognosis in certain cancer types, most notably melanoma, head and neck, and cervical cancers. Integrated methylation and expression data (along with publicly available, ENCODE-generated histone ChIP Seq and DNAse hypersensitivity data) predict that epigenetic regulation is a primary factor driving transcriptional activation of a number of genes crucial to immunity in cancer, including T cell receptor genes (e.g., CD3D, CD3E), CTLA4, and GZMA. However, the extent to which epigenetic factors (primarily methylation at promoter regions) affect transcription of immune-related genes may vary across cancer types. For example, there is a high negative correlation between promoter CpG methylation and CD3D expression in renal and thyroid cancers, but not in brain tumors. The types of analyses we have undertaken provide insights into the relationships between immune modulation and cancer etiology and progression, offering clues into ways of therapeutically manipulating the immune system to promote immune recognition and immunotherapy.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States.
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Karsten Pilones
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | | |
Collapse
|
27
|
Calcitriol and Calcidiol Can Sensitize Melanoma Cells to Low⁻LET Proton Beam Irradiation. Int J Mol Sci 2018; 19:ijms19082236. [PMID: 30065179 PMCID: PMC6122082 DOI: 10.3390/ijms19082236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Proton beam irradiation promises therapeutic utility in the management of uveal melanoma. Calcitriol (1,25(OH)2D3)—the biologically active metabolite of vitamin D3—and its precursor, calcidiol (25(OH)D3), exert pleiotropic effects on melanoma cells. The aim of the study was to evaluate the effect of both calcitriol and calcidiol on melanoma cell proliferation and their response to proton beam irradiation. Three melanoma cell lines (human SKMEL-188 and hamster BHM Ma and BHM Ab), pre-treated with 1,25(OH)2D3 or 25(OH)D3 at graded concentrations (0, 10, 100 nM), were irradiated with 0–5 Gy and then cultured in vitro. Growth curves were determined by counting the cell number every 24 h up to 120 h, which was used to calculate surviving fractions. The obtained survival curves were analysed using two standard models: linear-quadratic and multi-target single hit. Calcitriol inhibited human melanoma proliferation at 10 nM, while only calcidiol inhibited proliferation of hamster lines at 10 and 100 nM doses. Treatment with either 1,25(OH)2D3 or 25(OH)D3 radio sensitized melanoma cells to low doses of proton beam radiation. The strength of the effect increased with the concentration of vitamin D3. Our data suggest that vitamin D3 may be an adjuvant that modifies proton beam efficiency during melanoma therapy.
Collapse
|
28
|
Lima E Silva MCB, Bogo D, Alexandrino CAF, Perdomo RT, Figueiredo PDO, do Prado PR, Garcez FR, Kadri MCT, Ximenes TVN, Guimarães RDCA, Sarmento UC, Macedo MLR. Antiproliferative Activity of Extracts of Campomanesia adamantium (Cambess.) O. Berg and Isolated Compound Dimethylchalcone Against B16-F10 Murine Melanoma. J Med Food 2018; 21:1024-1034. [PMID: 29715052 DOI: 10.1089/jmf.2018.0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campomanesia adamantium, a native species of the Brazilian Cerrado, is characterized as a natural source of phenolic compounds and has known potential anticancer activities. This study aimed to evaluate the chemical profile of dichloromethane extracts of pulp (DEGPU) and peel (DEGPE) from the fruits of C. adamantium and to identify compounds with antiproliferative effects in vitro against melanoma cells by sulforhodamine B (SRB) assay, apoptosis induction assay, caspase-3 activation assay, nitric oxide (NO) release in coculture of B16-F10 cells and murine peritoneal macrophages. The chemical profiles of DEGPU and DEGPE were analyzed by high performance liquid chromatography coupled to diode array detector and mass spectrometer using the electrospray ionization interface (HPLC-DAD-ESI-MS/MS). Thirteen compounds were identified in both extracts and the chromatographic study of the most active extract in SRB assay DEGPU (GI50 of 16.17 μg/mL) resulted in the isolation of seven compounds. The isolated compound dimethylchalcone (DMC) had the highest antiproliferative activity against B16-F10 with a GI50 of 7.11 μg/mL. DEGPU extract activated caspase-3 in 29% of cells at 25 μg/mL and caused a 50% decrease in NO release in coculture. DEGPU can be characterized as a source of bioactive compounds such as DMC, as seen from its antiproliferative effect in vitro by inducing B16-F10 cells to undergo apoptosis, essential feature in the search for new anticancer drugs.
Collapse
Affiliation(s)
- Magalli C B Lima E Silva
- 1 Molecular Biology and Cell Culture Laboratory, School of Pharmaceutical Sciences, Foods and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Danielle Bogo
- 1 Molecular Biology and Cell Culture Laboratory, School of Pharmaceutical Sciences, Foods and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Caroline A F Alexandrino
- 1 Molecular Biology and Cell Culture Laboratory, School of Pharmaceutical Sciences, Foods and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Renata T Perdomo
- 1 Molecular Biology and Cell Culture Laboratory, School of Pharmaceutical Sciences, Foods and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Patrícia de O Figueiredo
- 2 Laboratory of Pronabio (Bioactive Natural Products)-Chemistry Institute, Federal University of Mato Grosso do Sul , Campo Grande, Brazil
| | - Pamela R do Prado
- 2 Laboratory of Pronabio (Bioactive Natural Products)-Chemistry Institute, Federal University of Mato Grosso do Sul , Campo Grande, Brazil
| | - Fernanda R Garcez
- 2 Laboratory of Pronabio (Bioactive Natural Products)-Chemistry Institute, Federal University of Mato Grosso do Sul , Campo Grande, Brazil
| | - Monica C T Kadri
- 3 Biophysiopharmacology Laboratory, School of Pharmaceutical Sciences, Foods and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Thalita V N Ximenes
- 3 Biophysiopharmacology Laboratory, School of Pharmaceutical Sciences, Foods and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Rita de Cassia A Guimarães
- 4 Laboratory of Physical Chemistry of Foods, School of Pharmaceutical Sciences, Foods and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Ulana C Sarmento
- 4 Laboratory of Physical Chemistry of Foods, School of Pharmaceutical Sciences, Foods and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Maria Lígia R Macedo
- 5 Laboratory of Purification of Proteins and their Biological Functions (LPPFB), School of Pharmaceutical Sciences, Foods and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| |
Collapse
|
29
|
Śniegocka M, Podgórska E, Płonka PM, Elas M, Romanowska-Dixon B, Szczygieł M, Żmijewski MA, Cichorek M, Markiewicz A, Brożyna AA, Słominski AT, Urbańska K. Transplantable Melanomas in Hamsters and Gerbils as Models for Human Melanoma. Sensitization in Melanoma Radiotherapy-From Animal Models to Clinical Trials. Int J Mol Sci 2018; 19:E1048. [PMID: 29614755 PMCID: PMC5979283 DOI: 10.3390/ijms19041048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
The focus of the present review is to investigate the role of melanin in the radioprotection of melanoma and attempts to sensitize tumors to radiation by inhibiting melanogenesis. Early studies showed radical scavenging, oxygen consumption and adsorption as mechanisms of melanin radioprotection. Experimental models of melanoma in hamsters and in gerbils are described as well as their use in biochemical and radiobiological studies, including a spontaneously metastasizing ocular model. Some results from in vitro studies on the inhibition of melanogenesis are presented as well as radio-chelation therapy in experimental and clinical settings. In contrast to cutaneous melanoma, uveal melanoma is very successfully treated with radiation, both using photon and proton beams. We point out that the presence or lack of melanin pigmentation should be considered, when choosing therapeutic options, and that both the experimental and clinical data suggest that melanin could be a target for radiosensitizing melanoma cells to increase efficacy of radiotherapy against melanoma.
Collapse
Affiliation(s)
- Martyna Śniegocka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Ewa Podgórska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Przemysław M Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Medical College of Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Małgorzata Szczygieł
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 80-210 Gdańsk, Poland.
| | - Mirosława Cichorek
- Department of Embryology, Medical University of Gdansk, 80-210 Gdańsk, Poland.
| | - Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology, Medical College of Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| | - Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland.
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Andrzej T Słominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- VA Medical Center, Birmingham, AL 35294, USA.
| | - Krystyna Urbańska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland.
| |
Collapse
|
30
|
Slominski AT, Brożyna AA, Skobowiat C, Zmijewski MA, Kim TK, Janjetovic Z, Oak AS, Jozwicki W, Jetten AM, Mason RS, Elmets C, Li W, Hoffman RM, Tuckey RC. On the role of classical and novel forms of vitamin D in melanoma progression and management. J Steroid Biochem Mol Biol 2018; 177:159-170. [PMID: 28676457 PMCID: PMC5748362 DOI: 10.1016/j.jsbmb.2017.06.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
Melanoma represents a significant clinical problem affecting a large segment of the population with a relatively high incidence and mortality rate. Ultraviolet radiation (UVR) is an important etiological factor in malignant transformation of melanocytes and melanoma development. UVB, while being a full carcinogen in melanomagenesis, is also necessary for the cutaneous production of vitamin D3 (D3). Calcitriol (1,25(OH)2D3) and novel CYP11A1-derived hydroxyderivatives of D3 show anti-melanoma activities and protective properties against damage induced by UVB. The former activities include inhibitory effects on proliferation, plating efficiency and anchorage-independent growth of cultured human and rodent melanomas in vitro, as well as the in vivo inhibition of tumor growth by 20(OH)D3 after injection of human melanoma cells into immunodeficient mice. The literature indicates that low levels of 25(OH)D3 are associated with more advanced melanomas and reduced patient survivals, while single nucleotide polymorphisms of the vitamin D receptor or the D3 binding protein gene affect development or progression of melanoma, or disease outcome. An inverse correlation of VDR and CYP27B1 expression with melanoma progression has been found, with low or undetectable levels of these proteins being associated with poor disease outcomes. Unexpectedly, increased expression of CYP24A1 was associated with better melanoma prognosis. In addition, decreased expression of retinoic acid orphan receptors α and γ, which can also bind vitamin D3 hydroxyderivatives, showed positive association with melanoma progression and shorter disease-free and overall survival. Thus, inadequate levels of biologically active forms of D3 and disturbances in expression of the target receptors, or D3 activating or inactivating enzymes, can affect melanomagenesis and disease progression. We therefore propose that inclusion of vitamin D into melanoma management should be beneficial for patients, at least as an adjuvant approach. The presence of multiple hydroxyderivatives of D3 in skin that show anti-melanoma activity in experimental models and which may act on alternative receptors, will be a future consideration when planning which forms of vitamin D to use for melanoma therapy.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Birmingham, AL, 35294, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, Birmingham, AL, 35294, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA; Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.
| | - Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | | | | | - Tae-Kang Kim
- Department of Dermatology, Birmingham, AL, 35294, USA
| | | | - Allen S Oak
- Department of Dermatology, Birmingham, AL, 35294, USA
| | - Wojciech Jozwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,Research Triangle Park, NC 27709, United States
| | - Rebecca S Mason
- Bosch Institute & School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Craig Elmets
- Department of Dermatology, Birmingham, AL, 35294, USA
| | - We Li
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN 38163, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
31
|
Hanna GJ, Lizotte P, Cavanaugh M, Kuo FC, Shivdasani P, Frieden A, Chau NG, Schoenfeld JD, Lorch JH, Uppaluri R, MacConaill LE, Haddad RI. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight 2018; 3:98811. [PMID: 29467336 DOI: 10.1172/jci.insight.98811] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death protein 1 (PD-1) inhibitors have efficacy in treating squamous cell carcinoma of the head and neck (SCCHN), but objective response rates are low. PD-1 ligand (PD-L1) expression alone is not considered a robust predictor of response and additional biomarkers are needed. This 3-year observational cohort followed 126 SCCHN patients treated with anti-PD-1/L1 therapy. Prior to treatment, 81 (64%) had targeted massively parallel tumor sequencing. Of these, 42 (52%) underwent fluorescence-activated cell sorting and PD-L1 immunohistochemistry for tumor immunoprofiling. Six (5%) complete responses (CRs) and 11 (9%) partial responses (PRs) were observed. Those treated with prior chemotherapy (98, 78%) versus only surgery and/or radiation had longer overall survival (OS) (10 vs. 3 months, P = 0.02). Smokers had a higher total mutational burden (TMB) (P = 0.01). Virus-positive patients had a lower TMB (P < 0.01) and improved OS (P = 0.02). Among virus-negative responders, NOTCH1 and SMARCA4 were more frequently mutated and frameshift events in tumor suppressor genes occurred more frequently (P = 0.03). Higher TMB and CD8+ T cell infiltrates predicted anti-PD-1/L1 benefit (P < 0.01, P < 0.01, respectively) among virus-negative tumors. TIM-3/LAG-3 coexpression with PD-1 was higher on T cells among nonresponders (P = 0.03 and 0.02, respectively). Somatic frameshift events in tumor suppressor genes and higher TMB among virus-negative SCCHN tumors predict anti-PD-1/L1 response.
Collapse
Affiliation(s)
| | - Patrick Lizotte
- Department of Medical Oncology, and.,Robert and Renee Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Megan Cavanaugh
- Department of Medical Oncology, and.,Robert and Renee Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Frank C Kuo
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Priyanka Shivdasani
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alexander Frieden
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | - Ravindra Uppaluri
- Department of Head and Neck Surgical Oncology, Dana-Farber Cancer Institute, Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Laura E MacConaill
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
32
|
Skobowiat C, Oak ASW, Kim TK, Yang CH, Pfeffer LM, Tuckey RC, Slominski AT. Noncalcemic 20-hydroxyvitamin D3 inhibits human melanoma growth in in vitro and in vivo models. Oncotarget 2018; 8:9823-9834. [PMID: 28039464 PMCID: PMC5354773 DOI: 10.18632/oncotarget.14193] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
A novel pathway of vitamin D3 (D3) metabolism, initiated by C20-hydroxylation of D3 by CYP11A1, has been confirmed to operate in vivo. Its major product, 20(OH)D3, exhibits antiproliferative activity in vitro comparable to that of 1,25(OH)2D3, but is noncalcemic in mice and rats. To further characterize the antimelanoma activity of 20(OH)D3, we tested its effect on colony formation of human melanoma cells in monolayer culture and anchorage-independent growth in soft agar. The migratory capabilities of the cells and cell-cell and cell-extracellular matrix interactions were also evaluated using transwell cell migration and spheroid toxicity assays. To assess the antimelanoma activity of 20(OH)D3in vivo, age-matched immunocompromised mice were subcutaneously implanted with luciferase-labelled SKMel-188 cells and were randomly assigned to be treated with either 20(OH)D3 or vehicle (n=10 per group). Tumor size was measured with caliper and live bioimaging methods, and overall health condition expressed as a total body score scale. The following results were observed: (i) 20(OH)D3 inhibited colony formation both in monolayer and soft agar conditions, (ii) 20(OH)D3 inhibited melanoma cells in both transwell migration and spheroid toxicity assays, and (iii) 20(OH)D3 inhibited melanoma tumor growth in immunocompromised mice without visible signs of toxicity. However, although the survival rate was 90% in both groups, the total body score was higher in the treatment group compared to control group (2.8 vs. 2.55). In conclusion, 20(OH)D3, an endogenously produced secosteroid, is an excellent candidate for further preclinical testing as an antimelanoma agent.
Collapse
Affiliation(s)
- Cezary Skobowiat
- Department of Dermatology, University of Alabama at Birmingham, AL, USA.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Torun, Poland
| | - Allen S W Oak
- Department of Dermatology, University of Alabama at Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, AL, USA
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, USA.,Laboratory Service of the VA Medical Center, Birmingham, AL, USA.,Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
33
|
Fortis SP, Mahaira LG, Anastasopoulou EA, Voutsas IF, Perez SA, Baxevanis CN. Immune profiling of melanoma tumors reflecting aggressiveness in a preclinical model. Cancer Immunol Immunother 2017; 66:1631-1642. [PMID: 28871365 PMCID: PMC11028901 DOI: 10.1007/s00262-017-2056-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Melanoma, like most solid tumors, is highly heterogeneous in terms of invasive, proliferative, and tumor-initiating potential. This heterogeneity is the outcome of differential gene expression resulting from conditions in the tumor microenvironment and the selective pressure of the immune system. To investigate possible signatures combining immune-related gene expression and lymphocyte infiltration, we established a preclinical model using B16.F1-derived clones, in the context of melanoma aggressiveness. Combinatorial analyses revealed that tumors concomitantly expressing low levels of Tnf-a, Pd-1, Il-10, Il-1ra, Ccl5, Ido, high Il-9, and with low infiltration by CD45+, CD3+, CD4+ and CD8+ cells and a high CD4+:CD8+ T cell ratio exhibited the most aggressive growth characteristics. Overall, these results support the notion that the intratumoral immunologic network molds aggressive melanoma phenotypes.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Louisa G Mahaira
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Eleftheria A Anastasopoulou
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece.
| |
Collapse
|
34
|
Moran B, Silva R, Perry AS, Gallagher WM. Epigenetics of malignant melanoma. Semin Cancer Biol 2017; 51:80-88. [PMID: 29074395 DOI: 10.1016/j.semcancer.2017.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 01/18/2023]
Abstract
Patients with malignant melanoma generally have a good prognosis if the disease presents prior to metastasis. Due to progress with targeted and immunotherapies, the median survival of metastatic melanoma patients is now over 2 years. The disease is characterised by one of the highest somatic mutation rates observed amongst cancer types, with a specific mutational signature based on UV radiation damage evident. Highly prevalent mutations, such as the BRAFV600E, in the MAPK cascade indicate truncal involvement of this pathway in the earliest stage of melanoma. The molecular sub-classification of melanoma based on genetic alterations is now well established. This has paved the way for researchers in epigenetics to investigate specific pathways of known importance, and the involvement of the diverse range of epigenetic mechanisms. Herein, we review the literature to highlight that epigenetic alterations are integrally involved in this malignancy. We focus on the most current evidence around the epigenetic mechanisms: DNA methylation and demethylation including 5-hydroxy-methylcytosine; histone post-translational modifications including variant histones; chromatin remodelling complexes and in particular the polycomb-repressive complex PRC2 and its histone methyltransferase subunit EZH2; and non-coding RNAs. Each mechanism is described generally, studies involving melanoma are assessed and clinical relevance is highlighted where possible.
Collapse
Affiliation(s)
- Bruce Moran
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland
| | - Romina Silva
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; OncoMark Limited, NovaUCD, Belfield Innovation Park, Dublin 4, Ireland.
| |
Collapse
|
35
|
Ma X, He Z, Li L, Yang D, Liu G. Expression profiles analysis of long non-coding RNAs identified novel lncRNA biomarkers with predictive value in outcome of cutaneous melanoma. Oncotarget 2017; 8:77761-77770. [PMID: 29100423 PMCID: PMC5652813 DOI: 10.18632/oncotarget.20780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022] Open
Abstract
Recent advancements in cancer biology have identified a large number of lncRNAs that are dysregulated expression in the development and tumorigenesis of cancers, highlighting the importance of lncRNAs as a key player for human cancers. However, the prognostic value of lncRNAs still remains unclear and needs to be further investigated. In the present study, we aim to assess the prognostic value of lncRNAs in cutaneous melanoma by integrated lncRNA expression profiles from TCGA database and matched clinical information from a large cohort of patients with cutaneous melanoma. We finally identified a set of six lncRNAs that are significantly associated with survival of patients with cutaneous melanoma. A linear combination of six lncRNAs (LINC01260, HCP5, PIGBOS1, RP11-247L20.4, CTA-292E10.6 and CTB-113P19.5) was constructed as a six-lncRNA signature which classified patients of training cohort into the high-risk group and low-risk group with significantly different survival time. The prognostic value of the six-lncRNA signature was validated in both the validation cohort and entire TCGA cohort. Moreover, the six-lncRNA signature is independent of known clinic-pathological factors by multivariate Cox regression analysis and demonstrated good performance for predicting three- and five-year overall survival by time-dependent receiver operating characteristic (ROC) analysis. Our study provides novel insights into the molecular heterogeneity of cutaneous melanoma and also shows potentially important implications of lncRNAs for prognosis and therapy for cutaneous melanoma.
Collapse
Affiliation(s)
- Xu Ma
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zhijuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin 150010, China
| | - Ling Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Daping Yang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Guofeng Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
36
|
Rodríguez-Cerdeira C, Carnero Gregorio M, López-Barcenas A, Sánchez-Blanco E, Sánchez-Blanco B, Fabbrocini G, Bardhi B, Sinani A, Guzman RA. Advances in Immunotherapy for Melanoma: A Comprehensive Review. Mediators Inflamm 2017; 2017:3264217. [PMID: 28848246 PMCID: PMC5564072 DOI: 10.1155/2017/3264217] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 12/18/2022] Open
Abstract
Melanomas are tumors originating from melanocytes and tend to show early metastasis secondary to the loss of cellular adhesion in the primary tumor, resulting in high mortality rates. Cancer-specific active immunotherapy is an experimental form of treatment that stimulates the immune system to recognize antigens on the surface of cancer cells. Current experimental approaches in immunotherapy include vaccines, biochemotherapy, and the transfer of adoptive T cells and dendritic cells. Several types of vaccines, including peptide, viral, and dendritic cell vaccines, are currently under investigation for the treatment of melanoma. These treatments have the same goal as drugs that are already used to stimulate the proliferation of T lymphocytes in order to destroy tumor cells; however, immunotherapies aim to selectively attack the tumor cells of each patient. In this comprehensive review, we describe recent advancements in the development of immunotherapies for melanoma, with a specific focus on the identification of neoantigens for the prediction of their elicited immune responses. This review is expected to provide important insights into the future of immunotherapy for melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ardiana Sinani
- Dermatology Service, Military Medical Unit, University Trauma Hospital, Tirana, Albania
| | | |
Collapse
|
37
|
Tripathy D, Bardia A, Sellers WR. Ribociclib (LEE011): Mechanism of Action and Clinical Impact of This Selective Cyclin-Dependent Kinase 4/6 Inhibitor in Various Solid Tumors. Clin Cancer Res 2017; 23:3251-3262. [PMID: 28351928 PMCID: PMC5727901 DOI: 10.1158/1078-0432.ccr-16-3157] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/12/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
Abstract
The cyclin D-cyclin-dependent kinase (CDK) 4/6-p16-retinoblastoma (Rb) pathway is commonly disrupted in cancer, leading to abnormal cell proliferation. Therapeutics targeting this pathway have demonstrated antitumor effects in preclinical and clinical studies. Ribociclib is a selective, orally bioavailable inhibitor of CDK4 and CDK6, which received FDA approval in March 2017 and is set to enter the treatment landscape alongside other CDK4/6 inhibitors, including palbociclib and abemaciclib. Here, we describe the mechanism of action of ribociclib and review preclinical and clinical data from phase I, II, and III trials of ribociclib across different tumor types, within the context of other selective CDK4/6 inhibitors. The pharmacokinetics, pharmacodynamics, safety, tolerability, and clinical responses with ribociclib as a single agent or in combination with other therapies are discussed, and an overview of the broad portfolio of ongoing clinical trials with ribociclib across a wide range of indications is presented. On the basis of the available data, ribociclib has a manageable tolerability profile and therapeutic potential for a variety of cancer types. Its high selectivity makes it an important partner drug for other targeted therapies, and it has been shown to enhance the clinical activity of existing anticancer therapies and delay the development of treatment resistance, without markedly increasing toxicity. Ongoing trials of doublet and triplet targeted therapies containing ribociclib seek to identify optimal CDK4/6-based targeted combination regimens for various tumor types and advance the field of precision therapeutics in oncology. Clin Cancer Res; 23(13); 3251-62. ©2017 AACR.
Collapse
Affiliation(s)
- Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Aditya Bardia
- Department of Hematology/Oncology, Massachusetts General Hospital Cancer Center/Harvard Medical School, Boston, Massachusetts
| | - William R Sellers
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| |
Collapse
|
38
|
Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. J Transl Med 2017; 97:706-724. [PMID: 28218743 PMCID: PMC5446295 DOI: 10.1038/labinvest.2017.3] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB), in addition to having carcinogenic activity, is required for the production of vitamin D3 (D3) in the skin which supplies >90% of the body's requirement. Vitamin D is activated through hydroxylation by 25-hydroxylases (CYP2R1 or CYP27A1) and 1α-hydroxylase (CYP27B1) to produce 1,25(OH)2D3, or through the action of CYP11A1 to produce mono-di- and trihydroxy-D3 products that can be further modified by CYP27B1, CYP27A1, and CYP24A1. The active forms of D3, in addition to regulating calcium metabolism, exert pleiotropic activities, which include anticarcinogenic and anti-melanoma effects in experimental models, with photoprotection against UVB-induced damage. These diverse effects are mediated through an interaction with the vitamin D receptor (VDR) and/or as most recently demonstrated through action on retinoic acid orphan receptors (ROR)α and RORγ. With respect to melanoma, low levels of 25(OH)D are associated with thicker tumors and reduced patient survival. Furthermore, single-nucleotide polymorphisms of VDR and the vitamin D-binding protein (VDP) genes affect melanomagenesis or disease outcome. Clinicopathological analyses have shown positive correlation between low or undetectable expression of VDR and/or CYP27B1 in melanoma with tumor progression and shorter overall (OS) and disease-free survival (DFS) times. Paradoxically, this correlation was reversed for CYP24A1 (inactivating 24-hydroxylase), indicating that this enzyme, while inactivating 1,25(OH)2D3, can activate other forms of D3 that are products of the non-canonical pathway initiated by CYP11A1. An inverse correlation has been found between the levels of RORα and RORγ expression and melanoma progression and disease outcome. Therefore, we propose that defects in vitamin D signaling including D3 activation/inactivation, and the expression and activity of the corresponding receptors, affect melanoma progression and the outcome of the disease. The existence of multiple bioactive forms of D3 and alternative receptors affecting the behavior of melanoma should be taken into consideration when applying vitamin D management for melanoma therapy.
Collapse
|
39
|
Richtig G, Ehall B, Richtig E, Aigelsreiter A, Gutschner T, Pichler M. Function and Clinical Implications of Long Non-Coding RNAs in Melanoma. Int J Mol Sci 2017; 18:E715. [PMID: 28350340 PMCID: PMC5412301 DOI: 10.3390/ijms18040715] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Metastatic melanoma is the most deadly type of skin cancer. Despite the success of immunotherapy and targeted agents, the majority of patients experience disease recurrence upon treatment and die due to their disease. Long non-coding RNAs (lncRNAs) are a new subclass of non-protein coding RNAs involved in (epigenetic) regulation of cell growth, invasion, and other important cellular functions. Consequently, recent research activities focused on the discovery of these lncRNAs in a broad spectrum of human diseases, especially cancer. Additional efforts have been undertaken to dissect the underlying molecular mechanisms employed by lncRNAs. In this review, we will summarize the growing evidence of deregulated lncRNA expression in melanoma, which is linked to tumor growth and progression. Moreover, we will highlight specific molecular pathways and modes of action for some well-studied lncRNAs and discuss their potential clinical implications.
Collapse
Affiliation(s)
- Georg Richtig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz 8010, Austria.
- Department of Dermatology, Medical University of Graz, Graz 8036, Austria.
| | - Barbara Ehall
- Institute for Pathology, Medical University of Graz, Graz 8036, Austria.
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria.
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, Graz 8036, Austria.
| | | | - Tony Gutschner
- Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany.
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz 8036, Austria.
| |
Collapse
|