1
|
Nandi P, Halari C, Lee M, Prabaharan E, Sarajideen S, Lee DK, Drewlo S. Rosiglitazone-Mediated Activation of PPARγ Induces PlGF Expression in Trophoblast Cells. Reprod Sci 2025:10.1007/s43032-025-01868-w. [PMID: 40295383 DOI: 10.1007/s43032-025-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Preeclampsia (PE) is a hypertensive pregnancy disorder marked by impaired trophoblast invasion and placental vascular dysfunction, resulting in severe maternal and fetal complications. Placental growth factor (PlGF) is critical for proper placental angiogenesis and is transcriptionally regulated by glial cell missing-1 (GCM1), a downstream effector of peroxisome proliferator-activated receptor-gamma (PPARγ). Decreased PPARγ activity in PE may therefore contribute to diminished PlGF levels, worsening placental pathology. In this study, we investigated the mechanistic role of rosiglitazone, a PPARγ agonist, in rescuing PlGF expression under 1.5% oxygen/reoxygenation stress mimicking PE. Using JEG-3 trophoblast cells, we show that rosiglitazone enhances PPARγ nuclear translocation, leading to increased GCM1 and cyto-protective heme oxygenase-1 (HO-1) expression, and subsequent upregulation of PlGF production under both 21% oxygen and 1.5% oxygen/reoxygenation conditions. Pharmacologic inhibition of PPARγ with T0070907 or siRNA-mediated knockdown abrogated these effects, underscoring PPARγ's essential role in maintaining GCM1-driven PlGF expression. Notably, rosiglitazone treatment rescued PlGF production in 1.5% oxygen/reoxygenation-stressed cells, highlighting a potential therapeutic strategy to mitigate placental dysfunction. These findings define the PPARγ-GCM1-PlGF axis as a mechanistic cornerstone of placental health and suggest that pharmacological activation of PPARγ may offer clinical benefit in improving pregnancy outcomes in PE.
Collapse
Affiliation(s)
- Pinki Nandi
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Mavis Lee
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | - Dennis K Lee
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sascha Drewlo
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Gladstone RA, Snelgrove JW, McLaughlin K, Hobson SR, Windrim RC, Melamed N, Hladunewich M, Drewlo S, Kingdom JC. Placental growth factor (PlGF) and soluble fms-like tyrosine kinase-1 (sFlt1): powerful new tools to guide obstetric and medical care in pregnancy. Obstet Med 2025:1753495X251327462. [PMID: 40191640 PMCID: PMC11969481 DOI: 10.1177/1753495x251327462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 04/09/2025] Open
Affiliation(s)
- Rachel A Gladstone
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Canada
| | - John W Snelgrove
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Canada
| | - Kelsey McLaughlin
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Canada
| | - Sebastian R Hobson
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Canada
| | - Rory C Windrim
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Canada
| | - Nir Melamed
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - Michelle Hladunewich
- Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - Sascha Drewlo
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - John C Kingdom
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Canada
| |
Collapse
|
3
|
Duan WK, Shaha SZ, Garcia Rivas JF, Wilson BL, Patel KJ, Domingo IK, Riddell MR. Placental cytotrophoblast microvillar stabilization is required for cell-cell fusion. Development 2025; 152:dev204619. [PMID: 40213950 PMCID: PMC12045602 DOI: 10.1242/dev.204619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025]
Abstract
The placenta is an essential organ of pregnancy required for maternal-fetal transport and communication. The surface of the placenta facing the maternal blood is formed by a single giant multinucleate cell: the syncytiotrophoblast. The syncytiotrophoblast is formed and maintained via fusion of progenitor cytotrophoblasts. Cell-cell fusion is a tightly regulated process, and in non-trophoblastic cells is accompanied by stereotypical alterations in cell shape by cells that have attained fusion-competence. The most prominent feature is the formation of actin-based membrane protrusions, but whether stereotypic morphological changes occur in fusion-competent cytotrophoblasts has not been characterized. Using a human placental explant model and trophoblast organoids, we identify microvilliation as a morphological feature that is enriched prior to fusion of cytotrophoblasts. Disruption of microvilli using an inhibitor of the actin-membrane cross-linker protein ezrin blocked cytotrophoblast fusion in both models. We provide evidence that cytotrophoblast microvilli are enriched in early endosomes and a pro-fusogenic protein. Thus, we propose that the polarized assembly of microvillar domains is crucial for mediating efficient syncytiotrophoblast development.
Collapse
Affiliation(s)
- Wendy K. Duan
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Sumaiyah Z. Shaha
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Juan F. Garcia Rivas
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Bethan L. Wilson
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Khushali J. Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Ivan K. Domingo
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Meghan R. Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
4
|
Brown LTL, Pereira D, Winn LM. A Narrative Review on the Effect of Valproic Acid on the Placenta. Birth Defects Res 2025; 117:e2471. [PMID: 40211937 PMCID: PMC11986804 DOI: 10.1002/bdr2.2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Valproic acid (VPA) is an antiepileptic and mood-stabilizing drug with well-established teratogenic risks when taken during pregnancy. While its harmful effects on fetal development are well known, less attention has been given to its impact on placental development and function, despite the placenta's critical role in pregnancy. AIM This narrative review examines how VPA exposure affects placental growth, morphology, nutrient transport, and epigenetic modifications. It also considers whether placental dysfunction may contribute VPA's teratogenic effects. RESULTS Evidence suggests that VPA disrupts placental structure and growth, alters the expression of nutrient transporters, such as those for folate, glucose, and amino acids, and modifies the placental epigenome, including globally decreased DNA methylation and increased histone acetylation. DISCUSSION It is hypothesized that these epigenetic changes may influence chromatin remodelling and trophoblast gene expression, though this connection has not been fully established. Such epigenetic dysregulation may result in aberrant gene expression that underlies the structural and functional impairments observed in the placenta, potentially compromising its ability to support fetal development and contributing to VPA's teratogenic effects. Findings across studies, however, are inconsistent, varying with dose, timing of exposure, and model system. Furthermore, there is a lack of research examining sex-specific differences in placental responses to VPA, despite evidence that male and female placentas exhibit distinct growth patterns, gene expression profiles, and susceptibilities to environmental insults. CONCLUSION Addressing these knowledge gaps through targeted research will improve our understanding of how VPA affects the placenta and its role in teratogenesis.
Collapse
Affiliation(s)
- Lauren T. L. Brown
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
| | - Delaine Pereira
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
| | - Louise M. Winn
- Department of Biomedical and Molecular SciencesQueen's University at KingstonKingstonOntarioCanada
- School of Environmental SciencesQueen's University at KingstonKingstonOntarioCanada
| |
Collapse
|
5
|
Wong GP, Hartmann S, Nonn O, Cannon P, Nguyen TV, Kandel M, de Alwis N, Murphy CN, Pritchard N, Dechend R, Hannan NJ, Tong S, Simmons DG, Kaitu'u-Lino TJ. Stem Cell Markers LGR5, LGR4 and Their Immediate Signalling Partners are Dysregulated in Preeclampsia. Stem Cell Rev Rep 2025; 21:872-896. [PMID: 39688759 DOI: 10.1007/s12015-024-10831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Leucine-rich repeat-containing G protein-coupled receptors 5/4 (LGR5/LGR4) are critical stem cell markers in epithelial tissues including intestine. They agonise wingless-related integration site (WNT) signalling. Until now, LGR5/LGR4 were uncharacterised in placenta, where analogous functions may exist. We characterised LGR5/LGR4, their ligands/targets in human placenta, with further assessments on dysregulation in preeclampsia/fetal growth restriction (FGR). LGR5 mRNA was unaltered in first trimester (n = 11), preterm (n = 9) and term (n = 11) placental lysate. LGR5 was enriched in human trophoblast stem cells (hTSCs) and downregulated with differentiation to extravillous trophoblasts (p < 0.0215) and syncytiotrophoblasts (p < 0.0350). In situ hybridisation localised LGR5 to unique, proliferative MKI67 + mononuclear trophoblasts underlying syncytium which concurred with proposed progenitor identities in single-cell transcriptomics. LGR5 expression was significantly reduced in placentas from early-onset preeclampsia (p < 0.0001, n = 81 versus n = 19 controls), late-onset preeclampsia (p = 0.0046, n = 20 versus n = 33 controls) and FGR (p = 0.0031, n = 34 versus n = 17 controls). LGR4 was elevated in first trimester versus preterm and term placentas (p = 0.0412), in placentas with early-onset preeclampsia (p = 0.0148) and in FGR (p = 0.0417). Transcriptomic analysis and in vitro hTSC differentiation to both trophoblast lineages suggested LGR4 increases with differentiation. Single-nucleus RNA sequencing of placental villous samples supported LGR5 and LGR4 localisation findings. Hypoxia/proinflammatory cytokine treatment modelling elements experienced by the placenta in placental insufficiency pathogenesis did not significantly alter LGR5/LGR4. Ligands R-spondins 1/3/4, and neutralising targets ring finger protein 43 (RNF43) and zinc and ring finger 3 (ZNRF3) were also reduced in placentas from preeclamptic pregnancies. This study is the first to describe LGR5/LGR4 and their signalling partner expression in human placenta. Their dysregulations in the preeclamptic placenta allude to disruptions to integral trophoblast stem cell function/differentiation that may occur during placental development related to WNT signalling.
Collapse
Affiliation(s)
- Georgia P Wong
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| | - Sunhild Hartmann
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charitè Campus Buch, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
| | - Olivia Nonn
- Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charitè Campus Buch, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ping Cannon
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Manju Kandel
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natasha de Alwis
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ciara N Murphy
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natasha Pritchard
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ralf Dechend
- Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charitè Campus Buch, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum, Berlin Buch, Germany
| | - Natalie J Hannan
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - David G Simmons
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
6
|
Benouda I, Vaiman D, Miralles F. Trophoblast Fusion in Hypertensive Disorders of Pregnancy and Preeclampsia. Int J Mol Sci 2025; 26:2859. [PMID: 40243430 PMCID: PMC11988414 DOI: 10.3390/ijms26072859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Trophoblast fusion into the multinucleated syncytiotrophoblast (SCT) appears as an inescapable feature of placentation in mammals and other viviparous species. The trophoblast cells underlying the syncytium are considered a reservoir for the restoration of the aging peripheric structure. The transition from trophoblasts to SCTs has to be tightly regulated, and could be altered by genetic anomalies or environmental exposure. The resulting defective placental function could be one of the causes of the major placental diseases, such as preeclampsia (PE) and Intra-Uterine Growth Restriction (IUGR). This review attempts to take stock of the current knowledge about fusion mechanisms and their deregulations.
Collapse
Affiliation(s)
| | - Daniel Vaiman
- Institut Cochin, U1016, INSERM, UMR8104 CNRS, Université de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France; (I.B.); (F.M.)
| | | |
Collapse
|
7
|
Mansilla M, Wang Y, Nie G. Culture of cryopreserved first trimester placental tissues to study syncytial renewal. Sci Rep 2025; 15:4873. [PMID: 39929934 PMCID: PMC11810994 DOI: 10.1038/s41598-025-89022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Ex vivo studies with first trimester placental tissues are crucial for understanding human placental development, and culturing placental villi in floating conditions is vital to mimic the natural setting. Moreover, being able to cryopreserve these scarce materials for ex vivo studies would open unprecedented avenues, as they are very limited to research and the need to culture freshly adds further hurdles while limiting efficient use. Here we showed that hanging drop method is a simple yet effective approach to culture placental floating villi. We also revealed that these functional units of the early-stage human placenta can be cryopreserved for culturing, and that frozen-thawed villi can regenerate the syncytial layer following denudation. We further illustrated the utility of frozen-thawed tissues to study syncytialization, while validating the importance of HtrA4 in the process which was shown previously in cell models. These represent significant new knowledge to the field of placental biology.
Collapse
Affiliation(s)
- Mary Mansilla
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, 3083, Australia
| | - Yao Wang
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, 3083, Australia
| | - Guiying Nie
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, 3083, Australia.
| |
Collapse
|
8
|
Murthi P, Kalionis B. Homeobox genes in the human placenta: Twists and turns on the path to find novel targets. Placenta 2024; 157:28-36. [PMID: 38908943 DOI: 10.1016/j.placenta.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Fetal growth restriction (FGR) is a clinically important human pregnancy disorder that is thought to originate early in pregnancy and while its aetiology is not well understood, the disorder is associated with placental insufficiency. Currently treatment for FGR is limited by increased surveillance using ultrasound monitoring and premature delivery, or corticosteroid medication in the third trimester to prolong pregnancy. There is a pressing need for novel strategies to detect and treat FGR at its early stage. Homeobox genes are well established as master regulators of early embryonic development and increasing evidence suggests they are also important in regulating early placental development. Most important is that specific homeobox genes are abnormally expressed in human FGR. This review focusses on identifying the molecular pathways controlled by homeobox genes in the normal and FGR-affected placenta. This information will begin to address the knowledge gap in the molecular aetiology of FGR and lay the foundation for identifying potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Padma Murthi
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital and Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, Victoria, Australia.
| | - Bill Kalionis
- Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital and Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Zur RL, McLaughlin K, Aalto L, Jiang Y, Huszti E, Parks WT, Kingdom JC. Phenotypes of maternal vascular malperfusion placental pathology and adverse pregnancy outcomes: A retrospective cohort study. BJOG 2024; 131:1515-1523. [PMID: 38725333 DOI: 10.1111/1471-0528.17837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 10/17/2024]
Abstract
OBJECTIVE To identify which components of maternal vascular malperfusion (MVM) pathology are associated with adverse pregnancy outcomes and to investigate the morphological phenotypes of MVM placental pathology and their relationship with distinct clinical presentations of pre-eclampsia and/or fetal growth restriction (FGR). DESIGN Retrospective cohort study. SETTING Tertiary care hospital in Toronto, Canada. POPULATION Pregnant individuals with low circulating maternal placental growth factor (PlGF) levels (<100 pg/mL) and placental pathology analysis between March 2017 and December 2019. METHODS Association between each pathological finding and the outcomes of interest were calculated using the chi-square test. Cluster analysis and logistic regression was used to identify phenotypic clusters, and their association with adverse pregnancy outcomes. Cluster analysis was performed using the K-modes unsupervised clustering algorithm. MAIN OUTCOME MEASURES Preterm delivery <34+0 weeks of gestation, early onset pre-eclampsia with delivery <34+0 weeks of gestation, birthweight <10th percentile (small for gestational age, SGA) and stillbirth. RESULTS The diagnostic features of MVM most strongly associated with delivery <34+0 weeks of gestation were: infarction, accelerated villous maturation, distal villous hypoplasia and decidual vasculopathy. Two dominant phenotypic clusters of MVM pathology were identified. The largest cluster (n = 104) was characterised by both reduced placental mass and hypoxic ischaemic injury (infarction and accelerated villous maturation), and was associated with combined pre-eclampsia and SGA. The second dominant cluster (n = 59) was characterised by infarction and accelerated villous maturation alone, and was associated with pre-eclampsia and average birthweight for gestational age. CONCLUSIONS Patients with placental MVM disease are at high risk of pre-eclampsia and FGR, and distinct pathological findings correlate with different clinical phenotypes, suggestive of distinct subtypes of MVM disease.
Collapse
Affiliation(s)
- Rebecca L Zur
- Maternal-Fetal Medicine Division (Placenta Program), Department of Obstetrics & Gynaecology, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Kelsey McLaughlin
- Maternal-Fetal Medicine Division (Placenta Program), Department of Obstetrics & Gynaecology, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Laura Aalto
- Department of Pathology and Laboratory Medicine, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Yidi Jiang
- Biostatistics Research Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - W Tony Parks
- Department of Pathology and Laboratory Medicine, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - John C Kingdom
- Maternal-Fetal Medicine Division (Placenta Program), Department of Obstetrics & Gynaecology, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Togo A, Mitsuzuka K, Hanawa S, Nakajima R, Izumi K, Sato K, Ishimoto H. Downregulation of SPARC Expression Enhances the Fusion of BeWo Choriocarcinoma Cells. Reprod Sci 2024; 31:2342-2353. [PMID: 38728000 DOI: 10.1007/s43032-024-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/12/2024] [Indexed: 07/31/2024]
Abstract
Syncytiotrophoblasts, which are formed by the fusion of villous cytotrophoblasts, play an essential role in maintaining a successful pregnancy. Secreted protein acidic and rich in cysteine (SPARC) is a non-structural Ca2+-binding extracellular matrix glycoprotein involved in tissue remodeling and cell proliferation, differentiation, and migration. Previous studies have revealed that SPARC is expressed in villous and extravillous cytotrophoblasts in the first trimester and that RNA interference targeted at SPARC significantly inhibited invasion of human extravillous trophoblast HTR8/SVneo cells. However, the involvement of SPARC in cytotrophoblast fusion remains unknown. This study aimed to investigate the role of SPARC in cytotrophoblast fusion, using the BeWo choriocarcinoma cell line as a model of villous cytotrophoblasts. Immunohistochemical analysis was conducted to assess SPARC expression in normal human placentas using placental tissues obtained during the first and third trimesters of pregnancy. We investigated the effects of SPARC knockdown on trophoblast differentiation markers and cell fusion in BeWo cells using small interfering RNA. Immunohistochemical analysis revealed that SPARC expression was high in the early gestational chorionic villi and low in the late gestational chorionic villi. SPARC knockdown increased the expressions of human chorionic gonadotropin and Ovo-like transcriptional repressor 1; however, glial cells missing transcription factor 1, syncytin-1, and syncytin-2 showed no significant changes. The assessment revealed that SPARC knockdown significantly enhanced cell fusion compared to the non-silencing control. Our data suggest that SPARC plays a vital role in regulating trophoblast fusion and differentiation during placental development.
Collapse
Affiliation(s)
- Atsuko Togo
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan.
| | - Kanako Mitsuzuka
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Sachiko Hanawa
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Rie Nakajima
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Kenji Izumi
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Kenji Sato
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| |
Collapse
|
11
|
Paquette A, Ahuna K, Hwang YM, Pearl J, Liao H, Shannon P, Kadam L, Lapehn S, Bucher M, Roper R, Funk C, MacDonald J, Bammler T, Baloni P, Brockway H, Mason WA, Bush N, Lewinn KZ, Karr CJ, Stamatoyannopoulos J, Muglia LJ, Jones H, Sadovsky Y, Myatt L, Sathyanarayana S, Price ND. A genome scale transcriptional regulatory model of the human placenta. SCIENCE ADVANCES 2024; 10:eadf3411. [PMID: 38941464 PMCID: PMC11212735 DOI: 10.1126/sciadv.adf3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions. In an independent dataset, the TRN model predicted target gene expression with an out-of-sample R2 greater than 0.25 for 73% of target genes. We performed siRNA knockdowns of four TFs and achieved concordance between the predicted gene targets in our TRN and differences in expression of knockdowns with an accuracy of >0.7 for three of the four TFs. Our final model contained 113,158 interactions across 391 TFs and 7712 target genes and is publicly available. We identified 29 TFs which were significantly enriched as regulators for genes previously associated with preterm birth, and eight of these TFs were decreased in preterm placentas.
Collapse
Affiliation(s)
- Alison Paquette
- University of Washington, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kylia Ahuna
- Oregon Health and Sciences University, Portland, OR, USA
| | | | | | - Hanna Liao
- University of Washington, Seattle, WA, USA
| | | | - Leena Kadam
- Oregon Health and Sciences University, Portland, OR, USA
| | | | - Matthew Bucher
- Oregon Health and Sciences University, Portland, OR, USA
| | - Ryan Roper
- Institute for Systems Biology, Seattle, WA, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Heather Brockway
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - W. Alex Mason
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Nicole Bush
- University of California San Francisco, San Francisco, CA, USA
| | - Kaja Z. Lewinn
- University of California San Francisco, San Francisco, CA, USA
| | | | | | - Louis J. Muglia
- The Burroughs Wellcome Fund, Research Triangle Park, NC, USA
- Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Yoel Sadovsky
- Magee Womens Research Institute, Pittsburgh, PA, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Leslie Myatt
- Oregon Health and Sciences University, Portland, OR, USA
| | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, USA
- Thorne HealthTech, New York City, NY, USA
| |
Collapse
|
12
|
Vidal MS, Radnaa E, Vora N, Khanipov K, Antich C, Ferrer M, Urrabaz-Garza R, Jacob JE, Menon R. Establishment and comparison of human term placenta-derived trophoblast cells†. Biol Reprod 2024; 110:950-970. [PMID: 38330185 PMCID: PMC11484515 DOI: 10.1093/biolre/ioae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Research on the biology of fetal-maternal barriers has been limited by access to physiologically relevant cells, including trophoblast cells. In this study, we describe the development of a human term placenta-derived cytotrophoblast immortalized cell line (hPTCCTB) derived from the basal plate. Human-term placenta-derived cytotrophoblast immortalized cell line cells are comparable to their primary cells of origin in terms of morphology, marker expression, and functional responses. We demonstrate that these can transform into syncytiotrophoblast and extravillous trophoblasts. We also compared the hPTCCTB cells to immortalized chorionic trophoblasts (hFM-CTC), trophoblasts of the chorionic plate, and BeWo cells, choriocarcinoma cell lines of conventional use. Human-term placenta-derived cytotrophoblast immortalized cell line and hFM-CTCs displayed more similarity to each other than to BeWos, but these differ in syncytialization ability. Overall, this study (1) demonstrates that the immortalized hPTCCTB generated are cells of higher physiological relevance and (2) provides a look into the distinction between the spatially distinct placental and fetal barrier trophoblasts cells, hPTCCTB and hFM-CTC, respectively.
Collapse
Affiliation(s)
- Manuel S Vidal
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Cristina Antich
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jeena E Jacob
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
13
|
He(何璇) XA, Berenson A, Bernard M, Weber C, Cook LE, Visel A, Fuxman Bass JI, Fisher S. Identification of conserved skeletal enhancers associated with craniosynostosis risk genes. Hum Mol Genet 2024; 33:837-849. [PMID: 37883470 PMCID: PMC11070136 DOI: 10.1093/hmg/ddad182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Craniosynostosis, defined by premature fusion of one or multiple cranial sutures, is a common congenital defect affecting more than 1/2000 infants and results in restricted brain expansion. Single gene mutations account for 15%-20% of cases, largely as part of a syndrome, but the majority are nonsyndromic with complex underlying genetics. We hypothesized that the two noncoding genomic regions identified by a GWAS for craniosynostosis contain distal regulatory elements for the risk genes BMPER and BMP2. To identify such regulatory elements, we surveyed conserved noncoding sequences from both risk loci for enhancer activity in transgenic Danio rerio. We identified enhancers from both regions that direct expression to skeletal tissues, consistent with the endogenous expression of bmper and bmp2. For each locus, we also found a skeletal enhancer that also contains a sequence variant associated with craniosynostosis risk. We examined the activity of each enhancer during craniofacial development and found that the BMPER-associated enhancer is active in the restricted region of cartilage closely associated with frontal bone initiation. The same enhancer is active in mouse skeletal tissues, demonstrating evolutionarily conserved activity. Using enhanced yeast one-hybrid assays, we identified transcription factors that bind each enhancer and observed differential binding between alleles, implicating multiple signaling pathways. Our findings help unveil the genetic mechanism of the two craniosynostosis risk loci. More broadly, our combined in vivo approach is applicable to many complex genetic diseases to build a link between association studies and specific genetic mechanisms.
Collapse
Affiliation(s)
- Xuan Anita He(何璇)
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
- Graduate Program in Biomolecular Medicine, Boston University, 72 East Concord St, Boston, MA 02118, United States
| | - Anna Berenson
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Michelle Bernard
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
- College of Arts and Sciences, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Chris Weber
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Laura E Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, United States
- School of Natural Sciences, 5200 Lake Road, University of California Merced, Merced, CA 95343, United States
| | - Juan I Fuxman Bass
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Shannon Fisher
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
| |
Collapse
|
14
|
Inohaya A, Chigusa Y, Takakura M, Io S, Kim MA, Matsuzaka Y, Yasuda E, Ueda Y, Kawamura Y, Takamatsu S, Mogami H, Takashima Y, Mandai M, Kondoh E. Shear stress in the intervillous space promotes syncytial formation of iPS cells-derived trophoblasts†. Biol Reprod 2024; 110:300-309. [PMID: 37930227 DOI: 10.1093/biolre/ioad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
The intervillous space of human placenta is filled with maternal blood, and villous trophoblasts are constantly exposed to the shear stress generated by maternal blood pressure and flow throughout the entire gestation period. However, the effects of shear stress on villous trophoblasts and their biological significance remain unknown. Here, using our recently established naïve human pluripotent stem cells-derived cytotrophoblast stem cells (nCTs) and a device that can apply arbitrary shear stress to cells, we investigated the impact of shear stress on early-stage trophoblasts. After 72 h of exposure to 10 dyn/cm2 shear stress, nCTs became fused and multinuclear, and mRNA expression of the syncytiotrophoblast (ST) markers, such as glial cell missing 1, endogenous retrovirus group W member 1 envelope, chorionic gonadotropin subunit beta 3, syndecan 1, pregnancy specific beta-1-glycoprotein 3, placental growth factor, and solute carrier family 2 member 1 were significantly upregulated compared to static conditions. Immunohistochemistry showed that shear stress increased fusion index, human chorionic gonadotropin secretion, and human placental lactogen secretion. Increased microvilli formation on the surface of nCTs under flow conditions was detected using scanning electron microscopy. Intracellular cyclic adenosine monophosphate significantly increased under flow conditions. Moreover, transcriptome analysis of nCTs subjected to shear stress revealed that shear stress upregulated ST-specific genes and downregulated CT-specific genes. Collectively, these findings indicate that shear stress promotes the differentiation of nCTs into ST.
Collapse
Affiliation(s)
- Asako Inohaya
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahito Takakura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shingo Io
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Min-A Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Matsuzaka
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Yasuda
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Ueda
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Kawamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiji Kondoh
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Li Q, Sharkey A, Sheridan M, Magistrati E, Arutyunyan A, Huhn O, Sancho-Serra C, Anderson H, McGovern N, Esposito L, Fernando R, Gardner L, Vento-Tormo R, Turco MY, Moffett A. Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy. Cell Stem Cell 2024; 31:181-195.e9. [PMID: 38237587 DOI: 10.1016/j.stem.2023.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 02/04/2024]
Abstract
In humans, balanced invasion of trophoblast cells into the uterine mucosa, the decidua, is critical for successful pregnancy. Evidence suggests that this process is regulated by uterine natural killer (uNK) cells, but how they influence reproductive outcomes is unclear. Here, we used our trophoblast organoids and primary tissue samples to determine how uNK cells affect placentation. By locating potential interaction axes between trophoblast and uNK cells using single-cell transcriptomics and in vitro modeling of these interactions in organoids, we identify a uNK cell-derived cytokine signal that promotes trophoblast differentiation at the late stage of the invasive pathway. Moreover, it affects transcriptional programs involved in regulating blood flow, nutrients, and inflammatory and adaptive immune responses, as well as gene signatures associated with disorders of pregnancy such as pre-eclampsia. Our findings suggest mechanisms on how optimal immunological interactions between uNK cells and trophoblast enhance reproductive success.
Collapse
Affiliation(s)
- Qian Li
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Andrew Sharkey
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Megan Sheridan
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Elisa Magistrati
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Anna Arutyunyan
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Oisin Huhn
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Carmen Sancho-Serra
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Holly Anderson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Laura Esposito
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ridma Fernando
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Roser Vento-Tormo
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK.
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
16
|
Anvar Z, Chakchouk I, Sharif M, Mahadevan S, Su L, Anikar S, Naini FA, Utama AB, Van den Veyver IB. Comparison of Four Protocols for In Vitro Differentiation of Human Embryonic Stem Cells into Trophoblast Lineages by BMP4 and Dual Inhibition of Activin/Nodal and FGF2 Signaling. Reprod Sci 2024; 31:173-189. [PMID: 37658178 PMCID: PMC10784360 DOI: 10.1007/s43032-023-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Human embryonic stem cells (hESCs) cultured in media containing bone morphogenic protein 4 (BMP4; B) differentiate into trophoblast-like cells. Supplementing media with inhibitors of activin/nodal signaling (A83-01) and of fibroblast growth factor 2 (PD173074) suppresses mesoderm and endoderm formation and improves specification of trophoblast-like lineages, but with variable effectiveness. We compared differentiation in four BMP4-containing media: mTeSR1-BMP4 only, mTeSR1-BAP, basal medium with BAP (basal-BAP), and a newly defined medium, E7-BAP. These media variably drive early differentiation towards trophoblast-like lineages with upregulation of early trophoblast markers CDX2 and KRT7 and downregulation of pluripotency markers (OCT4 and NANOG). As expected, based on differences between media in FGF2 and its inhibitors, downregulation of mesendoderm marker EOMES was variable between media. By day 7, only hESCs grown in E7-BAP or basal-BAP expressed HLA-G protein, indicating the presence of cells with extravillous trophoblast characteristics. Expression of HLA-G and other differentiation markers (hCG, KRT7, and GCM1) was highest in basal-BAP, suggesting a faster differentiation in this medium, but those cultures were more inhomogeneous and still expressed some endodermal and pluripotency markers. In E7-BAP, HLA-G expression increased later and was lower. There was also a low but maintained expression of some C19MC miRNAs, with more CpG hypomethylation of the ELF5 promoter, suggesting that E7-BAP cultures differentiate slower along the trophoblast lineage. We conclude that while all protocols drive differentiation into trophoblast lineages with varying efficiency, they have advantages and disadvantages that must be considered when selecting a protocol for specific experiments.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Sangeetha Mahadevan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Li Su
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Swathi Anikar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
| | - Fatemeh Alavi Naini
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
- Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Jia X, Yang S, Wang X, Ruan J, Huang W. HOXB3 promotes trophoblast cell proliferation, invasion, and migration to alleviate preeclampsia via mediating the Notch/Wnt/β-catenin pathway. Eur J Pharmacol 2023; 960:176015. [PMID: 37652291 DOI: 10.1016/j.ejphar.2023.176015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Preeclampsia (PE) harms a significant number of pregnant women and fetuses. However, because of its complex pathological mechanisms, there is no cure except for delivery. This study identified the impact and mechanisms of action of HOXB3 in PE. The behaviors of HTR-8/SVneo cells were analyzed using a cell counting kit-8, EdU, and transwell assays. The interaction between HOXB3 and Notch1 was assessed using a luciferase reporter and chromatin immunoprecipitation assays. Expression was measured by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence assays. Additionally, the function of HOXB3 was evaluated in an established rat model of PE. We found that HOXB3 was upregulated in PE. HOXB3 overexpression facilitated trophoblast cell proliferation, migration, and invasion. HOXB3 transcriptionally regulated Notch1 by binding to its promoter. Notch1 knockdown abrogated the functions of HOXB3 and the-catenin pathway in trophoblasts. Suppression of the Wnt/β-catenin pathway abrogated the effects of HOXB3. Additionally, HOXB3 alleviated the symptoms in PE rats. In conclusion, HOXB3 transcriptionally activated Notch1 expression and the-catenin pathway, promoting trophoblast cell proliferation, invasion, and migration, thereby alleviating PE progression. This study provides a novel approach for PE therapy.
Collapse
Affiliation(s)
- Xueqin Jia
- Department of Obstetrics, Xinhui People's Hospital of Southern Medical University, Jiangmen, 529100, Guangdong, China; Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; Department of Obstetrics, The People's Hospital of Rizhao, Rizhao, Shandong, 276800, China
| | - Shiying Yang
- Department of Obstetrics, The People's Hospital of Rizhao, Rizhao, Shandong, 276800, China
| | - Xia Wang
- Department of Obstetrics, The People's Hospital of Rizhao, Rizhao, Shandong, 276800, China
| | - Jianbing Ruan
- Department of Obstetrics, Xinhui People's Hospital of Southern Medical University, Jiangmen, 529100, Guangdong, China.
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
18
|
Wątroba M, Szewczyk G, Szukiewicz D. The Role of Sirtuin-1 (SIRT1) in the Physiology and Pathophysiology of the Human Placenta. Int J Mol Sci 2023; 24:16210. [PMID: 38003402 PMCID: PMC10671790 DOI: 10.3390/ijms242216210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Sirtuins, especially SIRT1, play a significant role in regulating inflammatory response, autophagy, and cell response to oxidative stress. Since their discovery, sirtuins have been regarded as anti-ageing and longevity-promoting enzymes. Sirtuin-regulated processes seem to participate in the most prevalent placental pathologies, such as pre-eclampsia. Furthermore, more and more research studies indicate that SIRT1 may prevent pre-eclampsia development or at least alleviate its manifestations. Having considered this, we reviewed recent studies on the role of sirtuins, especially SIRT1, in processes determining normal or abnormal development and functioning of the placenta.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (G.S.)
| |
Collapse
|
19
|
Zhuang BM, Cao DD, Li TX, Liu XF, Lyu MM, Wang SD, Cui XY, Wang L, Chen XL, Lin XL, Lee CL, Chiu PCN, Yeung WSB, Yao YQ. Single-cell characterization of self-renewing primary trophoblast organoids as modeling of EVT differentiation and interactions with decidual natural killer cells. BMC Genomics 2023; 24:618. [PMID: 37853336 PMCID: PMC10583354 DOI: 10.1186/s12864-023-09690-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.
Collapse
Affiliation(s)
- Bai-Mei Zhuang
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Dan-Dan Cao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China.
| | - Tian-Xi Li
- Geneplus-Shenzhen Institute, Shenzhen, China
| | - Xiao-Feng Liu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
| | - Min-Min Lyu
- Department of Clinical-Translational and Basic Research Laboratory, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Shenzhen, Futian District, Guangdong, P.R. China
| | - Si-Dong Wang
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin-Yuan Cui
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
| | - Li Wang
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiao-Lin Chen
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiao-Li Lin
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Cheuk-Lun Lee
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - Philip C N Chiu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R
| | - Yuan-Qing Yao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, Guangdong, P.R. China.
- Medical school of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.
- Department of Obstetrics and Gynecology, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
20
|
Li X, Li ZH, Wang YX, Liu TH. A comprehensive review of human trophoblast fusion models: recent developments and challenges. Cell Death Discov 2023; 9:372. [PMID: 37816723 PMCID: PMC10564767 DOI: 10.1038/s41420-023-01670-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
As an essential component of the maternal-fetal interface, the placental syncytiotrophoblast layer contributes to a successful pregnancy by secreting hormones necessary for pregnancy, transporting nutrients, mediating gas exchange, balancing immune tolerance, and resisting pathogen infection. Notably, the deficiency in mononuclear trophoblast cells fusing into multinucleated syncytiotrophoblast has been linked to adverse pregnancy outcomes, such as preeclampsia, fetal growth restriction, preterm birth, and stillbirth. Despite the availability of many models for the study of trophoblast fusion, there exists a notable disparity from the ideal model, limiting the deeper exploration into the placental development. Here, we reviewed the existing models employed for the investigation of human trophoblast fusion from several aspects, including the development history, latest progress, advantages, disadvantages, scope of application, and challenges. The literature searched covers the monolayer cell lines, primary human trophoblast, placental explants, human trophoblast stem cells, human pluripotent stem cells, three-dimensional cell spheres, organoids, and placenta-on-a-chip from 1938 to 2023. These diverse models have significantly enhanced our comprehension of placental development regulation and the underlying mechanisms of placental-related disorders. Through this review, our objective is to provide readers with a thorough understanding of the existing trophoblast fusion models, making it easier to select most suitable models to address specific experimental requirements or scientific inquiries. Establishment and application of the existing human placental trophoblast fusion models.
Collapse
Affiliation(s)
- Xia Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
| | - Zhuo-Hang Li
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China
- Medical Laboratory Department, Traditional Chinese Medicine Hospital of Yaan, 625099, Sichuan, China
| | - Ying-Xiong Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China.
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, 400016, Chongqing, China.
| |
Collapse
|
21
|
Russo E, Alberti G, Corrao S, Borlongan CV, Miceli V, Conaldi PG, Di Gaudio F, La Rocca G. The Truth Is Out There: Biological Features and Clinical Indications of Extracellular Vesicles from Human Perinatal Stem Cells. Cells 2023; 12:2347. [PMID: 37830562 PMCID: PMC10571796 DOI: 10.3390/cells12192347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
The potential of perinatal tissues to provide cellular populations to be used in different applications of regenerative medicine is well established. Recently, the efforts of researchers are being addressed regarding the evaluation of cell products (secreted molecules or extracellular vesicles, EVs) to be used as an alternative to cellular infusion. The data regarding the effective recapitulation of most perinatal cells' properties by their secreted complement point in this direction. EVs secreted from perinatal cells exhibit key therapeutic effects such as tissue repair and regeneration, the suppression of inflammatory responses, immune system modulation, and a variety of other functions. Although the properties of EVs from perinatal derivatives and their significant potential for therapeutic success are amply recognized, several challenges still remain that need to be addressed. In the present review, we provide an up-to-date analysis of the most recent results in the field, which can be addressed in future research in order to overcome the challenges that are still present in the characterization and utilization of the secreted complement of perinatal cells and, in particular, mesenchymal stromal cells.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Simona Corrao
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA;
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Francesca Di Gaudio
- Department of Health Promotion, Maternal-Infantile Care, Excellence Internal and Specialist Medicine “G. D’Alessandro” (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| |
Collapse
|
22
|
Ton MLN, Keitley D, Theeuwes B, Guibentif C, Ahnfelt-Rønne J, Andreassen TK, Calero-Nieto FJ, Imaz-Rosshandler I, Pijuan-Sala B, Nichols J, Benito-Gutiérrez È, Marioni JC, Göttgens B. An atlas of rabbit development as a model for single-cell comparative genomics. Nat Cell Biol 2023; 25:1061-1072. [PMID: 37322291 DOI: 10.1038/s41556-023-01174-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc. Here we constructed a morphological and molecular atlas of rabbit development. We report transcriptional and chromatin accessibility profiles for over 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis and early organogenesis. Using a neighbourhood comparison pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism. We characterize the gene regulatory programmes underlying trophoblast differentiation and identify signalling interactions involving the yolk sac mesothelium during haematopoiesis. We demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and computational pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single-cell comparative genomics more broadly across biomedical research.
Collapse
Affiliation(s)
- Mai-Linh Nu Ton
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bart Theeuwes
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carolina Guibentif
- Inst. Biomedicine, Dept. Microbiology and Immunology, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Fernando J Calero-Nieto
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, Cambridge, UK
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Blanca Pijuan-Sala
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Pécheux O, Correia-Branco A, Cohen M, Martinez de Tejada B. The Apelinergic System in Pregnancy. Int J Mol Sci 2023; 24:ijms24098014. [PMID: 37175743 PMCID: PMC10178735 DOI: 10.3390/ijms24098014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The apelinergic system is a highly conserved pleiotropic system. It comprises the apelin receptor apelin peptide jejunum (APJ) and its two peptide ligands, Elabela/Toddler (ELA) and apelin, which have different spatiotemporal localizations. This system has been implicated in the regulation of the adipoinsular axis, in cardiovascular and central nervous systems, in carcinogenesis, and in pregnancy in humans. During pregnancy, the apelinergic system is essential for embryo cardiogenesis and vasculogenesis and for placental development and function. It may also play a role in the initiation of labor. The apelinergic system seems to be involved in the development of placenta-related pregnancy complications, such as preeclampsia (PE) and intrauterine growth restriction, but an improvement in PE-like symptoms and birth weight has been described in murine models after the exogenous administration of apelin or ELA. Although the expression of ELA, apelin, and APJ is altered in human PE placenta, data related to their circulating levels are inconsistent. This article reviews current knowledge about the roles of the apelinergic system in pregnancy and its pathophysiological roles in placenta-related complications in pregnancy. We also discuss the challenges in translating the actors of the apelinergic system into a marker or target for therapeutic interventions in obstetrics.
Collapse
Affiliation(s)
- Océane Pécheux
- Obstetrics Division, Department of Woman, Child and Adolescent, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Ana Correia-Branco
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Begoῆa Martinez de Tejada
- Obstetrics Division, Department of Woman, Child and Adolescent, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
24
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|
25
|
Dai X, Shao H, Sun N, Ci B, Wu J, Liu C, Wu L, Yuan Y, Wei X, Yang H, Liu L, Ji W, Bai B, Shang Z, Tan T. Developmental dynamics of chromatin accessibility during post-implantation development of monkey embryos. Gigascience 2022; 12:giad038. [PMID: 37226912 PMCID: PMC10209733 DOI: 10.1093/gigascience/giad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Early post-implantation development, especially gastrulation in primates, is accompanied by extensive drastic chromatin reorganization, which remains largely elusive. RESULTS To delineate the global chromatin landscape and understand the molecular dynamics during this period, a single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) was applied to in vitro cultured cynomolgus monkey (Macaca fascicularis, hereafter referred to as monkey) embryos to investigate the chromatin status. First, we delineated the cis-regulatory interactions and identified the regulatory networks and critical transcription factors involved in the epiblast (EPI), hypoblast, and trophectoderm/trophoblast (TE) lineage specification. Second, we observed that the chromatin opening of some genome regions preceded the gene expression during EPI and trophoblast specification. Third, we identified the opposing roles of FGF and BMP signaling in pluripotency regulation during EPI specification. Finally, we revealed the similarity between EPI and TE in gene expression profiles and demonstrated that PATZ1 and NR2F2 were involved in EPI and trophoblast specification during monkey post-implantation development. CONCLUSIONS Our findings provide a useful resource and insights into dissecting the transcriptional regulatory machinery during primate post-implantation development.
Collapse
Affiliation(s)
- Xi Dai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Honglian Shao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Nianqin Sun
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Liang Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Yuan
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310013, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhouchun Shang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310013, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
26
|
Grimaldi B, Kohan-Ghadr HR, Drewlo S. The Potential for Placental Activation of PPARγ to Improve the Angiogenic Profile in Preeclampsia. Cells 2022; 11:cells11213514. [PMID: 36359910 PMCID: PMC9659243 DOI: 10.3390/cells11213514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Preeclampsia (PE) is one of the most common causes of maternal-fetal morbidity and mortality world-wide. While the underlying causes of PE remain elusive, aberrant trophoblast differentiation and function are thought to cause an imbalance of secreted angiogenic proteins resulting in systemic endothelial dysfunction and organ damage in the mother. The placental dysfunction is also characterized by a reduction of the transcription factor, peroxisome proliferator activated receptor γ (PPARγ) which normally promotes trophoblast differentiation and healthy placental function. This study aimed to understand how placental activation of PPARγ effects the secretion of angiogenic proteins and subsequently endothelial function. To study this, healthy and PE placental tissues were cultured with or without the PPARγ agonist, Rosiglitazone, and a Luminex assay was performed to measure secreted proteins from the placenta. To assess the angiogenic effects of placental activation of PPARγ, human umbilical vein endothelial cells (HUVECs) were cultured with the placental conditioned media and the net angiogenic potential of these cells was measured by a tube formation assay. This is the first study to show PPARγ's beneficial effect on the angiogenic profile in the human preeclamptic placenta through the reduction of anti-angiogenic angiopoietin-2 and soluble endoglin and the upregulation of pro-angiogenic placental growth factor, fibroblast growth factor-2, heparin-binding epidermal growth factor, and follistatin. The changes in the angiogenic profile were supported by the increased angiogenic potential observed in the HUVECs when cultured with conditioned media from rosiglitazone-treated preeclamptic placentas. The restoration of these disrupted pathways by activation of PPARγ in the preeclamptic placenta offers potential to improve placental and endothelial function in PE.
Collapse
Affiliation(s)
- Brooke Grimaldi
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Sascha Drewlo
- Biological Sciences Platform, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto M4N 3M5, Canada
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto M5G 1E2, Canada
- Correspondence:
| |
Collapse
|
27
|
Zhou X, Zhou M, Zheng M, Tian S, Yang X, Ning Y, Li Y, Zhang S. Polyploid giant cancer cells and cancer progression. Front Cell Dev Biol 2022; 10:1017588. [PMID: 36274852 PMCID: PMC9581214 DOI: 10.3389/fcell.2022.1017588] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Polyploid giant cancer cells (PGCCs) are an important feature of cellular atypia, the detailed mechanisms of their formation and function remain unclear. PGCCs were previously thought to be derived from repeated mitosis/cytokinesis failure, with no intrinsic ability to proliferate and divide. However, recently, PGCCs have been confirmed to have cancer stem cell (CSC)-like characteristics, and generate progeny cells through asymmetric division, which express epithelial-mesenchymal transition-related markers to promote invasion and migration. The formation of PGCCs can be attributed to multiple stimulating factors, including hypoxia, chemotherapeutic reagents, and radiation, can induce the formation of PGCCs, by regulating the cell cycle and cell fusion-related protein expression. The properties of CSCs suggest that PGCCs can be induced to differentiate into non-tumor cells, and produce erythrocytes composed of embryonic hemoglobin, which have a high affinity for oxygen, and thereby allow PGCCs survival from the severe hypoxia. The number of PGCCs is associated with metastasis, chemoradiotherapy resistance, and recurrence of malignant tumors. Targeting relevant proteins or signaling pathways related with the formation and transdifferentiation of adipose tissue and cartilage in PGCCs may provide new strategies for solid tumor therapy.
Collapse
Affiliation(s)
- Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
28
|
Mizutani T, Orisaka M, Miyazaki Y, Morichika R, Uesaka M, Miyamoto K, Yoshida Y. Inhibition of YAP/TAZ-TEAD activity induces cytotrophoblast differentiation into syncytiotrophoblast in human trophoblast. Mol Hum Reprod 2022; 28:6673154. [PMID: 35993908 DOI: 10.1093/molehr/gaac032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
During placentation, placental cytotrophoblast (CT) cells differentiate into syncytiotrophoblast (ST) cells and extravillous trophoblast (EVT) cells. In the placenta, the expression of various genes is regulated by the Hippo pathway through a transcription complex, Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ)-TEA domain transcription factor (TEAD) (YAP/TAZ-TEAD) activity. YAP/TAZ-TEAD activity is controlled by multiple factors and signaling, such as cyclic AMP (cAMP) signaling. cAMP signaling is believed to be involved in the regulation of trophoblast function but is not yet fully understood. Here we showed that YAP/TAZ-TEAD expressions and their activities were altered by cAMP stimulation in BeWo cells, a human choriocarcinoma cell line. The repression of YAP/TAZ-TEAD activity induced the expression of ST-specific genes without cAMP stimulation, and transduction of constitutively active YAP, i.e., YAP-5SA, resulted in the repression of 8Br-cAMP-induced expressions of ST-specific genes in a TEAD-dependent manner. We also investigated the role of YAP/TAZ-TEAD in maintaining CT cells and their differentiation into ST and EVT cells using human trophoblast stem (TS) cells. YAP/TAZ-TEAD activity was involved in maintaining the stemness of TS cells. Induction or repression of YAP/TAZ-TEAD activity resulted in marked changes in the expression of ST-specific genes. Using primary CT cells, which spontaneously differentiate into ST-like cells, the effects of YAP-5SA transduction were investigated, and the expression of ST-specific genes was found to be repressed. These results indicate that the inhibition of YAP/TAZ-TEAD activity, with or without cAMP stimulation, is essential for the differentiation of CT cells into ST cells.
Collapse
Affiliation(s)
- Tetsuya Mizutani
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Japan
| | - Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Japan
| | - Yumiko Miyazaki
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Japan
| | - Ririko Morichika
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Japan
| | - Miki Uesaka
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Japan.,Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Japan
| | | | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Japan
| |
Collapse
|
29
|
Liu D, Chen Y, Ren Y, Yuan P, Wang N, Liu Q, Yang C, Yan Z, Yang M, Wang J, Lian Y, Yan J, Zhai F, Nie Y, Zhu X, Chen Y, Li R, Chang HM, Leung PCK, Qiao J, Yan L. Primary specification of blastocyst trophectoderm by scRNA-seq: New insights into embryo implantation. SCIENCE ADVANCES 2022; 8:eabj3725. [PMID: 35947672 PMCID: PMC9365277 DOI: 10.1126/sciadv.abj3725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/27/2022] [Indexed: 06/03/2023]
Abstract
Mechanisms of implantation such as determination of the attachment pole, fetal-maternal communication, and underlying causes of implantation failure are largely unexplored. Here, we performed single-cell RNA sequencing on peri-implantation embryos from both humans and mice to explore trophectoderm (TE) development and embryo-endometrium cross-talk. We found that the transcriptomes of polar and mural TE diverged after embryos hatched from the zona pellucida in both species, with polar TE being more mature than mural TE. The implantation poles show similarities in cell cycle activities, as well as in expression of genes critical for implantation and placentation. Embryos that either fail to attach in vitro or fail to implant in vivo show abnormalities in pathways related to energy production, protein metabolism, and 18S ribosomal RNA m6A methylation. These findings uncover the gene expression characteristics of humans and mice TE differentiation during the peri-implantation period and provide new insights into embryo implantation.
Collapse
Affiliation(s)
- Dandan Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
| | - Yidong Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
| | - Peng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
| | - Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Cen Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Ming Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jing Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Fan Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Yanli Nie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Yuan Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Hsun-Ming Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Peter C. K. Leung
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| |
Collapse
|
30
|
Kojima J, Ono M, Kuji N, Nishi H. Human Chorionic Villous Differentiation and Placental Development. Int J Mol Sci 2022; 23:8003. [PMID: 35887349 PMCID: PMC9325306 DOI: 10.3390/ijms23148003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
In humans, the placenta provides the only fetomaternal connection and is essential for establishing a pregnancy as well as fetal well-being. Additionally, it allows maternal physiological adaptation and embryonic immunological acceptance, support, and nutrition. The placenta is derived from extra-embryonic tissues that develop rapidly and dynamically in the first weeks of pregnancy. It is primarily composed of trophoblasts that differentiate into villi, stromal cells, macrophages, and fetal endothelial cells (FEC). Placental differentiation may be closely related to perinatal diseases, including fetal growth retardation (FGR) and hypertensive disorders of pregnancy (HDP), and miscarriage. There are limited findings regarding human chorionic villous differentiation and placental development because conducting in vivo studies is extremely difficult. Placental tissue varies widely among species. Thus, experimental animal findings are difficult to apply to humans. Early villous differentiation is difficult to study due to the small tissue size; however, a detailed analysis can potentially elucidate perinatal disease causes or help develop novel therapies. Artificial induction of early villous differentiation using human embryonic stem (ES) cells/induced pluripotent stem (iPS) cells was attempted, producing normally differentiated villi that can be used for interventional/invasive research. Here, we summarized and correlated early villous differentiation findings and discussed clinical diseases.
Collapse
Affiliation(s)
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan; (J.K.); (N.K.); (H.N.)
| | | | | |
Collapse
|
31
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
32
|
James JL, Lissaman A, Nursalim YNS, Chamley LW. Modelling human placental villous development: designing cultures that reflect anatomy. Cell Mol Life Sci 2022; 79:384. [PMID: 35753002 PMCID: PMC9234034 DOI: 10.1007/s00018-022-04407-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
Abstract
The use of in vitro tools to study trophoblast differentiation and function is essential to improve understanding of normal and abnormal placental development. The relative accessibility of human placentae enables the use of primary trophoblasts and placental explants in a range of in vitro systems. Recent advances in stem cell models, three-dimensional organoid cultures, and organ-on-a-chip systems have further shed light on the complex microenvironment and cell-cell crosstalk involved in placental development. However, understanding each model's strengths and limitations, and which in vivo aspects of human placentation in vitro data acquired does, or does not, accurately reflect, is key to interpret findings appropriately. To help researchers use and design anatomically accurate culture models, this review both outlines our current understanding of placental development, and critically considers the range of established and emerging culture models used to study this, with a focus on those derived from primary tissue.
Collapse
Affiliation(s)
- Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Abbey Lissaman
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Zhang H, Ma H, Yang X, Fan L, Tian S, Niu R, Yan M, Zheng M, Zhang S. Cell Fusion-Related Proteins and Signaling Pathways, and Their Roles in the Development and Progression of Cancer. Front Cell Dev Biol 2022; 9:809668. [PMID: 35178400 PMCID: PMC8846309 DOI: 10.3389/fcell.2021.809668] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
Cell fusion is involved in many physiological and pathological processes, including gamete binding, and cancer development. The basic processes of cell fusion include membrane fusion, cytoplasmic mixing, and nuclear fusion. Cell fusion is regulated by different proteins and signaling pathways. Syncytin-1, syncytin-2, glial cell missing 1, galectin-1 and other proteins (annexins, myomaker, myomerger etc.) involved in cell fusion via the cyclic adenosine-dependent protein kinase A, mitogen-activated protein kinase, wingless/integrase-1, and c-Jun N-terminal kinase signaling pathways. In the progression of malignant tumors, cell fusion is essential during the organ-specific metastasis, epithelial-mesenchymal transformation, the formation of cancer stem cells (CSCs), cancer angiogenesis and cancer immunity. In addition, diploid cells can be induced to form polyploid giant cancer cells (PGCCs) via cell fusion under many kinds of stimuli, including cobalt chloride, chemotherapy, radiotherapy, and traditional Chinese medicine. PGCCs have CSC-like properties, and the daughter cells derived from PGCCs have a mesenchymal phenotype and exhibit strong migration, invasion, and proliferation abilities. Therefore, exploring the molecular mechanisms of cell fusion can enable us better understand the development of malignant tumors. In this review, the basic process of cell fusion and its significance in cancer is discussed.
Collapse
Affiliation(s)
- Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Ma
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
34
|
Marsh B, Zhou Y, Kapidzic M, Fisher S, Blelloch R. Regionally distinct trophoblast regulate barrier function and invasion in the human placenta. eLife 2022; 11:78829. [PMID: 35796428 PMCID: PMC9323019 DOI: 10.7554/elife.78829] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/06/2022] [Indexed: 01/19/2023] Open
Abstract
The human placenta contains two specialized regions: the villous chorion where gases and nutrients are exchanged between maternal and fetal blood, and the smooth chorion (SC) which surrounds more than 70% of the developing fetus but whose cellular composition and function is poorly understood. Here, we use single cell RNA-sequencing to compare the cell types and molecular programs between these two regions in the second trimester human placenta. Each region consists of progenitor cytotrophoblasts (CTBs) and extravillous trophoblasts (EVTs) with similar gene expression programs. While CTBs in the villous chorion differentiate into syncytiotrophoblasts, they take an alternative trajectory in the SC producing a previously unknown CTB population which we term SC-specific CTBs (SC-CTBs). Marked by expression of region-specific cytokeratins, the SC-CTBs form a stratified epithelium above a basal layer of progenitor CTBs. They express epidermal and metabolic transcriptional programs consistent with a primary role in defense against physical stress and pathogens. Additionally, we show that SC-CTBs closely associate with EVTs and secrete factors that inhibit the migration of the EVTs. This restriction of EVT migration is in striking contrast to the villous region where EVTs migrate away from the chorion and invade deeply into the decidua. Together, these findings greatly expand our understanding of CTB differentiation in these distinct regions of the human placenta. This knowledge has broad implications for studies of the development, functions, and diseases of the human placenta.
Collapse
Affiliation(s)
- Bryan Marsh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell, University of California, San FranciscoSan FranciscoUnited States,Department of Urology, University of California, San FranciscoSan FranciscoUnited States,Center for Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States,Developmental and Stem Cell Biology Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Yan Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell, University of California, San FranciscoSan FranciscoUnited States,Center for Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Mirhan Kapidzic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell, University of California, San FranciscoSan FranciscoUnited States,Center for Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Susan Fisher
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell, University of California, San FranciscoSan FranciscoUnited States,Center for Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell, University of California, San FranciscoSan FranciscoUnited States,Department of Urology, University of California, San FranciscoSan FranciscoUnited States,Center for Reproductive Sciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
35
|
Li Z, Zheng M, Zhang H, Yang X, Fan L, Fu F, Fu J, Niu R, Yan M, Zhang S. Arsenic Trioxide Promotes Tumor Progression by Inducing the Formation of PGCCs and Embryonic Hemoglobin in Colon Cancer Cells. Front Oncol 2021; 11:720814. [PMID: 34676163 PMCID: PMC8523995 DOI: 10.3389/fonc.2021.720814] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Arsenic trioxide (ATO) has been used to treat acute promyelocytic leukemia. However, it is not effective in treating solid tumors such as colorectal cancer. We have previously reported that polyploid giant cancer cells (PGCCs) exhibiting the characteristics of cancer stem cells can be generated by various inducers. In this study, ATO was used to induce the formation of PGCCs in LoVo and Hct116 colon cancer cell lines. The migration, invasion, and proliferation abilities of colon cancer cells with and without ATO treatment were assessed by wound-healing, transwell, and plate colony formation assays. The expression of epithelial to mesenchymal transition-related proteins and erythroid differentiation-related proteins in colon cancer cells was further evaluated by western blot and immunocytochemical assays. LoVo and Hct116 cells were transfected with a eukaryotic expression vector for green fluorescent protein (GFP), red fluorescent protein (RFP), H2B-GFP, and H2B-mCherry to study PGCCs formation via cell fusion. WB and ICC assays were performed to assess the expression of cell fusion-related proteins. MG132, small interfering RNA-glial cell missing 1 (GCM1), and chromatin immunoprecipitation-polymerase chain reaction assays were performed to study the role of GCM1/syncytin-1-mediated cell fusion. Clinically, the significance of cell fusion-related proteins and erythroid differentiation-related proteins expression in human colorectal cancer tissues was evaluated. Results of our study showed that ATO induced the formation of PGCCs, and the daughter cells derived from PGCCs gained a mesenchymal phenotype and exhibited strong migration, invasion, and proliferation abilities. PGCCs also produced embryonic hemoglobin-delta and -zeta with strong oxygen-binding ability and erythroid differentiation-related proteins after ATO treatment. In addition, cell fusion was observed during the formation of PGCCs, indicated by the presence of yellow fluorescence via the GCM1/syncytin-1 signaling pathway. Clinically, the expression of cell fusion-related and erythroid differentiation-related proteins gradually increased with the progression of human colorectal cancer tissues. In conclusion, ATO can promote tumor progression by inducing the formation of PGCCs via GCM1/syncytin-1-mediated cell fusion. PGCCs can produce daughter cells with high invasion and migration abilities and embryonic hemoglobin with strong oxygen binding ability, promoting survival of tumor cells in a hypoxic microenvironment.
Collapse
Affiliation(s)
- Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
36
|
Morey R, Farah O, Kallol S, Requena DF, Meads M, Moretto-Zita M, Soncin F, Laurent LC, Parast MM. Transcriptomic Drivers of Differentiation, Maturation, and Polyploidy in Human Extravillous Trophoblast. Front Cell Dev Biol 2021; 9:702046. [PMID: 34540826 PMCID: PMC8446284 DOI: 10.3389/fcell.2021.702046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
During pregnancy, conceptus-derived extravillous trophoblast (EVT) invades the endomyometrium, anchors the placenta to the maternal uterus, and remodels the spiral arteries in order to establish maternal blood supply to the fetoplacental unit. Recent reports have described early gestation EVT as polyploid and senescent. Here, we extend these reports by performing comprehensive profiling of both the genomic organization and transcriptome of first trimester and term EVT. We define pathways and gene regulatory networks involved in both initial differentiation and maturation of this important trophoblast lineage at the maternal-fetal interface. Our results suggest that like first trimester EVT, term EVT undergoes senescence and endoreduplication, is primarily tetraploid, and lacks high rates of copy number variations. Additionally, we have highlighted senescence and polyploidy-related genes, pathways, networks, and transcription factors that appeared to be important in normal EVT differentiation and maturation and validated a key role for the unfolded protein response in this context.
Collapse
Affiliation(s)
- Robert Morey
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Omar Farah
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Sampada Kallol
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Daniela F Requena
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Morgan Meads
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Matteo Moretto-Zita
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Francesca Soncin
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mana M Parast
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
37
|
Procoagulant Extracellular Vesicles Alter Trophoblast Differentiation in Mice by a Thrombo-Inflammatory Mechanism. Int J Mol Sci 2021; 22:ijms22189873. [PMID: 34576036 PMCID: PMC8466022 DOI: 10.3390/ijms22189873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Procoagulant extracellular vesicles (EV) and platelet activation have been associated with gestational vascular complications. EV-induced platelet-mediated placental inflammasome activation has been shown to cause preeclampsia-like symptoms in mice. However, the effect of EV-mediated placental thrombo-inflammation on trophoblast differentiation remains unknown. Here, we identify that the EV-induced thrombo-inflammatory pathway modulates trophoblast morphology and differentiation. EVs and platelets reduce syncytiotrophoblast differentiation while increasing giant trophoblast and spongiotrophoblast including the glycogen-rich cells. These effects are platelet-dependent and mediated by the NLRP3 inflammasome. In humans, inflammasome activation was negatively correlated with trophoblast differentiation marker GCM1 and positively correlated with blood pressure. These data identify a crucial role of EV-induced placental thrombo-inflammation on altering trophoblast differentiation and suggest platelet activation or inflammasome activation as a therapeutic target in order to achieve successful placentation.
Collapse
|
38
|
HtrA4 is up-regulated during trophoblast syncytialization and BeWo cells fail to syncytialize without HtrA4. Sci Rep 2021; 11:14363. [PMID: 34257367 PMCID: PMC8277827 DOI: 10.1038/s41598-021-93520-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/25/2021] [Indexed: 01/14/2023] Open
Abstract
The outer layer of the human placenta comprises syncytiotrophoblast, which forms through fusion of cytotrophoblasts (syncytialization), and plays a critical role in maternal-fetal communication including nutrient/oxygen transportation and hormone secretion. Impairment in syncytialization inevitably affects pregnancy outcomes. High temperature requirement factor A 4 (HtrA4) is a placental-specific protease, expressed by various trophoblasts including syncytiotrophoblast, and significantly elevated in preeclampsia at disease presentation. However, it is unknown whether HtrA4 is important for syncytialization. Here we first examined HtrA4 expression in primary human cytotrophoblasts during syncytialization which occurs spontaneously in culture, and in BeWo cells which syncytialize upon forskolin stimulation. The success of syncytialization in each model was confirmed by significant up-regulation/secretion of β-hCG, and the concurrent down-regulation of E-cadherin. In both models, HtrA4 mRNA and protein increased concomitantly with syncytialization. Furthermore, the secreted levels of β-hCG and HtrA4 correlated significantly and positively in both models. We next knocked out HtrA4 in BeWo by CRISPR/Cas9. Upon forskolin treatment, control BeWo profoundly up-regulated β-hCG and syncytin-1, down-regulated E-cadherin, and at the same time increased the formation of multinucleated cells, whereas BeWo cells without HtrA4 did not alter any of these parameters. Our data thus suggest that HtrA4 plays an essential role in syncytialization.
Collapse
|
39
|
Armistead B, Kadam L, Siegwald E, McCarthy FP, Kingdom JC, Kohan-Ghadr HR, Drewlo S. Induction of the PPARγ (Peroxisome Proliferator-Activated Receptor γ)-GCM1 (Glial Cell Missing 1) Syncytialization Axis Reduces sFLT1 (Soluble fms-Like Tyrosine Kinase 1) in the Preeclamptic Placenta. Hypertension 2021; 78:230-240. [PMID: 34024123 DOI: 10.1161/hypertensionaha.121.17267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Brooke Armistead
- From the Michigan State University, Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Grand Rapids (B.A., H.-R.K.-G., S.D.)
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland (L.K.)
| | - Emily Siegwald
- Spectrum Health SHARE Biorepository and Office of Research and Education, Spectrum Health, Grand Rapids, MI (E.S.)
| | - Fergus P McCarthy
- Department of Obstetrics and Gynaecology, Infant Research Centre, University College Cork, Ireland (F.P.M.)
| | - John C Kingdom
- Department of Obstetrics and Gynecology, University of Toronto, ON, Canada (J.C.K.).,Department of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada (J.C.K.)
| | - Hamid-Reza Kohan-Ghadr
- From the Michigan State University, Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Grand Rapids (B.A., H.-R.K.-G., S.D.)
| | - Sascha Drewlo
- From the Michigan State University, Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Grand Rapids (B.A., H.-R.K.-G., S.D.)
| |
Collapse
|
40
|
Silini AR, Di Pietro R, Lang-Olip I, Alviano F, Banerjee A, Basile M, Borutinskaite V, Eissner G, Gellhaus A, Giebel B, Huang YC, Janev A, Kreft ME, Kupper N, Abadía-Molina AC, Olivares EG, Pandolfi A, Papait A, Pozzobon M, Ruiz-Ruiz C, Soritau O, Susman S, Szukiewicz D, Weidinger A, Wolbank S, Huppertz B, Parolini O. Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Front Bioeng Biotechnol 2020; 8:610544. [PMID: 33392174 PMCID: PMC7773933 DOI: 10.3389/fbioe.2020.610544] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.
Collapse
Affiliation(s)
- Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ana Clara Abadía-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G. Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Assunta Pandolfi
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Vascular and Stem Cell Biology, Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, CAST (Center for Advanced Studies and Technology, ex CeSI-MeT), Chieti, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Olga Soritau
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences-Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, Romania
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
41
|
Endocannabinoid signaling impairs syncytialization: Using flow cytometry to evaluate forskolin-induced cell fusion. Placenta 2020; 103:152-155. [PMID: 33126049 DOI: 10.1016/j.placenta.2020.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 11/20/2022]
Abstract
Cytotrophoblast cells fuse to form the syncytiotrophoblast, the main structure responsible for the placenta's specialized functions. This complex process denominated syncytialization is fundamental for a correct pregnancy outcome. We observed that the endocannabinoid anandamide disrupts syncytialization employing traditional techniques and flow cytometry in BeWo cell line.
Collapse
|
42
|
Wang HL, Liang N, Huang DX, Zhao XY, Dang QY, Jiang XY, Xiao R, Yu HL. The effects of high-density lipoprotein and oxidized high-density lipoprotein on forskolin-induced syncytialization of BeWo cells. Placenta 2020; 103:199-205. [PMID: 33160253 DOI: 10.1016/j.placenta.2020.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The negative relationship between maternal high-density lipoprotein-cholesterol (HDL-c) level during pregnancy and infant birth weight has been found. Syncytialization (differentiation and fusion) of trophoblast cells is important to fetal development. HDL has an antioxidant effect, and has been proved to protect trophoblast functions including hormone secretion and invasion. However, HDL is susceptible to oxidation, and high concentrations of HDL impair cell growth and oxidized HDL (oxHDL) inhibits cell proliferation and migration. Moreover, the effects of HDL and oxHDL on trophoblast syncytialization have not been characterized. The aim of this study was to investigate the effects of HDL and oxHDL on trophoblast syncytialization. METHODS Human choriocarcinoma trophoblasts (BeWo cells) were treated with human HDL or oxHDL and then induced to differentiate by forskolin in syncytialization assays. Expression levels of mRNAs and proteins regulating syncytialization were detected by real-time PCR and western blotting, respectively. RESULTS Treatments of HDL at high concentrations reduced human chorionic gonadotropin (hCG) secretion, placental alkaline phosphatase activity and fusion rates, and decreased the expressions of GCM1 and ERVW-1 mRNA as well as phospho-MAPK1/3 (p-MAPK1/3) and total MAPK1/3 protein in the forskolin-induced syncytialization of BeWo cells. Furthermore, treatment of oxHDL (20 μg/ml) decreased hCG secretion, but increased the expression of p-MAPK1/3 protein. DISCUSSION These data suggested that both HDL at high concentrations and oxHDL inhibited BeWo cells syncytialization, and might be harmful to placental and fetal development.
Collapse
Affiliation(s)
- Hong-Liang Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ning Liang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Dong-Xu Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiao-Yan Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qin-Yu Dang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xin-Yin Jiang
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, NY, 11210, USA
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Huan-Ling Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
43
|
Xiao Z, Yan L, Liang X, Wang H. Progress in deciphering trophoblast cell differentiation during human placentation. Curr Opin Cell Biol 2020; 67:86-91. [PMID: 32957014 DOI: 10.1016/j.ceb.2020.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/11/2020] [Accepted: 08/15/2020] [Indexed: 12/30/2022]
Abstract
The maintenance of gestational well-being requires the proper development of both the embryo and the placenta. Placental trophoblast cells are the major building blocks of the developing placenta. Abnormal trophoblast differentiation underpins placental-based pregnancy complications. However, the mechanisms that govern trophoblast differentiation remain largely unclear. Recent studies shed light on several proteins and regulators that are involved in governing trophoblast differentiation. The advancement of new tools and novel technologies, such as the human trophoblast stem cell culture system, 3D placental organoids and single-cell multi-omics, has brought incredible insights to the field. Here we review the current literature, paying particular attention to articles published between 2017 and 2019 that have promoted our understanding of human trophoblast cell differentiation and its roles in pregnancy and its complications. At the same time, we address challenges and questions arising in the field of human placental development and disease.
Collapse
Affiliation(s)
- Zhenyu Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyan Liang
- Center for Reproductive Medicine, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 51000, China.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proc Natl Acad Sci U S A 2020; 117:13562-13570. [PMID: 32482863 PMCID: PMC7306800 DOI: 10.1073/pnas.2002630117] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Various pregnancy complications, such as severe forms of preeclampsia or intrauterine growth restriction, are thought to arise from failures in the differentiation of human placental trophoblasts. Progenitors of the latter either develop into invasive extravillous trophoblasts, remodeling the uterine vasculature, or fuse into multinuclear syncytiotrophoblasts transporting oxygen and nutrients to the growing fetus. However, key regulatory factors controlling trophoblast self-renewal and differentiation have been poorly elucidated. Using primary cells, three-dimensional organoids, and CRISPR-Cas9 genome-edited JEG-3 clones, we herein show that YAP, the transcriptional coactivator of the Hippo signaling pathway, promotes maintenance of cytotrophoblast progenitors by different genomic mechanisms. Genetic or chemical manipulation of YAP in these cellular models revealed that it stimulates proliferation and expression of cell cycle regulators and stemness-associated genes, but inhibits cell fusion and production of syncytiotrophoblast (STB)-specific proteins, such as hCG and GDF15. Genome-wide comparisons of primary villous cytotrophoblasts overexpressing constitutively active YAP-5SA with YAP KO cells and syncytializing trophoblasts revealed common target genes involved in trophoblast stemness and differentiation. ChIP-qPCR unraveled that YAP-5SA overexpression increased binding of YAP-TEAD4 complexes to promoters of proliferation-associated genes such as CCNA and CDK6 Moreover, repressive YAP-TEAD4 complexes containing the histone methyltransferase EZH2 were detected in the genomic regions of the STB-specific CGB5 and CGB7 genes. In summary, YAP plays a pivotal role in the maintenance of the human placental trophoblast epithelium. Besides activating stemness factors, it also directly represses genes promoting trophoblast cell fusion.
Collapse
|
45
|
The Role of NFκB in Healthy and Preeclamptic Placenta: Trophoblasts in the Spotlight. Int J Mol Sci 2020; 21:ijms21051775. [PMID: 32150832 PMCID: PMC7084575 DOI: 10.3390/ijms21051775] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023] Open
Abstract
The NFκB protein family regulates numerous pathways within the cell-including inflammation, hypoxia, angiogenesis and oxidative stress-all of which are implicated in placental development. The placenta is a critical organ that develops during pregnancy that primarily functions to supply and transport the nutrients required for fetal growth and development. Abnormal placental development can be observed in numerous disorders during pregnancy, including fetal growth restriction, miscarriage, and preeclampsia (PE). NFκB is highly expressed in the placentas of women with PE, however its contributions to the syndrome are not fully understood. In this review we discuss the molecular actions and related pathways of NFκB in the placenta and highlight areas of research that need attention.
Collapse
|
46
|
Farah O, Nguyen C, Tekkatte C, Parast MM. Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction. Placenta 2020; 102:4-9. [PMID: 33218578 DOI: 10.1016/j.placenta.2020.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/26/2022]
Abstract
The human placenta is a poorly-understood organ, but one that is critical for proper development and growth of the fetus in-utero. The epithelial cell type that contributes to primary placental functions is called "trophoblast," including two main subtypes, villous and extravillous trophoblast. Cytotrophoblast and syncytiotrophoblast comprise the villous compartment and contribute to gas and nutrient exchange, while extravillous trophoblast invade and remodel the uterine wall and vessels, in order to supply maternal blood to the growing fetus. Abnormal differentiation of trophoblast contributes to placental dysfunction and is associated with complications of pregnancy, including preeclampsia (PE) and fetal growth restriction (FGR). This review describes what is known about the cellular organization of the placenta during both normal development and in the setting of PE/FGR. It also explains known trophoblast lineage-specific markers and pathways regulating their differentiation, and how these are altered in the setting of PE/FGR, focusing on studies which have used human placental tissues. Finally, it also highlights remaining questions and needed resources to advance this field.
Collapse
Affiliation(s)
- Omar Farah
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Calvin Nguyen
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chandana Tekkatte
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
47
|
Szilagyi A, Gelencser Z, Romero R, Xu Y, Kiraly P, Demeter A, Palhalmi J, Gyorffy BA, Juhasz K, Hupuczi P, Kekesi KA, Meinhardt G, Papp Z, Draghici S, Erez O, Tarca AL, Knöfler M, Than NG. Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int J Mol Sci 2020; 21:ijms21020628. [PMID: 31963593 PMCID: PMC7013556 DOI: 10.3390/ijms21020628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
The human placenta maintains pregnancy and supports the developing fetus by providing nutrition, gas-waste exchange, hormonal regulation, and an immunological barrier from the maternal immune system. The villous syncytiotrophoblast carries most of these functions and provides the interface between the maternal and fetal circulatory systems. The syncytiotrophoblast is generated by the biochemical and morphological differentiation of underlying cytotrophoblast progenitor cells. The dysfunction of the villous trophoblast development is implicated in placenta-mediated pregnancy complications. Herein, we describe gene modules and clusters involved in the dynamic differentiation of villous cytotrophoblasts into the syncytiotrophoblast. During this process, the immune defense functions are first established, followed by structural and metabolic changes, and then by peptide hormone synthesis. We describe key transcription regulatory molecules that regulate gene modules involved in placental functions. Based on transcriptomic evidence, we infer how villous trophoblast differentiation and functions are dysregulated in preterm preeclampsia, a life-threatening placenta-mediated obstetrical syndrome for the mother and fetus. In the conclusion, we uncover the blueprint for villous trophoblast development and its impairment in preterm preeclampsia, which may aid in the future development of non-invasive biomarkers for placental functions and early identification of women at risk for preterm preeclampsia as well as other placenta-mediated pregnancy complications.
Collapse
Affiliation(s)
- Andras Szilagyi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Balazs A. Gyorffy
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
- Department of Physiology and Neurobiology, Eotvos Lorand University, H-1117 Budapest, Hungary
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary
| | - Sorin Draghici
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA;
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-382-6788
| |
Collapse
|
48
|
Forstner D, Maninger S, Nonn O, Guettler J, Moser G, Leitinger G, Pritz E, Strunk D, Schallmoser K, Marsche G, Heinemann A, Huppertz B, Gauster M. Platelet-derived factors impair placental chorionic gonadotropin beta-subunit synthesis. J Mol Med (Berl) 2019; 98:193-207. [PMID: 31863152 PMCID: PMC7007904 DOI: 10.1007/s00109-019-01866-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 02/03/2023]
Abstract
Abstract During histiotrophic nutrition of the embryo, maternal platelets may be the first circulating maternal cells that find their way into the placental intervillous space through narrow intertrophoblastic gaps within the plugs of spiral arteries. Activation of platelets at the maternal-fetal interface can influence trophoblast behavior and has been implicated in serious pregnancy pathologies. Here, we show that platelet-derived factors impaired expression and secretion of the human chorionic gonadotropin beta-subunit (βhCG) in human first trimester placental explants and the trophoblast cell line BeWo. Impaired βhCG synthesis was not the consequence of hampered morphological differentiation, as assessed by analysis of differentiation-associated genes and electron microscopy. Platelet-derived factors did not affect intracellular cAMP levels and phosphorylation of CREB, but activated Smad3 and its downstream-target plasminogen activator inhibitor (PAI)-1 in forskolin-induced BeWo cell differentiation. While TGF-β type I receptor inhibitor SB431542 did not restore impaired βhCG production in response to platelet-derived factors, Smad3 inhibitor SIS3 interfered with CREB activation, suggesting an interaction of cAMP/CREB and Smad3 signaling. Sequestration of transcription co-activators CBP/p300, known to bind both CREB and Smad3, may limit βhCG production, since CBP/p300 inhibitor C646 significantly restricted its forskolin-induced upregulation. In conclusion, our study suggests that degranulation of maternal platelets at the early maternal-fetal interface can impair placental βhCG production, without substantially affecting morphological and biochemical differentiation of villous trophoblasts. Key messages Maternal platelets can be detected on the surface of the placental villi and in intercellular gaps of trophoblast cell columns from gestational week 5 onwards. Platelet-derived factors impair hCG synthesis in human first trimester placenta. Platelet-derived factors activate Smad3 in trophoblasts. Smad3 inhibitor SIS3 interferes with forskolin-induced CREB signaling. Sequestration of CBP/p300 by activated Smad3 may limit placental hCG production.
Electronic supplementary material The online version of this article (10.1007/s00109-019-01866-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Sabine Maninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Katharina Schallmoser
- Department of Transfusion Medicine and Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, II, 8010, Graz, Austria.
| |
Collapse
|
49
|
Abstract
Placental dysfunction is a major contributing factor to fetal growth restriction. Placenta-mediated fetal growth restriction occurs through chronic fetal hypoxia owing to poor placental perfusion through a variety of mechanisms. Maternal vascular malperfusion is the most common placental disease contributing to fetal growth restriction; however, the role of rare placental diseases should not be overlooked. Although the features of maternal vascular malperfusion are identifiable on placental pathology, antepartum diagnostic methods are evolving. Placental imaging and uterine artery Doppler, used in conjunction with angiogenic growth factors (specifically placenta growth factor and soluble fms-like tyrosine kinase-1), play an increasingly important role.
Collapse
|
50
|
RITA Is Expressed in Trophoblastic Cells and Is Involved in Differentiation Processes of the Placenta. Cells 2019; 8:cells8121484. [PMID: 31766533 PMCID: PMC6953008 DOI: 10.3390/cells8121484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia (PE) remains a leading cause of maternal and perinatal mortality and morbidity worldwide. Its pathogenesis has not been fully elucidated and no causal therapy is currently available. It is of clinical relevance to decipher novel molecular biomarkers. RITA (RBP-J (recombination signal binding protein J)-interacting and tubulin-associated protein) has been identified as a negative modulator of the Notch pathway and as a microtubule-associated protein important for cell migration and invasion. In the present work, we have systematically studied RITA’s expression in primary placental tissues from patients with early- and late-onset PE as well as in various trophoblastic cell lines. RITA is expressed in primary placental tissues throughout gestation, especially in proliferative villous cytotrophoblasts, in the terminally differentiated syncytiotrophoblast, and in migrating extravillous trophoblasts. RITA’s messenger RNA (mRNA) level is decreased in primary tissue samples from early-onset PE patients. The deficiency of RITA impairs the motility and invasion capacity of trophoblastic cell lines, and compromises the fusion ability of trophoblast-derived choriocarcinoma cells. These data suggest that RITA may play important roles in the development of the placenta and possibly in the pathogenesis of PE.
Collapse
|