1
|
Kwon H, Jeon J, Cho E, Moon S, Park AY, Kwon HJ, Kwon KJ, Ryu JH, Shin CY, Yi JH, Kim DH. Chronic stress-related behavioral and synaptic changes require caspase-3 activation in the ventral hippocampus of male mice. Neuropharmacology 2025; 272:110431. [PMID: 40147637 DOI: 10.1016/j.neuropharm.2025.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Although numerous studies have suggested that chronic stress is a major risk factor for major depressive disorder, the process by which stress causes depression is still not fully understood. Previously, we investigated glucocorticoids, which are stress response hormones that activate a synapse-weakening pathway. Therefore, we hypothesized that chronic stress may cause synaptic depression, which could reduce excitability related to emotions. Animals underwent chronic restraint stress (CRS), followed by basal synaptic transmission measurement in hippocampal slices to assess synaptic function. Drugs were infused into the ventral hippocampus via cannulation before behavioral tests, including forced swimming, tail suspension, and sucrose intake tests, which evaluated depressive-like behaviors and anhedonia. The field excitatory postsynaptic potentials (fEPSPs) are reduced by chronic restraint stress (CRS) in the ventral hippocampus. The ventral hippocampi of mice treated with CRS showed low levels of fEPSP after the forced swim test (FST). In the FST and tail suspension test, CRS-induced increases in immobility time were prevented by the acute inhibition of AMPAR internalization by Tat-GluA23y, which also prevented fEPSP reduction. Mice lacking caspase-3 exhibited resilience to CRS-induced increases in immobility time in the FST, as well as changes in the functionality of synaptic AMPAR. Finally, the caspase-3 inhibitor Z-DEVD-FMK rapidly blocked the CRS-induced increase in immobility time in the FST and the CRS-induced decrease in sucrose preference. These findings suggest that chronic stress-related behavioral changes may require caspase-3-dependent alterations in ventral hippocampal synapses.
Collapse
Affiliation(s)
- Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Jieun Jeon
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunbi Cho
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Somin Moon
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - A Young Park
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun Ji Kwon
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kyoung Ja Kwon
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Young Shin
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Republic of Korea.
| | - Dong Hyun Kim
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Zhilin L, Haobo F, Juan W, AiRui X, XiaoDong L, Yuan Y, Junguo D. Investigating the therapeutic potential of Ganoderma lucidum in treating optic nerve atrophy through network pharmacology and experimental validation. Biochem Biophys Res Commun 2025; 760:151702. [PMID: 40158404 DOI: 10.1016/j.bbrc.2025.151702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE The aim of this study is to employ network pharmacology to identify potential therapeutic targets for Ganoderma lucidum in the treatment of optic atrophy, and elucidate the underlying pharmacological mechanism. METHODS This study is mainly divided into two parts. In the first part, the chemical composition and Target of Ganoderma lucidum compound were predicted by TCMSP and Swiss Target Prediction, and the crossover gene between OA and Ganoderma lucidum target gene was screened based on GeneCards and OMIM database. Then, the target genes were enriched and the main pathways of action were analyzed to discover the possible mechanism of action for the treatment of optic atrophy. Finally, the selected core compounds and core targets were interfaced to understand the main binding patterns and affinity. The second part mainly verifies whether Ganoderma lucidum polysaccharide has protective effect on RGC. Firstly, CCK8 method was used to detect the proliferation and virulence analysis of RGC-5 cells with different concentrations of Ganoderma lucidum polysaccharide, and then RGC-5 cells were cultured in subgroups for 12 h, and then put into anaerobic encapsulation to make molds. After 24 h of continuous culture, cells were removed and collected for subsequent RT-PCR and WB detection. RESULTS Through screening target genes of Ganoderma lucidum and OA, 85 potential therapeutic targets were obtained by intersection. Through PPI network analysis of 85 potential targets, it was found that the degree values of TP53, TNF, CASP3, IL6, EGFR, MTOR, ESR1 and other targets were higher. (+)-Ganoderic acid Mf, (+)-Methyl ganolucidate A, epoxyganoderiol A, Ergosta-4,7, 22-Trien-3, 6-Dione and other compounds play a key role in the whole network. It may be the key compound of ganoderma lucidum in treating OA. Through enrichment pathway analysis, it was found that the number of genes was enriched in AGE-RAGE signaling pathway, cAMP signaling pathway, inflammation and cancer pathways, and the structure of TP53, TNF, CASP3, and IL6 binding to the above compounds was stable and the binding activity was high. CONCLUSIONS The findings suggest that Ganoderma lucidum may exert its therapeutic effects on optic atrophy by targeting TP53, TNF, CASP3, and IL6. Additionally, it may also be involved in the AGE-RAGE signaling pathway and cAMP signaling pathway. These results provide reference for the clinical application of ganoderma lucidum in the treatment of OA.
Collapse
Affiliation(s)
- Li Zhilin
- Eye School of Chengdu University of TCM, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, China; Retinal Image Technology and Chronic Vascular Disease Prevention&Control and Collaborative Innovation Center, China
| | - Fan Haobo
- Eye School of Chengdu University of TCM, China
| | - Wen Juan
- Ineye Hospital of Chengdu University of TCM, China
| | - Xie AiRui
- Ineye Hospital of Chengdu University of TCM, China
| | - Li XiaoDong
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Ying Yuan
- Chengdu Coma Ren Far Technology Co., LTD, China
| | - Duan Junguo
- Eye School of Chengdu University of TCM, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, China; Retinal Image Technology and Chronic Vascular Disease Prevention&Control and Collaborative Innovation Center, China; Ineye Hospital of Chengdu University of TCM, China.
| |
Collapse
|
3
|
Guan Y, Ruan J, Tan P, Qian S, Zhou S, Zhang A, Fu Y, Zhao S, Ran Y, Feng X, Wang Y, Wu X, Zhang B, Ji W, Wu L, Guo X. Hesperidin alleviates endothelial cell inflammation and apoptosis of Kawasaki disease through inhibiting the TLR4/IĸBα/NF-ĸB pathway. Chem Biol Interact 2025; 411:111445. [PMID: 39987982 DOI: 10.1016/j.cbi.2025.111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Kawasaki Disease (KD) is an acute and self-limiting vasculitis of unknown etiology that mainly occurs in infancy and can lead to vascular endothelial injury. Hesperidin (HES) is an economical dietary biological flavonoid with anti-oxidant, anti-inflammatory, and anti-apoptotic pharmacological effects. The main objective of this study was to investigate the protective effects of HES on KD, and try to elucidate the underlying mechanism. The Candida albicans water-soluble fraction (CAWS) was used to induce coronary arteritis of KD mouse model in vivo, and tumor necrosis factor α (TNF-α) was employed to induce human umbilical vein endothelial cell (HUVEC) injury of KD cell model in vitro to investigate the anti-inflammatory and anti-apoptotic effects of HES on KD. Our in vivo results showed that HES significantly reduced coronary artery injury in KD mice by alleviating pericoronary inflammatory infiltration and tissue fibrosis, inhibiting inflammatory cytokines and chemokine expressions, and decreasing vascular endothelial cell apoptosis. Our in vitro study confirmed that HES had the opposite ability of the NF-κB agonist NF-ĸB activator 1 (ACT1) to significantly alleviate the inflammatory response, CellROX level, and apoptosis by decreasing BAX/BCL-2 and Cleaved Caspase-3 levels as well as reducing TUNEL positive cells and the ratio of flow cytometric apoptotic cells in TNF-α induced HUVECs. The further mechanism study based on bioinformatics analysis and western blotting demonstrated that HES could protect against vascular inflammation and cell apoptosis of KD through inhibiting the TLR4/IĸBα/NF-ĸB pathway, suggesting that HES may be a promising therapeutic candidate for KD.
Collapse
Affiliation(s)
- Yuting Guan
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinghua Ruan
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Pingping Tan
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songwei Qian
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Size Zhou
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ao Zhang
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchong Fu
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuhui Zhao
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Ran
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Feng
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Wang
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinlei Wu
- Zhejiang-Ireland Joint Laboratory for Precision Diagnosis and Treatment of Valvular Heart Diseases, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, China
| | - Bing Zhang
- Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute of Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiping Ji
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China; Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Lianpin Wu
- Zhejiang-Ireland Joint Laboratory for Precision Diagnosis and Treatment of Valvular Heart Diseases, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, China.
| | - Xiaoling Guo
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Goel Y, Argueta DA, Peterson K, Lomeli N, Bota DA, Gupta K. Neuronal p38 MAPK Signaling Contributes to Cisplatin-Induced Peripheral Neuropathy. Antioxidants (Basel) 2025; 14:445. [PMID: 40298791 PMCID: PMC12024185 DOI: 10.3390/antiox14040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
This study investigates the role of p38 mitogen-activated protein kinase (MAPK) activation in dorsal root ganglion (DRG) neurons in the development and progression of chemotherapy-induced peripheral neuropathy (CIPN). This research evaluates whether inhibiting activation of p38 MAPK could reduce neuropathic outcomes in a transgenic breast cancer mouse model (C3TAg) and wild-type mice (FVB/N) treated with cisplatin. Cisplatin treatment stimulated p38 MAPK phosphorylation and nuclear translocation in DRG neurons. Neflamapimod, a specific inhibitor of p38 MAPK alpha (p38α), proven to be safe in clinical trials, inhibited neuronal cisplatin-induced p38 MAPK phosphorylation in vitro and in vivo. Neflamapimod also reduced cisplatin-induced oxidative stress, mitochondrial dysfunction, and cleaved caspase-3 expression in DRG neurons in vitro, protecting neuronal integrity and preventing axonal damage. Functionally, neflamapimod improved mechanical and musculoskeletal hyperalgesia, and cold sensitivity in cisplatin-treated mice, reversing neuropathic pain and neurotoxicity. This study identifies p38 MAPK activation as a critical driver of CIPN and highlights its potential as a therapeutic target for CIPN. Targeting p38 MAPK activation with neflamapimod offers a promising strategy to mitigate neurotoxicity and hyperalgesia without exacerbating cancer progression, positioning it as a novel intervention for CIPN.
Collapse
Affiliation(s)
- Yugal Goel
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (D.A.A.); (K.P.)
| | - Donovan A. Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (D.A.A.); (K.P.)
| | - Kristen Peterson
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (D.A.A.); (K.P.)
| | - Naomi Lomeli
- Department of Neurology, Department of Medicine, University of California, Irvine, CA 92697, USA; (N.L.); (D.A.B.)
| | - Daniela A. Bota
- Department of Neurology, Department of Medicine, University of California, Irvine, CA 92697, USA; (N.L.); (D.A.B.)
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (D.A.A.); (K.P.)
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Abd-Elhakim YM, Abu-Zeid EH, Ibrahim D, Alhallag KA, Wagih E, Abdelaty AI, Khamis T, Metwally MMM, Ismail TA, Eldoumani H. Moringa oleifera Leaves Powder Mitigates Imidacloprid-Induced Neurobehavioral Disorders and Neurotoxic Reactions in Broiler Chickens by Regulating the Caspase-3/Hsp70/PGC-1α Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8040-8053. [PMID: 40110847 DOI: 10.1021/acs.jafc.5c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
This study investigated the potential neuroprotective role of Moringa oleifera leaf powder (MOLP) dietary supplementation on imidacloprid (IMD)-induced neurobehavioral disturbances, oxidative stress, and apoptosis in broiler chicken brains. In a 6 week trial, 150 day-old commercial meat-type Ross 308 broiler chicks were randomly divided into five equal groups of 30 chicks each. The control and MOLP groups were fed a basal diet and a basal containing diet 25 g MOLP/kg, respectively, for 6 weeks. The IMD group was fed a basal diet for 2 weeks, followed by a basal diet containing 50 mg IMD/kg for 4 weeks. The IMD + MOLP combined group was fed a basal diet for 2 weeks, followed by a basal diet containing both IMD and MOLP for 4 weeks. The MOLP/IMD + MOLP prophylactic group was fed a MOLP-fortified diet for 2 weeks, followed by a basal diet containing both IMD and MOP for 4 weeks. MOLP supplementation effectively reversed IMD-induced reductions in feeding behavior and locomotor activity while decreasing crouching behavior and fearfulness. Dietary MOLP significantly restored the IMD-induced depletion of brain antioxidants while lessening lipid peroxidation, pathological alterations, and Caspase-3 immunoexpression. Yet, the brain AChE content did not change significantly among the experimental groups. However, dietary MOLP significantly reversed IMD-induced apoptotic-related genes (P21 and Caspase-3) upregulation and neuronal development-related genes (BDNF, GLP-1, PGC-1α, and PPARA) downregulation. Notably, the MOLP/IMD + MOLP prophylactic group showed more enhanced neuroprotection than the IMD + MOLP combined group. In conclusion, our study highlighted the IMD neurotoxic effects in broiler chickens and showed, for the first time, the neuroprotective potential of MOLP as a dietary supplement against IMD exposure.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Kholoud A Alhallag
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
| | - Eman Wagih
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa I Abdelaty
- Department of Behavior and Management of Animal, Poultry, and Aquatics, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Haitham Eldoumani
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
7
|
Tröger J, Dahlhaus R, Bayrhammer A, Koch D, Kessels MM, Qualmann B. Mitochondria are positioned at dendritic branch induction sites, a process requiring rhotekin2 and syndapin I. Nat Commun 2025; 16:2353. [PMID: 40064846 PMCID: PMC11893792 DOI: 10.1038/s41467-025-57399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Proper neuronal development, function and survival critically rely on mitochondrial functions. Yet, how developing neurons ensure spatiotemporal distribution of mitochondria during expansion of their dendritic arbor remained unclear. We demonstrate the existence of effective mitochondrial positioning and tethering mechanisms during dendritic arborization. We identify rhotekin2 as outer mitochondrial membrane-associated protein that tethers mitochondria to dendritic branch induction sites. Rhotekin2-deficient neurons failed to correctly position mitochondria at these sites and also lacked the reduction in mitochondrial dynamics observed at wild-type nascent dendritic branch sites. Rhotekin2 hereby serves as important anchor for the plasma membrane-binding and membrane curvature-inducing F-BAR protein syndapin I (PACSIN1). Consistently, syndapin I loss-of-function phenocopied the rhotekin2 loss-of-function phenotype in mitochondrial positioning at dendritic branch induction sites. The finding that rhotekin2 deficiency impaired dendritic branch induction and that a syndapin binding-deficient rhotekin2 mutant failed to rescue this phenotype highlighted the physiological importance of rhotekin2 functions for neuronal network formation.
Collapse
Affiliation(s)
- Jessica Tröger
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany
| | - Regina Dahlhaus
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany
- Research Division for Neurodegenerative Diseases, Faculty of Medicine/Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems-Stein, Austria
| | - Anne Bayrhammer
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany.
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743, Jena, Germany.
| |
Collapse
|
8
|
Li QN, Cui YX, Dai ZQ, Yao ZL, Li MY, Cai QL, Kong DM. Activator Strand Modifications in CRISPR/Cas12a: Unlocking the Potential for Casp-3-Targeted Biosensing and Imaging Analysis of Apoptosis. Anal Chem 2025; 97:4194-4201. [PMID: 39937146 DOI: 10.1021/acs.analchem.4c06591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The CRISPR/Cas12a system has emerged as a powerful tool in biosensing due to its unique trans-cleavage activity. This study conducted an in-depth investigation of the modulatory capabilities of this system, particularly focusing on the 5'-end modifications of the activator strand, and found that introducing a hairpin structure (HP) at the 5'-end of the activator strand, which was designed based on the RESET effect, can effectively suppress the activator strand's ability to activate the trans-cleavage activity of the CRISPR/Cas12a system. This suppression is independent of the HP's relation to the activator strand and the type of linker used (DNA, RNA or peptide). Detaching the HP from the activator strand restores the system's activity. These findings enrich the development of CRISPR/Cas12a-based biosensors, and expand their application beyond DNA-based target detection to peptide sequence-based target recognition. Based on this discovery, we constructed a sensitive biosensor for caspase-3 (Casp-3), a key executor in apoptosis, by linking the HP to the activator strand with a peptide linker containing a Casp-3 recognition site. The proposed biosensor has been validated for its sensitivity and specificity in detecting Casp-3, as well as for monitoring drug-induced apoptosis through the imaging of Casp-3 in living cells, providing a valuable tool for studying the apoptotic process, screening drugs, assessing drug efficacy, and evaluating treatment outcomes. This strategy also shows promise for detecting other peptide-based targets, broadening the horizons for early disease biomarker detection and timely therapeutic interventions.
Collapse
Affiliation(s)
- Qing-Nan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yun-Xi Cui
- College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhi-Qi Dai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Li Yao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Man-Ying Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qi-Liang Cai
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
9
|
Lee S, Miller CL, Bentley AR, Brown MR, Nagarajan P, Noordam R, Morrison J, Schwander K, Westerman K, Kho M, Kraja AT, de Vries PS, Ammous F, Aschard H, Bartz TM, Do A, Dupont CT, Feitosa MF, Gudmundsdottir V, Guo X, Harris SE, Hikino K, Huang Z, Lefevre C, Lyytikäinen LP, Milaneschi Y, Nardone GG, Santin A, Schmidt H, Shen B, Sofer T, Sun Q, Tan YA, Tang J, Thériault S, van der Most PJ, Ware EB, Weiss S, Ya Xing W, Yu C, Zhao W, Ansari MAY, Anugu P, Attia JR, Bazzano LA, Bis JC, Breyer M, Cade B, Chen G, Collins S, Corley J, Davies G, Dörr M, Du J, Edwards TL, Faquih T, Faul JD, Fohner AE, Fretts AM, Gangireddy S, Gepner A, Graff M, Hofer E, Homuth G, Hood MM, Jie X, Kähönen M, Kardia SL, Karvonen-Gutierrez CA, Launer LJ, Levy D, Maheshwari M, Martin LW, Matsuda K, McNeil JJ, Nolte IM, Okochi T, Raffield LM, Raitakari OT, Risch L, Risch M, Roux AD, Ruiz-Narvaez EA, Russ TC, Saito T, Schreiner PJ, Scott RJ, Shikany J, Smith JA, Snieder H, Spedicati B, Tai ES, Taylor AM, Taylor KD, Tesolin P, van Dam RM, Wang R, Wenbin W, Xie T, Yao J, et alLee S, Miller CL, Bentley AR, Brown MR, Nagarajan P, Noordam R, Morrison J, Schwander K, Westerman K, Kho M, Kraja AT, de Vries PS, Ammous F, Aschard H, Bartz TM, Do A, Dupont CT, Feitosa MF, Gudmundsdottir V, Guo X, Harris SE, Hikino K, Huang Z, Lefevre C, Lyytikäinen LP, Milaneschi Y, Nardone GG, Santin A, Schmidt H, Shen B, Sofer T, Sun Q, Tan YA, Tang J, Thériault S, van der Most PJ, Ware EB, Weiss S, Ya Xing W, Yu C, Zhao W, Ansari MAY, Anugu P, Attia JR, Bazzano LA, Bis JC, Breyer M, Cade B, Chen G, Collins S, Corley J, Davies G, Dörr M, Du J, Edwards TL, Faquih T, Faul JD, Fohner AE, Fretts AM, Gangireddy S, Gepner A, Graff M, Hofer E, Homuth G, Hood MM, Jie X, Kähönen M, Kardia SL, Karvonen-Gutierrez CA, Launer LJ, Levy D, Maheshwari M, Martin LW, Matsuda K, McNeil JJ, Nolte IM, Okochi T, Raffield LM, Raitakari OT, Risch L, Risch M, Roux AD, Ruiz-Narvaez EA, Russ TC, Saito T, Schreiner PJ, Scott RJ, Shikany J, Smith JA, Snieder H, Spedicati B, Tai ES, Taylor AM, Taylor KD, Tesolin P, van Dam RM, Wang R, Wenbin W, Xie T, Yao J, Young KL, Zhang R, Zonderman AB, Concas MP, Conen D, Cox SR, Evans MK, Fox ER, de Las Fuentes L, Giri A, Girotto G, Grabe HJ, Gu C, Gudnason V, Harlow SD, Holliday E, Jost JB, Lacaze P, Lee S, Lehtimäki T, Li C, Liu CT, Morrison AC, North KE, Penninx BW, Peyser PA, Province MM, Psaty BM, Redline S, Rosendaal FR, Rotimi CN, Rotter JI, Schmidt R, Sim X, Terao C, Weir DR, Zhu X, Franceschini N, O'Connell JR, Jaquish CE, Wang H, Manning A, Munroe PB, Rao DC, Chen H, Gauderman WJ, Bierut L, Winkler TW, Fornage M. A Large-Scale Genome-wide Association Study of Blood Pressure Accounting for Gene-Depressive Symptomatology Interactions in 564,680 Individuals from Diverse Populations. RESEARCH SQUARE 2025:rs.3.rs-6025759. [PMID: 40034430 PMCID: PMC11875294 DOI: 10.21203/rs.3.rs-6025759/v1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Gene-environment interactions may enhance our understanding of hypertension. Our previous study highlighted the importance of considering psychosocial factors in gene discovery for blood pressure (BP) but was limited in statistical power and population diversity. To address these challenges, we conducted a multi-population genome-wide association study (GWAS) of BP accounting for gene-depressive symptomatology (DEPR) interactions in a larger and more diverse sample. Results Our study included 564,680 adults aged 18 years or older from 67 cohorts and 4 population backgrounds (African (5%), Asian (7%), European (85%), and Hispanic (3%)). We discovered seven novel gene-DEPR interaction loci for BP traits. These loci mapped to genes implicated in neurogenesis (TGFA, CASP3), lipid metabolism (ACSL1), neuronal apoptosis (CASP3), and synaptic activity (CNTN6, DBI). We also identified evidence for gene-DEPR interaction at nine known BP loci, further suggesting links between mood disturbance and BP regulation. Of the 16 identified loci, 11 loci were derived from African, Asian, or Hispanic populations. Post-GWAS analyses prioritized 36 genes, including genes involved in synaptic functions (DOCK4, MAGI2) and neuronal signaling (CCK, UGDH, SLC01A2). Integrative druggability analyses identified 11 druggable candidate gene targets, including genes implicated in pathways linked to mood disorders as well as gene products targeted by known antihypertensive drugs. Conclusions Our findings emphasize the importance of considering gene-DEPR interactions on BP, particularly in non-European populations. Our prioritized genes and druggable targets highlight biological pathways connecting mood disorders and hypertension and suggest opportunities for BP drug repurposing and risk factor prevention, especially in individuals with DEPR.
Collapse
Affiliation(s)
- Songmi Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Kenneth Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA
| | - Minjung Kho
- Graduate School of Data Science, Seoul National University, Seoul
| | - Aldi T Kraja
- University of Mississippi Medical Center, Jackson, MS
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Farah Ammous
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Hughes Aschard
- Department of Computational Biology, F-75015 Paris, France Institut Pasteur, Université Paris Cité, Paris
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Anh Do
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Charles T Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Christophe Lefevre
- Department of Data Sciences, Hunter Medical Research Institute, New Lambton Heights, NSW
| | - Leo-Pekka Lyytikäinen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam
| | | | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Helena Schmidt
- Department of Molecular Biology and Biochemistry, Medical University Graz, Graz, Styria
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ye An Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Jingxian Tang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald
| | - Wang Ya Xing
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, Beijing
| | - Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Md Abu Yusuf Ansari
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS
| | - Pramod Anugu
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
| | - John R Attia
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Max Breyer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Stacey Collins
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald
| | - Jiawen Du
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Alison E Fohner
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Amanda M Fretts
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Srushti Gangireddy
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Adam Gepner
- Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - MariaElisa Graff
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Edith Hofer
- Department of Neurology, Medical University Graz, Graz, Styria
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald
| | - Michelle M Hood
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Xu Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, Beijing
| | - Mika Kähönen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Sharon Lr Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Lisa W Martin
- Department of Cardiology, George Washington University, Washington, DC
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Olli T Raitakari
- Centre for Population Health Research, Department of Clinical Physiology and Nuclear Medicine, InFLAMES Research Flagship, Turku University Hospital and University of Turku, Turku
| | - Lorenz Risch
- Faculty of Medical Sciences , Institute for Laboratory Medicine, Private University in the Principality of Liechtenstein, Vaduz
| | - Martin Risch
- Central Laboratory, Cantonal Hospital Graubünden, Chur
| | - Ana Diez Roux
- Urban Health Collaborative, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA
| | | | - Tom C Russ
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Rodney J Scott
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - James Shikany
- Division of General Internal Medicine and Population Science, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Adele M Taylor
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Rujia Wang
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Wei Wenbin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, Beijing
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Kristin L Young
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - David Conen
- Population Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Ervin R Fox
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
| | - Lisa de Las Fuentes
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Mecklenburg-Western Pomerania
| | - Charles Gu
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | | | - Sioban D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Elizabeth Holliday
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - Jonas B Jost
- Rothschild Foundation Hospital, Institut Français de Myopie, Paris
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul
| | - Terho Lehtimäki
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Kari E North
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Michael M Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | | | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Chikashi Terao
- The Clinical Research Center at Shizuoka General Hospital, Shizuoka
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Cashell E Jaquish
- Division of Cardiovascular Science, Epidemiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Alisa Manning
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London
| | - Dabeeru C Rao
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
10
|
Yadav P, Nair A, Chawla R, Ghosh S, Aleem M, Butola BS, Sharma N, Khan HA. From cell to organ: Exploring the toxicological correlation of organophosphorus compounds in living system. Toxicology 2025; 511:154049. [PMID: 39798862 DOI: 10.1016/j.tox.2025.154049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Malathion is an organophosphate compound widely used as an insecticide in the agriculture sector and is toxic to humans and other mammals. Although several studies have been conducted at different levels in different animal models. But there is no work has been conducted on the toxicological correlation from cellular to behavioral level in surviving species model. Addressing this gap through further research is essential for a comprehensive understanding of malathion's impact on biological systems, facilitating better risk assessment and management strategies. Current research systemically evaluated the effects of malathion on the central nervous system and peripheral immune cells using immunological techniques in the BALB/c mice models. For this, animals were placed inside an inhalation chamber containing malathion (dose of 89.5 mg/ml/m3) for a specific exposure time. The group exposed for 6 minutes has shown a significant change in plasma-neurotransmitter (serotonin, dopamine) levels and decreased expression of Tyrosine hydroxylase in striatum and SNPC region of brain. The depolarized mitochondria and increased level of cleaved caspase-3 level and mature neurons in DG, CA1 and CA3 were also observed in the brain. Peripheral blood analysis illustrated a decrease in total leukocyte count and an increased level of early apoptosis at the same time point. From neurobehavioral results a significant locomotor hyperactivity, restlessness, and risk-taking behavior was observed. Taken together, results from the current study indicate that exposure to malathion at prolonged time durations induces neuronal and immune cell toxicity, and its toxicity may be mediated via changes in neurotransmitter levels and metabolite concentrations.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi 110062, India
| | - Ashrit Nair
- Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, 110016, India
| | - Raman Chawla
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Subhajit Ghosh
- NCI-Stephenson Cancer Center, Oklahoma city, OK 73104, USA
| | - Mohd Aleem
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Bhupendra Singh Butola
- Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, 110016, India
| | - Navneet Sharma
- Amity Institute of Pharmacy, Amity University, Noida 201313, India.
| | - Haider Ali Khan
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi 110062, India.
| |
Collapse
|
11
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Sunuwar J, Yeung H, Shrestha S, Cunningham JT, Cunningham RL. The impact of chronic intermittent hypoxia on enzymatic activity in memory-associated brain regions of male and female rats. Biol Sex Differ 2025; 16:5. [PMID: 39891225 PMCID: PMC11786371 DOI: 10.1186/s13293-025-00688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is an intermittent hypoxia disorder associated with cognitive dysfunction, including learning and memory impairments. There is evidence that alterations in protease activity and neuronal activation are associated with cognitive dysfunction, are dependent on sex, and may be brain region-specific. However, the mechanisms mediating OSA-induced cognitive impairments are unclear. Therefore, we used a rat model of OSA, chronic intermittent hypoxia (CIH) to investigate protease activity (e.g., calpain and caspase-3) on spectrin, a cytoskeletal protein associated with neurotransmitter release, and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. METHODS Male and female Sprague Dawley rats were exposed to CIH or room air (normoxic) for 14 days. We quantified protease activity and cleaved spectrin products, along with EGR-1 protein expression in hippocampal subregions (CA1, CA3), cortical regions [entorhinal cortex (ETC), retrosplenial cortex (RSC), cerebellar cortex (CC)], and subcortical regions [raphe nucleus (RN), locus coeruleus (LC)] associated with learning and memory. Within each group, Pearson correlations of calpain activity, caspase-3 activity, and EGR-1 expression were performed between brain regions. Sex differences within normoxic and CIH correlations were examined. RESULTS CIH dysregulated calpain activity in male ETC, and female CA1 and RSC. CIH dysregulated caspase-3 activity in male RN, and female CA1 and RSC. CIH decreased calpain and caspase-3 cleavage products in male ETC. CIH decreased calpain-cleaved spectrin in male RSC but increased these products in female RSC. EGR-1 expression was decreased in male and female RN. Correlational analysis revealed CIH increased excitatory connections in males and increased inhibitory connections in females. EGR-1 expression in males shifted from negative to positive correlations. CONCLUSIONS Overall, these data indicate CIH dysregulates protease activity and impairs neuronal function in a brain region- and sex-dependent manner. This indicates that males and females exhibit sex-specific vulnerabilities to mild OSA. These findings concur with our previous behavioral studies that demonstrated memory impairment in CIH-exposed rats.
Collapse
Affiliation(s)
- Steve Mabry
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
- North Texas Eye Research Institute, Fort Worth, TX, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
| | - Jennifer J Gardner
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
| | - Janak Sunuwar
- Research Core, Division of Research and Innovation, Fort Worth, TX, USA
| | - Hannah Yeung
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA
- Texas College of Osteopathic Medicine, Fort Worth, TX, USA
| | - Sharad Shrestha
- Research Core, Division of Research and Innovation, Fort Worth, TX, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, Fort Worth, TX, USA.
| |
Collapse
|
12
|
Alecu JE, Sigutova V, Brazdis RM, Lörentz S, Bogiongko ME, Nursaitova A, Regensburger M, Roybon L, Galler KM, Wrasidlo W, Winner B, Prots I. NPT100-18A rescues mitochondrial oxidative stress and neuronal degeneration in human iPSC-based Parkinson's model. BMC Neurosci 2025; 26:8. [PMID: 39875842 PMCID: PMC11773751 DOI: 10.1186/s12868-025-00926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS). These factors have been shown to adversely impact αSyn aggregation. Reciprocally, αSyn aggregates, in particular oligomers, can impair mitochondrial functions and exacerbate OS. Recent drug-discovery studies have identified a series of small molecules, including NPT100-18A, which reduce αSyn oligomerization by preventing misfolding and dimerization. NPT100-18A and structurally similar compounds (such as NPT200-11/UCB0599, currently being assessed in clinical studies) point towards a promising new approach for disease-modification. METHODS Induced pluripotent stem cell (iPSC)-derived mDANs from PD patients with a monoallelic SNCA locus duplication and unaffected controls were treated with NPT100-18A. αSyn aggregation was evaluated biochemically and reactive oxygen species (ROS) levels were assessed in living mDANs using fluorescent dyes. Adenosine triphosphate (ATP) levels were measured using a luminescence-based assay, and neuronal cell death was evaluated by immunocytochemistry. RESULTS Compared to controls, patient-derived mDANs exhibited higher cytoplasmic and mitochondrial ROS probe levels, reduced ATP-related signals, and increased activation of caspase-3, reflecting early neuronal cell death. NPT100-18A-treatment rescued cleaved caspase-3 levels to control levels and, importantly, attenuated mitochondrial oxidative stress probe levels in a compartment-specific manner and, at higher concentrations, increased ATP signals. CONCLUSIONS Our findings demonstrate that NPT100-18A limits neuronal degeneration in a human in vitro model of PD. In addition, we provide first mechanistic insights into how a compartment-specific antioxidant effect in mitochondria might contribute to the neuroprotective effects of NPT100-18A.
Collapse
Affiliation(s)
- Julian E Alecu
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Veronika Sigutova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Razvan-Marius Brazdis
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Lörentz
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marios Evangelos Bogiongko
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anara Nursaitova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen- Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Laurent Roybon
- Department of Neurodegenerative Science, the MiND program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Wrasidlo
- Neuropore Therapies, Inc, San Diego, CA, USA
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
13
|
Jiang Y, He P, Sheng K, Peng Y, Wu H, Qian S, Ji W, Guo X, Shan X. The protective roles of eugenol on type 1 diabetes mellitus through NRF2-mediated oxidative stress pathway. eLife 2025; 13:RP96600. [PMID: 39792010 PMCID: PMC11723580 DOI: 10.7554/elife.96600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.
Collapse
Affiliation(s)
- Yalan Jiang
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Pingping He
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ke Sheng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yongmiao Peng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huilan Wu
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Songwei Qian
- Department of Genaral Surgery, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s HospitalQuzhouChina
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Weiping Ji
- Department of Genaral Surgery, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s HospitalQuzhouChina
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoling Guo
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoou Shan
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
14
|
You J, Fuchs J, Wang M, Hu Q, Tao X, Krolczyk E, Tirumala T, Bragin A, Liu H, Engel J, Li L. Preventive effects of transcranial photobiomodulation on epileptogenesis in a kainic acid-induced rat epilepsy model. Exp Neurol 2025; 383:115005. [PMID: 39419434 DOI: 10.1016/j.expneurol.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy affects nearly 50 million people worldwide and is a major burden to families and society. A significant portion of patients are living in developing countries with limited access to therapeutic resources. This highlights the urgent need to develop more readily available, noninvasive treatments for seizure control. This research explored the effectiveness of transcranial photobiomodulation (tPBM), a non-invasive method utilizing photon-tissue interactions, for preventing epileptogenesis and controlling seizures. METHODS In a kainic acid (KA)-induced rat model of epilepsy, two different wavelengths of tPBM, 808 nm and 940 nm, were applied separately in two groups of animals (KA+808 and KA+940). The ability of tPBM for seizure control was evaluated by comparing the occurrence rate of interictal epileptiform discharges (IED) and behavioral seizures among three groups: KA, KA+808, KA+940. Prevention of epileptogenesis was assessed by comparing the occurrence rate of high frequency oscillations (HFOs), especially fast ripple (FR) rate, among the three groups. Nissl staining and immunostaining for the apoptosis marker caspase-3 were used as indications of neuroprotection. RESULTS The KA+808 group and the KA+940 group showed significantly lower FR and IED rates compared to the KA group. Weekly FR rates started to drop during the first week of tPBM treatment. The KA+808 and KA+940 groups also displayed milder seizure behaviors and less neuronal loss in hippocampal areas compared to KA rats without tPBM treatment. Similarly, lower caspase-3 levels in the KA+808 and KA+940 compared with the KA group suggested effectiveness of tPBM in reducing cell death. SIGNIFICANCE tPBM of 808 nm/940 nm showed effectiveness in suppressing epileptogenesis and ictogenesis in the KA-induced rat epilepsy model. This effectiveness of tPBM can be linked to the neuroprotection benefits of photon-tissue interactions. Further studies are warranted to elucidate the fundamental mechanism of tPBM protection, determine optimal treatment parameters and validate its effectiveness in other epilepsy models.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Jannon Fuchs
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Miaomiao Wang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Qichan Hu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Xiaoxiao Tao
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Elizabeth Krolczyk
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Tanya Tirumala
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, California, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA; Department of Neurology, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
15
|
Cheng J, Qin X, Han B, Gu H, Zou H, Peng P, Mao Z, Li B. Mechanism of starvation induced autophagy and apoptosis in the midgut of silkworm, Bombyx mori, based on calcium homeostasis. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39707627 DOI: 10.1111/imb.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Starvation can induce autophagy and apoptosis in intestinal cells. To elucidate the underlying mechanisms, we investigated autophagy and apoptosis in the midgut of the model insect, silkworm (Bombyx mori), focusing on calcium homeostasis. The results indicated that the body weight of silkworms decreased, along with damage to the morphology of their digestive tracts and midguts after starvation treatment. Additionally, mitochondrial swelling, autophagy and apoptosis were observable. Further investigation revealed that starvation upregulated the transcription of Ca2+ release channel-associated genes (e.g., BmIP3R, BmRyR) but suppressed the expression of Ca2+ efflux genes (BmPMCA), resulting in Ca2+ overload in midgut cells and subsequent upregulation of BmCalpain transcription. In addition, starvation increased the transcription of key autophagy genes (BmATG5, BmATG7, BmATG8) and the expression of the LC3-II protein. Upon prolonged starvation, the NtATG5 protein levels increased, a process that facilitated the transition from autophagy to apoptosis. These results indicate that Ca2+ overload activates the calpain-mediated apoptosis pathway and promotes apoptosis of midgut cells. The present study reveals the significant role that Ca2+ plays in the occurrence and transformation of autophagy and apoptosis induced by starvation treatment, thus providing a new research strategy for investigating the damage caused by starvation in biological organisms.
Collapse
Affiliation(s)
- Jialu Cheng
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xueling Qin
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Bing Han
- Sericulture Research Institute of Liaoning Province, Dandong, China
| | - Haoyi Gu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongbing Zou
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Peiling Peng
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhongxu Mao
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Bing Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Wang Q, Zhao J, Zhang M, Sun M, Fu ZF, Zhao L, Zhou M. Neuroinvasive virus utilizes a lipid droplet surface protein, perilipin2, to restrict apoptosis by decreasing Bcl-2 ubiquitination. J Virol 2024; 98:e0160724. [PMID: 39498967 DOI: 10.1128/jvi.01607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Lipid droplets (LDs) can interact with other organelles to regulate cell death, and it has also been reported to play an important role in virus replication. However, the interplay among LDs, cell death, and viral replication remains unclear. Neuroinvasive viruses, such as Japanese encephalitis virus (JEV), rabies virus (RABV), and encephalomyocarditis virus (EMCV) still threaten global public health and raise intensive concerns. Here, we reveal that neuroinvasive virus infection enhances cellular triglyceride biosynthesis by upregulating the expression of diacylglycerol O-acyltransferase 2 (DGAT2) to promote LD formation and increase the expression of Perilipin 2 (PLIN2), an LD surface protein, which consequently facilitates neuroinvasive virus replication. Furthermore, PLIN2 could reduce mitochondrial damage and suppress apoptosis by restoring mitochondrial potential and interacting with anti-apoptotic protein Bcl-2, specifically the 136-209 amino acid region, to interrupt the BAX-Cytc-caspase-3 apoptotic pathway by decreasing the K48-linked ubiquitination of Bcl-2 at the 17th lysine. Together, we elucidate that neuroinvasive virus utilizes an LD surface protein to restrict the apoptosis of infected cells, providing a fresh insight into the pathogenesis and antiviral therapeutics development of neuroinvasive viruses. IMPORTANCE The neuroinvasive virus is a kind of pathogen that is capable of infiltrating and infecting the central nervous system to potentially induce severe neurological damage and disorders, which pose a significant threat to public health. Here, we found that neuroinvasive viruses can utilize an LD surface protein PLIN2 to facilitate viral replication. Notably, PLIN2 could reduce mitochondrial damage and suppress apoptosis by restoring mitochondrial potential and interacting with anti-apoptotic protein Bcl-2, specifically the 136-209 amino acid region, to interrupt the BAX-Cytc-caspase-3 apoptotic pathway by decreasing the K48-linked ubiquitination of Bcl-2 at the 17th lysine. This study reveals a common strategy for neuroinvasive viruses to avoid apoptosis of infected cells by employing LDs, which extends the important role of LDs in viral pathogenesis and may inspire further research in this field.
Collapse
Affiliation(s)
- Qianruo Wang
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mai Zhang
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meixin Sun
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Sunuwar J, Yeung H, Shrestha S, Cunningham JT, Cunningham RL. The impact of chronic intermittent hypoxia on enzymatic activity in memory-associated brain regions of male and female rats. RESEARCH SQUARE 2024:rs.3.rs-5449794. [PMID: 39711575 PMCID: PMC11661378 DOI: 10.21203/rs.3.rs-5449794/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background Obstructive sleep apnea (OSA) is an intermittent hypoxia disorder associated with cognitive dysfunction, including learning and memory impairments. There is evidence that alterations in protease activity and neuronal activation as associated with cognitive dysfunction, are dependent on sex, and may be brain region-specific. However, the mechanisms mediating OSA-induced cognitive impairments are unclear. Therefore, we used a rat model of OSA, chronic intermittent hypoxia (CIH), to investigate protease activity (e.g., calpain and caspase-3) and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. We used a rat model of OSA known as chronic intermittent hypoxia (CIH) to investigate protease activity (calpain and caspase-3) and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. Methods Male and female Sprague Dawley rats were exposed to CIH or room air (normoxic) for 14 days. We quantified protease activity and cleaved spectrin products, along with EGR-1 protein expression in hippocampal subregions (CA1, CA3), cortical regions [entorhinal cortex (ETC), retrosplenial cortex (RSC), cerebellar cortex (CC)], and subcortical regions [raphe nucleus (RN), locus coeruleus (LC)] associated with learning and memory. Within each group, Pearson correlations of calpain activity, caspase-3 activity, and EGR-1 expression were performed between brain regions. Sex differences within normoxic and CIH correlations were examined. Results CIH dysregulated calpain activity in male ETC and female CA1 and RSC. CIH dysregulated caspase-3 activity in male RN and female CA1 and RSC. CIH decreased calpain and caspase-3 cleavage products in male ETC. CIH decreased calpain-cleaved spectrin in male RSC but increased these products in female RSC. EGR-1 expression was decreased in male and female RN. Correlational analysis revealed CIH increased excitatory connections in males and increased inhibitory connections in females. EGR-1 expression in males shifted from negative to positive correlations. Conclusions Overall, these data show that CIH dysregulates protease activity and impairs neuronal function in a brain region- and sex-dependent manner. This indicates that males and females exhibit sex-specific vulnerabilities to mild OSA. These findings concur with our previous behavioral studies that demonstrated memory impairment in CIH-exposed rats.
Collapse
Affiliation(s)
- Steve Mabry
- University of North Texas Health Science Center
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Taheri M, Moradi MH, Koraee Y, Moghadam FH, Ershad Nedaei S, Veisi M, Ghafouri H. Neuroprotective properties of a thiazolidine-2,4-dione derivative as an inhibitory agent against memory impairment and phosphorylated tau: In vitro and in vivo investigations. Neuroscience 2024; 562:227-238. [PMID: 39489476 DOI: 10.1016/j.neuroscience.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegeneration that results in memory disorders and cognitive impairment. The present study investigated the neuroprotective effects of the synthesized thiazolidine-2,4-dione derivative, (E)-5-(4-chlorobenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ4C), an inhibitor of p-Tau and memory impairment, using a SH-SY5Y cell model of methamphetamine-induced tauopathy and a scopolamine-induced memory impairment model in Wistar rats. In the present study, the neuroprotective effect of TZ4C was studied in a SH-SY5Y cellular model of methamphetamine-induced (2 mM) tauopathy and a scopolamine-induced (1.5 mg/kg/day) memory impairment model in male Wistar rats (n = 48). The memory functions and learning abilities of the rats were evaluated using the Morris water maze (MWM) and passive avoidance tests. Additionally, AChE activity in the rat hippocampus was quantified, and the expression of p-Tau, HSP70, and caspase-3 in both in vitro and in vivo samples was evaluated through Western blot analysis. TZ4C (0.1-1000 µM) did not exhibit significantly toxic effects on SH-SY5Y cell viability. Western blot results indicated that TZ4C led to reduced expression of p-Tau, HSP70, and cleaved caspase-3 in SH-SY5Y cells (3 and 10 µM) and the rat hippocampus (2 and 4 mg/kg). Additionally, the findings suggested that TZ4C enhanced memory function in rats with scopolamine-induced impairment and decreased acetylcholinesterase (AChE) specific activity. The comprehensive analysis of in vitro and in vivo experiments underscores the neuroprotective potential (improved neuropathology and reduced memory impairment) of TZ4C. These findings highlight the promise of TZ4C as a candidate for drug discovery programs to identify effective therapies for AD.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Mohammad Hadi Moradi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Yasaman Koraee
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Farshad Homayouni Moghadam
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojgan Veisi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
19
|
Zhai Y, Yuan Y, Cui Y, Wang X, Zhou H, Teng Q, Wang H, Sun B, Sun H, Tang J. Suppression of PINK1 autophosphorylation attenuates pilocarpine-induced seizures and neuronal injury in rats. Brain Res Bull 2024; 219:111117. [PMID: 39522561 DOI: 10.1016/j.brainresbull.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PTEN-induced kinase 1 (PINK1) autophosphorylation triggers the PINK1/Parkin pathway, which is the main mitophagic pathway in the mammalian nervous system. In the present study, we aimed to mechanistically explore the role of PINK1 in pilocarpine-induced status epilepticus (SE) in Sprague-Dawley rats. Evidence from immunohistochemistry, western blotting, biochemical assays, and behavioral testing showed that pilocarpine-induced SE led to increased levels of PINK1 phosphorylation, mitophagy, mitochondrial oxidative stress, neuronal damage and learning and memory deficits. Using shRNA interference to suppress the expression of translocase outer mitochondrial membrane 7, a positive regulator of PINK1 autophosphorylation, lowered the increased levels of phosphorylated PINK1 following pilocarpine administration. It also reduced the levels of mitophagy, mitochondrial oxidative stress and neuronal damage, and attenuated seizure severity and cognitive deficits. In contrast, suppressing the expression of overlapping with the m-AAA protease 1 homolog, a negative regulator of PINK1 autophosphorylation, led to higher levels of phosphorylated PINK1 following pilocarpine administration. It also led to more serious mitophagy, neuronal damage, as well as worsened seizure severity and cognitive deficits. Our results indicate that PINK1 autophosphorylation plays a vital role in epileptic seizures and neuronal injury by mediating mitophagy. Regulating PINK1 autophosphorylation may change the adverse consequences of epilepsy, and may be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xiaoqian Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hua Zhou
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Teng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hongjin Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Bohan Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Jianhua Tang
- Affiliated Yantai Mountain Hospital, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
20
|
Zhao R, Luo J, Kim Chung S, Xu B. Anti-depression molecular mechanism elucidation of the phytochemicals in edible flower of Hemerocallis citrina Baroni. Food Sci Nutr 2024; 12:10164-10180. [PMID: 39723076 PMCID: PMC11666966 DOI: 10.1002/fsn3.4446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/17/2024] [Indexed: 12/28/2024] Open
Abstract
The edible flower of Hemerocallis citrina Baroni, commonly known as "Huang Huacai" in China, has anti-depressant effects. However, targets and molecular mechanisms of Hemerocallis citrina Baroni edible flowers (HEF) in depression treatment are still unclear. The potential anti-depression targets in HEF were identified by the intersecting results from typical drug databases. The network construction and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were carried out for core targets. The molecular docking was conducted to predict the binding affinity between the active components and the central targets. The intersecting results indicated that there were 24 active components in HEF, with 449 anti-depression targets identified. After screening through degree centrality (DC), betweenness centrality (BC), and closeness centrality (CC), 166 core targets were determined. Tumor protein 53 (TP53) and interleukin 6 (IL-6) had the highest degree values. The results of GO enrichment analysis associated with anti-depression revealed that the biological processes were negative regulation of osteoclast differentiation and positive regulation of phosphorus metabolic process. KEGG enrichment analysis results revealed that pathways, such as the phosphatidylinositol 3‑kinase-protein kinase B (PI3K-Akt) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway, were primarily associated with anti-depression. Molecular docking results indicated that the top 10 active ingredients in HEF could bind to the central targets. This study applied network pharmacology to unveil the potential anti-depressive mechanisms of HEF, providing a theoretical basis for further exploration of the effective components in H. citrina edible flower parts.
Collapse
Affiliation(s)
- Ruohan Zhao
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| | - Sookja Kim Chung
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Baojun Xu
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| |
Collapse
|
21
|
Scott L, Winzey KD, Moreira D, Bresee C, Vit JP, Tourtellotte WG, Karumanchi SA, Lahiri S. Microglia ameliorate delirium-like phenotypes in a murine model of acute ventilator-induced lung injury. J Neuroinflammation 2024; 21:270. [PMID: 39434161 PMCID: PMC11495074 DOI: 10.1186/s12974-024-03260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Delirium affects 50-85% of patients on mechanical ventilation and is associated with increased mortality, prolonged hospitalization, and a three-fold higher risk of dementia. Microglia, the resident immune cells of the brain, exhibit both neuroprotective and neurotoxic functions; however, their effects in mechanical ventilation-induced acute lung injury (VILI) are unknown. We hypothesize that in a model of short-term VILI, microglia play a neuroprotective role to ameliorate delirium-like phenotypes. METHODS Microglia depletion (n = 18) was accomplished using an orally administered colony stimulating factor 1 receptor inhibitor, while controls received a vehicle diet (n = 18). We then compared extent of neuronal injury in the frontal cortex and hippocampus using cleaved caspase-3 (CC3) and multiple delirium-like behaviors in microglia depleted and non-microglia depleted male mice (C57BL/6 J aged 4-9 months) following VILI. Delirium-like behaviors were evaluated using the Open Field, Elevated Plus Maze, and Y-maze assays. We subsequently evaluated whether repopulation of microglia (n = 14 repopulation, 14 vehicle) restored the phenotypes. RESULTS Frontal/hippocampal neuronal CC3 levels were significantly higher in microglia depleted VILI mice compared to vehicle-treated VILI controls (p < 0.01, p < 0.01, respectively). These structural changes were accompanied by worse delirium-like behaviors in microglia depleted VILI mice compared to vehicle controls. Specifically, microglia depleted VILI mice demonstrated: (1) significantly increased time in the periphery of the Open Field (p = 0.01), (2) significantly increased coefficient of variation (p = 0.02), (3) trend towards reduced time in the open arms of the Elevated Plus Maze (p = 0.09), and (4) significantly decreased spontaneous alternations on Y-maze (p < 0.01). There was a significant inverse correlation between frontal CC3 and percent spontaneous alternations (R2 = 0.51, p < 0.01). Microglia repopulation showed a near-complete return to vehicle levels of delirium like-behaviors. CONCLUSIONS This study demonstrates that microglia depletion exacerbates structural and functional delirium-like phenotypes after VILI, while subsequent repopulation of microglia restores these phenotypes. These findings suggest a neuroprotective role for microglia in ameliorating neuronal and functional delirium-like phenotypes and call for consideration of interventions that leverage endogenous microglia physiology to mitigate delirium.
Collapse
Affiliation(s)
- Landon Scott
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kevin D Winzey
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debbie Moreira
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine Bresee
- Biostatistics Shared Resources, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Warren G Tourtellotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Abraham O, Ben-Dor S, Goliand I, Haffner-Krausz R, Colaiuta SP, Kovalenko A, Yaron A. Siah3 acts as a physiological mitophagy suppressor that facilitates axonal degeneration. Sci Signal 2024; 17:eadn5805. [PMID: 39378286 DOI: 10.1126/scisignal.adn5805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
Mitophagy eliminates dysfunctional mitochondria, and defects in this cellular housekeeping mechanism are implicated in various age-related diseases. Here, we found that mitophagy suppression by the protein Siah3 promoted developmental axonal remodeling in mice. Siah3-deficient mice displayed increased peripheral sensory innervation. Cultured Siah3-deficient sensory neurons exhibited delays in both axonal degeneration and caspase-3 activation in response to withdrawal of nerve growth factor. Mechanistically, Siah3 was transcriptionally induced by the loss of trophic support and formed a complex with the cytosolic E3 ubiquitin ligase parkin, a core component of mitophagy, in transfected cells. Axons of Siah3-deficient neurons mounted profound mitophagy upon initiation of degeneration but not under basal conditions. Neurons lacking both Siah3 and parkin did not exhibit the delay in trophic deprivation-induced axonal degeneration or the induction of axonal mitophagy that was seen in Siah3-deficient neurons. Our findings reveal that mitophagy regulation acts as a gatekeeper of a physiological axon elimination program.
Collapse
Affiliation(s)
- Omer Abraham
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Inna Goliand
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 761000, Israel
| | | | - Andrew Kovalenko
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Avraham Yaron
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 761000, Israel
| |
Collapse
|
23
|
Mani V, Arfeen M. Betahistine's Neuroprotective Actions against Lipopolysaccharide-Induced Neurotoxicity: Insights from Experimental and Computational Studies. Brain Sci 2024; 14:876. [PMID: 39335372 PMCID: PMC11430358 DOI: 10.3390/brainsci14090876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Histamine H3 receptor (H3R) antagonists, such as betahistine (BHTE), have shown significant potential in treating central nervous system (CNS) disorders due to their neuroprotective properties. This study investigated BHTE's effects on lipopolysaccharide (LPS)-induced neurotoxicity, which is associated with neuroinflammation and neurodegeneration. Rats were divided into groups and pre-treated with BHTE (5 or 10 mg/kg, p.o.) for 30 days, followed by LPS administration (1 mg/kg, i.p.) for 4 consecutive days to induce neurotoxicity. LPS exposure resulted in cognitive impairment, as evidenced by performance deficits in maze tests, and a significant reduction in brain acetylcholine (ACh) levels. Additionally, LPS led to increased neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Pre-treatment with BHTE effectively counteracted these effects, improving cognitive performance and restoring ACh levels. BHTE significantly reduced LPS-induced increases in pro-inflammatory markers (COX-2, TNF-α, and IL-6) while enhancing anti-inflammatory cytokines (IL-10 and TGF-β1). Furthermore, BHTE improved mitochondrial function by increasing enzyme levels (MRCC-I, II, and IV) and boosted anti-apoptotic (Bcl-2) and antioxidant defenses (GSH and catalase). BHTE also reduced apoptosis markers, including pro-apoptotic protein caspase-3, and oxidative stress marker malondialdehyde (MDA). Molecular modeling studies revealed that BHTE effectively binds to key enzymes involved in neuroinflammation and apoptosis (AChE, COX-2, and caspase-3), with binding free energies between 4 and 5 kcal/mol, interacting with critical residues. These findings underscore BHTE's multifaceted neuroprotective effects against LPS-induced neurotoxicity, offering potential therapeutic avenues for managing neuroinflammation and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
24
|
Li J, Liu Q, Liu S, Xin H, Zhang X, Guo N. Maltol Improves Peripheral Nerve Function by Inhibiting Schwann Cell Apoptosis via the PERK/eIF2α/CHOP Pathway and MME Upregulation in Diabetic Peripheral Neuropathy. Pharmaceuticals (Basel) 2024; 17:1139. [PMID: 39338303 PMCID: PMC11435048 DOI: 10.3390/ph17091139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most prevalent chronic complication among diabetic patients and a primary risk factor contributing to the deterioration of diabetic foot conditions. The pathogenesis of DPN remains complex and not fully understood, and there are hardly any effective treatment drugs. Maltol (3-hydroxy-2-methyl-4-pyranone) has demonstrated antioxidant and anti-inflammatory properties. However, the potential role of maltol in the treatment of DPN remains unclear. This study aimed to assess maltol's effects on DPN rats and high glucose (HG)/palmitic acid (PA)-induced rat Schwann cells (RSC96). The results indicated maltol's capacity to enhance peripheral nerve function in DPN rats. In RSC96 cells stimulated with high HG and PA, maltol treatment reduced DPN markers and apoptosis-related proteins. Functional enrichment analysis of differentially expressed genes revealed that endoplasmic reticulum (ER) stress pathways were involved in this process. Western blot results demonstrated the activation of ER stress pathway in HG/PA-induced RSC96 cells, with maltol attenuating ER stress-related protein expression. Furthermore, the knockdown of Membrane metallo-endopeptidase (MME) reversed maltol's effects on apoptosis-related protein expression, suggesting a potential therapeutic role for maltol via MME in treating DPN. These findings indicate that maltol may hold promise as a therapeutic agent for DPN treatment.
Collapse
Affiliation(s)
- Jiawei Li
- Minhang Hospital, School of Pharmacy, Fudan University, Shanghai 201203, China; (J.L.); (H.X.)
| | - Quan Liu
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Q.L.); (S.L.)
| | - Shuainan Liu
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Q.L.); (S.L.)
| | - Hong Xin
- Minhang Hospital, School of Pharmacy, Fudan University, Shanghai 201203, China; (J.L.); (H.X.)
| | - Xuemei Zhang
- Minhang Hospital, School of Pharmacy, Fudan University, Shanghai 201203, China; (J.L.); (H.X.)
| | - Nan Guo
- Minhang Hospital, School of Pharmacy, Fudan University, Shanghai 201203, China; (J.L.); (H.X.)
| |
Collapse
|
25
|
Yan M, Chen X, Ye Q, Li H, Zhang L, Wang Y. IL-33-dependent NF-κB activation inhibits apoptosis and drives chemoresistance in acute myeloid leukemia. Cytokine 2024; 180:156672. [PMID: 38852492 DOI: 10.1016/j.cyto.2024.156672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Despite recent advances in therapeutic regimens, the prognosis of acute myeloid leukemia (AML) remains poor. Following our previous finding that interleukin-33 (IL-33) promotes cell survival along with activated NF-κB in AML, we further investigated the role of NF-κB during leukemia development. METHODS Flow cytometry was performed to value the apoptosis and proliferation. qRT-PCR and western blot were performed to detect the expression of IL-6, active caspase 3, BIRC2, Bcl-2, and Bax, as well as activated NF-κB p65 and AKT. Finally, xenograft mouse models and AML patient samples were used to verify the findings observed in AML cell lines. RESULTS IL-33-mediated NF-κB activation in AML cell lines contributes to a reduction in apoptosis, an increase in proliferation rate as well as a decrease in drug sensitivity, which were reversed by NF-κB inhibitor, Bay-117085. Moreover, IL-33 decreased the expression of active caspase-3 while increasing the levels of BIRC2, Bcl-2, and Bax, and these effects were blocked by Bay-117085. Additionally, NF-κB activation induced by IL-33 increases the production of IL-6 and autocrine activation of AKT. Co-culture of bone marrow stroma with AML cells resulted in increased IL-33 expression by leukemia cells, along with decreased apoptosis level and reduced drug sensitivity. Finally, we confirmed the in vivo pro-tumor effect mediated by IL-33/ NF-κB axis using a xenograft model of AML. CONCLUSION Our data indicate that IL-33/IL1RL1-dependent signaling contributes to AML cell activation of NF-κB, which in turn causes autocrine IL-6-induced activation of pAKT, supporting IL-33/NF-κB/pAKT as a potential target for AML therapy.
Collapse
Affiliation(s)
- Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuexin Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Qian Ye
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huating Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Cai XQ, Yang H, Liang BQ, Deng CC, Xue HY, Zhang JJ, Wang XZ. Glutamate rescues heat stress-induced apoptosis of Sertoli cells by enhancing the activity of antioxidant enzymes and activating the Trx1-Akt pathway in vitro. Theriogenology 2024; 223:1-10. [PMID: 38642435 DOI: 10.1016/j.theriogenology.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Heat stress reduces the number of Sertoli cells, which is closely related to an imbalanced redox status. Glutamate functions to maintain the equilibrium of redox homeostasis. However, the role of glutamate in heat treated Sertoli cells remains unclear. Herein, Sertoli cells from 3-week-old piglets were treated at 44 °C for 30 min (heat stress). Glutamate levels increased significantly following heat stress treatment, followed by a gradual decrease during recovery, while glutathione (GSH) showed a gradual increase. The addition of exogenous glutamate (700 μM) to Sertoli cells before heat stress significantly reduced the heat stress-induced apoptosis rate, mediated by enhanced levels of antioxidant substances (superoxide dismutase (SOD), total antioxidant capacity (TAC), and GSH) and reduced levels of oxidative substances (reactive oxygen species (ROS) and malondialdehyde (MDA)). Glutamate addition to Sertoli cells before heat stress upregulated the levels of glutamate-cysteine ligase, modifier subunit (Gclm), glutathione synthetase (Gss), thioredoxin (Trx1) and B-cell leukemia/lymphoma 2 (Bcl-2), and the ratio of phosphorylated Akt (protein kinase B)/total Akt. However, it decreased the levels of Bcl2-associated X protein (Bax) and cleaved-caspase 3. Addition of the inhibitor of glutaminase (Gls1), Bptes (Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, 30 μM)to Sertoli cells before heat stress reversed these effects. These results inferred that glutamate rescued heat stress-induced apoptosis in Sertoli cells by enhancing activity of antioxidant enzymes and activating the Trx1-Akt pathway. Thus, glutamate supplementation might represent a novel strategy to alleviate the negative effect of heat stress.
Collapse
Affiliation(s)
- Xia-Qing Cai
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Huan Yang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Bing-Qian Liang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Cheng-Chen Deng
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Hong-Yan Xue
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
27
|
Siwecka N, Galita G, Granek Z, Wiese W, Majsterek I, Rozpędek-Kamińska W. IRE1/JNK Is the Leading UPR Pathway in 6-OHDA-Induced Degeneration of Differentiated SH-SY5Y Cells. Int J Mol Sci 2024; 25:7679. [PMID: 39062922 PMCID: PMC11276943 DOI: 10.3390/ijms25147679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder which affects dopaminergic neurons of the midbrain. Accumulation of α-synuclein or exposure to neurotoxins like 6-hydroxydopamine (6-OHDA) induces endoplasmic reticulum (ER) stress along with the unfolded protein response (UPR), which executes apoptosis via activation of PERK/CHOP or IRE1/JNK signaling. The present study aimed to determine which of these pathways is a major contributor to neurodegeneration in an 6-OHDA-induced in vitro model of PD. For this purpose, we have applied pharmacological PERK and JNK inhibitors (AMG44 and JNK V) in differentiated SH-SY5Y cells exposed to 6-OHDA. Inhibition of PERK and JNK significantly decreased genotoxicity and improved mitochondrial respiration, but only JNK inhibition significantly increased cell viability. Gene expression analysis revealed that the effect of JNK inhibition was dependent on a decrease in MAPK10 and XBP1 mRNA levels, whereas inhibition of either PERK or JNK significantly reduced the expression of DDIT3 mRNA. Western blot has shown that JNK inhibition strongly induced the XBP1s protein, and inhibition of each pathway attenuated the phosphorylation of eIF2α and JNK, as well as the expression of CHOP. Collectively, our data suggests that targeting the IRE1/JNK pathway of the UPR is a more effective option for PD treatment as it simultaneously affects more than one pro-apoptotic pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (N.S.); (G.G.); (Z.G.); (W.W.); (I.M.)
| |
Collapse
|
28
|
Chen S, Zou R, Si J, Shi Q, Zhang L, Kang L, Ni J, Sha D. Icariin inhibits apoptosis in OGD-induced neurons by regulating M2 pyruvate kinase. IBRO Neurosci Rep 2024; 16:535-541. [PMID: 38706972 PMCID: PMC11070241 DOI: 10.1016/j.ibneur.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Background Ischaemic stroke can lead to many complications, but treatment options are limited. Icariin is a traditional Chinese medicine with reported neuroprotective effects against ischaemic cerebral injury; however, the underlying mechanisms by which icariin ameliorates cell apoptosis require further study. Purpose This study aimed to investigate the therapeutic potential of icariin after ischaemic stroke and the underlying molecular mechanisms. Methods N2a neuronal cells were used to create an in vitro oxygen-glucose deprivation (OGD) model. The effects of icariin on OGD cells were assessed using the CCK-8 kit to detect the survival of cells and based on the concentration, apoptosis markers, inflammation markers, and M2 pyruvate kinase isoenzyme (PKM2) expression were detected using western blotting, RT-qPCR, and flow cytometry. To investigate the underlying molecular mechanisms, we used the PKM2 agonist TEPP-46 and detected apoptosis-related proteins. Results We demonstrated that icariin alleviated OGD-induced apoptosis in vitro. The expression levels of the apoptosis marker proteins caspase-3 and Bax were upregulated and Bcl-2 was downregulated. Furthermore, icariin reduced inflammation and downregulated the expression of PKM2. Moreover, activation of the PKM2 by pretreatment with the PKM2 agonist TEPP-46 enhanced the effects on OGD induced cell apoptosis in vitro. Conclusion This study elucidated the underlying mechanism of PKM2 in OGD-induced cell apoptosis and highlighted the potential of icariin in the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Shan Chen
- Department of Pharmacy, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of General Medicine, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Renfang Zou
- Department of Pharmacy, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of General Medicine, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayi Si
- Department of Pharmacy, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianzhi Shi
- Department of Pharmacy, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Emergency, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Zhang
- Department of General Medicine, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lina Kang
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Ni
- Department of Emergency, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dujuan Sha
- Department of General Medicine, Affiliated Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Lee YT, Mohd Yunus MH, Yazid MD, Ugusman A. Unraveling the path to osteoarthritis management: targeting chondrocyte apoptosis for therapeutic intervention. Front Cell Dev Biol 2024; 12:1347126. [PMID: 38827524 PMCID: PMC11140145 DOI: 10.3389/fcell.2024.1347126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease affecting joints and further causing disabilities. This disease affects around 240 million people worldwide. It is a multifactorial disease, and its etiology is difficult to determine. Although numerous therapeutic strategies are available, the therapies are aimed at reducing pain and improving patients' quality of life. Hence, there is an urgent need to develop disease-modifying drugs (DMOAD) that can reverse or halt OA progression. Apoptosis is a cell removal process that is important in maintaining homeostatic mechanisms in the development and sustaining cell population. The apoptosis of chondrocytes is believed to play an important role in OA progression due to poor chondrocytes self-repair abilities to maintain the extracellular matrix (ECM). Hence, targeting chondrocyte apoptosis can be one of the potential therapeutic strategies in OA management. There are various mediators and targets available to inhibit apoptosis such as autophagy, endoplasmic reticulum (ER) stress, oxidative stress, and inflammation. As such, this review highlights the importance and potential targets that can be aimed to reduce chondrocyte apoptosis.
Collapse
Affiliation(s)
- Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
30
|
Alzahrani NA, Bahaidrah KA, Mansouri RA, Aldhahri RS, Abd El-Aziz GS, Alghamdi BS. Possible Prophylactic Effects of Sulforaphane on LPS-Induced Recognition Memory Impairment Mediated by Regulating Oxidative Stress and Neuroinflammatory Proteins in the Prefrontal Cortex Region of the Brain. Biomedicines 2024; 12:1107. [PMID: 38791068 PMCID: PMC11118062 DOI: 10.3390/biomedicines12051107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant global health concern, characterized by neurodegeneration and cognitive decline. Neuroinflammation is a crucial factor in AD development and progression, yet effective pharmacotherapy remains elusive. Sulforaphane (SFN), derived from cruciferous vegetables and mainly from broccoli, has shown a promising effect via in vitro and in vivo studies as a potential treatment for AD. This study aims to investigate the possible prophylactic mechanisms of SFN against prefrontal cortex (PFC)-related recognition memory impairment induced by lipopolysaccharide (LPS) administration. METHODOLOGY Thirty-six Swiss (SWR/J) mice weighing 18-25 g were divided into three groups (n = 12 per group): a control group (vehicle), an LPS group (0.75 mg/kg of LPS), and an LPS + SFN group (25 mg/kg of SFN). The total duration of the study was 3 weeks, during which mice underwent treatments for the initial 2 weeks, with daily monitoring of body weight and temperature. Behavioral assessments via novel object recognition (NOR) and temporal order recognition (TOR) tasks were conducted in the final week of the study. Inflammatory markers (IL-6 and TNF), antioxidant enzymes (SOD, GSH, and CAT), and pro-oxidant (MDA) level, in addition to acetylcholine esterase (AChE) activity and active (caspase-3) and phosphorylated (AMPK) levels, were evaluated. Further, PFC neuronal degeneration, Aβ content, and microglial activation were also examined using H&E, Congo red staining, and Iba1 immunohistochemistry, respectively. RESULTS SFN pretreatment significantly improved recognition memory performance during the NOR and TOR tests. Moreover, SFN was protected from neuroinflammation and oxidative stress as well as neurodegeneration, Aβ accumulation, and microglial hyperactivity. CONCLUSION The obtained results suggested that SFN has a potential protective property to mitigate the behavioral and biochemical impairments induced by chronic LPS administration and suggested to be via an AMPK/caspase-3-dependent manner.
Collapse
Affiliation(s)
- Noor Ahmed Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Khulud Abdullah Bahaidrah
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rahaf Saeed Aldhahri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
- Department of Biochemistry, Faculty of Sciences, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Gamal S. Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
31
|
Xia QQ, Singh A, Wang J, Xuan ZX, Singer JD, Powell CM. Autism risk gene Cul3 alters neuronal morphology via caspase-3 activity in mouse hippocampal neurons. Front Cell Neurosci 2024; 18:1320784. [PMID: 38803442 PMCID: PMC11129687 DOI: 10.3389/fncel.2024.1320784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders (NDDs) in which children display differences in social interaction/communication and repetitive stereotyped behaviors along with variable associated features. Cul3, a gene linked to ASD, encodes CUL3 (CULLIN-3), a protein that serves as a key component of a ubiquitin ligase complex with unclear function in neurons. Cul3 homozygous deletion in mice is embryonic lethal; thus, we examine the role of Cul3 deletion in early synapse development and neuronal morphology in hippocampal primary neuronal cultures. Homozygous deletion of Cul3 significantly decreased dendritic complexity and dendritic length, as well as axon formation. Synaptic spine density significantly increased, mainly in thin and stubby spines along with decreased average spine volume in Cul3 knockouts. Both heterozygous and homozygous knockout of Cul3 caused significant reductions in the density and colocalization of gephyrin/vGAT puncta, providing evidence of decreased inhibitory synapse number, while excitatory synaptic puncta vGulT1/PSD95 density remained unchanged. Based on previous studies implicating elevated caspase-3 after Cul3 deletion, we demonstrated increased caspase-3 in our neuronal cultures and decreased neuronal cell viability. We then examined the efficacy of the caspase-3 inhibitor Z-DEVD-FMK to rescue the decrease in neuronal cell viability, demonstrating reversal of the cell viability phenotype with caspase-3 inhibition. Studies have also implicated caspase-3 in neuronal morphological changes. We found that caspase-3 inhibition largely reversed the dendrite, axon, and spine morphological changes along with the inhibitory synaptic puncta changes. Overall, these data provide additional evidence that Cul3 regulates the formation or maintenance of cell morphology, GABAergic synaptic puncta, and neuronal viability in developing hippocampal neurons in culture.
Collapse
Affiliation(s)
- Qiang-qiang Xia
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anju Singh
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Wang
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhong Xin Xuan
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, OR, United States
| | - Craig M. Powell
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
32
|
Cicek B, Hacimuftuoglu A, Yeni Y, Kuzucu M, Genc S, Cetin A, Yavuz E, Danısman B, Levent A, Ozdokur KV, Kantarcı M, Docea AO, Siokas V, Tsarouhas K, Coleman MD, Tsatsakis A, Taghizadehghalehjoughi A. AuNPs with Cynara scolymus leaf extracts rescue arsenic-induced neurobehavioral deficits and hippocampal tissue toxicity in Balb/c mice through D1R and D2R activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104417. [PMID: 38493879 DOI: 10.1016/j.etap.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The present study was designed to evaluate whether AuNPs (gold nanoparticles) synthesized with the Cynara scolymus (CS) leaf exert protective and/or alleviative effects on arsenic (As)-induced hippocampal neurotoxicity in mice. Neurotoxicity in mice was developed by orally treating 10 mg/kg/day sodium arsenite (NaAsO2) for 21 days. 10 µg/g AuNPs, 1.6 g/kg CS, and 10 µg/g CS-AuNPs were administered orally simultaneously with 10 mg/kg As. CS and CS-AuNPs treatments showed down-regulation of TNF-α and IL-1β levels. CS and CS-AuNPs also ameliorated apoptosis and reduced the alterations in the expression levels of D1 and D2 dopamine receptors induced by As. Simultaneous treatment with CS and CS-AuNPs improved As-induced learning, memory deficits, and motor coordination in mice assessed by water maze and locomotor tests, respectively. The results of this study provide evidence that CS-AuNPs demonstrated neuroprotective roles with antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as improving D1 and D2 signaling, and eventually reversed neurobehavioral impairments.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey.
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya 44210, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Sidika Genc
- Bilecik Şeyh Edebali University, Faculty of Medicine, Department of Medical Pharmacology, Bilecik 11230, Turkey
| | - Ahmet Cetin
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Emre Yavuz
- Department of Medical Services and Technicians, Çayirli Vocational School, Erzincan Binali Yildirim University, Erzincan, Turkey.
| | - Betul Danısman
- Department of Biophysics, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey.
| | - Akin Levent
- Department of Radiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Kemal Volkan Ozdokur
- Sciences Application and Research Center, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Mecit Kantarcı
- Department of Radiology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41100, Greece
| | | | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece.
| | - Ali Taghizadehghalehjoughi
- Bilecik Şeyh Edebali University, Faculty of Medicine, Department of Medical Pharmacology, Bilecik 11230, Turkey.
| |
Collapse
|
33
|
Liu Y, Chen H, Wu Y, Ai F, Li W, Peng H, Gui F, Yu B, Chen Z. Sinomenine attenuates bleomycin-induced pulmonary fibrosis, inflammation, and oxidative stress by inhibiting TLR4/NLRP3/TGFβ signaling. Inhal Toxicol 2024; 36:217-227. [PMID: 38713814 DOI: 10.1080/08958378.2024.2335193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/15/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE The present work concentrated on validating whether sinomenine alleviates bleomycin (BLM)-induced pulmonary fibrosis, inflammation, and oxidative stress. METHODS A rat model of pulmonary fibrosis was constructed through intratracheal injection with 5 mg/kg BLM, and the effects of 30 mg/kg sinomenine on pulmonary inflammation, fibrosis, apoptosis, and 4-hydroxynonenal density were evaluated by hematoxylin and eosin staining, Masson's trichrome staining, TUNEL staining, and immunohistochemistry. Hydroxyproline content and concentrations of inflammatory cytokines and oxidative stress markers were detected using corresponding kits. MRC-5 cells were treated with 10 ng/ml PDGF, and the effects of 1 mM sinomenine on cell proliferation were assessed by EdU assays. The mRNA expression of inflammatory cytokines and the protein levels of collagens, fibrosis markers, and key markers involved in the TLR4/NLRP3/TGFβ signaling were tested with RT-qPCR and immunoblotting analysis. RESULTS Sinomenine attenuated pulmonary fibrosis and inflammation while reducing hydroxyproline content and the protein expression of collagens and fibrosis markers in BLM-induced pulmonary fibrosis rats. Sinomenine reduced apoptosis in lung samples of BLM-challenged rats by increasing Bcl-2 and reducing Bax and cleaved caspase-3 protein expression. In addition, sinomenine alleviated inflammatory response and oxidative stress in rats with pulmonary fibrosis induced by BLM. Moreover, sinomenine inhibited the TLR4/NLRP3/TGFβ signaling pathway in lung tissues of BLM-stimulated rats. Furthermore, TLR4 inhibitor, TAK-242, attenuated PDGF-induced fibroblast proliferation and collagen synthesis in MRC-5 cells. CONCLUSION Sinomenine attenuates BLM-caused pulmonary fibrosis, inflammation, and oxidative stress by inhibiting the TLR4/NLRP3/TGFβ signaling, indicating that sinomenine might become a therapeutic candidate to treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Yijue Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Hong Chen
- School of Medicine, Jianghan University, Wuhan city, Hubei Province, P.R. China
| | - Yan Wu
- School of Medicine, Jianghan University, Wuhan city, Hubei Province, P.R. China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Wei Li
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Huan Peng
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Feng Gui
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Bo Yu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
34
|
Jovasevic V, Wood EM, Cicvaric A, Zhang H, Petrovic Z, Carboncino A, Parker KK, Bassett TE, Moltesen M, Yamawaki N, Login H, Kalucka J, Sananbenesi F, Zhang X, Fischer A, Radulovic J. Formation of memory assemblies through the DNA-sensing TLR9 pathway. Nature 2024; 628:145-153. [PMID: 38538785 PMCID: PMC10990941 DOI: 10.1038/s41586-024-07220-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.
Collapse
Affiliation(s)
- Vladimir Jovasevic
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M Wood
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Cicvaric
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hui Zhang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zorica Petrovic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Carboncino
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kendra K Parker
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas E Bassett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Moltesen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO, Aarhus University, Aarhus, Denmark
- DANDRITE, Aarhus University, Aarhus, Denmark
| | - Naoki Yamawaki
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO, Aarhus University, Aarhus, Denmark
- DANDRITE, Aarhus University, Aarhus, Denmark
| | - Hande Login
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO, Aarhus University, Aarhus, Denmark
- DANDRITE, Aarhus University, Aarhus, Denmark
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- PROMEMO, Aarhus University, Aarhus, Denmark
- DANDRITE, Aarhus University, Aarhus, Denmark
| | - Farahnaz Sananbenesi
- Department for Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases, University Medical Center, Göttingen, Germany
- Cluster of Excellence MBExC, University of Göttingen, Göttingen, Germany
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andre Fischer
- Department for Psychiatry and Psychotherapy, German Center for Neurodegenerative Diseases, University Medical Center, Göttingen, Germany
- Cluster of Excellence MBExC, University of Göttingen, Göttingen, Germany
| | - Jelena Radulovic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- PROMEMO, Aarhus University, Aarhus, Denmark.
- DANDRITE, Aarhus University, Aarhus, Denmark.
- Department of Psychiatry and Behavioral Sciences, Psychiatry Research Institute Montefiore Einstein (PRIME), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
35
|
Da-Silva OF, Adelowo AR, Babalola AA, Ikeji CN, Owoeye O, Rocha JBT, Adedara IA, Farombi EO. Diphenyl Diselenide Through Reduction of Inflammation, Oxidative Injury and Caspase-3 Activation Abates Doxorubicin-Induced Neurotoxicity in Rats. Neurochem Res 2024; 49:1076-1092. [PMID: 38267690 DOI: 10.1007/s11064-023-04098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
Neurotoxicity associated with chemotherapy is a debilitating side effect of cancer management in humans which reportedly involves inflammatory and oxidative stress responses. Diphenyl diselenide (DPDS) is an organoselenium compound which exhibits its anti-tumoral, anti-oxidant, anti-inflammatory and anti-mutagenic effects. Nevertheless, its possible effect on chemotherapy-induced neurotoxicity is not known. Using rat model, we probed the behavioral and biochemical effects accompanying administration of antineoplastic agent doxorubicin (7.5 mg/kg) and DPDS (5 and 10 mg/kg). Anxiogenic-like behavior, motor and locomotor insufficiencies associated with doxorubicin were considerably abated by both DPDS doses with concomitant enhancement in exploratory behavior as demonstrated by reduced heat maps intensity and enhanced track plot densities. Moreover, with exception of cerebral glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, biochemical data demonstrated reversal of doxorubicin-mediated decline in cerebral and cerebellar antioxidant status indices and the increase in acetylcholinesterase (AChE) activity by both doses of DPDS. Also, cerebellar and cerebral lipid peroxidation, hydrogen peroxide as well as reactive oxygen and nitrogen species levels were considerably diminished in rats administered doxorubicin and DPDS. In addition, DPDS administration abated myeloperoxidase activity, tumour necrosis factor alpha and nitric oxide levels along with caspase-3 activity in doxorubicin-administered rats. Chemoprotection of doxorubicin-associated neurotoxicity by DPDS was further validated by histomorphometry and histochemical staining. Taken together, DPDS through offsetting of oxido-inflammatory stress and caspase-3 activation elicited neuroprotection in doxorubicin-treated rats.
Collapse
Affiliation(s)
- Oluwatobiloba F Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedoyin R Adelowo
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adesina A Babalola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
36
|
Li Q, Shi M, Ang Y, Yu P, Wan B, Lin B, Chen W, Yue Z, Shi Y, Liu F, Wang H, Duan M, Long Y, Bao H. Hydrogen ameliorates endotoxin-induced acute lung injury through AMPK-mediated bidirectional regulation of Caspase3. Mol Immunol 2024; 168:64-74. [PMID: 38428216 DOI: 10.1016/j.molimm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Septic lung injury is characterized by uncontrollable inflammatory infiltrations and acute onset bilateral hypoxemia. Evidence has emerged of the beneficial effect of hydrogen in acute lung injury (ALI), but the underlying mechanism is unclear. In this research, the recovery action of hydrogen on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells was investigated. The 7-day survival rate and body weight of mice were measured after intraperitoneal injection of LPS. Lung function was determined by a whole body plethysmography (WBP) system using the indicators respiratory rate and enhanced pause. Hematoxylin and eosin (HE) staining confirmed the signs of pulmonary edema and inflammatory ooze. Reverse transcription-polymerase chain reaction (RT-PCR) quantification was used to detect the expression of inflammatory factors. Western blotting analysis evaluated the expression levels of involved proteins in the AMP-activated protein kinase (AMPK) pathway. The experimental results confirmed that hydrogen provided an essential solution to the dissipative effects of LPS on survival rate, weight loss and lung function. The LPS-stimulated inflammatory factors, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were also suppressed by hydrogen in A549 cells. Western blot analysis showed that hydrogen significantly upregulated the levels of phosphorylated AMPK (p-AMPK) and lowered the LPS-induced increased expression of dynamin-related protein 1 (Drp1) and Caspase3. These findings prove that hydrogen attenuated LPS-treated ALI by activating the AMPK pathway, supporting the feasibility of hydrogen treatment for sepsis.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210000, China; Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Min Shi
- Department of Anesthesiology, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Yang Ang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Pan Yu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Bing Wan
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Bin Lin
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Wei Chen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Zichuan Yue
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Yadan Shi
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Faqi Liu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Hao Wang
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China; Department of Anesthesiology, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Jiangsu 210019, China.
| | - Yun Long
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China.
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210000, China.
| |
Collapse
|
37
|
Tang X, Yan T, Wang S, Liu Q, Yang Q, Zhang Y, Li Y, Wu Y, Liu S, Ma Y, Yang L. Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis. Neural Regen Res 2024; 19:642-649. [PMID: 37721296 PMCID: PMC10581587 DOI: 10.4103/1673-5374.380904] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 09/19/2023] Open
Abstract
β-Sitosterol is a type of phytosterol that occurs naturally in plants. Previous studies have shown that it has anti-oxidant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, and anti-tumor effects, but it is unknown whether β-sitosterol treatment reduces the effects of ischemic stroke. Here we found that, in a mouse model of ischemic stroke induced by middle cerebral artery occlusion, β-sitosterol reduced the volume of cerebral infarction and brain edema, reduced neuronal apoptosis in brain tissue, and alleviated neurological dysfunction; moreover, β-sitosterol increased the activity of oxygen- and glucose-deprived cerebral cortex neurons and reduced apoptosis. Further investigation showed that the neuroprotective effects of β-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke. In addition, β-sitosterol showed high affinity for NPC1L1, a key transporter of cholesterol, and antagonized its activity. In conclusion, β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
Collapse
Affiliation(s)
- Xiuling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Tao Yan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Saiying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yongqiang Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yumei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Shuibing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
38
|
Holota R, Dečmanová V, Alexovič Matiašová A, Košuth J, Slovinská L, Pačut L, Tomori Z, Daxnerová Z, Ševc J. Cleaved caspase-3 is present in the majority of glial cells in the intact rat spinal cord during postnatal life. Histochem Cell Biol 2024; 161:269-286. [PMID: 37938347 PMCID: PMC10912154 DOI: 10.1007/s00418-023-02249-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Cell death is an essential process that occurs during the development of the central nervous system. Despite the availability of a wide range of commercially produced antibodies against various apoptotic markers, data regarding apoptosis in intact spinal cord during postnatal development and adulthood are mostly missing. We investigated apoptosis in rat spinal cord at different stages of ontogenesis (postnatal days 8, 29, and 90). For this purpose, we applied immunofluorescent detection of two widely used apoptotic markers, cleaved caspase-3 (cC3) and cleaved poly(ADP-ribose) polymerase (cPARP). Surprisingly, we found significant discrepancy between the number of cC3+ cells and PARP+ cells, with a ratio between 500:1 and 5000:1 in rat spinal cord at all postnatal time points. The majority of cC3+ cells were glial cells and did not exhibit an apoptotic phenotype. In contrast with in vivo results, in vitro analysis of primary cell cultures derived from neonatal rat spinal cord and treated with the apoptotic inductor staurosporine revealed a similar onset of occurrence of both cC3 and cPARP in cells subjected to apoptosis. Gene expression analysis of spinal cord revealed elevated expression of the Birc4 (XIAP), Birc2, and Birc5 (Survivin) genes, which are known potent inhibitors of apoptosis. Our data indicate that cC3 is not an exclusive marker of apoptosis, especially in glial cells, owing its possible presence in inhibited forms and/or its participation in other non-apoptotic roles. Therefore, cPARP appears to be a more appropriate marker to detect apoptosis.
Collapse
Affiliation(s)
- R Holota
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - V Dečmanová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - A Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic.
| | - J Košuth
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - L Slovinská
- Associated Tissue Bank, Faculty of Medicine, P. J. Šafárik University in Košice and L. Pasteur University Hospital, Tr. SNP 1, 04011, Košice, Slovak Republic
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 04001, Košice, Slovak Republic
| | - L Pačut
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - Z Tomori
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Košice, Slovak Republic
| | - Z Daxnerová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| | - J Ševc
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovak Republic
| |
Collapse
|
39
|
Kang JY, Gu JY, Baek DC, Son CG, Lee JS. A Capsicum annuum L. seed extract exerts anti-neuroexcitotoxicity in HT22 hippocampal neurons. Food Funct 2024; 15:2144-2153. [PMID: 38305768 DOI: 10.1039/d3fo04501c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The hippocampal memory deficit stands out as a primary symptom in neurodegenerative diseases, including Alzheimer's disease. While numerous therapeutic candidates have been proposed, they primarily serve to delay disease progression. Given the irreversible brain atrophy or injury associated with these conditions, current research efforts are concentrated on preventive medicine strategies. Herein, we investigated whether the extracts of Capsicum annuum L. seeds (CSE) and Capsicum annuum L. pulp (CPE) have preventive properties against glutamate-induced neuroexcitotoxicity (one of the main causes of Alzheimer's disease) in HT22 hippocampal neuronal cells. Pretreatment with CSE demonstrated significant anti-neuroexcitotoxic activity, whereas CPE did not exhibit such effects. Specifically, CSE pretreatment dose-dependently inhibited the elevation of excitotoxic elements (intracellular calcium influx and reactive oxygen species; ROS) and apoptotic elements (p53 and cleaved caspase-3). In addition, the glutamate-induced alterations of neuronal activity indicators (brain-derived neurotrophic factor; BDNF and cAMP response element-binding protein phosphorylation; CREB) were significantly attenuated by CSE treatment. We also found that luteolin is the main bioactive compound corresponding to the anti-neuroexcitotoxic effects of CSE. Our results strongly suggest that Capsicum annuum L. seeds (but not its pulp) could be candidates for neuro-protective resources especially under conditions of neuroexcitotoxicity. Its underlying mechanisms may involve the amelioration of ROS-mediated cell death and BDNF-related neuronal inactivity and luteolin would be an active compound.
Collapse
Affiliation(s)
- Ji-Yun Kang
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
| | - Ji-Yeon Gu
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
| | - Dong-Cheol Baek
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea.
- Research Center for CFS/ME, Daejeon Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
40
|
Zhai Y, Cheng Y, Yuan Y, Meng X, Li Y, Wang Y, Ren T, Li S, Sun H. Increased thrombospondin-1 levels contribute to epileptic susceptibility in neonatal hyperthermia without seizures via altered synaptogenesis. Cell Death Discov 2024; 10:73. [PMID: 38346981 PMCID: PMC10861539 DOI: 10.1038/s41420-024-01837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Childhood febrile seizures (FS) represent one of the most common types of seizures and may lead to severe neurological damage and an increased risk of epilepsy. However, most children with fevers do not show clinical manifestations of convulsions, and the consequences of hyperthermia without seizures remain elusive. This study focused on hyperthermia not reaching the individual's seizure threshold (sub-FS stimulus). Changes in thrombospondin-1 (TSP-1) levels, synapses, seizure susceptibility, and seizure severity in subsequent FS were investigated in rats exposed to sub-FS stimuli. Pharmacological and genetic interventions were used to explore the role of TSP-1 in sub-FS-induced effects. We found that after sub-FS stimuli, the levels of TSP-1 and synapses, especially excitatory synapses, were concomitantly increased, with increased epilepsy and FS susceptibility. Moreover, more severe neuronal damage was found in subsequent FS. These changes were temperature dependent. Reducing TSP-1 levels by genetic intervention or inhibiting the activation of transforming growth factor-β1 (TGF-β1) by Leu-Ser-Lys-Leu (LSKL) led to lower synapse/excitatory synapse levels, decreased epileptic susceptibility, and attenuated neuronal injury after FS stimuli. Our study confirmed that even without seizures, hyperthermia may promote synaptogenesis, increase epileptic and FS susceptibility, and lead to more severe neuronal damage by subsequent FS. Inhibition of the TSP-1/TGF-β1 pathway may be a new therapeutic target to prevent detrimental sub-FS sequelae.
Collapse
Affiliation(s)
- Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xianfeng Meng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yang Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yan Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Tianpu Ren
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
41
|
Wang B, Weng J, Zhang TY, Xu YT, Ye D, Xu JJ, Zhao WW. Single-Cell Caspase-3 Measurement Using a Biomimetic Nanochannel. Anal Chem 2024; 96:2094-2099. [PMID: 38258322 DOI: 10.1021/acs.analchem.3c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Direct single-cell caspase-3 (Casp-3) analysis has remained challenging. A study of single-cell Casp-3 could contribute to revealing the fundamental pathogenic mechanisms in Casp-3-associated diseases. Here, a biomimetic nanochannel capable of single-cell sampling and ionic detection of intracellular Casp-3 is devised, which is established upon the installment of target-specific organic molecules (luc-DEVD) within the orifice of a glass nanopipette. The specific cleavage of luc-DEVD by Casp-3 could induce changes of inner-surface chemical groups and charge properties, thus altering the ionic response of the biomimetic nanochannel for direct Casp-3 detection. The practical applicability of this biomimetic nanochannel is confirmed by probing intracellular Casp-3 fluctuation upon drug stimulation and quantifying the Casp-3 evolution during induced apoptosis. This work realizes ionic single-cell Casp-3 analysis and provides a different perspective for single-cell protein analysis.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianhui Weng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
42
|
Ding F, Liu J, Ai K, Xu C, Mao X, Liu Z, Xiao H. Simultaneous Activation of Pyroptosis and cGAS-STING Pathway with Epigenetic/ Photodynamic Nanotheranostic for Enhanced Tumor Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306419. [PMID: 37796042 DOI: 10.1002/adma.202306419] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Promoting innate immunity through pyroptosis induction or the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) pathway activation has emerged as a potent approach to counteract the immunosuppressive tumor microenvironment and elicit systemic antitumor immunity. However, current pyroptosis inducers and STING agonists often suffer from limitations including instability, unpredictable side effects, or inadequate intracellular expression of gasdermin and STING. Here, a tumor-specific nanotheranostic platform that combines photodynamic therapy (PDT) with epigenetic therapy to simultaneously activate pyroptosis and the cGAS-STING pathway in a light-controlled manner is constructed. This approach involves the development of oxidation-sensitive nanoparticles (NP1) loaded with the photosensitizer TBE, along with decitabine nanomicelles (NP2). NP2 enables the restoration of STING and gasdermin E (GSDME) expression, while NP1-mediated PDT facilitates the release of DNA fragments from damaged mitochondria to potentiate the cGAS-STING pathway, and promotes the activation of caspase-3 to cleave the upregulated GSDME into pore-forming GSDME-N terminal. Subsequently, the released inflammatory cytokines facilitate the maturation of antigen-presentation cells, triggering T cell-mediated antitumor immunity. Overall, this study presents an elaborate strategy for simultaneous photoactivation of pyroptosis and the cGAS-STING pathway, enabling targeted photoimmunotherapy in immunotolerant tumors. This innovative approach holds significant promise in overcoming the limitations associated with existing therapeutic modalities and represents a valuable avenue for future clinical applications.
Collapse
Affiliation(s)
- Feixiang Ding
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Junyan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Chun Xu
- School of Dentistry, University of Queensland, Brisbane, 4006, Australia
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
43
|
Aziz M, Sarfraz M, Khurrum Ibrahim M, Ejaz SA, Zehra T, Ogaly HA, Arafat M, Al-Zahrani FAM, Li C. Evaluation of anticancer potential of tetracene-5,12-dione (A01) and pyrimidine-2,4-dione (A02) via caspase 3 and lactate dehydrogenase cytotoxicity investigations. PLoS One 2023; 18:e0292455. [PMID: 38127898 PMCID: PMC10734984 DOI: 10.1371/journal.pone.0292455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stands as a significant global cause of mortality, predominantly arising from the dysregulation of key enzymes and DNA. One strategic avenue in developing new anticancer agents involves targeting specific proteins within the cancer pathway. Amidst ongoing efforts to enhance the efficacy of anticancer drugs, a range of crucial medications currently interact with DNA at the molecular level, exerting profound biological effects. Our study is driven by the objective to comprehensively explore the potential of two compounds: (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione (A01) and 5-fluoro-1H-pyrimidine-2,4-dione (A02). These compounds have demonstrated marked efficacy against breast and cervical cancer cell lines, positioning them as promising anticancer candidates. In our investigation, A01 has emerged as a particularly potent candidate, with its potential bolstered by corroborative evidence from lactate dehydrogenase release and caspase-3 activity assays. On the other hand, A02 has exhibited remarkable anticancer potential. To further elucidate their molecular mechanisms and interactions, we employed computational techniques, including molecular docking and molecular dynamics simulations. Notably, our computational analyses suggest that the A01-DNA complex predominantly interacts via the minor groove, imparting significant insights into its mechanism of action. While earlier studies have also highlighted the anticancer activity of A01, our research contributes by providing a deeper understanding of its binding mechanisms through computational investigations. This knowledge holds potential for designing more effective drugs that target cancer-associated proteins. These findings lay a robust groundwork for future inquiries and propose that derivatives of A01 could be synthesized as potent bioactive agents for cancer treatment. By elucidating the distinctive aspects of our study's outcomes, we address the concern of distinguishing our findings from those of prior research.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tasneem Zehra
- Department of Basic Science & Humanities, Dawood University of Engineering & Technology, Karachi, Pakistan
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
44
|
Chamgordani MK, Bardestani A, Ebrahimpour S, Esmaeili A. In diabetic male Wistar rats, quercetin-conjugated superparamagnetic iron oxide nanoparticles have an effect on the SIRT1/p66Shc-mediated pathway related to cognitive impairment. BMC Pharmacol Toxicol 2023; 24:81. [PMID: 38129872 PMCID: PMC10734159 DOI: 10.1186/s40360-023-00725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Quercetin (QC) possesses a variety of health-promoting effects in pure and in conjugation with nanoparticles. Since the mRNA-SIRT1/p66Shc pathway and microRNAs (miRNAs) are implicated in the oxidative process, we aimed to compare the effects of QC and QC-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) on this pathway. METHODS Through the use of the chemical coprecipitation technique (CPT), SPIONs were synthesized, coated with dextran, and conjugated with quercetin. Adult male Wistar rats were given intraperitoneal injections of streptozotocin to look for signs of type 1 diabetes (T1D). The animals were randomized into five groups: the control group got deionized water (DI), free QC solution (25 mg/kg), SPIONs (25 mg/kg), and QCSPIONs (25 mg/kg), and all groups received repeat doses administered orally over 35 days. Real-time quantitative PCR was used to assess the levels of miR-34a, let-7a-p5, SIRT1, p66Shc, CASP3, and PARP1 expression in the hippocampus of diabetic rats. RESULTS In silico investigations identified p66Shc, CASP3, and PARP1 as targets of let-7a-5p and miR-34a as possible regulators of SIRT1 genes. The outcomes demonstrated that diabetes elevated miR-34a, p66Shc, CASP3, and PARP1 and downregulated let-7a-5p and SIRT1 expression. In contrast to the diabetic group, QCSPIONs boosted let-7a-5p expression levels and consequently lowered p66Shc, CASP3, and PARP1 expression levels. QCSPIONs also reduced miR-34a expression, which led to an upsurge in SIRT1 expression. CONCLUSION Our results suggest that QCSPIONs can regulate the SIRT1/p66Shc-mediated signaling pathway and can be considered a promising candidate for ameliorating the complications of diabetes.
Collapse
Affiliation(s)
- Mahnaz Karami Chamgordani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran
| | - Akram Bardestani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran
| | - Shiva Ebrahimpour
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran.
| |
Collapse
|
45
|
Napiórkowska M, Kurpios-Piec D, Kiernozek-Kalińska E, Leśniak A, Klawikowska M, Bujalska-Zadrożny M. New aryl-/heteroarylpiperazine derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.0 2,6]dec-8-ene-3,5,10-trione: Synthesis and preliminary studies of biological activities. Bioorg Med Chem 2023; 96:117518. [PMID: 37951135 DOI: 10.1016/j.bmc.2023.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Compounds containing dicarboximide skeleton such as succinimides, maleimides, glutarimides, and phthalimides possess broad biological properties including anti-fungal, antibacterial, antidepressant, or analgesic activities. The piperazine ring is found in a wide range of molecules that have demonstrated a variety of biological functions such as anticancer action and 5-HT receptors agonist/antagonist activity. In the present study, we combined both structures to develop new antitumor agents, a series of piperazine derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5,10-trione and evaluated their biological activity. The structures of all tested compounds were confirmed by 1H and 13C NMR and by ESI MS spectral analysis. Their cytotoxicity was assessed in vitro against eight human cancer cell lines, namely prostate (PC3), colon (HCT116, SW480, SW620), leukemia (K562), liver (HepG2), lung (A549) and breast (MDA-Mb-231) in contrast to normal HMEC-1 cell line, by using MTT and Trypan blue method. The tested compounds showed significant activity toward cancer cells. The most pronounced cytotoxic effect was observed in K562 and HCT116 with IC50 values below 10 μM for all studied compounds. Importantly, the most promising derivatives for each cancer cell line (IC50 < 10 μM) exerted a weaker cytotoxic effect toward normal HMEC-1 cells than cancer cells. The evaluation of proapoptotic and inhibitory effects on IL-6 release showed that K562 and HCT116 cells were more sensitive to studied compounds than other cancer cell lines. Furthermore, for all piperazine derivatives, the functional activities at the 5-HT1A, D2 receptors as well as their binding affinities at the 5-HT2A, H1 and M receptors, were determined. The current investigation was able to successfully design compounds with both serotoninergic and anticancer properties. It serves as a good starting point for a multimodal approach for the management of cancer and cancer-related symptoms.
Collapse
Affiliation(s)
- Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
| | - Dagmara Kurpios-Piec
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Ewelina Kiernozek-Kalińska
- Department of Immunology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland
| | - Anna Leśniak
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Małgorzata Klawikowska
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| |
Collapse
|
46
|
Safar AM, Santacruz-Márquez R, Laws MJ, Meling DD, Liu Z, Kumar TR, Nowak RA, Raetzman LT, Flaws JA. Dietary exposure to an environmentally relevant phthalate mixture alters follicle dynamics, hormone levels, ovarian gene expression, and pituitary gene expression in female mice. Reprod Toxicol 2023; 122:108489. [PMID: 37839492 PMCID: PMC10873030 DOI: 10.1016/j.reprotox.2023.108489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Phthalates are chemicals ubiquitously used in industry. Individual phthalates have been found to adversely affect female reproduction; however, humans are exposed to a mixture of phthalates daily, primarily through ingestion. Previous studies show that exposure to an environmentally relevant mixture of phthalates (Mix) can affect female reproduction. Little research, however, has been conducted on the effects of short-term (1 month) and long-term (6 months) exposure to Mix on ovarian functions. Thus, this study tested the hypothesis that short-term and long-term exposure to Mix alters ovarian folliculogenesis, serum hormone concentrations, pituitary gene expression, and ovarian expression of genes involved in steroidogenesis, apoptosis, cell cycle regulation, and oxidative stress. Adult CD-1 female mice were exposed to vehicle control (corn oil) or Mix (0.15-1500 ppm) in the chow for 1 or 6 months. Exposure to Mix for 1 month increased the number of atretic follicles (0.15 ppm), altered ovarian gene expression (0.15 ppm, 1500 ppm), and decreased serum testosterone (1.5 ppm) compared to control. Exposure to Mix for 6 months increased serum follicle-stimulating hormone (FSH) (0.15 ppm), decreased serum luteinizing hormone (LH) (0.15 ppm, 1.5 ppm, and 1500 ppm), decreased serum estradiol (1500 ppm), altered pituitary gene expression (1500 ppm), increased the number (1500 ppm) and percentage (1.5 ppm and 1500 ppm) of primordial follicles, and decreased the percentage of preantral (1500 ppm) and antral (1.5 ppm and 1500 ppm) follicles compared to control. These data indicate that exposure to Mix can alter folliculogenesis, steroidogenesis, and gene expression in female mice.
Collapse
Affiliation(s)
- Adira M Safar
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zhenghui Liu
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, Division of Reproductive Endocrinology & Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T Rajendra Kumar
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, Division of Reproductive Endocrinology & Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lori T Raetzman
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
47
|
Jang SY, Kim SY, Song HA, Kim H, Chung KS, Lee JK, Lee KT. Protective effect of hydrangenol on lipopolysaccharide-induced endotoxemia by suppressing intestinal inflammation. Int Immunopharmacol 2023; 125:111083. [PMID: 37871380 DOI: 10.1016/j.intimp.2023.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Hydrangenol, a dihydroisocoumarin, isolated from the leaves of Hydrangea serrata, possesses anti-inflammatory, anti-obesity, and anti-photoaging activities. In this study, we investigated the protective effects of hydrangenol (HG) against lipopolysaccharide (LPS)-induced endotoxemia and elucidated the underlying molecular mechanisms of action in C57BL/6 mice. Oral administration of HG (20 or 40 mg/kg) significantly restored the survival rate and population of macrophages, T helper cells (CD3+/CD4+), and Th17 cells (CD3+/CD4+/CCR6+) in the spleens of mice with LPS-induced endotoxemia. HG suppressed the expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and Interferon (IFN)-γ and the mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in the intestine and lung of LPS-treated mice. Molecular data showed that HG ameliorated the activation of nuclear factor kappa B (NF-κB) p65, signal transducers and activators of transcription 3 (STAT3), and c-Fos and c-Jun (AP-1 subunits) via the myeloid differentiation primary response 88 (MyD88) dependent toll-like receptor 4 (TLR4) signaling pathway in the LPS-treated mouse intestines. HG treatment caused the recovery of LPS-induced impaired tight junction (occludin and claudin-2) protein and mRNA expressions. Furthermore, HG improved LPS-induced gut dysbiosis in mice. Taken together, our results suggest that HG protects against LPS-induced endotoxemia by restoring immune cells and the capacity of the intestinal barrier, reducing intestinal inflammation, and improving the composition of the gut microbiota.
Collapse
Affiliation(s)
- Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Hyeon-A Song
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyeyun Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
48
|
Iacono D, Murphy EK, Stimpson CD, Perl DP, Day RM. Low-dose brain radiation: lowering hyperphosphorylated-tau without increasing DNA damage or oncogenic activation. Sci Rep 2023; 13:21142. [PMID: 38036591 PMCID: PMC10689500 DOI: 10.1038/s41598-023-48146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Brain radiation has been medically used to alter the metabolism of cancerous cells and induce their elimination. Rarely, though, brain radiation has been used to interfere with the pathomechanisms of non-cancerous brain disorders, especially neurodegenerative disorders. Data from low-dose radiation (LDR) on swine brains demonstrated reduced levels of phosphorylated-tau (CP13) and amyloid precursor protein (APP) in radiated (RAD) versus sham (SH) animals. Phosphorylated-tau and APP are involved in Alzheimer's disease (AD) pathogenesis. We determined if the expression levels of hyperphosphorylated-tau, 3R-tau, 4R-tau, synaptic, intraneuronal damage, and DNA damage/oncogenic activation markers were altered in RAD versus SH swine brains. Quantitative analyses demonstrated reduced levels of AT8 and 3R-tau in hippocampus (H) and striatum (Str), increased levels of synaptophysin and PSD-95 in frontal cortex (FCtx), and reduced levels of NF-L in cerebellum (CRB) of RAD versus SH swine. DNA damage and oncogene activation markers levels did not differ between RAD and SH animals, except for histone-H3 (increased in FCtx and CRB, decreased in Str), and p53 (reduced in FCtx, Str, H and CRB). These findings confirm the region-based effects of sLDR on proteins normally expressed in larger mammalian brains and support the potential applicability of LDR to beneficially interfere against neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA.
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- Neuroscience Program, Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA.
- Neurodegeneration Disorders Clinic, National Institute of Neurological Disorders and Stroke, NINDS, NIH, Bethesda, MD, USA.
| | - Erin K Murphy
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Cheryl D Stimpson
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Daniel P Perl
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| |
Collapse
|
49
|
Li J, Peng H, Zhang W, Li M, Wang N, Peng C, Zhang X, Li Y. Enhanced Nose-to-Brain Delivery of Combined Small Interfering RNAs Using Lesion-Recognizing Nanoparticles for the Synergistic Therapy of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53177-53188. [PMID: 37939350 DOI: 10.1021/acsami.3c08756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Gene therapy has great potential in treating neurodegenerative diseases with complex pathologies. The combination of small interfering RNAs (siRNAs) targeting β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and caspase-3 will provide an effective treatment option for Alzheimer's disease (AD). To overcome the multiple physiological barriers and improve the therapeutic efficacy of siRNAs, lesion-recognizing nanoparticles (NPs) are constructed in this study for the synergistic treatment of AD. The lesion-recognizing NPs contain rabies virus glycoprotein peptide-modified mesenchymal stem cell-derived exosomes as the shell and a reactive oxygen species (ROS)-responsive polymer loaded with siRNAs as the core. After intranasal administration, the lesion-recognizing NPs cross the nasal mucosa and migrate to the affected brain areas. Furthermore, the NPs recognize the target cells and fuse with the cell membranes of neurons. The cores of NPs directly enter into the cytoplasm and achieve the controlled release of siRNAs in a high-ROS environment to downregulate the level of BACE1 and caspase-3 to ameliorate neurologic injury. In addition, lesion-recognizing NPs can significantly reduce the number of reactive astrocytes. Lesion-recognizing NPs have a positive effect on regulating the phase of neurons and astrocytes, which results in better restoration of memory deficits in 3 × Tg-AD mice. Therefore, this work provides a promising platform for neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Jiaxin Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huan Peng
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Muzi Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nan Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chen Peng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinyue Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
50
|
Cai M, Park HR, Yang EJ. Electroacupuncture modulates glutamate neurotransmission to alleviate PTSD-like behaviors in a PTSD animal model. Transl Psychiatry 2023; 13:357. [PMID: 37993441 PMCID: PMC10665470 DOI: 10.1038/s41398-023-02663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental disorder that develops after exposure to a traumatic event. Owing to the relatively low rates of response and remission with selective serotonin reuptake inhibitors as the primary treatment for PTSD, there is a recognized need for alternative strategies to effectively address the symptoms of PTSD. Dysregulation of glutamatergic neurotransmission plays a critical role in various disorders, including anxiety, depression, PTSD, and Alzheimer's disease. Therefore, the regulation of glutamate levels holds great promise as a therapeutic target for the treatment of mental disorders. Electroacupuncture (EA) has become increasingly popular as a complementary and alternative medicine approach. It maintains the homeostasis of central nervous system (CNS) function and alleviates symptoms associated with anxiety, depression, and insomnia. This study investigated the effects of EA at the GV29 (Yintang) acupoint three times per week for 2 weeks in an animal model of PTSD. PTSD was induced using single prolonged stress/shock (SPSS) in mice, that is, SPS with additional foot shock stimulation. EA treatment significantly reduced PTSD-like behavior and effectively regulated serum corticosterone and serotonin levels in the PTSD model. Additionally, EA treatment decreased glutamate levels and glutamate neurotransmission-related proteins (pNR1 and NR2B) in the hippocampus of a PTSD model. In addition, neuronal activity and the number of Golgi-impregnated dendritic spines were significantly lower in the EA treatment group than in the SPSS group. Notably, EA treatment effectively reduced glutamate-induced excitotoxicity (caspase-3, Bax, and pJNK). These findings suggest that EA treatment at the GV29 acupoint holds promise as a potential therapeutic approach for PTSD, possibly through the regulation of NR2B receptor-mediated glutamate neurotransmission to reduce PTSD-like behaviors.
Collapse
Affiliation(s)
- Mudan Cai
- KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea
| | - Hee Ra Park
- KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea
| | - Eun Jin Yang
- KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea.
| |
Collapse
|