1
|
Greber UF. Clicking viruses-with chemistry toward mechanisms in infection. J Virol 2025:e0047125. [PMID: 40366176 DOI: 10.1128/jvi.00471-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Viruses subvert cells and evade host defense. They emerge unpredictably and threaten humans and livestock through their genetic and phenotypic diversity. Despite more than 100 years since the discovery of viruses, the molecular underpinnings of virus infections are incompletely understood. The introduction of new methodologies into the field, such as that of click chemistry some 10 years ago, keeps uncovering new facets of viruses. Click chemistry uses bio-orthogonal reactions on chemical probes and couples nucleic acids, proteins, and lipids with tractable labels, such as fluorophores for single-cell and single-molecule imaging, or biotin for biochemical profiling of infections. Its applications in single cells often achieve single-molecule resolution and provide important insights into the widely known phenomenon of cell-to-cell infection variability. This review describes click chemistry advances to unravel infection mechanisms of a select set of enveloped and nonenveloped DNA and RNA viruses, including adenovirus, herpesvirus, and human immunodeficiency virus. It highlights recent click chemistry breakthroughs with viral DNA, viral RNA, protein, as well as host-derived lipid functions in both live and chemically fixed cells. It discusses new insights on specific processes including virus entry, uncoating, transcription, replication, packaging, and assembly and provides a perspective for click chemistry to explore viral cell biology, infection variability, and genome organization in the particle.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Guan Y, Duan C, Xie X, Luo Z, Zhou D, Zhang Y, Li G, Liao Y, Tian C. Heat Acclimation Enhances Brain Resilience to Acute Thermal Stress in Clarias fuscus by Modulating Cell Adhesion, Anti-Apoptotic Pathways, and Intracellular Degradation Mechanisms. Animals (Basel) 2025; 15:1220. [PMID: 40362035 PMCID: PMC12071039 DOI: 10.3390/ani15091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Global climate change presents a significant challenge to aquatic ecosystems, with ectothermic fish being particularly sensitive to temperature fluctuations. The brain plays a crucial role in perceiving, regulating, and adapting to thermal changes, and its response to heat stress is crucial for survival. However, the molecular mechanisms underlying heat stress and acclimation in fish brains remain poorly understood. This study aimed to investigate the adaptive mechanisms of Hong Kong catfish (Clarias fuscus) brains under heat acclimation and acute heat stress using transcriptome analysis. Fish were divided into two groups: a normal temperature group (NT, 26 °C for 90 days) and a heat-acclimated group (HT, 34 °C for 90 days), followed by acute heat stress (34 °C for 72 h) and recovery (26 °C for 72 h). Heat acclimation improved C. fuscus tolerance to acute heat stress, with faster gene responses and stronger neuroprotection. Key pathways enriched included cell adhesion and ECM-receptor interactions during recovery. Apoptosis regulation was balanced, with the HT group upregulating anti-apoptotic genes to mitigate neuronal cell death. Additionally, the lysosome-phagosome pathway was activated during recovery, facilitating the transport of lysosomal enzymes and the clearance of damaged cellular components, aiding neuronal repair. Ribosome biogenesis was suppressed under heat stress to conserve energy, but this suppression was less pronounced in the HT group. In summary, heat acclimation enhances neural protection in C. fuscus brains by promoting neuronal repair, suppressing apoptosis, and activating lysosomal pathways, thereby improving tolerance to acute heat stress. These findings offer a molecular basis for breeding heat-tolerant fish species in aquaculture, and deepen our understanding of thermal adaptation in aquatic animals amid global climate change.
Collapse
Affiliation(s)
- Yingyi Guan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Cunyu Duan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Xinyu Xie
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Zhuoying Luo
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China;
| | - Yulei Zhang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| | - Yu Liao
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China;
| | - Changxu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.G.); (C.D.); (X.X.); (Z.L.); (Y.Z.); (G.L.)
| |
Collapse
|
3
|
Choezom D, Plum JM, Karuna M. P, Danieli-Mackay A, Lenz C, Brockmeyer P, Gross JC. The Ceramide-Dependent EV Secretome Differentially Affects Prostate Cancer Cell Migration. Cells 2025; 14:547. [PMID: 40214501 PMCID: PMC11988362 DOI: 10.3390/cells14070547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Tumor-derived extracellular vesicles (EVs) play an important role in cancer progression. Neutral sphingomyelinases (nSMases) are lipid-modifying enzymes that modulate the secretion of EVs from cells. How nSMase activity and therefore ceramide generation affect the composition and functionality of secreted EVs is not fully understood. Here, we aimed to investigate the expression of nSMases 1 and 2 in prostate cancer (PCa) tissue and their role in EV composition and secretion for prostate cancer cell migration. Reduced nSMase 1 and 2 expression was found in prostate cancer and correlated with the age of the patient. When nSMase 2 was inhibited by GW4869 in PCa cells (PC3 and DU145), the EV secretome was significantly altered, while the number of EVs and the total protein content of released EVs were not significantly changed. Using proteomic analysis, we found that extracellular matrix proteins, such as SDC4 (Syndecan-4) and SRPX-2, were differentially secreted on EVs from GW4869-treated PC3 cells. In scratch wound migration assays, GW4869 significantly increased migration compared to control PC3 cells but not DU145 cells, while SDC4 knockdown significantly reduced the migration of PC3 cells. These and other nSMase-2-dependent secreted proteins are interesting candidates for understanding the role of stress-induced EVs in the progression of prostate cancer.
Collapse
Affiliation(s)
- Dolma Choezom
- Department of Hematology and Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.C.)
- Department of Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Jan-Moritz Plum
- Department of Hematology and Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.C.)
- Department of Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Pradhipa Karuna M.
- Department of Hematology and Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.C.)
- Department of Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Adi Danieli-Mackay
- Department of Hematology and Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.C.)
- Department of Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany;
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Julia Christina Gross
- Institute of Molecular Medicine, Department Medicine, HMU Health and Medical University Potsdam, 14471 Potsdam, Germany
| |
Collapse
|
4
|
Zhang X, Wu W, Li Y, Peng Z. Exploring the role and therapeutic potential of lipid metabolism in acute kidney injury. Ren Fail 2024; 46:2403652. [PMID: 39319697 PMCID: PMC11425701 DOI: 10.1080/0886022x.2024.2403652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Acute kidney injury (AKI) is a prevalent condition, yet no specific treatment is available. Extensive research has revealed the pivotal role of lipid-related alterations in AKI. Lipid metabolism plays an essential role in the sustenance of the kidneys. In addition to their energy-supplying function, lipids contribute to the formation of renal biomembranes and the establishment of the renal microenvironment. Moreover, lipids or their metabolites actively participate in signal transduction, which governs various vital biological processes, such as proliferation, differentiation, apoptosis, autophagy, and epithelial-mesenchymal transition. While previous studies have focused predominantly on abnormalities in lipid metabolism in chronic kidney disease, this review focuses on lipid metabolism anomalies in AKI. We explore the significance of lipid metabolism products as potential biomarkers for the early diagnosis and classification of AKI. Additionally, this review assesses current preclinical investigations on the modulation of lipid metabolism in the progression of AKI. Finally, on the basis of existing research, this review proposes future directions, highlights challenges, and presents novel targets and innovative ideas for the treatment of and intervention in AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Wen Wu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Wang D, Zheng Y, Zhang J, Cao Y, Cheng J, Geng M, Li K, Yang J, Wei X. The TAK1/JNK axis participates in adaptive immunity by promoting lymphocyte activation in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109747. [PMID: 38969154 DOI: 10.1016/j.fsi.2024.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) axis is an essential MAPK upstream mediator and regulates immune signaling pathways. However, whether the TAK1/JNK axis harnesses the strength in regulation of signal transduction in early vertebrate adaptive immunity is unclear. In this study, by modeling on Nile tilapia (Oreochromis niloticus), we investigated the potential regulatory function of TAK1/JNK axis on lymphocyte-mediated adaptive immune response. Both OnTAK1 and OnJNK exhibited highly conserved sequences and structures relative to their counterparts in other vertebrates. Their mRNA was widely expressed in the immune-associated tissues, while phosphorylation levels in splenic lymphocytes were significantly enhanced on the 4th day post-infection by Edwardsiella piscicida. In addition, OnTAK1 and OnJNK were significantly up-regulated in transcriptional level after activation of lymphocytes in vitro by phorbol 12-myristate 13-acetate plus ionomycin (P + I) or PHA, accompanied by a predominant increase in phosphorylation level. More importantly, inhibition of OnTAK1 activity by specific inhibitor NG25 led to a significant decrease in the phosphorylation level of OnJNK. Furthermore, blocking the activity of OnJNK with specific inhibitor SP600125 resulted in a marked reduction in the expression of T-cell activation markers including IFN-γ, CD122, IL-2, and CD44 during PHA-induced T-cell activation. In summary, these findings indicated that the conserved TAK1/JNK axis in Nile tilapia was involved in adaptive immune responses by regulating the activation of lymphocytes. This study enriched the current knowledge of adaptive immunity in teleost and provided a new perspective for understanding the regulatory mechanism of fish immunity.
Collapse
Affiliation(s)
- Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Šimečková P, Slavík J, Fořtová A, Huvarová I, Králiková L, Stefanik M, Svoboda P, Ruzek D, Machala M. Tick-borne encephalitis virus modulates sphingolipid and phospholipid metabolism in infected human neuronal cells. Microbes Infect 2024; 26:105303. [PMID: 38272253 DOI: 10.1016/j.micinf.2024.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
The life cycle of enveloped viruses is closely linked to host-cell lipids. However, changes in lipid metabolism during infections with the tick-borne encephalitis virus (TBEV) have not been described. TBEV is a medically important orthoflavivirus, which is endemic to many parts of Europe and Asia. In the present study, we performed targeted lipidomics with HPLC-MS/MS to evaluate changes in phospholipid and sphingolipid concentrations in TBEV-infected human neuronal SK-N-SH cells. TBEV infections significantly increased phosphatidylcholine, phosphatidylinositol, and phosphatidylserine levels within 48 h post-infection (hpi). Sphingolipids were slightly increased in dihydroceramides within 24 hpi. Later, at 48 hpi, the contents of sphinganine, dihydroceramides, ceramides, glucosylceramides, and ganglioside GD3 were elevated. On the other hand, sphingosine-1-phosphate content was slightly reduced in TBEV-infected cells. Changes in sphingolipid concentrations were accompanied by suppressed expression of a majority of the genes linked to sphingolipid and glycosphingolipid metabolism. Furthermore, we found that a pharmacological inhibitor of sphingolipid synthesis, fenretinide (4-HPR), inhibited TBEV infections in SK-N-SH cells. Taken together, our results suggested that both structural and signaling functions of lipids could be affected during TBEV infections. These changes might be connected to virus propagation and/or host-cell defense.
Collapse
Affiliation(s)
- Pavlína Šimečková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Josef Slavík
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Andrea Fořtová
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
| | - Ivana Huvarová
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
| | - Lucie Králiková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Michal Stefanik
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Pavel Svoboda
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Daniel Ruzek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
7
|
Aslam MA, Ahmad H, Malik HS, Uinarni H, Karim YS, Akhmedov YM, Abdelbasset WK, Awadh SA, Abid MK, Mustafa YF, Farhood B, Sahebkar A. Radiotherapy-associated Sensorineural Hearing Loss in Pediatric Oncology Patients. Curr Med Chem 2024; 31:5351-5369. [PMID: 37190814 DOI: 10.2174/0929867330666230515112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
During the radiotherapeutic treatment of pediatric oncology patients, they would be at a latent risk of developing ionizing radiation-induced ototoxicity when the cochlea or auditory nerve is located within the radiation field. Sensorineural hearing loss (SNHL) is an irreversible late complication of radiotherapy, and its incidence depends on various factors such as the patient's hearing sensitivity, total radiation dose to the cochlea, radiotherapy fractionation regimen, age and chemoradiation. Importantly, this complication exhibits serious challenges to adult survivors of childhood cancer, as it has been linked to impairments in academic achievement, psychosocial development, independent living skills, and employment in the survivor population. Therefore, early detection and proper management can alleviate academic, speech, language, social, and psychological morbidity arising from hearing deficits. In the present review, we have addressed issues such as underlying mechanisms of radiation-induced SNHL, audiometric findings of pediatric cancer patients treated with radiotherapy, and management and protection measures against radiation-induced ototoxicity.
Collapse
Affiliation(s)
- Muhammad Ammar Aslam
- Department of Emergency Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hassaan Ahmad
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hamza Sultan Malik
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Radiologist at Pantai Indah Kapuk Hospital, Jakarta, Indonesia
| | | | - Yusuf Makhmudovich Akhmedov
- Department of Pediatric Surgery, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Sura A Awadh
- Department of Anesthesia, Al-Mustaqbal University, Babylon, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Yi J, Qi B, Yin J, Li R, Chen X, Hu J, Li G, Zhang S, Zhang Y, Yang M. Molecular basis for the catalytic mechanism of human neutral sphingomyelinases 1 (hSMPD2). Nat Commun 2023; 14:7755. [PMID: 38012235 PMCID: PMC10682184 DOI: 10.1038/s41467-023-43580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Enzymatic breakdown of sphingomyelin by sphingomyelinase (SMase) is the main source of the membrane lipids, ceramides, which are involved in many cellular physiological processes. However, the full-length structure of human neutral SMase has not been resolved; therefore, its catalytic mechanism remains unknown. Here, we resolve the structure of human full-length neutral SMase, sphingomyelinase 1 (SMPD2), which reveals that C-terminal transmembrane helices contribute to dimeric architecture of hSMPD2 and that D111 - K116 loop domain is essential for substrate hydrolysis. Coupled with molecular docking, we clarify the binding pose of sphingomyelin, and site-directed mutagenesis further confirms key residues responsible for sphingomyelin binding. Hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamic (MD) simulations are utilized to elaborate the catalysis of hSMPD2 with the reported in vitro substrates, sphingomyelin and lyso-platelet activating fator (lyso-PAF). Our study provides mechanistic details that enhance our knowledge of lipid metabolism and may lead to an improved understanding of ceramide in disease and in cancer treatment.
Collapse
Affiliation(s)
- Jingbo Yi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Boya Qi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruochong Li
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junhan Hu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, China.
| |
Collapse
|
9
|
Masuda-Kuroki K, Alimohammadi S, Di Nardo A. The Role of Sphingolipids and Sphingosine-1-phosphate-Sphingosine-1-phosphate-receptor Signaling in Psoriasis. Cells 2023; 12:2352. [PMID: 37830566 PMCID: PMC10571972 DOI: 10.3390/cells12192352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Psoriasis is a long-lasting skin condition characterized by redness and thick silver scales on the skin's surface. It involves various skin cells, including keratinocytes, dendritic cells, T lymphocytes, and neutrophils. The treatments for psoriasis range from topical to systemic therapies, but they only alleviate the symptoms and do not provide a fundamental cure. Moreover, systemic treatments have the disadvantage of suppressing the entire body's immune system. Therefore, a new treatment strategy with minimal impact on the immune system is required. Recent studies have shown that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate (S1P), play a significant role in psoriasis. Specific S1P-S1P-receptor (S1PR) signaling pathways have been identified as crucial to psoriasis inflammation. Based on these findings, S1PR modulators have been investigated and have been found to improve psoriasis inflammation. This review will discuss the metabolic pathways of sphingolipids, the individual functions of these metabolites, and their potential as a new therapeutic approach to psoriasis.
Collapse
Affiliation(s)
| | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (K.M.-K.); (S.A.)
| |
Collapse
|
10
|
Alizadeh J, da Silva Rosa SC, Weng X, Jacobs J, Lorzadeh S, Ravandi A, Vitorino R, Pecic S, Zivkovic A, Stark H, Shojaei S, Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol 2023; 102:151337. [PMID: 37392580 DOI: 10.1016/j.ejcb.2023.151337] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiaohui Weng
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Joadi Jacobs
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Rui Vitorino
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
11
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
12
|
Masuda-Kuroki K, Alimohammadi S, Di Nardo A. S. epidermidis Rescues Allergic Contact Dermatitis in Sphingosine 1-Phosphate Receptor 2-Deficient Skin. Int J Mol Sci 2023; 24:13190. [PMID: 37685997 PMCID: PMC10487941 DOI: 10.3390/ijms241713190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Recent studies have identified a subtype of the S1P-receptor family called sphingosine-1-phosphate receptor 2 (S1PR2), which plays a crucial role in maintaining the skin barrier. It has been observed that S1PR2 and Staphylococcus epidermidis (S. epidermidis) work together to regulate the skin barrier. However, the interaction between these two factors is still unclear. To investigate this, a study was conducted on healthy skin and allergic contact dermatitis (ACD) using 3,4-Dibutoxy-3-cyclobutene-1,2-dione (SADBE) on the ears of S1pr2fl/fl and S1pr2fl/flK14-Cre mice and using 1 × 106 CFU of S. epidermidis to examine its effects on the skin. The results showed that in S. epidermidis-conditioned ACD, the ear thickness of S1pr2fl/flK14-Cre mice was lower than that of S1pr2fl/fl mice, and mRNA expressions of Il-1β and Cxcl2 of S1pr2fl/flK14-Cre mice were lower than that of S1pr2fl/fl mice in ACD with S. epidermidis. Furthermore, the gene expression of Claudin-1 and Occludin in S1pr2fl/flK14-Cre mice was higher than that of S1pr2fl/fl mice in ACD with S. epidermidis. The study concludes that S. epidermidis colonization improves the skin barrier and prevents ACD even when S1P signaling malfunctions.
Collapse
Affiliation(s)
| | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; (K.M.-K.); (S.A.)
| |
Collapse
|
13
|
Povero D, Chen Y, Johnson SM, McMahon CE, Pan M, Bao H, Petterson XMT, Blake E, Lauer KP, O'Brien DR, Yu Y, Graham RP, Taner T, Han X, Razidlo GL, Liu J. HILPDA promotes NASH-driven HCC development by restraining intracellular fatty acid flux in hypoxia. J Hepatol 2023; 79:378-393. [PMID: 37061197 PMCID: PMC11238876 DOI: 10.1016/j.jhep.2023.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND & AIMS The prevalence of non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) is rising rapidly, yet its underlying mechanisms remain unclear. Herein, we aim to determine the role of hypoxia-inducible lipid droplet associated protein (HILPDA)/hypoxia-inducible gene 2 (HIG2), a selective inhibitor of intracellular lipolysis, in NASH-driven HCC. METHODS The clinical significance of HILPDA was assessed in human NASH-driven HCC specimens by immunohistochemistry and transcriptomics analyses. The oncogenic effect of HILPDA was assessed in human HCC cells and in 3D epithelial spheroids upon exposure to free fatty acids and either normoxia or hypoxia. Lipidomics profiling of wild-type and HILPDA knockout HCC cells was assessed via shotgun and targeted approaches. Wild-type (Hilpdafl/fl) and hepatocyte-specific Hilpda knockout (HilpdaΔHep) mice were fed a Western diet and high sugar in drinking water while receiving carbon tetrachloride to induce NASH-driven HCC. RESULTS In patients with NASH-driven HCC, upregulated HILPDA expression is strongly associated with poor survival. In oxygen-deprived and lipid-loaded culture conditions, HILPDA promotes viability of human hepatoma cells and growth of 3D epithelial spheroids. Lack of HILPDA triggered flux of polyunsaturated fatty acids to membrane phospholipids and of saturated fatty acids to ceramide synthesis, exacerbating lipid peroxidation and apoptosis in hypoxia. The apoptosis induced by HILPDA deficiency was reversed by pharmacological inhibition of ceramide synthesis. In our experimental mouse model of NASH-driven HCC, HilpdaΔHep exhibited reduced hepatic steatosis and tumorigenesis but increased oxidative stress in the liver. Single-cell analysis supports a dual role of hepatic HILPDA in protecting HCC cells and facilitating the establishment of a pro-tumorigenic immune microenvironment in NASH. CONCLUSIONS Hepatic HILPDA is a pivotal oncometabolic factor in the NASH liver microenvironment and represents a potential novel therapeutic target. IMPACT AND IMPLICATIONS Non-alcoholic steatohepatitis (NASH, chronic metabolic liver disease caused by buildup of fat, inflammation and damage in the liver) is emerging as the leading risk factor and the fastest growing cause of hepatocellular carcinoma (HCC), the most common form of liver cancer. While curative therapeutic options exist for HCC, it frequently presents at a late stage when such options are no longer effective and only systemic therapies are available. However, systemic therapies are still associated with poor efficacy and some side effects. In addition, no approved drugs are available for NASH. Therefore, understanding the underlying metabolic alterations occurring during NASH-driven HCC is key to identifying new cancer treatments that target the unique metabolic needs of cancer cells.
Collapse
Affiliation(s)
- Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Meixia Pan
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanmei Bao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuan-Mai T Petterson
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Emily Blake
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Kimberly P Lauer
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Daniel R O'Brien
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Yue Yu
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Rondell P Graham
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Timucin Taner
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Xianlin Han
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|
14
|
Huang Q, Liu F. Ceramide Analog 5cc Overcomes TRAIL Resistance by Enhancing JNK Activation and Repressing XIAP Expression in Metastatic Colon Cancer Cells. Chemotherapy 2023; 68:210-218. [PMID: 37429260 DOI: 10.1159/000531757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered to be an effective apoptosis inducer due to its selectivity for tumor cells. However, many cancer cells, especially metastatic cancer cells, often exhibit resistance to TRAIL because their apoptotic pathway is impaired or their pro-survival pathway is overactivated. TRAIL resistance is the main obstacle to current TRAIL therapy. Nowadays, ceramide analogs represent a new class of potential anticancer agents. Therefore, we hypothesized that disrupting pro-survival signaling with ceramide analogs would increase TRAIL-mediated apoptosis. METHODS MTT assay and flow cytometry were conducted to evaluate the synergistic effect of ceramide analog 5cc on TRAIL in metastatic colon cancer cells. Western blot was used to detect signaling proteins affected by 5cc. RNA interference was performed to analyze the effects of specific gene on 5cc-enhanced apoptosis. RESULTS Ceramide analog 5cc markedly enhanced TRAIL-induced apoptosis evidenced by increased propidium iodide/annexin V double-positive cells and PARP cleavage in SW620 and LS411N cells. At the molecular level, 5cc significantly reduced the expression of anti-apoptotic protein X-linked inhibitor of apoptosis protein (XIAP) through the activation of the c-Jun n-terminal kinase (JNK) pathway which is critically involved in sensitizing tumor cells to TRAIL/5cc combination. JNK-silenced cells exhibited a significant reversal of TRAIL/5cc-mediated apoptosis. CONCLUSION Our data demonstrated that ceramide analog 5cc overcomes TRAIL resistance by enhancing JNK activation and repressing XIAP expression in metastatic colon cancer cells.
Collapse
Affiliation(s)
- Qiqian Huang
- Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, China
| | - Feiyan Liu
- Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
16
|
Mignani L, Guerra J, Corli M, Capoferri D, Presta M. Zebra-Sphinx: Modeling Sphingolipidoses in Zebrafish. Int J Mol Sci 2023; 24:ijms24054747. [PMID: 36902174 PMCID: PMC10002607 DOI: 10.3390/ijms24054747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sphingolipidoses are inborn errors of metabolism due to the pathogenic mutation of genes that encode for lysosomal enzymes, transporters, or enzyme cofactors that participate in the sphingolipid catabolism. They represent a subgroup of lysosomal storage diseases characterized by the gradual lysosomal accumulation of the substrate(s) of the defective proteins. The clinical presentation of patients affected by sphingolipid storage disorders ranges from a mild progression for some juvenile- or adult-onset forms to severe/fatal infantile forms. Despite significant therapeutic achievements, novel strategies are required at basic, clinical, and translational levels to improve patient outcomes. On these bases, the development of in vivo models is crucial for a better understanding of the pathogenesis of sphingolipidoses and for the development of efficacious therapeutic strategies. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model several human genetic diseases owing to the high grade of genome conservation between human and zebrafish, combined with precise genome editing and the ease of manipulation. In addition, lipidomic studies have allowed the identification in zebrafish of all of the main classes of lipids present in mammals, supporting the possibility to model diseases of the lipidic metabolism in this animal species with the advantage of using mammalian lipid databases for data processing. This review highlights the use of zebrafish as an innovative model system to gain novel insights into the pathogenesis of sphingolipidoses, with possible implications for the identification of more efficacious therapeutic approaches.
Collapse
|
17
|
Huang C, Su L, Chen Y, Wu S, Sun R, Xu Q, Qiu X, Yang C, Kong X, Qin H, Zhao X, Jiang X, Wang K, Zhu Y, Wong PP. Ceramide kinase confers tamoxifen resistance in estrogen receptor-positive breast cancer by altering sphingolipid metabolism. Pharmacol Res 2023; 187:106558. [PMID: 36410675 DOI: 10.1016/j.phrs.2022.106558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Dysregulated sphingolipid metabolism contributes to ER+ breast cancer progression and therapeutic response, whereas its underlying mechanism and contribution to tamoxifen resistance (TAMR) is unknown. Here, we establish sphingolipid metabolic enzyme CERK as a regulator of TAMR in breast cancer. Multi-omics analysis reveals an elevated CERK driven sphingolipid metabolic reprogramming in TAMR cells, while high CERK expression associates with worse patient prognosis in ER+ breast cancer. CERK overexpression confers tamoxifen resistance and promotes tumorigenicity in ER+ breast cancer cells. Knocking out CERK inhibits the orthotopic breast tumor growth of TAMR cells while rescuing their tamoxifen sensitivity. Mechanistically, the elevated EHF expression transcriptionally up-regulates CERK expression to prohibit tamoxifen-induced sphingolipid ceramide accumulation, which then inhibits tamoxifen-mediated repression on PI3K/AKT dependent cell proliferation and its driven p53/caspase-3 mediated apoptosis in TAMR cells. This work provides insight into the regulation of sphingolipid metabolism in tamoxifen resistance and identifies a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yitian Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Sangqing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ruipu Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ciqiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hongquan Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Yinghua Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Laboratory Department, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
18
|
Abdel-Tawab MS, Fouad H, Yahiya A, Tammam AAE, Fahmy AM, Shaaban S, Abdel-Salam SM, Elazeem NAA. Evaluation of CEP55, SERPINE1 and SMPD3 genes and proteins as diagnostic and prognostic biomarkers in gastric carcinoma in Egyptian patients. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Gastric carcinoma (GC) is a fatal disease. Detection of new biomarkers that can be utilized in the early diagnosis of GC is a pressing need. This present study assessed centrosomal protein-55 (CEP55)’ serpin family E member 1 (SERPINE1) and sphingomyelin phosphodiesterase 3 (SMPD3) genes and proteins in gastric adenocarcinoma with different tumor progression features. Thirty surgically resected gastric tissue samples from thirty patients suffered from gastric cancers were obtained. The gastric tissue samples were divided into tumorous (with different stages and grades) and adjacent non-tumorous samples. CEP55, SERPINE1 and SMPD3 genes were assessed by quantitative qRT-PCR, and their proteins were assessed by ELISA in the gastric tissue samples.
Results
As regards SERPINE1, CEP55 genes and proteins, results revealed significant elevations in the GC samples (p < 0.0001). On the contrary, SMPD3 gene and protein revealed significant decreases as compared to non-tumorous samples. The studied genes and proteins showed highly significant specificity and sensitivity in the early detection of GC. SERPINE1 gene and protein revealed highly significant increases and positive correlations, while SMPD3 gene and protein revealed highly significant decreases and negative correlations as the tumor progresses.
Conclusion
CEP55, SERPINE1 and SMPD3 genes and proteins could be used as useful biomarkers for the early detection of GC. SERPINE1 and SMPD3 genes and proteins might be used as risk and protective prognostic factors in GC, respectively.
Collapse
|
19
|
Xing ZK, Du LS, Fang X, Liang H, Zhang SN, Shi L, Kuang CX, Han TX, Yang Q. The relationship among amyloid-β deposition, sphingomyelin level, and the expression and function of P-glycoprotein in Alzheimer's disease pathological process. Neural Regen Res 2022; 18:1300-1307. [PMID: 36453415 PMCID: PMC9838140 DOI: 10.4103/1673-5374.358607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In Alzheimer's disease, the transporter P-glycoprotein is responsible for the clearance of amyloid-β in the brain. Amyloid-β correlates with the sphingomyelin metabolism, and sphingomyelin participates in the regulation of P-glycoprotein. The amyloid cascade hypothesis describes amyloid-β as the central cause of Alzheimer's disease neuropathology. Better understanding of the change of P-glycoprotein and sphingomyelin along with amyloid-β and their potential association in the pathological process of Alzheimer's disease is critical. Herein, we found that the expression of P-glycoprotein in APP/PS1 mice tended to increase with age and was significantly higher at 9 and 12 months of age than that in wild-type mice at comparable age. The functionality of P-glycoprotein of APP/PS1 mice did not change with age but was significantly lower than that of wild-type mice at 12 months of age. Decreased sphingomyelin levels, increased ceramide levels, and the increased expression and activity of neutral sphingomyelinase 1 were observed in APP/PS1 mice at 9 and 12 months of age compared with the levels in wild-type mice. Similar results were observed in the Alzheimer's disease mouse model induced by intracerebroventricular injection of amyloid-β1-42 and human cerebral microvascular endothelial cells treated with amyloid-β1-42. In human cerebral microvascular endothelial cells, neutral sphingomyelinase 1 inhibitor interfered with the changes of sphingomyelin metabolism and P-glycoprotein expression and functionality caused by amyloid-β1-42 treatment. Neutral sphingomyelinase 1 regulated the expression and functionality of P-glycoprotein and the levels of sphingomyelin and ceramide. Together, these findings indicate that neutral sphingomyelinase 1 regulates the expression and function of P-glycoprotein via the sphingomyelin/ceramide pathway. These studies may serve as new pursuits for the development of anti-Alzheimer's disease drugs.
Collapse
Affiliation(s)
- Zi-Kang Xing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Li-Sha Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Sheng-Nan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Lei Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Chun-Xiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Tian-Xiong Han
- Department of Traditional Chinese Medicine, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China,Correspondence to: Qing Yang, .
| |
Collapse
|
20
|
Sphingosine-1-Phosphate Alleviates Irradiation Induced Salivary Gland Hypofunction through Preserving Endothelial Cells and Resident Macrophages. Antioxidants (Basel) 2022; 11:antiox11102050. [PMID: 36290773 PMCID: PMC9598384 DOI: 10.3390/antiox11102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy for head-and-neck cancers frequently causes long-term hypofunction of salivary glands that severely compromises quality of life and is difficult to treat. Here, we studied effects and mechanisms of Sphingosine-1-phosphate (S1P), a versatile signaling sphingolipid, in preventing irreversible dry mouth caused by radiotherapy. Mouse submandibular glands (SMGs) were irradiated with or without intra-SMG S1P pretreatment. The saliva flow rate was measured following pilocarpine stimulation. The expression of genes related to S1P signaling and radiation damage was examined by flow cytometry, immunohistochemistry, quantitative RT-PCR, Western blotting, and/or single-cell RNA-sequencing. S1P pretreatment ameliorated irradiation-induced salivary dysfunction in mice through a decrease in irradiation-induced oxidative stress and consequent apoptosis and cellular senescence, which is related to the enhancement of Nrf2-regulated anti-oxidative response. In mouse SMGs, endothelial cells and resident macrophages are the major cells capable of producing S1P and expressing the pro-regenerative S1P receptor S1pr1. Both mouse SMGs and human endothelial cells are protected from irradiation damage by S1P pretreatment, likely through the S1pr1/Akt/eNOS axis. Moreover, intra-SMG-injected S1P did not affect the growth and radiosensitivity of head-and-neck cancer in a mouse model. These data indicate that S1P signaling pathway is a promising target for alleviating irradiation-induced salivary gland hypofunction.
Collapse
|
21
|
Salita T, Rustam YH, Mouradov D, Sieber OM, Reid GE. Reprogrammed Lipid Metabolism and the Lipid-Associated Hallmarks of Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14153714. [PMID: 35954376 PMCID: PMC9367418 DOI: 10.3390/cancers14153714] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third-most diagnosed cancer and the second-leading cause of cancer-related deaths worldwide. Limitations in early and accurate diagnosis of CRC gives rise to poor patient survival. Advancements in analytical techniques have improved our understanding of the cellular and metabolic changes occurring in CRC and potentiate avenues for improved diagnostic and therapeutic strategies. Lipids are metabolites with important biological functions; however, their role in CRC is poorly understood. Here, we provide an in-depth review of the recent literature concerning lipid alterations in CRC and propose eight lipid metabolism-associated hallmarks of CRC. Abstract Lipids have diverse structures, with multifarious regulatory functions in membrane homeostasis and bioenergetic metabolism, in mediating functional protein–lipid and protein–protein interactions, as in cell signalling and proliferation. An increasing body of evidence supports the notion that aberrant lipid metabolism involving remodelling of cellular membrane structure and changes in energy homeostasis and signalling within cancer-associated pathways play a pivotal role in the onset, progression, and maintenance of colorectal cancer (CRC) and their tumorigenic properties. Recent advances in analytical lipidome analysis technologies have enabled the comprehensive identification and structural characterization of lipids and, consequently, our understanding of the role they play in tumour progression. However, despite progress in our understanding of cancer cell metabolism and lipidomics, the key lipid-associated changes in CRC have yet not been explicitly associated with the well-established ‘hallmarks of cancer’ defined by Hanahan and Weinberg. In this review, we summarize recent findings that highlight the role of reprogrammed lipid metabolism in CRC and use this growing body of evidence to propose eight lipid metabolism-associated hallmarks of colorectal cancer, and to emphasize their importance and linkages to the established cancer hallmarks.
Collapse
Affiliation(s)
- Timothy Salita
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Yepy H. Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Oliver M. Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Correspondence: (O.M.S.); (G.E.R.)
| | - Gavin E. Reid
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (O.M.S.); (G.E.R.)
| |
Collapse
|
22
|
Wang Q, Wang Y, Liu Q, Chu Y, Mi R, Jiang F, Zhao J, Hu K, Luo R, Feng Y, Lee H, Zhou D, Mi J, Deng R. MALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in rheumatoid arthritis. Front Immunol 2022; 13:913830. [PMID: 35967391 PMCID: PMC9367691 DOI: 10.3389/fimmu.2022.913830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Objective MALT1 regulates immunity and inflammation in multiple ways, while its role in rheumatoid arthritis (RA) is obscure. This study aimed to investigate the relationship of MALT1 with disease features, treatment outcome, as well as its effect on Th1/2/17 cell differentiation and underlying molecule mechanism in RA. Methods Totally 147 RA patients were enrolled. Then their blood Th1, Th2, and Th17 cells were detected by flow cytometry. Besides, PBMC MALT1 expression was detected before treatment (baseline), at week (W) 6, W12, and W24. PBMC MALT1 in 30 osteoarthritis patients and 30 health controls were also detected. Then, blood CD4+ T cells were isolated from RA patients, followed by MALT1 overexpression or knockdown lentivirus transfection and Th1/2/17 polarization assay. In addition, IMD 0354 (NF-κB antagonist) and SP600125 (JNK antagonist) were also added to treat CD4+ T cells. Results MALT1 was increased in RA patients compared to osteoarthritis patients and healthy controls. Meanwhile, MALT1 positively related to CRP, ESR, DAS28 score, Th17 cells, negatively linked with Th2 cells, but did not link with other features or Th1 cells in RA patients. Notably, MALT1 decreased longitudinally during treatment, whose decrement correlated with RA treatment outcome (treatment response, low disease activity, or disease remission). In addition, MALT1 overexpression promoted Th17 differentiation, inhibited Th2 differentiation, less affected Th1 differentiation, activated NF-κB and JNK pathways in RA CD4+ T cells; while MALT1 knockdown exhibited the opposite effect. Besides, IMD 0354 and SP600125 addition attenuated MALT1’s effect on Th2 and Th17 differentiation. Conclusion MALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in RA.
Collapse
Affiliation(s)
- Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Yapeng Wang
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Qingyang Liu
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Ying Chu
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Rui Mi
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Fengying Jiang
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Jingjing Zhao
- Department of Laboratory and Statistics, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Kelong Hu
- Department of Laboratory and Statistics, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Ran Luo
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Yufeng Feng
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
- Department of Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Harrison Lee
- Department of Rheumatology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Dong Zhou
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Jingyi Mi
- Department of Sport Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
- *Correspondence: Ruoyu Deng, ; Jingyi Mi,
| | - Ruoyu Deng
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
- Department of Life Science, The Fudan University, Shanghai, China
- *Correspondence: Ruoyu Deng, ; Jingyi Mi,
| |
Collapse
|
23
|
Schultz C, Farley SE, Tafesse FG. "Flash & Click": Multifunctionalized Lipid Derivatives as Tools To Study Viral Infections. J Am Chem Soc 2022; 144:13987-13995. [PMID: 35900117 PMCID: PMC9377334 DOI: 10.1021/jacs.2c02705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this perspective article, we describe the current status of lipid tools for studying host lipid-virus interactions at the cellular level. We discuss the potential lipidomic changes that viral infections impose on host cells and then outline the tools available and the resulting options to investigate the host cell lipid interactome. The future outcome will reveal new targets for treating virus infections.
Collapse
Affiliation(s)
- Carsten Schultz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Scotland E Farley
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| |
Collapse
|
24
|
Custodia A, Romaus-Sanjurjo D, Aramburu-Núñez M, Álvarez-Rafael D, Vázquez-Vázquez L, Camino-Castiñeiras J, Leira Y, Pías-Peleteiro JM, Aldrey JM, Sobrino T, Ouro A. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2022; 23:8082. [PMID: 35897658 PMCID: PMC9331765 DOI: 10.3390/ijms23158082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer's disease (AD) is considered the most prevalent neurodegenerative disease and the leading cause of dementia worldwide. Sphingolipids, such as ceramide or sphingosine 1-phosphate, are bioactive molecules implicated in structural and signaling functions. Metabolic dysfunction in the highly conserved pathways to produce sphingolipids may lead to or be a consequence of an underlying disease. Recent studies on transcriptomics and sphingolipidomics have observed alterations in sphingolipid metabolism of both enzymes and metabolites involved in their synthesis in several neurodegenerative diseases, including AD. In this review, we highlight the most relevant findings related to ceramide and neurodegeneration, with a special focus on AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tomás Sobrino
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| | - Alberto Ouro
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| |
Collapse
|
25
|
Lozano-Castellón J, Rocchetti G, Vallverdú-Queralt A, Lucchini F, Giuberti G, Torrado-Prat X, Illán M, Mª Lamuela-Raventós R, Lucini L. New insights into the lipidomic response of CaCo-2 cells to differently cooked and in vitro digested extra-virgin olive oils. Food Res Int 2022; 155:111030. [DOI: 10.1016/j.foodres.2022.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 01/18/2023]
|
26
|
Sears SM, Dupre TV, Shah PP, Davis DL, Doll MA, Sharp CN, Vega AA, Megyesi J, Beverly LJ, Snider AJ, Obeid LM, Hannun YA, Siskind LJ. Neutral ceramidase deficiency protects against cisplatin-induced acute kidney injury. J Lipid Res 2022; 63:100179. [PMID: 35151662 PMCID: PMC8953688 DOI: 10.1016/j.jlr.2022.100179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic for the treatment of many solid organ cancers; however, its effectiveness is limited by the development of acute kidney injury (AKI) in 30% of patients. AKI is driven by proximal tubule cell death, leading to rapid decline in renal function. It has previously been shown that sphingolipid metabolism plays a role in regulating many of the biological processes involved in cisplatin-induced AKI. For example, neutral ceramidase (nCDase) is an enzyme responsible for converting ceramide into sphingosine, which is then phosphorylated to become sphingosine-1-phosphate, and our lab previously demonstrated that nCDase knockout (nCDase-/-) in mouse embryonic fibroblasts led to resistance to nutrient and energy deprivation-induced cell death via upregulation of autophagic flux. In this study, we further characterized the role of nCDase in AKI by demonstrating that nCDase-/- mice are resistant to cisplatin-induced AKI. nCDase-/- mice display improved kidney function, reduced injury and structural damage, lower rates of apoptosis, and less ER stress compared to wild-type mice following cisplatin treatment. Although the mechanism of protection is still unknown, we propose that it could be mediated by increased autophagy, as chloroquine treatment resensitized nCDase-/- mice to AKI development. Taken together, we conclude that nCDase may represent a novel target to prevent cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sophia M Sears
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Tess V Dupre
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Parag P Shah
- Department of Medicine, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Deanna L Davis
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Mark A Doll
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Cierra N Sharp
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Alexis A Vega
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Judit Megyesi
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas, Veterans Healthcare System, Little Rock, AR, USA
| | - Levi J Beverly
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Northport Veteran Affairs Medical Center, Northport, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Northport Veteran Affairs Medical Center, Northport, NY, USA
| | - Leah J Siskind
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
27
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
28
|
Kagan T, Stoyanova G, Lockshin RA, Zakeri Z. Ceramide from sphingomyelin hydrolysis induces neuronal differentiation, whereas de novo ceramide synthesis and sphingomyelin hydrolysis initiate apoptosis after NGF withdrawal in PC12 Cells. Cell Commun Signal 2022; 20:15. [PMID: 35101031 PMCID: PMC8802477 DOI: 10.1186/s12964-021-00767-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023] Open
Abstract
Background Ceramide, important for both neuronal differentiation and dedifferentiation, resides in several membranes, is synthesized in the endoplasmic reticulum, mitochondrial, and nuclear membranes, and can be further processed into glycosphingolipids or sphingomyelin. Ceramide may also be generated by hydrolysis of sphingomyelin by neutral or acidic sphingomyelinases in lysosomes and other membranes. Here we asked whether the differing functions of ceramide derived from different origins. Methods We added NGF to PC12 cells and to TrkA cells. These latter overexpress NGF receptors and are partially activated to differentiate, whereas NGF is required for PC12 cells to differentiate. We differentiated synthesis from hydrolysis by the use of appropriate inhibitors. Ceramide and sphingomyelin were measured by radiolabeling. Results When NGF is added, the kinetics and amounts of ceramide and sphingomyelin indicate that the ceramide comes primarily from hydrolysis but, when hydrolysis is inhibited, can also come from neosynthesis. When NGF is removed, the ceramide comes from both neosynthesis and hydrolysis. Conclusion We conclude that the function of ceramide depends heavily on its intracellular location, and that further understanding of its function will depend on resolving its location during changes of cell status. Graphical Abstract ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00767-2. Ceramide and sphingomyelin reportedly are important both for differentiation of nerve cells and for their death. We studied PC12 cells, which can differentiate into neuron-like cells in the presence of nerve growth factor and cells that overexpress receptors for nerve growth factor. By combining various inhibitors, we conclude that in the presence of nerve growth factor ceramide comes from hydrolysis of sphingomyelin, but when nerve growth factor is removed and the cells atrophy and die, sphingomyelin comes from both neosynthesis and hydrolysis.
Collapse
Affiliation(s)
- Terri Kagan
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
| | - Gloria Stoyanova
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA.,St. Johns University, Jamaica, NY, USA
| | | |
Collapse
|
29
|
Choezom D, Gross JC. Neutral Sphingomyelinase 2 controls exosomes secretion via counteracting V-ATPase-mediated endosome acidification. J Cell Sci 2022; 135:274565. [PMID: 35050379 PMCID: PMC8919340 DOI: 10.1242/jcs.259324] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
During endosome maturation, neutral sphingomyelinase 2 (nSMase2, encoded by SMPD3) is involved in budding of intraluminal vesicles (ILVs) into late endosomes or multivesicular bodies (MVBs). Fusion of these with the plasma membrane results in secretion of exosomes or small extracellular vesicles (sEVs). Here, we report that nSMase2 activity controls sEV secretion through modulation of vacuolar H+-ATPase (V-ATPase) activity. Specifically, we show that nSMase2 inhibition induces V-ATPase complex assembly that drives MVB lumen acidification and consequently reduces sEV secretion. Conversely, we further demonstrate that stimulating nSMase2 activity with the inflammatory cytokine TNFα (also known as TNF) decreases acidification and increases sEV secretion. Thus, we find that nSMase2 activity affects MVB membrane lipid composition to counteract V-ATPase-mediated endosome acidification, thereby shifting MVB fate towards sEV secretion. This article has an associated First Person interview with the first author of the paper. Summary: Changing neutral sphingomyelinase 2 activity regulates small extracellular vesicle secretion through modulation of V-ATPase activity.
Collapse
Affiliation(s)
- Dolma Choezom
- Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Julia Christina Gross
- Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
- Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
30
|
Wasserman E, Worgall S. Perinatal origins of chronic lung disease: mechanisms-prevention-therapy-sphingolipid metabolism and the genetic and perinatal origins of childhood asthma. Mol Cell Pediatr 2021; 8:22. [PMID: 34931265 PMCID: PMC8688659 DOI: 10.1186/s40348-021-00130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Childhood asthma derives from complex host-environment interactions occurring in the perinatal and infant period, a critical time for lung development. Sphingolipids are bioactive molecules consistently implicated in the pathogenesis of childhood asthma. Genome wide association studies (GWAS) initially identified a link between alleles within the 17q21 asthma-susceptibility locus, childhood asthma, and overexpression of the ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3), an inhibitor of de novo sphingolipid synthesis. Subsequent studies of pediatric asthma offer strong evidence that these asthma-risk alleles correlate with early-life aberrancies of sphingolipid homeostasis and asthma. Relationships between sphingolipid metabolism and asthma-related risk factors, including maternal obesity and respiratory viral infections, are currently under investigation. This review will summarize how these perinatal and early life exposures can synergize with 17q21 asthma risk alleles to exacerbate disruptions of sphingolipid homeostasis and drive asthma pathogenesis.
Collapse
Affiliation(s)
- Emily Wasserman
- Department of Pediatrics, Weill Cornell Medicine, 525 East 68th Street, Box 225, New York, NY, 10065, USA.,Drukier Institute for Children's Health, Weill Cornell Medicine, 413 East 69th Street, 12th Floor, New York, NY, 10021, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, 525 East 68th Street, Box 225, New York, NY, 10065, USA. .,Drukier Institute for Children's Health, Weill Cornell Medicine, 413 East 69th Street, 12th Floor, New York, NY, 10021, USA. .,Department of Genetic Medicine, Weill Cornell Medicine, 1305 York Avenue, 13th Floor, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Yamazaki T, Young KH. Effects of radiation on tumor vasculature. Mol Carcinog 2021; 61:165-172. [PMID: 34644811 DOI: 10.1002/mc.23360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Radiation has been utilized as a direct cytotoxic tumorcidal modality, however, the effect of radiation on tumor vasculature influences response to anticancer therapies. Although numerous reports have demonstrated vascular changes in irradiated tumors, the findings and implications are extensive and at times contradictory depending on the radiation dose, timing, and models used. In this review, we focus on the radiation-mediated effects on tumor vasculature with respect to doses used, timing postradiation, vasculogenesis, adhesion molecule expression, permeability, and pericyte coverage, including the latest findings.
Collapse
Affiliation(s)
- Tomoko Yamazaki
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA.,Radiation Oncology Division, The Oregon Clinic, Portland, Oregon, USA
| |
Collapse
|
32
|
Silver DJ, Roversi GA, Bithi N, Wang SZ, Troike KM, Neumann CK, Ahuja GK, Reizes O, Brown JM, Hine C, Lathia JD. Severe consequences of a high-lipid diet include hydrogen sulfide dysfunction and enhanced aggression in glioblastoma. J Clin Invest 2021; 131:138276. [PMID: 34255747 PMCID: PMC8409594 DOI: 10.1172/jci138276] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) remains among the deadliest of human malignancies, and the emergence of the cancer stem cell (CSC) phenotype represents a major challenge to durable treatment response. Because the environmental and lifestyle factors that impact CSC populations are not clear, we sought to understand the consequences of diet on CSC enrichment. We evaluated disease progression in mice fed an obesity-inducing high-fat diet (HFD) versus a low-fat, control diet. HFD resulted in hyper-aggressive disease accompanied by CSC enrichment and shortened survival. HFD drove intracerebral accumulation of saturated fats, which inhibited the production of the cysteine metabolite and gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs including bioenergetics and metabolism. Inhibition of H2S increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to death of cultured GBM cells and stasis of GBM tumors in vivo. Syngeneic GBM models and GBM patient specimens present an overall reduction in protein S-sulfhydration, primarily associated with proteins regulating cellular metabolism. These findings provide clear evidence that diet modifiable H2S signaling serves to suppress GBM by restricting metabolic fitness, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.
Collapse
Affiliation(s)
- Daniel J. Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gustavo A. Roversi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Nazmin Bithi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Sabrina Z. Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Medical Scientist Training Program, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Katie M. Troike
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Chase K.A. Neumann
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Grace K. Ahuja
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Bo L, Li Y, Liu W, Jin F, Li C. Selective inhibition of JNK mitochondrial location is protective against seawater inhalation‑induced ALI/ARDS. Mol Med Rep 2021; 24:515. [PMID: 34013361 PMCID: PMC8138518 DOI: 10.3892/mmr.2021.12154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
Localization of phosphorylated (p)‑JNK to the mitochondria can lead to functional mitochondrial disorder, resulting in a decrease in energy supply and membrane potential, as well as an increase in reactive oxygen species production and apoptosis. JNK is involved in the occurrence of acute lung injury (ALI), and activation of the JNK pathway is one of the crucial factors resulting in injury. The aim of the present study was to investigate whether the JNK‑mitochondria (mitoJNK) location participated in the occurrence of ALI and acute respiratory distress syndrome (ALI/ARDS). The present study examined the activation of the JNK pathway, the content of JNK located on the mitochondria and the treatment effects of a cell‑permeable peptide Tat‑SabKIM1, which can selectively inhibit the location of JNK on mitochondria. The expression levels of proteins were detected by western blot analysis. Lung injuries were evaluated by histological examination, wet‑to‑dry weight ratios, and H2O2 and malondialdehyde concentrations in the lung tissues. Lung cells apoptosis was evaluated using TUNEL assay. The results demonstrated that JNK was phosphorylated and activated during seawater inhalation‑induced ALI/ARDS, not only in the routine JNK pathway but also in the mitoJNK pathway. It was also found that Tat‑SabKIM1 could specifically inhibit JNK localization to mitochondria and the activation of mitoJNK signaling. Furthermore, Tat‑SabKIM1 could inhibit Bcl‑2‑regulated autophagy and mitochondria‑mediated apoptosis. In conclusion, mitoJNK localization disrupted the normal physiological functions of the mitochondria during ALI/ARDS, and selective inhibition of JNK and mitochondrial SH3BP5 (also known as Sab) binding with Tat‑SabKIM1 can block deterioration from ALI/ARDS.
Collapse
Affiliation(s)
- Liyan Bo
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yanyan Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Faguang Jin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Congcong Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
34
|
Sheikholeslami S, Khodaverdian S, Dorri-Giv M, Mohammad Hosseini S, Souri S, Abedi-Firouzjah R, Zamani H, Dastranj L, Farhood B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int Immunopharmacol 2021; 96:107741. [PMID: 33989970 DOI: 10.1016/j.intimp.2021.107741] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Radiation therapy is one of the main cancer treatment modalities applied in 50-70% of cancer patients. Despite the many advantages of this treatment, such as non-invasiveness, organ-preservation, and spatiotemporal flexibility in tumor targeting, it can lead to complications in irradiated healthy cells/tissues. In this regard, the use of radio-protective agents can alleviate radiation-induced complications. This study aimed to review the potential role of alpha-lipoic acid in the prevention/reduction of radiation-induced toxicities on healthy cells/tissues. METHODS A systematic search was performed following PRISMA guidelines to identify relevant literature on the "role of alpha-lipoic acid in the treatment of radiotherapy-induced toxicity" in the electronic databases of Web of Science, Embase, PubMed, and Scopus up to January 2021. Based on the inclusion and exclusion criteria of the present study, 278 articles were screened. Finally, 29 articles were included in this systematic review. RESULTS The obtained results showed that in experimental in vivo models, the radiation-treated groups had decreased survival rate and body weight compared to the control groups. It was also found that radiation can induce mild to severe toxicities on gastrointestinal, circulatory, reproductive, central nervous, respiratory, endocrine, exocrine systems, etc. However, the use of alpha-lipoic acid could alleviate the radiation-induced toxicities in most cases. This radio-protective agent exerts its effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and so on. CONCLUSION According to the obtained results, it can be mentioned that co-treatment of alpha-lipoic acid with radiotherapy ameliorates the radiation-induced toxicities in healthy cells/tissues.
Collapse
Affiliation(s)
- Sahar Sheikholeslami
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Khodaverdian
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Dorri-Giv
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Hosseini
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Souri
- Department of Medical Physics, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Zamani
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Dastranj
- Department of Physics, Hakim Sabzevari Universuty, Sabzevar, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan. Iran.
| |
Collapse
|
35
|
Korbelik M, Zhao J, Zeng H, Bielawska A, Szulc ZM. Mechanistic insights into ceramidase inhibitor LCL521-enhanced tumor cell killing by photodynamic and thermal ablation therapies. Photochem Photobiol Sci 2021; 19:1145-1151. [PMID: 32821888 DOI: 10.1039/d0pp00116c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our recent investigation uncovered that the acid ceramidase inhibitor LCL521 enhances the direct tumor cell killing effect of photodynamic therapy (PDT) treatment. The present study aimed at elucidating the mechanisms underlying this effect. Exposing mouse squamous cell carcinoma SCCVII cells treated with temoporfin-based PDT to LCL521 (rising ceramide concentration) produced a much greater decrease in cell survival than comparable exposure to the sphingosine kinase-1 inhibitor PF543 (that reduces sphingosine-1-phosphate concentration). This is consistent with recognizing the rising levels of pro-apoptotic sphingolipid ceramide as being more critical in promoting the death of PDT-treated cells than the reduction in the availability of pro-survival acting sphingosine-1 phosphate. This pro-apoptotic impact of LCL521, which was suppressed by the apoptosis inhibitor bongkrekic acid, involves the interaction with the cellular stress signaling network. Hence, inhibiting the key elements of these pathways markedly influenced the adjuvant effect of LCL521 on the PDT response. Particularly effective was the inositol-requiring element-1 (IRE1) kinase inhibitor STF-083010 that dramatically enhanced the killing of cells treated with PDT plus LCL521. An important role in the survival of these cells was exhibited by master transcription factors STAT3 and HIF-1α. The STAT3 inhibitor NSC 74859 was especially effective in further reducing the cell survival rates, suggesting its possible exploitation for therapeutic gain. An additional finding in this study is that LCL521-promoted PDT-mediated cell killing through ceramide-mediated lethal effects is extended to the interaction with other cancer treatment modalities with a rapid cellular stress impact such as photothermal therapy (PTT) and cryoablation therapy (CAT).
Collapse
Affiliation(s)
- Mladen Korbelik
- Integrative Oncology department, BC Cancer Research Centre, Vancouver, BC, Canada.
| | - Jianhua Zhao
- Integrative Oncology department, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Haishan Zeng
- Integrative Oncology department, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
36
|
Abstract
The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, insulin resistance (IR) and dyslipidaemia. Consumption of a high-fat diet (HFD) enriched in SFA leads to the accumulation of ceramide (Cer), the central molecule in sphingolipid metabolism. Elevations in plasma and tissue Cer are found in obese individuals, and there is evidence to suggest that Cer lipotoxicity contributes to the MetS. EPA and DHA have shown to improve MetS parameters including IR, inflammation and hypertriacylglycerolaemia; however, whether these improvements are related to Cer is currently unknown. This review examines the potential of EPA and DHA to improve Cer lipotoxicity and MetS parameters including IR, inflammation and dyslipidaemia in vitro and in vivo. Current evidence from cell culture and animal studies indicates that EPA and DHA attenuate palmitate- or HFD-induced Cer lipotoxicity and IR, whereas evidence in humans is greatly lacking. Overall, there is intriguing potential for EPA and DHA to improve Cer lipotoxicity and related MetS parameters, but more research is warranted.
Collapse
|
37
|
Lukowski JK, Pamreddy A, Velickovic D, Zhang G, Pasa-Tolic L, Alexandrov T, Sharma K, Anderton CR. Storage Conditions of Human Kidney Tissue Sections Affect Spatial Lipidomics Analysis Reproducibility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2538-2546. [PMID: 32897710 PMCID: PMC8162764 DOI: 10.1021/jasms.0c00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lipids often are labile, unstable, and tend to degrade overtime, so it is of the upmost importance to study these molecules in their most native state. We sought to understand the optimal storage conditions for spatial lipidomic analysis of human kidney tissue sections. Specifically, we evaluated human kidney tissue sections on several different days throughout the span of a week using our established protocol for elucidating lipids using high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). We studied kidney tissue sections stored under five different conditions: open stored at -80 °C, vacuumed sealed and stored at -80 °C, with matrix preapplied before storage at -80 °C, under a nitrogen atmosphere and stored at -80 °C, and at room temperature in a desiccator. Results were compared to data obtained from kidney tissue sections that were prepared and analyzed immediately after cryosectioning. Data was processed using METASPACE. After a week of storage, the sections stored at room temperature showed the largest amount of lipid degradation, while sections stored under nitrogen and at -80 °C retained the greatest number of overlapping annotations in relation to freshly cut tissue. Overall, we found that molecular degradation of the tissue sections was unavoidable over time, regardless of storage conditions, but storing tissue sections in an inert gas at low temperatures can curtail molecular degradation within tissue sections.
Collapse
Affiliation(s)
- Jessica K Lukowski
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Annapurna Pamreddy
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
| | - Dusan Velickovic
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Guanshi Zhang
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78284, United States
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78284, United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
| |
Collapse
|
38
|
Jiménez-Jiménez C, Manzano M, Vallet-Regí M. Nanoparticles Coated with Cell Membranes for Biomedical Applications. BIOLOGY 2020; 9:biology9110406. [PMID: 33218092 PMCID: PMC7698879 DOI: 10.3390/biology9110406] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Nanomedicine has developed a new technology based on nanoparticles for drug delivery coated with different cell membranes. Although they were originally developed to increase their blood circulation time and stability though the use of red blood cell membranes, the versatility of this technology has extended to membranes from different cell types, such as white blood cells, platelets, cancer cells, mesenchymal stem cells, and beta cells, among others. Therefore, this cellular diversity and its unique properties, together with the possibility of using a wide range of nanoparticles and different drug dosage forms, has opened a new area for the manufacture of nanoparticles, with many potential applications in the clinic. Abstract Nanoparticles designed for diagnosing and treating different diseases have impacted the scientific research in biomedicine, and are expected to revolutionize the clinic in the near future through a new area called nanomedicine. In the last few years, a new approach in this field has emerged: the use of cell membranes for coating nanoparticles in an attempt to mimic the ability of cells to interface and interact with physiological environments. Although such functions have been replicated through synthetic techniques, many research groups are now employing naturally derived cell membranes to coat different types of nanoparticles in an attempt to improve their performance for a wide range of applications. This review summarizes the literature on nanoparticles coated with cell membranes and, more importantly, aims at inspiring and encouraging new developments to this technology in the biomedical area.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, imas12, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Manzano
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, imas12, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.M.); (M.V.-R.)
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, UCM, Instituto Investigación Sanitaria Hospital 12 de Octubre, imas12, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (M.M.); (M.V.-R.)
| |
Collapse
|
39
|
Human adipocyte differentiation and composition of disease-relevant lipids are regulated by miR-221-3p. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158841. [PMID: 33075494 DOI: 10.1016/j.bbalip.2020.158841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
MicroRNA-221-3p (miR-221-3p) is associated with both metabolic diseases and cancers. However, its role in terminal adipocyte differentiation and lipid metabolism are uncharacterized. miR-221-3p or its inhibitor was transfected into differentiating or mature human adipocytes. Triglyceride (TG) content and adipogenic gene expression were monitored, global lipidome analysis was carried out, and mechanisms underlying the effects of miR-221-3p were investigated. Finally, cross-talk between miR-221-3p expressing adipocytes and MCF-7 breast carcinoma (BC) cells was studied, and miR-221-3p expression in tumor-proximal adipose biopsies from BC patients analyzed. miR-221-3p overexpression inhibited terminal differentiation of adipocytes, as judged from reduced TG storage and gene expression of the adipogenic markers SCD1, GLUT4, FAS, DGAT1/2, AP2, ATGL and AdipoQ, whereas the miR-221-3p inhibitor increased TG storage. Knockdown of the predicted miR-221-3p target, 14-3-3γ, had similar antiadipogenic effects as miR-221-3p overexpression, indicating it as a potential mediator of mir-221-3p function. Importantly, miR-221-3p overexpression inhibited de novo lipogenesis but increased the concentrations of ceramides and sphingomyelins, while reducing diacylglycerols, concomitant with suppression of sphingomyelin phosphodiesterase, ATP citrate lyase, and acid ceramidase. miR-221-3p expression was elevated in tumor proximal adipose tissue from patients with invasive BC. Conditioned medium of miR-221-3p overexpressing adipocytes stimulated the invasion and proliferation of BC cells, while medium of the BC cells enhanced miR-221-3p expression in adipocytes. Elevated miR-221-3p impairs adipocyte lipid storage and differentiation, and modifies their ceramide, sphingomyelin, and diacylglycerol content. These alterations are relevant for metabolic diseases but may also affect cancer progression.
Collapse
|
40
|
Ventura A, Varela A, Dingjan T, Santos T, Fedorov A, Futerman A, Prieto M, Silva L. Lipid domain formation and membrane shaping by C24-ceramide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183400. [DOI: 10.1016/j.bbamem.2020.183400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/29/2023]
|
41
|
Caveolin-1-mediated sphingolipid oncometabolism underlies a metabolic vulnerability of prostate cancer. Nat Commun 2020; 11:4279. [PMID: 32855410 PMCID: PMC7453025 DOI: 10.1038/s41467-020-17645-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Plasma and tumor caveolin-1 (Cav-1) are linked with disease progression in prostate cancer. Here we report that metabolomic profiling of longitudinal plasmas from a prospective cohort of 491 active surveillance (AS) participants indicates prominent elevations in plasma sphingolipids in AS progressors that, together with plasma Cav-1, yield a prognostic signature for disease progression. Mechanistic studies of the underlying tumor supportive onco-metabolism reveal coordinated activities through which Cav-1 enables rewiring of cancer cell lipid metabolism towards a program of 1) exogenous sphingolipid scavenging independent of cholesterol, 2) increased cancer cell catabolism of sphingomyelins to ceramide derivatives and 3) altered ceramide metabolism that results in increased glycosphingolipid synthesis and efflux of Cav-1-sphingolipid particles containing mitochondrial proteins and lipids. We also demonstrate, using a prostate cancer syngeneic RM-9 mouse model and established cell lines, that this Cav-1-sphingolipid program evidences a metabolic vulnerability that is targetable to induce lethal mitophagy as an anti-tumor therapy.
Collapse
|
42
|
Kara S, Amon L, Lühr JJ, Nimmerjahn F, Dudziak D, Lux A. Impact of Plasma Membrane Domains on IgG Fc Receptor Function. Front Immunol 2020; 11:1320. [PMID: 32714325 PMCID: PMC7344230 DOI: 10.3389/fimmu.2020.01320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid cell membranes not only represent the physical boundaries of cells. They also actively participate in many cellular processes. This contribution is facilitated by highly complex mixtures of different lipids and incorporation of various membrane proteins. One group of membrane-associated receptors are Fc receptors (FcRs). These cell-surface receptors are crucial for the activity of most immune cells as they bind immunoglobulins such as immunoglobulin G (IgG). Based on distinct mechanisms of IgG binding, two classes of Fc receptors are now recognized: the canonical type I FcγRs and select C-type lectin receptors newly referred to as type II FcRs. Upon IgG immune complex induced cross-linking, these receptors are known to induce a multitude of cellular effector responses in a cell-type dependent manner, including internalization, antigen processing, and presentation as well as production of cytokines. The response is also determined by specific intracellular signaling domains, allowing FcRs to either positively or negatively modulate immune cell activity. Expression of cell-type specific combinations and numbers of receptors therefore ultimately sets a threshold for induction of effector responses. Mechanistically, receptor cross-linking and localization to lipid rafts, i.e., organized membrane microdomains enriched in intracellular signaling proteins, were proposed as major determinants of initial FcR activation. Given that immune cell membranes might also vary in their lipid compositions, it is reasonable to speculate, that the cell membrane and especially lipid rafts serve as an additional regulator of FcR activity. In this article, we aim to summarize the current knowledge on the interplay of lipid rafts and IgG binding FcRs with a focus on the plasma membrane composition and receptor localization in immune cells, the proposed mechanisms underlying this localization and consequences for FcR function with respect to their immunoregulatory capacity.
Collapse
Affiliation(s)
- Sibel Kara
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jennifer J Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Nano-Optics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Anja Lux
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
43
|
Park WJ, Park JW. The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett 2020; 594:3632-3651. [PMID: 32538465 DOI: 10.1002/1873-3468.13863] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) is an important intracellular compartment in eukaryotic cells and has diverse functions, including protein synthesis, protein folding, lipid metabolism and calcium homeostasis. ER functions are disrupted by various intracellular and extracellular stimuli that cause ER stress, including the inhibition of glycosylation, disulphide bond reduction, ER calcium store depletion, impaired protein transport to the Golgi, excessive ER protein synthesis, impairment of ER-associated protein degradation and mutated ER protein expression. Distinct ER stress signalling pathways, which are known as the unfolded protein response, are deployed to maintain ER homeostasis, and a failure to reverse ER stress triggers cell death. Sphingolipids are lipids that are structurally characterized by long-chain bases, including sphingosine or dihydrosphingosine (also known as sphinganine). Sphingolipids are bioactive molecules long known to regulate various cellular processes, including cell proliferation, migration, apoptosis and cell-cell interaction. Recent studies have uncovered that specific sphingolipids are involved in ER stress. This review summarizes the roles of sphingolipids in ER stress and human diseases in the context of pathogenic events.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
44
|
Kita S, Maeda N, Shimomura I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J Clin Invest 2020; 129:4041-4049. [PMID: 31483293 DOI: 10.1172/jci129193] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue plays important roles in regulating whole-body energy metabolism through its storage function in white adipocytes and its dissipating function in brown and beige adipocytes. Adipose tissue also produces a variety of secreted factors called adipocytokines, including leptin and adiponectin. Furthermore, recent studies have suggested the important roles of extracellular vesicles of endosomal origin termed exosomes, which are secreted from adipocytes and other cells in adipose tissue and influence whole-body glucose and lipid metabolism. Adiponectin is known to be a pleiotropic organ-protective protein that is exclusively produced by adipocytes and decreased in obesity. Adiponectin accumulates in tissues such as heart, muscle, and vascular endothelium through binding with T-cadherin, a glycosylphosphatidylinositol-anchored (GPI-anchored) cadherin. Recently, adiponectin was found to enhance exosome biogenesis and secretion, leading to a decrease in cellular ceramides, excess of which is known to cause insulin resistance and cardiovascular disease phenotypes. These findings support the hypothesis that adipose tissue metabolism systemically regulates exosome production and whole-body metabolism through exosomes. This review focuses on intra-adipose and interorgan communication by exosomes, adiponectin-stimulated exosome production, and their dysregulation in metabolic diseases.
Collapse
Affiliation(s)
- Shunbun Kita
- Department of Metabolic Medicine.,Department of Adipose Management, and
| | - Norikazu Maeda
- Department of Metabolic Medicine.,Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | |
Collapse
|
45
|
Acid and Neutral Sphingomyelinase Behavior in Radiation-Induced Liver Pyroptosis and in the Protective/Preventive Role of rMnSOD. Int J Mol Sci 2020; 21:ijms21093281. [PMID: 32384654 PMCID: PMC7247354 DOI: 10.3390/ijms21093281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Sphingomyelins (SMs) are a class of relevant bioactive molecules that act as key modulators of different cellular processes, such as growth arrest, exosome formation, and the inflammatory response influenced by many environmental conditions, leading to pyroptosis, a form of programmed cell death due to Caspase-1 involvement. To study liver pyroptosis and hepatic SM metabolism via both lysosomal acid SMase (aSMase) and endoplasmic reticulum/nucleus neutral SMase (nSMase) during the exposure of mice to radiation and to ascertain if this process can be modulated by protective molecules, we used an experimental design (previously used by us) to evaluate the effects of both ionizing radiation and a specific protective molecule (rMnSOD) in the brain in collaboration with the Joint Institute for Nuclear Research, Dubna (Russia). As shown by the Caspase-1 immunostaining of the liver sections, the radiation resulted in the loss of the normal cell structure alongside a progressive and dose-dependent increase of the labelling, treatment, and pretreatment with rMnSOD, which had a significant protective effect on the livers. SM metabolic analyses, performed on aSMase and nSMase gene expression, as well as protein content and activity, proved that rMnSOD was able to significantly reduce radiation-induced damage by playing both a protective role via aSMase and a preventive role via nSMase.
Collapse
|
46
|
Understanding MAPK Signaling Pathways in Apoptosis. Int J Mol Sci 2020; 21:ijms21072346. [PMID: 32231094 PMCID: PMC7177758 DOI: 10.3390/ijms21072346] [Citation(s) in RCA: 727] [Impact Index Per Article: 145.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.
Collapse
|
47
|
Feng S, Zhou H, Wang Y, Qiu X, Zhang A, Wang X. Novel functions of grass carp three p40 isoforms as modulators of Th17 signature cytokine expression in head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2020; 98:995-1000. [PMID: 31734285 DOI: 10.1016/j.fsi.2019.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Interleukin (IL)-12p40, a component of IL-12 and IL-23, can be secreted as monomer and homodimer in mammals. Our previous study has proved the existence of natural three p40 isoforms and their proinflammatory properties in grass carp. In the present study, we unexpectedly found that recombinant grass carp p40a/b/c (rgcp40a, rgcp40b and rgcp40c) were able to enhance the mRNA levels of grass carp il-17a/f1 (gcil-17a/f1) in a dose- and time-dependent manner in head kidney leukocytes (HKLs). In agreement with these findings, the enzyme-linked immunosorbent assay (ELISA) showed that rgcp40a, rgcp40b and rgcp40c markedly stimulated gcIl-17a/f1 secretion from the HKLs. Together with their stimulatory effects on grass carp gcil-22 and gcil-26 expression, our data suggested their potential to mediate Th17-like response in grass carp. To support this notion, we investigated the underlying mechanisms for the regulation of rgcp40 isoforms on gcil-17a/f1 expression, and found that three rgcp40 isoforms significantly induced the activation of Erk, Jnk and Stat3 pathways in a time-dependent oscillation in the same cell model. Moreover, three rgcp40 isoforms-induced gcil-17a/f1 mRNA expression was suppressed by the inhibition on Erk, Jnk and Stat3 pathways, suggesting the signaling pathways in the p40 isoforms-mediating il-17a/f1 transcription. These studies for the first time proved the involvement of three gcp40 isoforms in mediating Th17 signature cytokine expression in fish immune cells, therefore providing new insights into the roles of p40 in teleost immunity.
Collapse
Affiliation(s)
- Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Yanyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
48
|
Abstract
Excess adiposity is a risk factor for several cancer types. This is likely due to complex mechanisms including alterations in the lipid milieu that plays a pivotal role in multiple aspects of carcinogenesis. Here we consider the direct role of lipids in regulating well-known hallmarks of cancer. Furthermore, we suggest that obesity-associated remodelling of membranes and organelles drives cancer cell proliferation and invasion. Identification of cancer-related lipid-mediated mechanisms amongst the broad metabolic disturbances due to excess adiposity is central to the identification of novel and more efficacious prevention and intervention strategies.
Collapse
Affiliation(s)
- J Molendijk
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, 4006, Australia.
| | | | | | | |
Collapse
|
49
|
Xiao Y, Contaifer D, Huang W, Yang J, Hu Z, Guo Q, Bradley J, Peberdy MA, Ornato JP, Wijesinghe DS, Tang W. Cannabinoid Receptor Agonist WIN55, 212-2 Adjusts Lipid Metabolism in a Rat Model of Cardiac Arrest. Ther Hypothermia Temp Manag 2020; 10:192-203. [PMID: 31990631 DOI: 10.1089/ther.2019.0038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to investigate the effects of pharmacologically induced hypothermia with WIN55, 212-2 (WIN)on postresuscitation myocardial function, microcirculation, and metabolism-specific lipids in a rat cardiac arrest (CA) model. Ventricular fibrillation was electrically induced and untreated for 6 minutes in 24 Sprague-Dawley rats weighing 450-550 g. Cardiopulmonary resuscitation including chest compression and mechanical ventilation was then initiated and continued for 8 minutes, followed by defibrillation. At 5 minutes after restoration of spontaneous circulation (ROSC), animals were randomized into four groups: (1) normothermia with vehicle (NT); (2) physical hypothermia with vehicle (PH); (3) WIN55, 212-2 with normothermia (WN); and (4) WIN55, 212-2 with hypothermia (WH). For groups of WN and WH, WIN was administered by continuous intravenous infusion with a syringe pump for 4 hours. PH started at 5 minutes after resuscitation. NT maintained core temperature at 37°C ± 0.2°C with the aid of a heating blanket. Hypothermia groups maintained temperature at 33°C ± 0.5°C for 4 hours after ROSC. There was a significant improvement in myocardial function as measured by ejection fraction, cardiac output, and myocardial performance index in animals treated with WH and PH beginning at 1 hour after start of infusion. In the WH and PH groups, buccal microcirculation was significantly improved compared with NT and WN. Plasma at pre-CA and ROSC 4 hours was harvested for lipid metabolism. The WH group appeared to be closer to baseline than the other groups in lipid metabolism. lysophosphatidylcholine (LPC) 18:2, free fatty acid (FFA) 22:6, and ceramide (CER) (24:0) changed significantly among the lipidomic data compared with NT (p < 0.05). Postresuscitation hypothermia improved myocardial function and microcirculation. WH-mediated lipid metabolism had the best metabolic outcome to bring back the animals to normal metabolism, which may be protective to improve outcomes of CA. LPC 18:2, FFA 22:6, and CER (24:0) may be important predictors of outcomes of CA.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Soochow, China.,Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Daniel Contaifer
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Weiping Huang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jin Yang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhangle Hu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qinyue Guo
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer Bradley
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mary Ann Peberdy
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| | - Joseph P Ornato
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Emergency Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dayanjan S Wijesinghe
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, USA.,Da Vinci Center, School of Pharmacy, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Emergency Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
50
|
Hou W, Chen Q, Wang H, Qiu P, Lyu X, Chen W, Chua MLK, Chinn YE, Deng CX, Wang R. The metabolic footprint during adipocyte commitment highlights ceramide modulation as an adequate approach for obesity treatment. EBioMedicine 2020; 51:102605. [PMID: 31901865 PMCID: PMC6940659 DOI: 10.1016/j.ebiom.2019.102605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metabolic modulation is capable of maintaining cell potency, regulating niche homeostasis, or determining cell fate. However, little is known regarding the metabolic landscape during early adipogenesis or whether metabolic modulation could be a potential approach for obesity treatment. METHODS The metabolic footprint during adipocyte commitment was evaluated by metabolomics analysis in mouse embryonic fibroblasts (MEFs). The role of apoptosis induced by ceramide and how ceramide is regulated were evaluated by omics analysis in vitro, human database and the adipocyte-specific Sirt1 knockout mouse. FINDINGS The metabolic footprint showed that a complicated diversity of metabolism was enriched as early as 3 h and tended to fluctuate throughout differentiation. Subsequently, the scale of these perturbed metabolic patterns was reduced to reach a balanced state. Of high relevance is the presence of apoptosis induced by ceramide accumulation, which is associated with metabolic dynamics. Interestingly, apoptotic cells were not merely a byproduct of adipogenesis but rather promoted the release of lipid components to facilitate adipogenesis. Mechanistically, ceramide accumulation stemming from hydrolysis and the de novo pathway during early adipogenesis is regulated by Sirt1 upon epigenetic alterations of constitutive Histone H3K4 methylation and H3K9 acetylation. INTERPRETATION The metabolic footprint during adipocyte commitment highlights that apoptosis induced by ceramide is essential for adipogenesis, which is reversed by suppression of Sirt1. Therefore, Sirt1 may constitute a target to treat obesity or other ceramide-associated metabolic syndromes. FUNDING This project was supported by grants from the University of Macau (SRG2015-00008-FHS, MYRG2016-00054-FHS and MYRG2017-00096-FHS to RHW; CPG2019-00019-FHS to CXD) and from the National Natural Science Foundation of China (81672603 and 81401978) to QC.
Collapse
Affiliation(s)
- Weilong Hou
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Qiang Chen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Haitao Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Oncology Academic Programme, Duke-NUS Medical School, Singapore
| | - Pengxiang Qiu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xueying Lyu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Weiping Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| | - Melvin L K Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Oncology Academic Programme, Duke-NUS Medical School, Singapore
| | - Y Eugene Chinn
- Institute of Biology and Medical Sciences, Soochow University School of Medicine, 199# Ren'ai Road, Suzhou Jiangsu 215123, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Ruihong Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Center for Cancer Research, Nation Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|