1
|
Lee HP, Tsung TH, Tsai YC, Chen YH, Lu DW. Glaucoma: Current and New Therapeutic Approaches. Biomedicines 2024; 12:2000. [PMID: 39335514 PMCID: PMC11429057 DOI: 10.3390/biomedicines12092000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma is identified by the loss of retinal ganglion cells (RGCs). The primary approach to managing glaucoma is to control intraocular pressure (IOP). Lately, there has been an increasing focus on neuroprotective therapies for glaucoma because of the limited effectiveness of standard methods in reducing IOP and preventing ongoing vision deterioration in certain glaucoma patients. Various drug-based techniques with neuroprotective properties have demonstrated the ability to decrease the mortality of retinal ganglion cells. This study will analyze the currently recommended drug-based techniques for neuroprotection in the prospective treatment of glaucoma.
Collapse
Affiliation(s)
- Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
2
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Wang Q, Dong J, Du M, Liu X, Zhang S, Zhang D, Qin W, Xu X, Li X, Su R, Qiu L, Li B, Yuan H. Chitosan-Rapamycin Carbon Dots Alleviate Glaucomatous Retinal Injury by Inducing Autophagy to Promote M2 Microglial Polarization. Int J Nanomedicine 2024; 19:2265-2284. [PMID: 38476273 PMCID: PMC10928492 DOI: 10.2147/ijn.s440025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Glaucoma is a prevalent cause of irreversible vision impairment, characterized by progressive retinal ganglion cells (RGCs) loss, with no currently available effective treatment. Rapamycin (RAPA), an autophagy inducer, has been reported to treat glaucoma in rodent models by promoting RGC survival, but its limited water solubility, systemic toxicity, and pre-treatment requirements hinder its potential clinical applications. Methods Chitosan (CS)-RAPA carbon dot (CRCD) was synthesized via hydrothermal carbonization of CS and RAPA and characterized by transmission electron microscopy, Fourier transform infrared spectra, and proton nuclear magnetic resonance. In vitro assays on human umbilical cord vein endothelial and rat retinal cell line examined its biocompatibility and anti-oxidative capabilities, while lipopolysaccharide-stimulated murine microglia (BV2) assays measured its effects on microglial polarization. In vivo, using a mouse retinal ischemia/reperfusion (I/R) model by acute intraocular pressure elevation, the effects of CRCD on visual function, RGC apoptosis, oxidative stress, and M2 microglial polarization were examined. Results CRCD exhibited good water solubility and anti-oxidative capabilities, in the form of free radical scavenging. In vitro, CRCD was bio-compatible and lowered oxidative stress, which was also found in vivo in the retinal I/R model. Additionally, both in vitro with lipopolysaccharide-stimulated BV2 cells and in vivo with the I/R model, CRCD was able to promote M2 microglial polarization by activating autophagy, which, in turn, down-regulated pro-inflammatory cytokines, such as IL-1β and TNF-α, as well as up-regulated anti-inflammatory cytokines, such as IL-4 and TGF-β. All these anti-oxidative and anti-inflammatory effects ultimately aided in preserving RGCs, and subsequently, improved visual function. Discussion CRCD could serve as a potential novel treatment strategy for glaucoma, via incorporating RAPA into CDs, in turn not only mitigating its toxic side effects but also enhancing its therapeutic efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Mengxian Du
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xinna Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Shiqi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Di Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wanyun Qin
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xikun Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
| | - Xianghui Li
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ruidong Su
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
| | - Leyi Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, Russia
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Kitaoka Y, Sase K. Molecular aspects of optic nerve autophagy in glaucoma. Mol Aspects Med 2023; 94:101217. [PMID: 37839231 DOI: 10.1016/j.mam.2023.101217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
The optic nerve consists of the glia, vessels, and axons including myelin and axoplasm. Since axonal degeneration precedes retinal ganglion cell death in glaucoma, the preceding axonal degeneration model may be helpful for understanding the molecular mechanisms of optic nerve degeneration. Optic nerve samples from these models can provide information on several aspects of autophagy. Autophagosomes, the most typical organelles expressing autophagy, are found much more frequently inside axons than around the glia. Thus, immunoblot findings from the optic nerve can reflect the autophagy state in axons. Autophagic flux impairment may occur in degenerating optic nerve axons, as in other central nervous system neurodegenerative diseases. Several molecular candidates are involved in autophagy enhancement, leading to axonal protection. This concept is an attractive approach to the prevention of further retinal ganglion cell death. In this review, we describe the factors affecting autophagy, including nicotinamide riboside, p38, ULK, AMPK, ROCK, and SIRT1, in the optic nerve and propose potential methods of axonal protection via enhancement of autophagy.
Collapse
Affiliation(s)
- Yasushi Kitaoka
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan; Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
5
|
Xu W, Sun Y, Zhao S, Zhao J, Zhang J. Identification and validation of autophagy-related genes in primary open-angle glaucoma. BMC Med Genomics 2023; 16:287. [PMID: 37968618 PMCID: PMC10648356 DOI: 10.1186/s12920-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND As the most common type of glaucoma, the etiology of primary open-angle glaucoma (POAG) has not been unified. Autophagy may affect the occurrence and development of POAG, while the specific mechanism and target need to be further explored. METHODS The GSE27276 dataset from the Gene Expression Omnibus (GEO) database and the autophagy gene set from the GeneCards database were selected to screen differentially expressed autophagy-related genes (DEARGs) of POAG. Hub DEARGs were selected by constructing protein-protein interaction (PPI) networks and utilizing GSE138125 dataset. Subsequently, immune cell infiltration analysis, genome-wide association study (GWAS) analysis, gene set enrichment analysis (GSEA) and other analyses were performed on the hub genes. Eventually, animal experiments were performed to verify the mRNA levels of the hub genes by quantitative real time polymerase chain reaction (qRT-PCR). RESULTS A total of 67 DEARGs and 2 hub DEARGs, HSPA8 and RPL15, were selected. The hub genes were closely related to the level of immune cell infiltration. GWAS analysis confirmed that the causative regions of the 2 hub genes in glaucoma were on chromosome 11 and chromosome 3, respectively. GSEA illustrated that pathways enriched for highly expressed HSPA8 and RPL15 contained immunity, autophagy, gene expression and energy metabolism-related pathways. qRT-PCR confirmed that the expression of Hspa8 and Rpl15 in the rat POAG model was consistent with the results of bioinformatics analysis. CONCLUSIONS This study indicated that HSPA8 and RPL15 may affect the progression of POAG by regulating autophagy and provided new ideas for the pathogenesis and treatment of POAG.
Collapse
Affiliation(s)
- Wanjing Xu
- Ophthalmology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Yuhao Sun
- Otolaryngology Department of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuang Zhao
- Graduate School of Shandong First Medical University, Jinan, China
| | - Jun Zhao
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| | - Juanmei Zhang
- Ophthalmology Department of Linyi People's Hospital, Linyi, China
| |
Collapse
|
6
|
Prosseda PP, Dannewitz Prosseda S, Tran M, Liton PB, Sun Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr Top Dev Biol 2023; 155:1-37. [PMID: 38043949 PMCID: PMC11227733 DOI: 10.1016/bs.ctdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Autophagy is a fundamental catabolic process whereby excessive or damaged cytoplasmic components are degraded through lysosomes to maintain cellular homeostasis. Studies of mTOR signaling have revealed that mTOR controls biomass generation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Primary cilia, the assembly of which depends on kinesin molecular motors, serve as sensory organelles and signaling platforms. Given these pathways' central role in maintaining cellular and physiological homeostasis, a connection between mTOR and primary cilia signaling is starting to emerge in a variety of diseases. In this review, we highlight recent advances in our understanding of the complex crosstalk between the mTOR pathway and cilia and discuss its function in the context of related diseases.
Collapse
Affiliation(s)
- Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States; Palo Alto Veterans Administration Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
7
|
Afiat BC, Zhao D, Wong VHY, Perera ND, Turner BJ, Nguyen CTO, Bui BV. Age-related deficits in retinal autophagy following intraocular pressure elevation in autophagy reporter mouse model. Neurobiol Aging 2023; 131:74-87. [PMID: 37586253 DOI: 10.1016/j.neurobiolaging.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
This study quantified age-related changes to retinal autophagy using the CAG-RFP-EGFP-LC3 autophagy reporter mice and considered how aging impacts autophagic responses to acute intraocular pressure (IOP) stress. IOP was elevated to 50 mm Hg for 30 minutes in 3-month-old and 12-month-old CAG-RFP-EGFP-LC3 (n = 7 per age group) and Thy1-YFPh transgenic mice (n = 3 per age group). Compared with younger eyes, older eyes showed diminished basal autophagy in the outer retina, while the inner retina was unaffected. Autophagic flux (red:yellow puncta ratio) was elevated in the inner plexiform layer. Three days following IOP elevation, older eyes showed poorer functional recovery, most notably in ganglion cell responses compared to younger eyes (12 months old: -33.4 ± 5.3% vs. 3 months mice: -13.4 ± 4.5%). This paralleled a reduced capacity to upregulate autophagic puncta volume in the inner retina in older eyes, a response that was seen in younger eyes. Age-related decline in basal and stress-induced autophagy in the retina is associated with greater retinal ganglion cells' susceptibility to IOP elevation.
Collapse
Affiliation(s)
- Brianna C Afiat
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Nirma D Perera
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
8
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Arizono I, Fujita N, Tsukahara C, Sase K, Sekine R, Jujo T, Otsubo M, Tokuda N, Kitaoka Y. Axonal Protection by Oral Nicotinamide Riboside Treatment with Upregulated AMPK Phosphorylation in a Rat Glaucomatous Degeneration Model. Curr Issues Mol Biol 2023; 45:7097-7109. [PMID: 37754233 PMCID: PMC10527704 DOI: 10.3390/cimb45090449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Nicotinamide riboside (NR), a precursor of nicotinamide adenine dinucleotide (NAD+), has been studied to support human health against metabolic stress, cardiovascular disease, and neurodegenerative disease. In the present study, we investigated the effects of oral NR on axonal damage in a rat ocular hypertension model. Intraocular pressure (IOP) elevation was induced by laser irradiation and then the rats received oral NR of 1000 mg/kg/day daily. IOP elevation was seen 7, 14, and 21 days after laser irradiation compared with the controls. We confirmed that oral NR administration significantly increased NAD+ levels in the retina. After 3-week oral administration of NR, morphometric analysis of optic nerve cross-sections showed that the number of axons was protected compared with that in the untreated ocular hypertension group. Oral NR administration significantly prevented retinal ganglion cell (RGC) fiber loss in retinal flat mounts, as shown by neurofilament immunostaining. Immunoblotting samples from the optic nerves showed that oral NR administration augmented the phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) level in rats with and without ocular hypertension induction. Immunohistochemical analysis showed that some p-AMPK-immunopositive fibers were colocalized with neurofilament immunoreactivity in the control group, and oral NR administration enhanced p-AMPK immunopositivity. Our findings suggest that oral NR administration protects against glaucomatous RGC axonal degeneration with the possible upregulation of p-AMPK.
Collapse
Affiliation(s)
- Ibuki Arizono
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; (I.A.)
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Naoki Fujita
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Chihiro Tsukahara
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Reio Sekine
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Tatsuya Jujo
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Mizuki Otsubo
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; (I.A.)
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Naoto Tokuda
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Yasushi Kitaoka
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; (I.A.)
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| |
Collapse
|
10
|
Dixon A, Shim MS, Nettesheim A, Coyne A, Su CC, Gong H, Liton PB. Autophagy deficiency protects against ocular hypertension and neurodegeneration in experimental and spontanous glaucoma mouse models. Cell Death Dis 2023; 14:554. [PMID: 37620383 PMCID: PMC10449899 DOI: 10.1038/s41419-023-06086-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Glaucoma is a group of diseases that leads to chronic degeneration of retinal ganglion cell (RGC) axons and progressive loss of RGCs, resulting in vision loss. While aging and elevated intraocular pressure (IOP) have been identified as the main contributing factors to glaucoma, the molecular mechanisms and signaling pathways triggering RGC death and axonal degeneration are not fully understood. Previous studies in our laboratory found that overactivation of autophagy in DBA/2J::GFP-LC3 mice led to RGC death and optic nerve degeneration with glaucomatous IOP elevation. We found similar findings in aging GFP-LC3 mice subjected to chronic IOP elevation. Here, we further investigated the impact of autophagy deficiency on autophagy-deficient DBA/2J-Atg4bko and DBA/2J-Atg4b+/- mice, generated in our laboratory via CRISPR/Cas9 technology; as well as in Atg4bko mice subjected to the experimental TGFβ2 chronic ocular hypertensive model. Our data shows that, in contrast to DBA/2J and DBA/2J-Atg4b+/- littermates, DBA/2J-Atg4bko mice do not develop glaucomatous IOP elevation. Atg4b deficiency also protected against glaucomatous IOP elevation in the experimental TGFβ2 chronic ocular hypertensive model. Atg4 deletion did not compromise RGC or optic nerve survival in Atg4bko mice. Moreover, our results indicate a protective role of autophagy deficiency against RGC death and ON atrophy in the hypertensive DBA/2J-Atg4b+/- mice. Together, our data suggests a pathogenic role of autophagy activation in ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Angela Dixon
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Myoung Sup Shim
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - April Nettesheim
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Aislyn Coyne
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Chien-Chia Su
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Paloma B Liton
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA.
| |
Collapse
|
11
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Kumar A, Ou Y. From bench to behaviour: The role of lifestyle factors on intraocular pressure, neuroprotection, and disease progression in glaucoma. Clin Exp Ophthalmol 2023; 51:380-394. [PMID: 36859798 PMCID: PMC11144012 DOI: 10.1111/ceo.14218] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/03/2023]
Abstract
Current glaucoma management centres on intraocular pressure (IOP) reduction through pharmacological and surgical therapy. Despite broad interest in active management of glaucoma through lifestyle modifications, such recommendations have yet to be incorporated into standards of treatment. In this review, noteworthy preclinical studies and their translations in clinical populations are discussed to evaluate the roles of lifestyle factors in lowering IOP, offering neuroprotection, and/or slowing disease progression in those with open-angle glaucoma. Current literature suggests that aerobic exercise may be associated with neuroprotection and decreased disease progression. Mindfulness is associated with IOP reductions and neuroprotection. Caffeine is associated with mild, transient IOP elevations of uncertain significance. Nicotinamide supplementation is associated with neuroprotection and short-term visual function improvement. This review also highlights knowledge gaps regarding these factors and opportunities to strengthen our understanding of their role in glaucoma, including future preclinical studies that elucidate underlying mechanisms and clinical studies with additional functional endpoints and longer follow-up.
Collapse
Affiliation(s)
- Anika Kumar
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, California, USA
| |
Collapse
|
13
|
Liton PB, Boesze-Battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. AUTOPHAGY IN THE EYE: FROM PHYSIOLOGY TO PATHOPHYSOLOGY. AUTOPHAGY REPORTS 2023; 2:2178996. [PMID: 37034386 PMCID: PMC10078619 DOI: 10.1080/27694127.2023.2178996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/26/2023] [Indexed: 03/05/2023]
Abstract
Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.
Collapse
Affiliation(s)
- Paloma B. Liton
- Departments of Ophthalmology & Pathology, Duke School of Medicine, Duke University, Durham, NC 27705, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Patricia Boya
- Department of Neuroscience and Movement Science. Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas A. Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anu Kauppinnen
- Faculty of Health and Sciences, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Gordon W. Laurie
- Departments of Cell Biology, Ophthalmology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Glaucoma Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jaya Sadda
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Debasish Sinha
- Department of Ophthalmology, Cell Biology, and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Abstract
Purpose: Retinal ganglion cell death occurs during the glaucoma pathological process, and it is significant because of the poor regeneration capacity of retinal ganglion cells. With a constantly increasing understanding of retinal cell death mechanisms, we now know that simply blocking a specific mechanism of cell death might not prevent retinal ganglion cell death. This review aimed to summarize the mechanisms of retinal cell death in glaucoma models and discuss the caveats in restoring visual function in these studies.Methods: A literature search was done on PubMed using key words including glaucoma, ocular hypertension, retinal ganglion cell, cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagic cell death, and parthanatos. The literature was reviewed to summarize the information about the lethal pathways of retinal ganglion cell in the glaucoma-like animal models.Results: Based on the purpose, 100 studies were selected and discussed in this review.Conclusions: The damage to ganglion cells in glaucoma-like animals can occur via multiple lethal pathways and the molecular mechanisms are still incompletely understood. Further investigations on the crosstalk between different cell death pathways and the common upstream regulators could augment the development of novel targeting agents for the curative treatment of glaucoma.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
16
|
Song Y, Wang M, Zhao S, Tian Y, Zhang C. Matrine promotes mitochondrial biosynthesis and reduces oxidative stress in experimental optic neuritis. Front Pharmacol 2022; 13:936632. [PMID: 36238552 PMCID: PMC9552203 DOI: 10.3389/fphar.2022.936632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Optic neuritis (ON), characterized by inflammation of the optic nerve and apoptosis of retinal ganglion cells (RGCs), is one of the leading causes of blindness in patients. Given that RGC, as an energy-intensive cell, is vulnerable to mitochondrial dysfunction, improving mitochondrial function and reducing oxidative stress could protect these cells. Matrine (MAT), an alkaloid derived from Sophoraflavescens, has been shown to regulate immunity and protect neurons in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis and ON. However, the protective mechanism of MAT on RGCs is largely unknown. In this study, we show that MAT treatment significantly reduced the degree of inflammatory infiltration and demyelination of the optic nerve and increased the survival rate of RGCs. The expression of Sirtuin 1 (SIRT1), a member of an evolutionarily conserved gene family (sirtuins), was upregulated, as well as its downstream molecules Nrf2 and PGC-1α. The percentage of TOMM20-positive cells was also increased remarkably in RGCs after MAT treatment. Thus, our results indicate that MAT protects RGCs from apoptosis, at least in part, by activating SIRT1 to regulate PGC-1α and Nrf2, which, together, promote mitochondrial biosynthesis and reduce the oxidative stress of RGCs.
Collapse
Affiliation(s)
- Yifan Song
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Mengru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Suyan Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yanjie Tian
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- *Correspondence: Yanjie Tian,
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Parsons RB, Kocinaj A, Ruiz Pulido G, Prendergast SA, Parsons AE, Facey PD, Hirth F. Alpha-synucleinopathy reduces NMNAT3 protein levels and neurite formation that can be rescued by targeting the NAD+ pathway. Hum Mol Genet 2022; 31:2918-2933. [PMID: 35397003 PMCID: PMC9433734 DOI: 10.1093/hmg/ddac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease is characterized by the deposition of α-synuclein, which leads to synaptic dysfunction, the loss of neuronal connections and ultimately progressive neurodegeneration. Despite extensive research into Parkinson's disease pathogenesis, the mechanisms underlying α-synuclein-mediated synaptopathy have remained elusive. Several lines of evidence suggest that altered nicotinamide adenine dinucleotide (NAD+) metabolism might be causally related to synucleinopathies, including Parkinson's disease. NAD+ metabolism is central to the maintenance of synaptic structure and function. Its synthesis is mediated by nicotinamide mononucleotide adenylyltransferases (NMNATs), but their role in Parkinson's disease is not known. Here we report significantly decreased levels of NMNAT3 protein in the caudate nucleus of patients who have died with Parkinson's disease, which inversely correlated with the amount of monomeric α-synuclein. The detected alterations were specific and significant as the expression levels of NMNAT1, NMNAT2 and sterile alpha and TIR motif containing 1 (SARM1) were not significantly different in Parkinson's disease patients compared to controls. To test the functional significance of these findings, we ectopically expressed wild-type α-synuclein in retinoic acid-differentiated dopaminergic SH-SY5Y cells that resulted in decreased levels of NMNAT3 protein plus a neurite pathology, which could be rescued by FK866, an inhibitor of nicotinamide phosphoribosyltransferase that acts as a key enzyme in the regulation of NAD+ synthesis. Our results establish, for the first time, NMNAT3 alterations in Parkinson's disease and demonstrate in human cells that this phenotype together with neurite pathology is causally related to α-synucleinopathy. These findings identify alterations in the NAD+ biosynthetic pathway as a pathogenic mechanism underlying α-synuclein-mediated synaptopathy.
Collapse
Affiliation(s)
- Richard B Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Altin Kocinaj
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Gustavo Ruiz Pulido
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Sarah A Prendergast
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Anna E Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D Facey
- Swansea University, Singleton Park Campus, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neurosciences Institute, Department of Basic & Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
18
|
Wang Y, Fung NSK, Lam WC, Lo ACY. mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11071304. [PMID: 35883796 PMCID: PMC9311918 DOI: 10.3390/antiox11071304] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in the research of the mammalian target of the rapamycin (mTOR) signalling pathway demonstrated that mTOR is a robust therapeutic target for ocular degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Although the exact mechanisms of individual ocular degenerative diseases are unclear, they share several common pathological processes, increased and prolonged oxidative stress in particular, which leads to functional and morphological impairment in photoreceptors, retinal ganglion cells (RGCs), or retinal pigment epithelium (RPE). mTOR not only modulates oxidative stress but is also affected by reactive oxygen species (ROS) activation. It is essential to understand the complicated relationship between the mTOR pathway and oxidative stress before its application in the treatment of retinal degeneration. Indeed, the substantial role of mTOR-mediated autophagy in the pathogenies of ocular degenerative diseases should be noted. In reviewing the latest studies, this article summarised the application of rapamycin, an mTOR signalling pathway inhibitor, in different retinal disease models, providing insight into the mechanism of rapamycin in the treatment of retinal neurodegeneration under oxidative stress. Besides basic research, this review also summarised and updated the results of the latest clinical trials of rapamycin in ocular neurodegenerative diseases. In combining the current basic and clinical research results, we provided a more complete picture of mTOR as a potential therapeutic target for ocular neurodegenerative diseases.
Collapse
|
19
|
Xie F, Li Z, Yang N, Yang J, Hua D, Luo J, He T, Xing Y. Inhibition of Heat Shock Protein B8 Alleviates Retinal Dysfunction and Ganglion Cells Loss Via Autophagy Suppression in Mouse Axonal Damage. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 35758906 PMCID: PMC9248752 DOI: 10.1167/iovs.63.6.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose Heat shock protein B8 (HspB8) can be upregulated rapidly in many pathologic processes, but its role in traumatic optic neuropathy remains unclear. In this study, we investigated the involvement of autophagy in the effects of HspB8 by using the optic nerve crush (ONC) model. Methods Male C57BL/6J mice were intravitreally injected with recombinant adeno-associated virus type 2 (AAV2-shHspB8 or AAV2-GFP) and subsequently received ONC by a self-closing tweezers. Western blot and immunohistochemistry staining were used to evaluate the expression of HspB8. We conducted retinal flat-mount immunofluorescence to measure the quantities of retinal ganglion cells (RGCs), and full-field flash electroretinogram (ff-ERG) and optomotor response (OMR) were used to evaluate retinal function. The autophagy level was reflected by western blot, immunohistochemistry staining, and transmission electron microscope (TEM) images. We also applied 3-methyladenine (3MA) and rapamycin (Rapa) to regulate autophagy level in optic nerve injury. Results ONC stimulated the expression of HspB8. Declines of RGCs and ff-ERG b-wave amplitudes resulting from ONC can be alleviated by HspB8 downregulation. Increased autophagy activity after ONC was observed; however, this change can be reversed by intravitreal injection of AAV2-shHspB8. Furthermore, application of autophagy inhibitor 3MA had the same neuroprotective effects as AAV2-shHspB8, as illustrated by ff-ERG and quantities of RGCs. Also, protection of AAV2-shHspB8 was compromised by the autophagy activator Rapa. Conclusions Inhibition of HspB8 in mice optic nerve injury had neuroprotective effects, which may be derived from its downregulation of autophagy.
Collapse
Affiliation(s)
- Feijia Xie
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, Shandong Province, People's Republic of China
| | - Zongyuan Li
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ning Yang
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jiayi Yang
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Dihao Hua
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jinyuan Luo
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Tao He
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Yiqiao Xing
- Eye Center, RenMin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
20
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
21
|
Tools and Biomarkers for the Study of Retinal Ganglion Cell Degeneration. Int J Mol Sci 2022; 23:ijms23084287. [PMID: 35457104 PMCID: PMC9025234 DOI: 10.3390/ijms23084287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is part of the central nervous system, its analysis may provide an idea of the health and functionality, not only of the retina, but also of the entire central nervous system, as has been shown in Alzheimer’s or Parkinson’s diseases. Within the retina, the ganglion cells (RGC) are the neurons in charge of processing and sending light information to higher brain centers. Diverse insults and pathological states cause degeneration of RGC, leading to irreversible blindness or impaired vision. RGCs are the measurable endpoints in current research into experimental therapies and diagnosis in multiple ocular pathologies, like glaucoma. RGC subtype classifications are based on morphological, functional, genetical, and immunohistochemical aspects. Although great efforts are being made, there is still no classification accepted by consensus. Moreover, it has been observed that each RGC subtype has a different susceptibility to injury. Characterizing these subtypes together with cell death pathway identification will help to understand the degenerative process in the different injury and pathological models, and therefore prevent it. Here we review the known RGC subtypes, as well as the diagnostic techniques, probes, and biomarkers for programmed and unprogrammed cell death in RGC.
Collapse
|
22
|
Dias MS, Luo X, Ribas VT, Petrs-Silva H, Koch JC. The Role of Axonal Transport in Glaucoma. Int J Mol Sci 2022; 23:ijms23073935. [PMID: 35409291 PMCID: PMC8999615 DOI: 10.3390/ijms23073935] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs) and leads to progressive vision loss. The first pathological signs can be seen at the optic nerve head (ONH), the structure where RGC axons leave the retina to compose the optic nerve. Besides damage of the axonal cytoskeleton, axonal transport deficits at the ONH have been described as an important feature of glaucoma. Axonal transport is essential for proper neuronal function, including transport of organelles, synaptic components, vesicles, and neurotrophic factors. Impairment of axonal transport has been related to several neurodegenerative conditions. Studies on axonal transport in glaucoma include analysis in different animal models and in humans, and indicate that its failure happens mainly in the ONH and early in disease progression, preceding axonal and somal degeneration. Thus, a better understanding of the role of axonal transport in glaucoma is not only pivotal to decipher disease mechanisms but could also enable early therapies that might prevent irreversible neuronal damage at an early time point. In this review we present the current evidence of axonal transport impairment in glaucomatous neurodegeneration and summarize the methods employed to evaluate transport in this disease.
Collapse
Affiliation(s)
- Mariana Santana Dias
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Xiaoyue Luo
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Vinicius Toledo Ribas
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
- Correspondence:
| |
Collapse
|
23
|
Zhu Y, Lobato AG, Zhai RG, Pinto M. Human Nmnat1 Promotes Autophagic Clearance of Amyloid Plaques in a Drosophila Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:852972. [PMID: 35401143 PMCID: PMC8988035 DOI: 10.3389/fnagi.2022.852972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by irreversible cognitive decline with limited therapeutic approaches. We characterized a Drosophila model of amyloid pathology that expresses human amyloid-beta precursor protein (APP695) and β-site APP cleaving enzyme (BACE) in the nervous system. Our model recapitulates in vivo the age-dependent accumulation of BACE-derived C-terminal fragment (CTF) and amyloid plaques in the brain, one of the key pathological hallmarks of AD. Using this model, we assessed the effects on plaque formation of Nicotinamide mononucleotide adenylyltransferase (Nmnat), an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase involved in cellular metabolism and neuroprotection. We compared the effects of overexpression of Drosophila Nmnat (dNmnat), human Nmnat1 (hNmnat1), human Nmnat2 (hNmnat2), and human Nmnat3 (hNmnat3), and observed that hNmnat1 has the highest efficacy in reducing amyloid aggregation and APP-CTF accumulation. Interestingly, we demonstrated that overexpression of hNmnat1 reduces amyloid plaques by promoting autophagic clearance. Our findings uncover a role of hNmnat1 in amyloid clearance and suggest an exciting neuroprotective potential of hNmnat1 in amyloid pathology.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Amanda G. Lobato
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Milena Pinto,
| | - Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Milena Pinto,
| |
Collapse
|
24
|
Liu HL, Hu FY, Xu P, Wu JH. Regulation of mitophagy by metformin improves the structure and function of retinal ganglion cells following excitotoxicity-induced retinal injury. Exp Eye Res 2022; 217:108979. [DOI: 10.1016/j.exer.2022.108979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
|
25
|
Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms23031255. [PMID: 35163178 PMCID: PMC8835903 DOI: 10.3390/ijms23031255] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is an important pathomechanism found in numerous ocular degenerative diseases. To provide a better understanding of the mechanism and treatment of oxidant/antioxidant imbalance-induced ocular diseases, this article summarizes and provides updates on the relevant research. We review the oxidative damage (e.g., lipid peroxidation, DNA lesions, autophagy, and apoptosis) that occurs in different areas of the eye (e.g., cornea, anterior chamber, lens, retina, and optic nerve). We then introduce the antioxidant mechanisms present in the eye, as well as the ocular diseases that occur as a result of antioxidant imbalances (e.g., keratoconus, cataracts, age-related macular degeneration, and glaucoma), the relevant antioxidant biomarkers, and the potential of predictive diagnostics. Finally, we discuss natural antioxidant therapies for oxidative stress-related ocular diseases.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
| | - Yen-Ning Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yu-Ting Tsao
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30012, Taiwan;
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan; (Y.-J.H.); (Y.-N.C.); (Y.-T.T.); (W.-C.W.)
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33305, Taiwan
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 7855); Fax: +886-3-328-7798
| |
Collapse
|
26
|
Kitaoka Y, Sase K, Tsukahara C, Fujita N, Arizono I, Kogo J, Tokuda N, Takagi H. Axonal Protection by Netarsudil, a ROCK Inhibitor, Is Linked to an AMPK-Autophagy Pathway in TNF-Induced Optic Nerve Degeneration. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 34982146 PMCID: PMC8742515 DOI: 10.1167/iovs.63.1.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose Netarsudil, a Rho kinase inhibitor with norepinephrine transport inhibitory effect, lowers intraocular pressure, however, its effect on axon damage remains to be elucidated. The aim of the current study was to investigate the effect of netarsudil on TNF-induced axon loss and to examine whether it affects phosphorylated-AMP-activated kinase (p-AMPK) and autophagy in the optic nerve. Methods Intravitreal administration of TNF or TNF with netarsudil was carried out on rats and quantification of axon number was determined. Electron microscopy determined autophagosome numbers. Localization of p-AMPK expression was examined by immunohistochemistry. The changes in p62, LC3-II, and p-AMPK levels were estimated in the optic nerve by immunoblot analysis. The effect of an AMPK activator A769662 or an AMPK inhibitor dorsomorphin on axon number was evaluated. Results Morphometric analysis revealed apparent protection by netarsudil against TNF-induced axon degeneration. Netarsudil increased autophagosome numbers inside axons. Netarsudil treatment significantly upregulated optic nerve LC3-II levels in both the TNF-treated eyes and the control eyes. Increased p62 protein level induced by TNF was significantly ameliorated by netarsudil. The netarsudil administration alone lessened p62 levels. Netarsudil significantly upregulated the optic nerve p-AMPK levels. A769662 exhibited obvious axonal protection against TNF-induced damage. A769662 treatment upregulated LC3-II levels and the increment of p62 level induced by TNF was significantly ameliorated by A769662. Immunohistochemical analysis revealed that p-AMPK is present in axons. Netarsudil-mediated axonal protection was significantly suppressed by dorsomorphin administration. Conclusions Netarsudil upregulated p-AMPK and autophagy. Netarsudil-mediated axonal protection may be associated with upregulated p-AMPK.
Collapse
Affiliation(s)
- Yasushi Kitaoka
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chihiro Tsukahara
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kanagawa, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Naoki Fujita
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kanagawa, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Ibuki Arizono
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kanagawa, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Jiro Kogo
- Department of Ophthalmology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Naoto Tokuda
- Department of Ophthalmology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hitoshi Takagi
- Department of Ophthalmology, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
27
|
Ishikawa M, Nakazawa T, Kunikata H, Sato K, Yoshitomi T, Krishnan K, Covey DF, Zorumski CF, Izumi Y. The Enantiomer of Allopregnanolone Prevents Pressure-Mediated Retinal Degeneration Via Autophagy. Front Pharmacol 2022; 13:855779. [PMID: 35370641 PMCID: PMC8966700 DOI: 10.3389/fphar.2022.855779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
In an ex vivo rat ocular hypertension (OHT) model, the neurosteroid allopregnanolone (AlloP) exerts neuroprotective effects via enhancement of both GABAA receptors and autophagy. We now examine whether its enantiomer (ent-AlloP), which is largely inactive at GABA receptors, offers similar neuroprotection in ex vivo and in vivo rat OHT models. Ex vivo rat retinal preparations were incubated in a hyperbaric condition (10 and 75 mmHg) for 24 h. An in vivo ocular hypertension (OHT) model was induced by intracameral injection of polystyrene microbeads. We examined pharmacological effects of AlloP, ent-AlloP, picrotoxin (a GABAA receptor antagonist), and 3-MA (an autophagy inhibitor) histologically and biochemically. We found that both AlloP and ent-AlloP have marked neuroprotective effects in the retina, but effects of the unnatural enantiomer are independent of GABAA receptors. Electron microscopic analyses show that pressure elevation significantly increased autophagosomes (APs) in the nerve fiber layer and addition of AlloP also increased APs and degenerative autophagic vacuoles (AVds). ent-AlloP markedly increased APs and AVds compared to AlloP. Examination of LC3B-II and SQSTM1 protein levels using immunoblotting revealed that AlloP increased LC3B-II, and ent-AlloP further enhanced LC3B-II and suppressed SQSTM1, indicating that autophagy is a major mechanism underlying neuroprotection by ent-AlloP. In an rat in vivo OHT model, single intravitreal ent-AlloP injection prevented apoptotic cell death of retinal ganglion cells similar to AlloP. However, even in this model, ent-AlloP was more effective in activating autophagy than AlloP. We conclude that ent-AlloP may be a prototype of potential therapeutic for treatment of glaucoma as an autophagy enhancer without affecting GABA receptors.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Yoshitomi
- Department of Orthoptics, Fukuoka International University of Health and Welfare, Fukuoka, Japan.,Department of Ophthalmology, Akita University School of Medicine, Akita, Japan
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles F Zorumski
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Yukitoshi Izumi
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
28
|
Villarejo-Zori B, Jiménez-Loygorri JI, Zapata-Muñoz J, Bell K, Boya P. New insights into the role of autophagy in retinal and eye diseases. Mol Aspects Med 2021; 82:101038. [PMID: 34620506 DOI: 10.1016/j.mam.2021.101038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is a fundamental homeostatic pathway that mediates the degradation and recycling of intracellular components. It serves as a key quality control mechanism, especially in non-dividing cells such as neurons. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. The retina is a light-sensitive tissue located in the back of the eye that detects and processes visual images. Vision is a highly demanding process, making the eye one of the most metabolically active tissues in the body and photoreceptors display glycolytic metabolism, even in the presence of oxygen. The retina and eye are also exposed to other stressors that can impair their function, including genetic mutations and age-associated changes. Autophagy, among other pathways, is therefore a key process for the preservation of retinal homeostasis. Here, we review the roles of both canonical and non-canonical autophagy in normal retinal function. We discuss the most recent studies investigating the participation of autophagy in eye diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy and its role protecting photoreceptors in several forms of retinal degeneration. Finally, we consider the therapeutic potential of strategies that target autophagy pathways to treat prevalent retinal and eye diseases.
Collapse
Affiliation(s)
- Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Katharina Bell
- Singapore Eye Research Institute, Singapore National Eye Centre, Republic of Singapore
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain.
| |
Collapse
|
29
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo M, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez‐Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera R, Piacentini M, Reggiori F, Rubinsztein DC, Ryan K, Sadoshima J, Santambrogio L, Scorrano L, Simon H, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J 2021; 40:e108863. [PMID: 34459017 PMCID: PMC8488577 DOI: 10.15252/embj.2021108863] [Citation(s) in RCA: 948] [Impact Index Per Article: 237.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Collapse
Affiliation(s)
| | - Giulia Petroni
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ravi K Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesSection of PediatricsFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of Medicine, and Jan and Dan Duncan Neurological Research InstituteTexas Children HospitalHoustonTXUSA
| | - Patricia Boya
- Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - José Manuel Bravo‐San Pedro
- Faculty of MedicineDepartment Section of PhysiologyComplutense University of MadridMadridSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineNew York University Langone HealthNew YorkNYUSA
| | - Francesco Cecconi
- Cell Stress and Survival UnitCenter for Autophagy, Recycling and Disease (CARD)Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Onco‐Hematology and Cell and Gene TherapyIRCCS Bambino Gesù Children's HospitalRomeItaly
- Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
| | - Mary E Choi
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
- Division of Nephrology and HypertensionJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Charleen T Chu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Patrice Codogno
- Institut Necker‐Enfants MaladesINSERM U1151‐CNRS UMR 8253ParisFrance
- Université de ParisParisFrance
| | - Maria Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia‐Instituto de Histología y Embriología (IHEM)‐Universidad Nacional de CuyoCONICET‐ Facultad de Ciencias MédicasMendozaArgentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineBronxNYUSA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism (AIMCenter of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ivan Dikic
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Zvulun Elazar
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Gian Maria Fimia
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Department of EpidemiologyPreclinical Research, and Advanced DiagnosticsNational Institute for Infectious Diseases ‘L. Spallanzani’ IRCCSRomeItaly
| | - David A Gewirtz
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Douglas R Green
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery InstituteProgram of DevelopmentAging, and RegenerationLa JollaCAUSA
| | - Marja Jäättelä
- Cell Death and MetabolismCenter for Autophagy, Recycling & DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Terje Johansen
- Department of Medical BiologyMolecular Cancer Research GroupUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Gábor Juhász
- Institute of GeneticsBiological Research CenterSzegedHungary
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Claudine Kraft
- Institute of Biochemistry and Molecular BiologyZBMZFaculty of MedicineUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Guido Kroemer
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéInserm U1138Institut Universitaire de FranceParisFrance
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Karolinska InstituteDepartment of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| | | | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSAAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Carlos Lopez‐Otin
- Departamento de Bioquímica y Biología MolecularFacultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Kay F Macleod
- The Ben May Department for Cancer ResearchThe Gordon Center for Integrative SciencesW‐338The University of ChicagoChicagoILUSA
- The University of ChicagoChicagoILUSA
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Jennifer Martinez
- Immunity, Inflammation and Disease LaboratoryNational Institute of Environmental Health SciencesNIHResearch Triangle ParkNCUSA
| | - Alicia Meléndez
- Biology Department, Queens CollegeCity University of New YorkFlushingNYUSA
- The Graduate Center Biology and Biochemistry PhD Programs of the City University of New YorkNew YorkNYUSA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Rushika M Perera
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Mauro Piacentini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Laboratory of Molecular MedicineInstitute of Cytology Russian Academy of ScienceSaint PetersburgRussia
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & SystemsMolecular Cell Biology SectionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - David C Rubinsztein
- Department of Medical GeneticsCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Kevin M Ryan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular MedicineCardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Laura Santambrogio
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
| | - Luca Scorrano
- Istituto Veneto di Medicina MolecolarePadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
- Department of Clinical Immunology and AllergologySechenov UniversityMoscowRussia
- Laboratory of Molecular ImmunologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
| | | | - Anne Simonsen
- Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Centre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University Hospital MontebelloOsloNorway
| | - Alexandra Stolz
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklion, CreteGreece
- Department of Basic SciencesSchool of MedicineUniversity of CreteHeraklion, CreteGreece
| | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Tamotsu Yoshimori
- Department of GeneticsGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Intracellular Membrane DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationDepartment of PathophysiologyShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Lorenzo Galluzzi
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
- Department of DermatologyYale School of MedicineNew HavenCTUSA
- Université de ParisParisFrance
| | | |
Collapse
|
30
|
Neuroprotection in Glaucoma: NAD +/NADH Redox State as a Potential Biomarker and Therapeutic Target. Cells 2021; 10:cells10061402. [PMID: 34198948 PMCID: PMC8226607 DOI: 10.3390/cells10061402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Its prevalence and incidence increase exponentially with age and the level of intraocular pressure (IOP). IOP reduction is currently the only therapeutic modality shown to slow glaucoma progression. However, patients still lose vision despite best treatment, suggesting that other factors confer susceptibility. Several studies indicate that mitochondrial function may underlie both susceptibility and resistance to developing glaucoma. Mitochondria meet high energy demand, in the form of ATP, that is required for the maintenance of optimum retinal ganglion cell (RGC) function. Reduced nicotinamide adenine dinucleotide (NAD+) levels have been closely correlated to mitochondrial dysfunction and have been implicated in several neurodegenerative diseases including glaucoma. NAD+ is at the centre of various metabolic reactions culminating in ATP production—essential for RGC function. In this review we present various pathways that influence the NAD+(H) redox state, affecting mitochondrial function and making RGCs susceptible to degeneration. Such disruptions of the NAD+(H) redox state are generalised and not solely induced in RGCs because of high IOP. This places the NAD+(H) redox state as a potential systemic biomarker for glaucoma susceptibility and progression; a hypothesis which may be tested in clinical trials and then translated to clinical practice.
Collapse
|
31
|
Ko KW, Milbrandt J, DiAntonio A. SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. J Cell Biol 2021; 219:151915. [PMID: 32609299 PMCID: PMC7401797 DOI: 10.1083/jcb.201912047] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022] Open
Abstract
Neuroinflammation and necroptosis are major contributors to neurodegenerative disease, and axon dysfunction and degeneration is often an initiating event. SARM1 is the central executioner of pathological axon degeneration. Here, we demonstrate functional and mechanistic links among these three pro-degenerative processes. In a neuroinflammatory model of glaucoma, TNF-α induces SARM1-dependent axon degeneration, oligodendrocyte loss, and subsequent retinal ganglion cell death. TNF-α also triggers SARM1-dependent axon degeneration in sensory neurons via a noncanonical necroptotic signaling mechanism. MLKL is the final executioner of canonical necroptosis; however, in axonal necroptosis, MLKL does not directly trigger degeneration. Instead, MLKL induces loss of the axon survival factors NMNAT2 and STMN2 to activate SARM1 NADase activity, which leads to calcium influx and axon degeneration. Hence, these findings define a specialized form of axonal necroptosis. The demonstration that neuroinflammatory signals and necroptosis can act locally in the axon to stimulate SARM1-dependent axon degeneration identifies a therapeutically targetable mechanism by which neuroinflammation can stimulate axon loss in neurodegenerative disease.
Collapse
Affiliation(s)
- Kwang Woo Ko
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
32
|
Ishikawa M, Takaseki S, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. The neurosteroid allopregnanolone protects retinal neurons by effects on autophagy and GABRs/GABA A receptors in rat glaucoma models. Autophagy 2021; 17:743-760. [PMID: 32070183 PMCID: PMC8032250 DOI: 10.1080/15548627.2020.1731270] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 01/22/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
In an ex vivo rat glaucoma model using dissected retinas, the neurosteroid allopregnanolone (AlloP) protects retinal ganglion cells (RGCs) via GABR/GABAA receptors. To determine the involvement of macroautophagy/autophagy in neuroprotection by AlloP, we examined the effects of autophagy activators, rapamycin and torin 2, and autophagy inhibitors, bafilomycin A1 and SAR405, on retinal retinal morphology and expression of MAP1 LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) and SQSTM1 (sequestosome 1). Administration of rapamycin or torin 2 exerted partial histological neuroprotection, while combined administration of AlloP with bafilomycin A1 or SAR405 induced severe degeneration in a hyperbaric condition. Electron microscopic analyses showed that the addition of AlloP significantly increased autophagosomes and degenerative autophagic vacuoles in the retinal nerve fiber layer. Immunoblotting showed that the addition of AlloP or autophagic activators increased the lipidated form of LC3B (LC3B-II) and suppressed SQSTM1. Moreover, bafilomycin A1 increased LC3B-II and SQSTM1 protein levels in the presence of AlloP without changes in corresponding mRNAs compared to AlloP-treated retinas in a hyperbaric condition. These data indicate that AlloP likely induces a protective form of autophagy in this model. In an in vivo rat model of glaucoma, we also observed neuroprotective effects of AlloP. Injection of polystyrene microbeads into the anterior chamber increased intraocular pressure about 3-fold and induced RGC apoptosis. A single intravitreal injection of AlloP or autophagy activators prevented apoptosis and protected RGCs with autophagy activation. We conclude that AlloP may serve as a potential therapeutic agent for the treatment of glaucoma via diverse mechanisms.Abbreviations: 2HBCD: 2-Hydroxypropyl)-β-cyclodextrin; 3-MA: 3-methyladenine; AlloP: allopregnanolone; AP: autophagosome; AVd: degradative autophagic vacuoles; GCL: ganglion cell layer; INL: inner nuclear layer; IOP: intraocular pressure; IPL: inner plexiform layer; LC3B-I: cytosolic form of LC3B; LCB-II: lipidated form of LC3B; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mPTP: mitochondrial permeability transition pore; NDS: neuronal damage score; NFL: nerve fiber layer; OH: ocular hypertension; ON: optic nerve; ONL: outer nuclear layer; OPL: outer plexiform layer; p-STR: scotopic threshold response; RGC: retinal ganglion cells; RT-PCR: real-time reverse transcription polymerase chain reaction; SQSTM1: sequestosome 1; TUNEL: TdT-mediated dUTP Nick End Labeling.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Sanae Takaseki
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
33
|
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD + metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 2021; 22:119-141. [PMID: 33353981 PMCID: PMC7963035 DOI: 10.1038/s41580-020-00313-x] [Citation(s) in RCA: 812] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions, making it central to energy metabolism. NAD+ is also an essential cofactor for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ can directly and indirectly influence many key cellular functions, including metabolic pathways, DNA repair, chromatin remodelling, cellular senescence and immune cell function. These cellular processes and functions are critical for maintaining tissue and metabolic homeostasis and for healthy ageing. Remarkably, ageing is accompanied by a gradual decline in tissue and cellular NAD+ levels in multiple model organisms, including rodents and humans. This decline in NAD+ levels is linked causally to numerous ageing-associated diseases, including cognitive decline, cancer, metabolic disease, sarcopenia and frailty. Many of these ageing-associated diseases can be slowed down and even reversed by restoring NAD+ levels. Therefore, targeting NAD+ metabolism has emerged as a potential therapeutic approach to ameliorate ageing-related disease, and extend the human healthspan and lifespan. However, much remains to be learnt about how NAD+ influences human health and ageing biology. This includes a deeper understanding of the molecular mechanisms that regulate NAD+ levels, how to effectively restore NAD+ levels during ageing, whether doing so is safe and whether NAD+ repletion will have beneficial effects in ageing humans.
Collapse
Affiliation(s)
- Anthony J Covarrubias
- Buck Institute for Research on Aging, Novato, CA, USA
- UCSF Department of Medicine, San Francisco, CA, USA
| | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA.
- UCSF Department of Medicine, San Francisco, CA, USA.
| |
Collapse
|
34
|
Akebia Saponin D prevents axonal loss against TNF-induced optic nerve damage with autophagy modulation. Mol Biol Rep 2020; 47:9733-9738. [PMID: 33249542 PMCID: PMC7723935 DOI: 10.1007/s11033-020-06008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/16/2020] [Indexed: 10/30/2022]
Abstract
Akebia Saponin D (ASD), a triterpenoid saponin, was shown to have protective effects in certain neuronal cells. The purpose of the present study was to investigate the possibility of ASD to prevent tumor necrosis factor (TNF)-induced axonal loss and the ASD modulation of the biologic process of autophagy in optic nerves. Rats were given intravitreal administration of TNF, simultaneous administration of 2, 20, or 200 pmol ASD and TNF, or ASD alone. LC3-II and p62 expression, which is a marker of autophagic flux, and phosphorylated p38 (p-p38) expression in optic nerves were examined by immunoblot analysis. Morphometric analysis revealed a significant ameliorated effect of ASD against TNF-induced optic nerve damage. p62 was significantly increased in the optic nerve in TNF-treated eyes, but this increase was totally prevented by ASD. The ASD alone injection showed significant reduction of p62 levels compared with the PBS-treated control eyes. LC3-II was significantly increased by ASD treatment in the TNF-injected eyes. p-p38 was significantly increased in the optic nerve in TNF-treated eyes, but this increase was completely prevented by ASD. The protective effects of ASD may be associated with enhanced autophagy activation and inhibition of p-p38.
Collapse
|
35
|
Cimaglia G, Votruba M, Morgan JE, André H, Williams PA. Potential Therapeutic Benefit of NAD + Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients 2020; 12:nu12092871. [PMID: 32961812 PMCID: PMC7551676 DOI: 10.3390/nu12092871] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glaucoma and age-related macular degeneration are leading causes of irreversible blindness worldwide with significant health and societal burdens. To date, no clinical cures are available and treatments target only the manageable symptoms and risk factors (but do not remediate the underlying pathology of the disease). Both diseases are neurodegenerative in their pathology of the retina and as such many of the events that trigger cell dysfunction, degeneration, and eventual loss are due to mitochondrial dysfunction, inflammation, and oxidative stress. Here, we critically review how a decreased bioavailability of nicotinamide adenine dinucleotide (NAD; a crucial metabolite in healthy and disease states) may underpin many of these aberrant mechanisms. We propose how exogenous sources of NAD may become a therapeutic standard for the treatment of these conditions.
Collapse
Affiliation(s)
- Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- Cardiff Eye Unit, University Hospital Wales, Cardiff CF14 4XW, Wales, UK
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- School of Medicine, Cardiff University, Cardiff CF14 4YS, Wales, UK
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| |
Collapse
|
36
|
Zhang ML, Zhao GL, Hou Y, Zhong SM, Xu LJ, Li F, Niu WR, Yuan F, Yang XL, Wang Z, Miao Y. Rac1 conditional deletion attenuates retinal ganglion cell apoptosis by accelerating autophagic flux in a mouse model of chronic ocular hypertension. Cell Death Dis 2020; 11:734. [PMID: 32913260 PMCID: PMC7484783 DOI: 10.1038/s41419-020-02951-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Autophagy has a fundamental role in maintaining cell homeostasis. Although autophagy has been implicated in glaucomatous pathology, how it regulates retinal ganglion cell (RGC) injury is largely unknown. In the present work, we found that biphasic autophagy in RGCs occurred in a mouse model of chronic ocular hypertension (COH), accompanied by activation of Rac1, a member of the Rho family. Rac1 conditional knockout (Rac1 cKO) in RGCs attenuated RGC apoptosis, in addition to blocking the increase in the number of autophagosomes and the expression of autophagy-related proteins (Beclin1, LC3-II/I, and p62) in COH retinas. Electron micrograph and double immunostaining of LAMP1 and LC3B showed that Rac1 cKO accelerated autolysosome fusion in RGC axons of COH mice. Inhibiting the first autophagic peak with 3-methyladenine or Atg13 siRNA reduced RGC apoptosis, whereas inhibiting the second autophagic peak with 3-MA or blocking autophagic flux by chloroquine increased RGC apoptosis. Furthermore, Rac1 cKO reduced the number of autophagosomes and apoptotic RGCs induced by rapamycin injected intravitreally, which suggests that Rac1 negatively regulates mTOR activity. Moreover, Rac1 deletion decreased Bak expression and did not interfere with the interaction of Beclin1 and Bcl-2 or Bak in COH retinas. In conclusion, autophagy promotes RGC apoptosis in the early stages of glaucoma and results in autophagic cell death in later stages. Rac1 deletion alleviates RGC damage by regulating the cross talk between autophagy and apoptosis through mTOR/Beclin1-Bak. Interfering with the Rac1/mTOR signaling pathway may provide a new strategy for treating glaucoma.
Collapse
Affiliation(s)
- Meng-Lu Zhang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Guo-Li Zhao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yu Hou
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Shu-Min Zhong
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Lin-Jie Xu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Fang Li
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Wei-Ran Niu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xiong-Li Yang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Zhongfeng Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Yanying Miao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
37
|
Reinehr S, Buschhorn V, Mueller-Buehl AM, Goldmann T, Grus FH, Wolfrum U, Dick HB, Joachim SC. Occurrence of Retinal Ganglion Cell Loss via Autophagy and Apoptotic Pathways in an Autoimmune Glaucoma Model. Curr Eye Res 2020; 45:1124-1135. [PMID: 31935132 DOI: 10.1080/02713683.2020.1716987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE In glaucoma, an apoptotic death of retinal ganglion cells (RGCs) has been shown. However, little is known about other cell death mechanisms, like autophagy or necrosis. Therefore, we investigated these mechanisms in addition to antibody deposits in an experimental autoimmune glaucoma model. METHODS Rats were immunized with a retinal ganglion cell-layer homogenate (RGA), while controls received sodium chloride. Untreated rats served as natїve group. After seven weeks, retinal cross-sections were stained with antibodies against RGCs (Brn-3a), apoptosis (cleaved caspase 2, cleaved caspase 3 as well as caspase 3, 8, and 9), autophagy (LC3BII and LAMP1), and necrosis (RIPK3) followed by cell counts. Autophagy was additionally visualized via transmission electron microscopy on retinal sections. Antibody deposits were also analyzed. RESULTS We noted a RGC loss after RGA immunization compared to both control groups. Also, significantly more cleaved caspase 2+ RGCs were observed in RGA animals. More caspase 3 and 8 signals were noted in RGA retinas compared to both controls, while no changes were seen in regard to caspase 9. Furthermore, significantly more cleaved caspase 3+ cells were detected in RGA animals. We noted an increase of LC3BII+ and LAMP1+ autophagic cells in the RGA group, while no alterations were seen regarding necrotic RIPK3+ cells. Autophagic vesicles were observed via transmission electron microscopy. IgG staining revealed significant differences between the RGA group and controls concerning IgG deposits in the ganglion cell layer. CONCLUSIONS Due to the novel results from this study, we conclude that IgG antibodies are involved in RGC loss in this model leading to apoptotic and autophagic cell loss. These results could help to develop new therapy strategies for glaucoma patients.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Verena Buschhorn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Ana M Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Tobias Goldmann
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz , Germany
| | - Franz H Grus
- Experimental Ophthalmology, University Medical Center Mainz , Mainz, Germany
| | - Uwe Wolfrum
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz , Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| |
Collapse
|
38
|
Kitaoka Y, Sase K, Tsukahara C, Fujita N, Arizono I, Takagi H. Axonal Protection by Nicotinamide Riboside via SIRT1-Autophagy Pathway in TNF-Induced Optic Nerve Degeneration. Mol Neurobiol 2020; 57:4952-4960. [PMID: 32820458 PMCID: PMC7541376 DOI: 10.1007/s12035-020-02063-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) synthesis pathway has been involved in many biological functions. Nicotinamide riboside (NR) is widely used as an NAD+ precursor and known to increase NAD+ level in several tissues. The present study aimed to examine the effect of NR on tumor necrosis factor (TNF)-induced optic nerve degeneration and to investigate whether it alters SIRT1 expression and autophagic status in optic nerve. We also examined the localization of nicotinamide riboside kinase 1 (NRK1), which is a downstream enzyme for NR biosynthesis pathway in retina and optic nerve. Intravitreal injection of TNF or TNF plus NR was performed on rats. The p62 and LC3-II protein levels were examined to evaluate autophagic flux in optic nerve. Immunohistochemical analysis was performed to localize NRK1 expression. Morphometric analysis showed substantial axonal protection by NR against TNF-induced axon loss. TNF-induced increment of p62 protein level was significantly inhibited by NR administration. NR administration alone significantly increased the LC3-II levels and reduced p62 levels compared with the basal levels, and upregulated SIRT1 levels in optic nerve. Immunohistochemical analysis showed that NRK1 exists in retinal ganglion cells (RGCs) and nerve fibers in retina and optic nerve. NR administration apparently upregulated NRK1 levels in the TNF-treated eyes as well as the control eyes. Pre-injection of an SIRT1 inhibitor resulted in a significant increase of p62 levels in the NR plus TNF treatment group, implicating that SIRT1 regulates autophagy status. In conclusion, NRK1 exists in RGCs and optic nerve axons. NR exerted protection against axon loss induced by TNF with possible involvement of upregulated NRK1 and SIRT1-autophagy pathway.
Collapse
Affiliation(s)
- Yasushi Kitaoka
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Chihiro Tsukahara
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Fujita
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ibuki Arizono
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hitoshi Takagi
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
39
|
Adornetto A, Morrone LA, Satriano A, Laganà ML, Licastro E, Nucci C, Corasaniti MT, Tonin P, Bagetta G, Russo R. Effects of caloric restriction on retinal aging and neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:189-207. [PMID: 32958212 DOI: 10.1016/bs.pbr.2020.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glaucoma is the most common neurodegenerative cause of irreversible blindness worldwide. Restricted caloric regimens are an attractive approach for delaying the progression of neurodegenerative diseases. Here we review the current literature on the effects of caloric restriction on retinal neurons, under physiological and pathological conditions. We focused on autophagy as one of the mechanisms modulated by restricted caloric regimens and involved in the death of retinal ganglion cells (RGCs) over the course of glaucoma.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Andrea Satriano
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ester Licastro
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Tiziana Corasaniti
- School of Hospital Pharmacy, University "Magna Graecia" of Catanzaro and Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
40
|
Yao A, Wijngaarden P. Metabolic pathways in context:
mTOR
signalling in the retina and optic nerve ‐ A review. Clin Exp Ophthalmol 2020; 48:1072-1084. [DOI: 10.1111/ceo.13819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Anthony Yao
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
| | - Peter Wijngaarden
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
- Ophthalmology, Department of Surgery University of Melbourne Melbourne, Victoria Australia
| |
Collapse
|
41
|
Zhu X, Wu S, Zeng W, Chen X, Zheng T, Ren J, Ke M. Protective Effects of Rapamycin on Trabecular Meshwork Cells in Glucocorticoid-Induced Glaucoma Mice. Front Pharmacol 2020; 11:1006. [PMID: 32714192 PMCID: PMC7344368 DOI: 10.3389/fphar.2020.01006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid-induced glaucoma (GIG) is a chronic optic neuropathy caused by systemic or topical glucocorticoid (GC) treatment, which could eventually lead to permanent vision loss. To investigate the protective effects of rapamycin (RAP) on the trabecular cells during the development of GIG in mice, the effects of RAP on intraocular pressure (IOP), trabecular ultrastructure, and retinal ganglion cells (RGCs) were examined in C57BL/6J female mice treated with dexamethasone acetate (Dex-Ace). The expression of α-actin in trabecular tissue was detected by immunofluorescence, and the autophagic activity of trabecular cells and the expression of GIG-related myocilin and α-actin were detected by immunoblotting. Our results indicated that Dex-Ace significantly increased IOP at the end of the third week (p < 0.05), while RAP treatment neutralized this elevation of IOP by Dex-Ace. Dex-Ace treatment significantly decreased the RGC numbers (p < 0.05), while synchronous RAP treatment kept the number comparable to control. The outer sheath of elastic fibers became thicker and denser, and the mitochondria of lesions increased in Dex-Ace-treated groups at 4 weeks, while no significant change was observed in the RAP-treated trabecular tissues. Dex-Ace induced myocilin, α-actin, Beclin-1, and LC3-II/LC-I ratio, and lowered p62, while synchronous RAP treatment further activated autophagy and neutralized the induction of myocilin and α-actin. Our studies suggested that RAP protected trabecular meshwork cells by further inducing autophagy way from damages of GC treatment.
Collapse
Affiliation(s)
- Xiaolu Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shengyu Wu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Chen
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tian Zheng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiangbo Ren
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Implications of NAD + Metabolism in the Aging Retina and Retinal Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2692794. [PMID: 32454935 PMCID: PMC7238357 DOI: 10.1155/2020/2692794] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) plays an important role in various key biological processes including energy metabolism, DNA repair, and gene expression. Accumulating clinical and experimental evidence highlights an age-dependent decline in NAD+ levels and its association with the development and progression of several age-related diseases. This supports the establishment of NAD+ as a critical regulator of aging and longevity and, relatedly, a promising therapeutic target to counter adverse events associated with the normal process of aging and/or the development and progression of age-related disease. Relative to the above, the metabolism of NAD+ has been the subject of numerous investigations in various cells, tissues, and organ systems; however, interestingly, studies of NAD+ metabolism in the retina and its relevance to the regulation of visual health and function are comparatively few. This is surprising given the critical causative impact of mitochondrial oxidative damage and bioenergetic crises on the development and progression of degenerative disease of the retina. Hence, the role of NAD+ in this tissue, normally and aging and/or disease, should not be ignored. Herein, we discuss important findings in the field of NAD+ metabolism, with particular emphasis on the importance of the NAD+ biosynthesizing enzyme NAMPT, the related metabolism of NAD+ in the retina, and the consequences of NAMPT and NAD+ deficiency or depletion in this tissue in aging and disease. We discuss also the implications of potential therapeutic strategies that augment NAD+ levels on the preservation of retinal health and function in the above conditions. The overarching goal of this review is to emphasize the importance of NAD+ metabolism in normal, aging, and/or diseased retina and, by so doing, highlight the necessity of additional clinical studies dedicated to evaluating the therapeutic utility of strategies that enhance NAD+ levels in improving vision.
Collapse
|
43
|
Adornetto A, Parisi V, Morrone LA, Corasaniti MT, Bagetta G, Tonin P, Russo R. The Role of Autophagy in Glaucomatous Optic Neuropathy. Front Cell Dev Biol 2020; 8:121. [PMID: 32211404 PMCID: PMC7066980 DOI: 10.3389/fcell.2020.00121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a conserved lysosomal-dependent pathway responsible for the degradation of cytoplasmic macromolecules. Based on the mechanism of cargo delivery to lysosomes, mammalian cells can undergo micro, macro, and chaperone-mediated autophagy. Other than physiological turnover of proteins and organelles, autophagy regulates cellular adaptation to different metabolic states and stressful conditions by allowing cellular survival or, when overactivated, participating to cell death. Due to their structure and function, neurons are highly dependent on autophagy efficiency and dysfunction of the pathway has been associated with neurodegenerative disorders. Glaucomatous optic neuropathies, a leading cause of blindness, are characterized by the progressive loss of a selective population of retinal neurons, i.e., the retinal ganglion cells (RGCs). Here we review the current literature on the role of autophagy in the pathogenic process that leads to the degeneration of RGC in various experimental models of glaucoma exploring the modulation of the pathway as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| | - Vincenzo Parisi
- Visual Neurophysiology and Neurophthalmology Research Unit, IRCCS G.B. Bietti Foundation, Rome, Italy
| | - Luigi Antonio Morrone
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| | | | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| |
Collapse
|
44
|
Wu YY, Zheng BR, Chen WZ, Guo MS, Huang YH, Zhang Y. Expression and role of autophagy related protein p62 and LC3 in the retina in a rat model of acute ocular hypertension. Int J Ophthalmol 2020; 13:21-28. [PMID: 31956566 DOI: 10.18240/ijo.2020.01.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
AIM To investigate the expression and possible role of the autophagy related protein p62 and LC3 in the retina based on a rat model of acute ocular hypertension. METHODS Fifty rats were randomized into five groups: control group A, B, C, and D. Groups A to D all received normal saline perfusion into the anterior chamber with pressure of 80 mm Hg for one hour, and retina tissue was obtained at 6, 12, 24 and 48h after perfusion respectively, to investigate the activation of autophagy following ischemia-reperfusion. The distribution and semi-quantification of autophagy related protein p62 and LC3 in the retina were detected using immunohistochemistry technique. The expression level of these two proteins was evaluated using Western blot. RESULTS The number of retinal ganglion cells (RGCs) decreased with increasing reperfusion time, and significant reduction in the retinal thickness was observed 48h after perfusion. In normal adult rats, LC3 protein was mainly expressed in the ganglion cell layer (GCL), and p62 protein was expressed in the nerve fiber layer (NFL), GCL, inner plexiform layer (IPL), inner nuclear layer (INL) and outer plexiform layer (OPL). In comparison to the control group, the expression level of LC3- II was higher in all the experimental groups (P<0.05), with the peak expression at 12h after reperfusion. Additionally, the expression level of p62 was higher in all the experimental groups than the control (P<0.05, except for group A), with the peak level occurred 24h after reperfusion. CONCLUSION Both p62 and LC3 show low level and uneven expression in the retina of normal adult rats. Acute ocular hypertension can lead to upregulation of LC3- II and p62 expression in the retina. Autophagy flux is damaged 12h after reperfusion, potentially resulting in further loss of RGCs.
Collapse
Affiliation(s)
- Yu-Yu Wu
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Bing-Ru Zheng
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Wan-Zhu Chen
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Mao-Sheng Guo
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yi-Hong Huang
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yan Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
45
|
He Y, Luo X, Zhou B, Hu T, Meng X, Audano PA, Kronenberg ZN, Eichler EE, Jin J, Guo Y, Yang Y, Qi X, Su B. Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants. Nat Commun 2019; 10:4233. [PMID: 31530812 PMCID: PMC6749001 DOI: 10.1038/s41467-019-12174-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
We present a high-quality de novo genome assembly (rheMacS) of the Chinese rhesus macaque (Macaca mulatta) using long-read sequencing and multiplatform scaffolding approaches. Compared to the current Indian rhesus macaque reference genome (rheMac8), rheMacS increases sequence contiguity 75-fold, closing 21,940 of the remaining assembly gaps (60.8 Mbp). We improve gene annotation by generating more than two million full-length transcripts from ten different tissues by long-read RNA sequencing. We sequence resolve 53,916 structural variants (96% novel) and identify 17,000 ape-specific structural variants (ASSVs) based on comparison to ape genomes. Many ASSVs map within ChIP-seq predicted enhancer regions where apes and macaque show diverged enhancer activity and gene expression. We further characterize a subset that may contribute to ape- or great-ape-specific phenotypic traits, including taillessness, brain volume expansion, improved manual dexterity, and large body size. The rheMacS genome assembly serves as an ideal reference for future biomedical and evolutionary studies. Comparative genomic analysis of human and primate relatives can reveal important biological and evolutionary insights. Here, the authors present a long-read assembly of the Chinese rhesus macaque genome and identify ape-specific structural variants.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyu Meng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Peter A Audano
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Zev N Kronenberg
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Jie Jin
- Nextomics Biosciences, Wuhan, 430000, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanan Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
46
|
Park J, Zhu Y, Tao X, Brazill JM, Li C, Wuchty S, Zhai RG. MicroRNA miR-1002 Enhances NMNAT-Mediated Stress Response by Modulating Alternative Splicing. iScience 2019; 19:1048-1064. [PMID: 31522116 PMCID: PMC6745518 DOI: 10.1016/j.isci.2019.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 05/07/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022] Open
Abstract
Understanding endogenous regulation of stress resistance and homeostasis maintenance is critical to developing neuroprotective therapies. Nicotinamide mononucleotide adenylyltransferase (NMNAT) is a conserved essential enzyme that confers extraordinary protection and stress resistance in many neurodegenerative disease models. Drosophila Nmnat is alternatively spliced to two mRNA variants, RA and RB. RB translates to protein isoform PD with robust protective activity and is upregulated upon stress to confer enhanced neuroprotection. The mechanisms regulating the alternative splicing and stress response of NMNAT remain unclear. We have discovered a Drosophila microRNA, dme-miR-1002, which promotes the splicing of NMNAT pre-mRNA to RB by disrupting a pre-mRNA stem-loop structure. NMNAT pre-mRNA is preferentially spliced to RA in basal conditions, whereas miR-1002 enhances NMNAT PD-mediated stress protection by binding via RISC component Argonaute1 to the pre-mRNA, facilitating the splicing switch to RB. These results outline a new process for microRNAs in regulating alternative splicing and modulating stress resistance.
Collapse
Affiliation(s)
- Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
47
|
Hikosaka K, Yaku K, Okabe K, Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci 2019; 24:371-383. [PMID: 31280708 DOI: 10.1080/1028415x.2019.1637504] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme that mediates various redox reactions. Particularly, mitochondrial NAD plays a critical role in energy production pathways, including the tricarboxylic acid (TCA) cycle, fatty acid oxidation, and oxidative phosphorylation. NAD also serves as a substrate for ADP-ribosylation and deacetylation by poly(ADP-ribose) polymerases (PARPs) and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress response. Numerous studies have demonstrated the involvement of NAD metabolism in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and retinal degenerative diseases. Mitochondrial dysfunction is considered crucial pathogenesis for neurodegenerative diseases such as AD and PD. Maintaining appropriate NAD levels is important for mitochondrial function. Indeed, decreased NAD levels are observed in AD and PD, and supplementation of NAD precursors ameliorates disease phenotypes by activating mitochondrial functions. NAD metabolism also plays an important role in axonal degeneration, a characteristic feature of peripheral neuropathy and neurodegenerative diseases. In addition, dysregulated NAD metabolism is implicated in retinal degenerative diseases such as glaucoma and Leber congenital amaurosis, and NAD metabolism is considered a therapeutic target for these diseases. In this review, we summarize the involvement of NAD metabolism in axon degeneration and various neurodegenerative diseases and discuss perspectives of nutritional intervention using NAD precursors.
Collapse
Affiliation(s)
- Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
48
|
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019; 30:251-294. [PMID: 29634344 PMCID: PMC6277084 DOI: 10.1089/ars.2017.7269] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian cells. NAD+ can also be produced by the NAD+ salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging. Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several biochemical pathways. Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors and improved detection methodologies allowing the administration of specific NAD+ precursors in the context of patients' NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in human diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | - Fatemeh Khorshidi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
49
|
Yaku K, Okabe K, Nakagawa T. NAD metabolism: Implications in aging and longevity. Ageing Res Rev 2018; 47:1-17. [PMID: 29883761 DOI: 10.1016/j.arr.2018.05.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important co-factor involved in numerous physiological processes, including metabolism, post-translational protein modification, and DNA repair. In living organisms, a careful balance between NAD production and degradation serves to regulate NAD levels. Recently, a number of studies have demonstrated that NAD levels decrease with age, and the deterioration of NAD metabolism promotes several aging-associated diseases, including metabolic and neurodegenerative diseases and various cancers. Conversely, the upregulation of NAD metabolism, including dietary supplementation with NAD precursors, has been shown to prevent the decline of NAD and exhibits beneficial effects against aging and aging-associated diseases. In addition, many studies have demonstrated that genetic and/or nutritional activation of NAD metabolism can extend the lifespan of diverse organisms. Collectively, it is clear that NAD metabolism plays important roles in aging and longevity. In this review, we summarize the basic functions of the enzymes involved in NAD synthesis and degradation, as well as the outcomes of their dysregulation in various aging processes. In addition, a particular focus is given on the role of NAD metabolism in the longevity of various organisms, with a discussion of the remaining obstacles in this research field.
Collapse
|
50
|
Interplay between NAD + and acetyl‑CoA metabolism in ischemia-induced mitochondrial pathophysiology. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2060-2067. [PMID: 30261291 DOI: 10.1016/j.bbadis.2018.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Brain injury caused by ischemic insult due to significant reduction or interruption in cerebral blood flow leads to disruption of practically all cellular metabolic pathways. This triggers a complex stress response followed by overstimulation of downstream enzymatic pathways due to massive activation of post-translational modifications (PTM). Mitochondria are one of the most sensitive organelle to ischemic conditions. They become dysfunctional due to extensive fragmentation, inhibition of acetyl‑CoA production, and increased activity of NAD+ consuming enzymes. These pathologic conditions ultimately lead to inhibition of oxidative phosphorylation and mitochondrial ATP production. Both acetyl‑CoA and NAD+ are essential intermediates in cellular bioenergetics metabolism and also serve as substrates for post-translational modifications such as acetylation and ADP‑ribosylation. In this review we discuss ischemia/reperfusion-induced changes in NAD+ and acetyl‑CoA metabolism, how these affect relevant PTMs, and therapeutic approaches that restore the physiological levels of these metabolites leading to promising neuroprotection.
Collapse
|