1
|
Chen X, Chen H, Zhu L, Li Q, Sun P, Spanos M, Su C, Wang X, Zhao L, Gui R, Wang T, Wang X, Zhou X, Chen Z. Cascade Nanozyme Delivering miRNA to Ischemic Heart to Alleviate Myocardial Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502778. [PMID: 40289785 DOI: 10.1002/smll.202502778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Myocardial infarction (MI) causes cardiac dysfunction and threatens global health. Timely reperfusion following MI unavoidably contributes to additional cardiomyocyte death, a phenomenon known as myocardial ischemia/reperfusion injury (I/RI). The surge in free radicals and extensive cardiomyocyte loss significantly promote the progression toward heart failure, a condition that remains a major therapeutic challenge. Development of microRNA (miRNA)-based therapeutics for I/RI is hindered by poor intracellular delivery of miRNA and its rapid degradation in vivo. Nanozymes with enzyme-mimetic activities offer promising platforms for miRNA delivery while concurrently mitigating oxidative stress. Hollow ceria nanozymes decorated with gold nanoparticles (AuNPs) are developed to deliver miR-486, whose cavernous rooms enable them to accommodate miRNA. Elevated miR-486 expression is shown to suppress myocardial apoptosis and alleviate I/RI. Equipped with cardiac target peptide, miR-486@CeO2/Au-pep nanoparticles are integrated with superior enzyme-mimicking functions than a single entity, reactive oxygen species (ROS) scavenging, and improved miR-486 delivery. In myocardial I/RI mice, miR-486@CeO2/Au-pep can specifically accumulate at the heart and promote miR-486 to escape from lysosomes, which further boosts the bioactivity of miR-486 in cardiomyocytes. These combined effects confer cardioprotection and inhibit adverse ventricle remodeling. The nanosystem through synergetic works of miRNA and nanozymes provides an effective approach to treating myocardial I/RI.
Collapse
Affiliation(s)
- Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Hang Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Qian Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Pingyuan Sun
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Internal Medicine, Albert Einstein College of Medicine, NCB, Bronx, NY, 10461-1900, USA
| | - Chanyuan Su
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Xiya Wang
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linlin Zhao
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Renxiang Gui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Tianhui Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Hangzhou, 310053, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| |
Collapse
|
2
|
Alehosseini M, Kadumudi FB, Revesz S, Karimi Reikandeh P, Henriksen JR, Zsurzsan TG, Spangenberg J, Dolatshahi-Pirouz A. Self-Maintainable Electronic Materials with Skin-Like Characteristics Enabled by Graphene-PEDOT:PSS Fillers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410539. [PMID: 40279510 DOI: 10.1002/advs.202410539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/22/2025] [Indexed: 04/27/2025]
Abstract
Conventional devices lack the adaptability and responsiveness inherent in the design of nature. Therefore, they cannot autonomously maintain themselves in natural environments. This limitation is primarily because of using rigid and fragile material components for their construction, which hinders their ability to adapt and evolve in changing environments. Moreover, they often cannot self-repair after injuries or significant damage. Even devices with self-healing, soft, and responsive properties often fail to seamlessly integrate all these attributes into a single, scalable, and cohesive platform. In this study, a significant breakthrough is introduced by utilizing graphene-poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (graphene-PEDOT:PSS) fillers to transform a typically weak, insulating, and jelly-like material into a soft electronic material with properties akin to those of living organisms, such as skin tissue. The developed electronic materials exhibit a range of other capabilities attributed to the hierarchical organization originating from filler enhancement, which includes methods such as heat regulation, 3D printability, and multiplex sensing. The introduction of this new class of materials can facilitate the self-maintenance of life-like soft robots and bioelectronics that can be seamlessly integrated within dynamic environments, such as the human body, while demonstrating the ability to sense, respond, and adapt to challenging environments.
Collapse
Affiliation(s)
- Morteza Alehosseini
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Sinziana Revesz
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Parham Karimi Reikandeh
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jonas Rosager Henriksen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tiberiu-Gabriel Zsurzsan
- Department of Electrical and Photonics Engineering, Technical University of Denmark - DTU, Kongens Lyngby, 2800, Denmark
| | - Jon Spangenberg
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | | |
Collapse
|
3
|
Ma M, Zhong J, Tai Y, Xu S, Pei Z, Wang X. Combining RNA-seq, molecular docking and experimental verification to explore the mechanism of BAM15 as a potential drug for atherosclerosis. Sci Rep 2025; 15:13347. [PMID: 40247008 PMCID: PMC12006321 DOI: 10.1038/s41598-025-98209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
BAM15 is a novel mitochondrial uncoupling agent derived from a synthetic source, that has been wildly explored for its ability to enhance mitochondrial respiration and metabolic flexibility. In this study, we investigated the underlying mechanisms of BAM15 on atherosclerosis (AS) through experimental validation, RNA-seq and molecular docking. The results showed that oral administration of BAM15 suppressed atherosclerosis in western diet (WD)-fed ApoE(-/-) mice and significantly improved the hyperlipidemia. And the increased serum ALT, AST and liver TC, TG, ALT, AST in ApoE(-/-) mice were reduced by BAM15 treatment. In in vitro experiments BAM15 inhibited RAW264.7 macrophages invasive ability and reduced palmitic acid-induced lipid accumulation. RNA-seq results confirmed the differential genes after BAM15 treatment and 140 common targets were identified by intersecting with AS-related targets. A protein-protein interaction (PPI) network analysis high-lighted IL1A, SRC and CSF3 as key targets of BAM15 against AS, which is further verified by molecular docking and western blot. Molecular dynamics analysis results confirmed that BAM15 exhibits strong affinity with the IL-1α, SRC and CSF3 proteins. This study indicates that BAM15 inhibits atherosclerosis through a multi-molecular mechanism, and we propose it as a novel anti-atherosclerotic drug.
Collapse
Affiliation(s)
- Minghui Ma
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Jiao Zhong
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Yu Tai
- Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Shuo Xu
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Zejun Pei
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China.
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China.
| | - Xin Wang
- Jiangnan University Medical Center, Wuxi, 214002, Jiangsu, People's Republic of China.
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Zhang J, Li P, Yue J, Meng L, Li W, Yang C, Kim S, Cheng Z, Kamath A, Siahrostami S, Tian B. Gold-modified nanoporous silicon for photoelectrochemical regulation of intracellular condensates. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01878-4. [PMID: 40234705 DOI: 10.1038/s41565-025-01878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/31/2025] [Indexed: 04/17/2025]
Abstract
Nano-enabled catalysis at the interface of metals and semiconductors has found numerous applications, but its role in mediating cellular responses is still largely unexplored. Here we explore the territory by examining the once elusive mechanism through which a nanoporous silicon-based photocatalyst facilitates the two-electron oxidation of water to generate hydrogen peroxide under physiological conditions. We achieve precise modulation of intracellular stress granule formation by the controlled photoelectrochemical production of hydrogen peroxide in the extracellular environment, thereby enhancing cellular resilience to significant oxidative stress. This photoelectrochemical strategy has been evaluated for its efficacy in treating myocardial ischaemia-reperfusion injury in an ex vivo rodent model. Our data suggest that a pretreatment regimen involving photoelectrochemical generation of hydrogen peroxide at mild concentrations mitigates myocardial ischaemia-reperfusion-induced functional decline and infarction. These findings suggest a viable wireless therapeutic intervention for managing ischaemic disease and highlight the biomedical potential of nanostructured semiconductor-based catalytic devices.
Collapse
Affiliation(s)
- Jing Zhang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
| | - Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Wen Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Saehyun Kim
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Ananth Kamath
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Samira Siahrostami
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Bozhi Tian
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Zheng J, Zhao L, Liu Y, Chen M, Guo X, Wang J. N-acetylcysteine, a small molecule scavenger of reactive oxygen species, alleviates cardiomyocyte damage by regulating OPA1-mediated mitochondrial quality control and apoptosis in response to oxidative stress. J Thorac Dis 2024; 16:5323-5336. [PMID: 39268103 PMCID: PMC11388216 DOI: 10.21037/jtd-24-927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 09/15/2024]
Abstract
Background Oxidative stress-induced mitochondrial damage is the major cause of cardiomyocyte dysfunction. Therefore, the maintenance of mitochondrial function, which is regulated by mitochondrial quality control (MQC), is necessary for cardiomyocyte homeostasis. This study aimed to explore the underlying mechanisms of N-acetylcysteine (NAC) function and its relationship with MQC. Methods A hydrogen peroxide-induced oxidative stress model was established using H9c2 cardiomyocytes treated with or without NAC prior to oxidative stress stimulation. Autophagy with light chain 3 (LC3)-green fluorescent protein (GFP) assay, reactive oxygen species (ROS) with the 2',7'-dichlorodi hydrofluorescein diacetate (DCFH-DA) fluorescent, lactate dehydrogenase (LDH) release assay, adenosine triphosphate (ATP) content assay, and a mitochondrial membrane potential detection were used to evaluate mitochondrial dynamics in H2O2-treated H9c2 cardiomyocytes, with a focus on the involvement of MQC regulated by NAC. Cell apoptosis was analyzed using caspase-3 activity assay and Annexin V-fluorescein isothiocyanate (V-FITC)/propidium iodide (PI) double staining. Results We observed that NAC improved cell viability, reduced ROS levels, and partially restored optic atrophy 1 (OPA1) protein expression under oxidative stress. Following transfection with a specific OPA1-small interfering RNA, the mitophagy, mitochondrial dynamics, mitochondrial functions, and cardiomyocyte apoptosis were evaluated to further explore the mechanisms of NAC. Our results demonstrated that NAC attenuated cardiomyocyte apoptosis via the ROS/OPA1 axis and protected against oxidative stress-induced mitochondrial damage via the regulation of OPA1-mediated MQC. Conclusions NAC ameliorated the injury to H9c2 cardiomyocytes caused by H2O2 by promoting the expression of OPA1, consequently improving mitochondrial function and decreasing apoptosis.
Collapse
Affiliation(s)
- Junyi Zheng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Lili Zhao
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Yuanyuan Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Mengying Chen
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Xukun Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| | - Jixiang Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
- Tianjin Institute of Cardiovascular Disease, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
6
|
Zou J, Chen H, Fan X, Qiu Z, Zhang J, Sun J. Garcinol prevents oxidative stress-induced bone loss and dysfunction of BMSCs through NRF2-antioxidant signaling. Cell Death Discov 2024; 10:82. [PMID: 38365768 PMCID: PMC10873372 DOI: 10.1038/s41420-024-01855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
There are multiple published data showing that excessive oxidative stress contributes to bone loss and even bone tissue damage, and it is also correlated with the pathophysiology of bone degenerative diseases, including osteoporosis (OP). Garcinol, a polyisoprenylated benzophenone derivative, has been recently established as an anti-oxidant agent. However, it remains elusive whether Garcinol protects bone marrow mesenchymal stem cells (BMSCs) and bone tissue from oxidative stress-induced damage. Here, we explored the potential effects of Garcinol supplementation in ameliorating oxidative stimulation-induced dysfunction of BMSCs and bone loss in osteoporotic mice. In this study, we verified that Garcinol exerted potent protective functions in the hydrogen peroxide (H2O2)-induced excessive oxidative stress and dysfunction of BMSCs. Besides, Garcinol was also identified to improve the reduced bone mass and abnormal lineage commitment of BMSCs in the condition of OP by suppressing the oxidative stimulation. Subsequent analysis revealed that nuclear factor erythroid 2-related factor 2 (NRF2) might be a key regulator in the sheltering effects of Garcinol on the H2O2-regulated oxidative stress, and the protective functions of Garcinol was mediated by NRF2-antioxidant signaling. Collectively, Garcinol prevented oxidative stress-related BMSC damage and bone loss through the NRF2-antioxidant signaling, which suggested the promising therapeutic values of Garcinol in the treatment of oxidative stress-related bone loss. Therefore, Garcinol might contribute to treating OP.
Collapse
Affiliation(s)
- Jilong Zou
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Chen
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinming Fan
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenrui Qiu
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiale Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiabing Sun
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Tang QZ. ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev 2024; 94:102176. [PMID: 38141734 DOI: 10.1016/j.arr.2023.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
8
|
He H, Yuan Y, Wu Y, Lu J, Yang X, Lu K, Liu A, Cao Z, Sun M, Yu M, Wang H. Exoskeleton Partial-Coated Stem Cells for Infarcted Myocardium Restoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307169. [PMID: 37962473 DOI: 10.1002/adma.202307169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The integration of abiotic materials with live cells has emerged as an exciting strategy for the control of cellular functions. Exoskeletons consisting ofmetal-organic frameworks are generated to produce partial-coated bone marrow stem cells (BMSCs) to overcome low cell survival leading to disappointing effects for cell-based cardiac therapy. Partially coated exoskeletons can promote the survival of suspended BMSCs by integrating the support of exoskeletons and unimpaired cellular properties. In addition, partial exoskeletons exhibit protective effects against detrimental environmental conditions, including reactive oxygen species, pH changes, and osmotic pressure. The partial-coated cells exhibit increased intercellular adhesion forces to aggregate and adhere, promoting cell survival and preventing cell escape during cell therapy. The exoskeletons interact with cell surface receptors integrin α5β1, leading to augmented biological functions with profitable gene expression alteration, such as Vegfa, Cxcl12, and Adm. The partial-coated BMSCs display enhanced cell retention in infarcted myocardium through non-invasive intravenous injections. The repair of myocardial infarction has been achieved with improved cardiac function, myocardial angiogenesis, proliferation, and inhibition of cell apoptosis. This discovery advances the elucidation of potential molecular and cellular mechanisms for cell-exoskeleton interactions and benefits the rational design and manufacture of next-generation nanobiohybrids.
Collapse
Affiliation(s)
- Huihui He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yuan Yuan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, 310058, China
| | - Yunhong Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyi Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaofu Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Kejie Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - An Liu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, China
| | - Zelin Cao
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Miao Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
9
|
Yan Q, Yao X, Li Y, Zhong K, Tang L, Yan X. A red fluorescence probe for reversible detection of HSO 3-/H 2O 2 and its application in food samples and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122882. [PMID: 37207570 DOI: 10.1016/j.saa.2023.122882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Reducing agent SO2 and oxidant H2O2 are two essential substances in cells, and the balance between them is closely related to the survival of cells. SO2 derivative HSO3- is often used as food additive. Therefore, simultaneous detection of SO2 and H2O2 is of great significance in biology and food safety. In this work, we successfully developed a mitochondria-targeted red fluorescent probe (HBTI), which has excellent selectivity, high sensitivity and large Stokes shift (202 nm). HBTI and HSO3-/SO32- undergo Michael addition on the unsaturated C=C bond, and the addition product (HBTI-HSO3-) can react with H2O2 to restore the conjugated structure. Fluorescence changes from red to non-emissive and then restores to red, and can be detected quickly and visually. In addition, HBTI has been successfully targeted mitochondria, and achieved dynamic reversible response to SO2/H2O2 in living cells, and has been successfully applied to detect SO2 in food samples.
Collapse
Affiliation(s)
- Qi Yan
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Xinya Yao
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Ying Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China; Department of Chemistry, National Demonstration Center for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
10
|
Wu L, Li Z, Yao Y. Hydrogen peroxide preconditioning is of dual role in cardiac ischemia/reperfusion. Eur J Pharmacol 2023; 947:175684. [PMID: 36997049 DOI: 10.1016/j.ejphar.2023.175684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Moderate reactive oxygen species (ROS) at reperfusion would trigger cardioprotection and various antioxidants for pharmacological preconditioning failed to achieve cardioprotection. The causes for different roles of preischemic ROS during cardiac ischemia/reperfusion (I/R) require reevaluation. We investigated the precise role of ROS and its working model in this study. Different doses of hydrogen peroxide (H2O2, the most stable form of ROS) were added 5 min before ischemia using isolated perfused rat hearts, only moderate-dose H2O2 preconditioning (H2O2PC) achieved contractile recovery, whereas the low dose and high dose led to injury. Similar results were observed in isolated rat cardiomyocytes on cytosolic free Ca2+ concentration ([Ca2+]c) overload, ROS production, the recovery of Ca2+ transient, and cell shortening. Based on the data mentioned above, we set up a mathematics model to describe the effects of H2O2PC with the fitting curve by the percentage of recovery of heart function and Ca2+ transient in I/R. Besides, we used the two models to define the initial thresholds of H2O2PC achieving cardioprotection. We also detected the expression of redox enzymes and Ca2+ signaling toolkits to explain the mathematics models of H2O2PC in a biological way. The expression of tyrosine 705 phosphorylation of STAT3, Nuclear factor E2-related factor 2, manganese superoxide dismutase, phospholamban, catalase, ryanodine receptors, and sarcoendoplasmic reticulum calcium ATPase 2 were similar with the control I/R and low-dose H2O2PC but were increased in the moderate H2O2PC and decreased in the high-dose H2O2PC. Thus, we concluded that preischemic ROS are of dual role in cardiac I/R.
Collapse
|
11
|
Zhan LF, Zhang Q, Zhao L, Dong X, Pei XY, Peng LL, Zhang XW, Meng B, Shang WD, Pan ZW, Xu CQ, Lu YJ, Zhang MY. LncRNA-6395 promotes myocardial ischemia-reperfusion injury in mice through increasing p53 pathway. Acta Pharmacol Sin 2022; 43:1383-1394. [PMID: 34493812 PMCID: PMC9160051 DOI: 10.1038/s41401-021-00767-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/15/2021] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a pathological process characterized by cardiomyocyte apoptosis, which leads to cardiac dysfunction. Increasing evidence shows that abnormal expression of long noncoding RNAs (lncRNAs) plays a crucial role in cardiovascular diseases. In this study we investigated the role of lncRNAs in myocardial I/R injury. Myocardial I/R injury was induced in mice by ligating left anterior descending coronary artery for 45 min followed by reperfusion for 24 h. We showed that lncRNA KnowTID_00006395, termed lncRNA-6395 was significantly upregulated in the infarct area of mouse hearts following I/R injury as well as in H2O2-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Overexpression of lncRNA-6395 led to cell apoptosis and the expression change of apoptosis-related proteins in NMVCs, whereas knockdown of lncRNA-6395 attenuated H2O2-induced cell apoptosis. LncRNA-6395 knockout mice (lncRNA-6395+/-) displayed improved cardiac function, decreased plasma LDH activity and infarct size following I/R injury. We demonstrated that lncRNA-6395 directly bound to p53, and increased the abundance of p53 protein through inhibiting ubiquitination-mediated p53 degradation and thereby facilitated p53 translocation to the nucleus. More importantly, overexpression of p53 canceled the inhibitory effects of lncRNA-6395 knockdown on cardiomyocyte apoptosis, whereas knockdown of p53 counteracted the apoptotic effects of lncRNA-6395 in cardiomyocytes. Taken together, lncRNA-6395 as an endogenous pro-apoptotic factor, regulates cardiomyocyte apoptosis and myocardial I/R injury by inhibiting degradation and promoting sub-cellular translocation of p53.
Collapse
Affiliation(s)
- Lin-feng Zhan
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Qi Zhang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Lu Zhao
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Xue Dong
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Xin-yu Pei
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Li-li Peng
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Xiao-wen Zhang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Bo Meng
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Wen-di Shang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Zhen-wei Pan
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Chao-qian Xu
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Yan-jie Lu
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China ,grid.410736.70000 0001 2204 9268China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081 China
| | - Ming-yu Zhang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| |
Collapse
|
12
|
Plasma-derived extracellular vesicles transfer microRNA-130a-3p to alleviate myocardial ischemia/reperfusion injury by targeting ATG16L1. Cell Tissue Res 2022; 389:99-114. [PMID: 35503135 DOI: 10.1007/s00441-022-03605-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Extracellular vesicles (EVs) are implicated in myocardial ischemia/reperfusion (I/R) injury as modulators by shuttling diverse cargoes, including microRNAs (miRNAs). The current study was initiated to unravel the potential involvement of plasma-derived EVs carrying miR-130a-3p on myocardial I/R injury. Rats were induced with moderate endoplasmic reticulum stress, followed by isolation of plasma-derived EVs. Then, an I/R rat model and hypoxia/reoxygenation (H/R) cardiomyoblast model were established to simulate a myocardial I/R injury environment where miR-130a-3p was found to be abundantly expressed. miR-130a-3p was confirmed to target and negatively regulate autophagy-related 16-like 1 (ATG16L1) in cardiomyoblasts. Based on a co-culture system, miR-130a-3p delivered by EVs derived from plasma protected H/R-exposed cardiomyoblasts against H/R-induced excessive cardiomyoblast autophagy, inflammation, and damage, improving cardiac dysfunction as well as myocardial I/R-induced cardiac dysfunction and tissue injury. The mechanism underlying the functional role of EVs-loaded miR-130a-3p was found to be dependent on its targeting relation with ATG16L1. The protective action of EV-carried miR-130a-3p was further re-produced in a rat model serving as in vivo validation as evidenced by improved cardiac function, tissue injury, myocardial fibrosis, and myocardial infarction. Collectively, miR-130a-3p shuttled by plasma-derived EVs was demonstrated to alleviate excessive cardiomyoblast autophagy and improve myocardial I/R injury.
Collapse
|
13
|
Zang L, Huang H, Li X, Ju Y, Feng B, Lu J. PEGylated near-infrared fluorescence probe for mitochondria-targetable hydrogen peroxide detection. Talanta 2022; 243:123370. [DOI: 10.1016/j.talanta.2022.123370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/09/2023]
|
14
|
Yang G, Zhu T, Wang D, Liu Z, Zhang R, Han G, Tian X, Liu B, Han MY, Zhang Z. Revealing the signaling regulation of hydrogen peroxide to cell pyroptosis using a ratiometric fluorescent probe in living cells. Chem Commun (Camb) 2021; 57:6628-6631. [PMID: 34124718 DOI: 10.1039/d1cc02008k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A ratiometric fluorescent probe with a large emission shift was developed for the accurate measurement of hydrogen peroxide (H2O2) in sophisticated pyroptosis signaling pathways. The results reported here demonstrate that H2O2, as a principal member of ROS, is a critical upstream signaling molecule in regulating pyroptosis.
Collapse
Affiliation(s)
- Guanqing Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Tong Zhu
- School of Life Science, Anhui University, Hefei 230601, China
| | - Dong Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Zhengjie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Ruilong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
| | - Guangmei Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bianhua Liu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Ming-Yong Han
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhongping Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Chemistry and Chemical Engineering and Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China. and Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, China
| |
Collapse
|
15
|
Swami Vetha BS, Adam AG, Aileru A. Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22115607. [PMID: 34070585 PMCID: PMC8198274 DOI: 10.3390/ijms22115607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Polyoxalate (POx) and copolyoxalate (CPOx) smart polymers are topics of interest the field of inflammation. This is due to their drug delivery ability and their potential to target reactive oxygen species (ROS) and to accommodate small molecules such as curcumin, vanilline, and p-Hydroxybenzyl alcohol. Their biocompatibility, ultra-size tunable characteristics and bioimaging features are remarkable. In this review we discuss the genesis and concept of oxylate smart polymer-based particles and a few innovative systemic delivery methods that is designed to counteract the inflammation and other aging-associated diseases (AADs). First, we introduce the ROS and its role in human physiology. Second, we discuss the polymers and methods of incorporating small molecule in oxalate backbone and its drug delivery application. Finally, we revealed some novel proof of concepts which were proven effective in disease models and discussed the challenges of oxylate polymers.
Collapse
Affiliation(s)
- Berwin Singh Swami Vetha
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
| | - Angela Guma Adam
- Physio/Biochem/New Product Development Division, Cocoa Research Center Institute of Ghana, P.O. Box 8, New Tafo-Akim 0233, Eastern Region, Ghana;
| | - Azeez Aileru
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
- Correspondence: ; Tel.: +252-737-7125
| |
Collapse
|
16
|
Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 2021; 22:678. [PMID: 33986843 PMCID: PMC8111863 DOI: 10.3892/etm.2021.10110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor-erythroid-2-related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch-like ECH-associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress-associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Huang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jichun Liu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Zhao Y, Iyer S, Tavanaei M, Nguyen NT, Lin A, Nguyen TP. Proarrhythmic Electrical Remodeling by Noncardiomyocytes at Interfaces With Cardiomyocytes Under Oxidative Stress. Front Physiol 2021; 11:622613. [PMID: 33603677 PMCID: PMC7884825 DOI: 10.3389/fphys.2020.622613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Life-threatening ventricular arrhythmias, typically arising from interfaces between fibrosis and surviving cardiomyocytes, are feared sequelae of structurally remodeled hearts under oxidative stress. Incomplete understanding of the proarrhythmic electrical remodeling by fibrosis limits the development of novel antiarrhythmic strategies. To define the mechanistic determinants of the proarrhythmia in electrical crosstalk between cardiomyocytes and noncardiomyocytes, we developed a novel in vitro model of interface between neonatal rat ventricular cardiomyocytes (NRVMs) and controls [NRVMs or connexin43 (Cx43)-deficient HeLa cells] vs. Cx43+ noncardiomyocytes [aged rat ventricular myofibroblasts (ARVFs) or HeLaCx43 cells]. We performed high-speed voltage-sensitive optical imaging at baseline and following acute H2O2 exposure. In NRVM-NRVM and NRVM-HeLa controls, no arrhythmias occurred under either experimental condition. In the NRVM-ARVF and NRVM-HeLaCx43 groups, Cx43+ noncardiomyocytes enabled passive decremental propagation of electrical impulses and impaired NRVM activation and repolarization, thereby slowing conduction and prolonging action potential duration. Following H2O2 exposure, arrhythmia triggers, automaticity, and non-reentrant and reentrant arrhythmias emerged. This study reveals that myofibroblasts (which generate cardiac fibrosis) and other noncardiomyocytes can induce not only structural remodeling but also electrical remodeling and that electrical remodeling by noncardiomyocytes can be particularly arrhythmogenic in the presence of an oxidative burst. Synergistic electrical remodeling between H2O2 and noncardiomyocytes may account for the clinical arrhythmogenicity of myofibroblasts at fibrotic interfaces with cardiomyocytes in ischemic/non-ischemic cardiomyopathies. Understanding the enhanced arrhythmogenicity of synergistic electrical remodeling by H2O2 and noncardiomyocytes may guide novel safe-by-design antiarrhythmic strategies for next-generation iatrogenic interfaces between surviving native cardiomyocytes and exogenous stem cells or engineered tissues in cardiac regenerative therapies.
Collapse
Affiliation(s)
- Yali Zhao
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Shankar Iyer
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Maryam Tavanaei
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Nicole T Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Andrew Lin
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Thao P Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
18
|
Reina-Couto M, Afonso J, Carvalho J, Morgado L, Ronchi FA, de Oliveira Leite AP, Dias CC, Casarini DE, Bettencourt P, Albino-Teixeira A, Morato M, Sousa T. Interrelationship between renin-angiotensin-aldosterone system and oxidative stress in chronic heart failure patients with or without renal impairment. Biomed Pharmacother 2021; 133:110938. [DOI: 10.1016/j.biopha.2020.110938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/18/2020] [Accepted: 10/24/2020] [Indexed: 12/22/2022] Open
|
19
|
Wu L, Huang WQ, Yu CC, Li YF. Moderate Hydrogen Peroxide Postconditioning Ameliorates Ischemia/Reperfusion Injury in Cardiomyocytes via STAT3-Induced Calcium, ROS, and ATP Homeostasis. Pharmacology 2020; 106:275-285. [PMID: 33302272 DOI: 10.1159/000511961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Moderate hydrogen peroxide postconditioning (H2O2PoC) activates signal transducer and activator of transcription 3 (STAT3) to alleviate mitochondrial calcium overload during cardiac ischemia/reperfusion (I/R). However, the initial time window of STAT3-induced calcium hemostasis, the production of reactive oxygen species (ROS) and adenosine triphosphate (ATP) in H2O2PoC, and its regulated mechanism remain unknown. This study aimed to investigate H2O2PoC-induced homeostasis of calcium, ROS and ATP, and the role of STAT3 in the regulation. METHODS Isolated rat cardiomyocytes were exposed to H2O2PoC and Janus kinase 2 (JAK2)/STAT3 inhibitor AG490 during I/R. Ca2+ transients, cell contraction, intracellular calcium concentration, ROS production, ATP contents, phosphorylation of STAT3, gene and protein expression of manganese superoxide dismutase (MnSOD), metallothionein 1 (MT1) and metallothionein 2 (MT2), as well as activities of mitochondrial complex I and complex II were detected. RESULTS Moderate H2O2PoC improved post-ischemic Ca2+ transients and cell contraction recovery as well as alleviated cytosolic and mitochondrial calcium overload, which were abrogated by AG490 in rat cardiomyocytes. Moderate H2O2PoC increased ROS production and rate of ROS production at early reperfusion in rat I/R cardiomyocytes, and this phenomenon was also abrogated by AG490. Notably, the expression of phosphorylated nuclear STAT3; gene and protein expression of MnSOD, MT1, and MT2; and activities of mitochondrial complex I and complex II were upregulated by moderate H2O2PoC but downregulated by AG490. CONCLUSION These findings indicated that the cardioprotection of moderate H2O2PoC against cardiac I/R could be associated with activated STAT3 at early reperfusion to maintain calcium, ROS, and ATP homeostasis in rat cardiomyocytes.
Collapse
Affiliation(s)
- Lan Wu
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China,
- School of Basic Medical Sciences and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China,
| | - Wen-Qing Huang
- Department of Endodontics and The Key Laboratory of Oral Biomedicine, Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Cheng-Chao Yu
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yan-Fei Li
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
20
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
21
|
Liu X, Wu Y, Zhou D, Xie Y, Zhou Y, Lu Y, Yang R, Liu S. N‑linoleyltyrosine protects PC12 cells against oxidative damage via autophagy: Possible involvement of CB1 receptor regulation. Int J Mol Med 2020; 46:1827-1837. [PMID: 33000188 PMCID: PMC7521587 DOI: 10.3892/ijmm.2020.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is one of the main pathogenic factors of neurodegenerative diseases. As the ligand of cannabinoid type 1 (CB1) and 2 (CB2) receptors, anandamide (AEA) exerts benign antioxidant activities. However, the instability of AEA results in low levels in vivo, which limit its further application. Based on the structure of AEA, N‑linoleyltyrosine (NITyr) was synthesized in our laboratory and was hypothesized to possess a similar function to that of AEA. To the best of our knowledge, the present study demonstrates for the first time, the activities and mechanisms of NITyr. NITyr treatment attenuated hydrogen peroxide (H2O2)‑induced cytotoxicity, with the most promiment effect observed at 1 µmol/l. Treatment with NITyr also suppressed the H2O2‑induced elevation of reactive oxygen species (ROS) and enhanced the expression of the autophagy‑related proteins, LC3‑II, beclin‑1, ATG 5 and ATG13. The autophagic inhibitor, 3‑methyladenine, reversed the effects of NITyr on ROS levels and cellular viability. Furthermore, AM251, a CB1 receptor antagonist, but not AM630 (a CB2 receptor antagonist), diminished the effects of NITyr on cell viability, ROS generation and autophagy‑related protein expression. However, NITyr increased the protein expression of both the CB1 and CB2 receptors. Therefore, NITyr was concluded to protect PC12 cells against H2O2‑induced oxidative injury by inducing autophagy, a process which may involve the CB1 receptor.
Collapse
Affiliation(s)
- Xuechen Liu
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yiying Wu
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Dan Zhou
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yuting Xie
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yi Zhou
- Research and Development Center, Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan 610200, P.R. China
| | - Yu Lu
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Rui Yang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Sha Liu
- Department of Pharmacy, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
22
|
Mechanism of Emulsified Isoflurane Postconditioning-Induced Activation of the Nrf2-Antioxidant Response Element Signaling Pathway During Myocardial Ischemia-Reperfusion: The Relationship With Reactive Oxygen Species. J Cardiovasc Pharmacol 2020; 73:265-271. [PMID: 31082959 DOI: 10.1097/fjc.0000000000000668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Emulsified isoflurane (EI) has been shown to alleviate myocardial ischemia-reperfusion (IR) injury. However, previous reports have not been focused on the underlying mechanism. We used models of IR injury in Langendorff-isolated rat hearts to determine the relationship between the mechanism underlying EI postconditioning (EIP)-induced activation of the nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element signaling pathway during myocardial IR, and its relationship with reactive oxygen species. In comparison with the IR group, the EIP group showed a significant reduction in myocardial ultrastructural damage, significant increase in function [heart rate, left ventricular developed pressure, left ventricular end-diastolic pressure, and maximal rate of the increase in left ventricular pressure (+dp/dtmax)], and upregulated expression of Nrf2, HO-I, NQO1, and SOD1 mRNA and proteins at the end of reperfusion. After treatment with N-(2-mercaptopropionyl)-glycine (MPG), the significant reduction in myocardial ultrastructural damage and significant increases in function, and mRNA and protein expression were no longer evident in the M + EIP group. These results show that EIP can regulate reactive oxygen species levels and activate the Nrf2-antioxidant response element signaling pathway, thereby attenuating myocardial IR injury in rats.
Collapse
|
23
|
Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis. Cell Death Dis 2020; 11:354. [PMID: 32393784 PMCID: PMC7214429 DOI: 10.1038/s41419-020-2508-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs)-derived cardiovascular progenitor cells (CVPCs) are a promising source for myocardial repair, while the mechanisms remain largely unknown. Extracellular vesicles (EVs) are known to mediate cell–cell communication, however, the efficacy and mechanisms of hPSC-CVPC-secreted EVs (hCVPC-EVs) in the infarct healing when given at the acute phase of myocardial infarction (MI) are unknown. Here, we report the cardioprotective effects of the EVs secreted from hESC-CVPCs under normoxic (EV-N) and hypoxic (EV-H) conditions in the infarcted heart and the long noncoding RNA (lncRNA)-related mechanisms. The hCVPC-EVs were confirmed by electron microscopy, nanoparticle tracking, and immunoblotting analysis. Injection of hCVPC-EVs into acutely infracted murine myocardium significantly improved cardiac function and reduced fibrosis at day 28 post MI, accompanied with the improved vascularization and cardiomyocyte survival at border zones. Consistently, hCVPC-EVs enhanced the tube formation and migration of human umbilical vein endothelial cells (HUVECs), improved the cell viability, and attenuated the lactate dehydrogenase release of neonatal rat cardiomyocytes (NRCMs) with oxygen glucose deprivation (OGD) injury. Moreover, the improvement of the EV-H in cardiomyocyte survival and tube formation of HUVECs was significantly better than these in the EV-N. RNA-seq analysis revealed a high abundance of the lncRNA MALAT1 in the EV-H. Its abundance was upregulated in the infarcted myocardium and cardiomyocytes treated with hCVPC-EVs. Overexpression of human MALAT1 improved the cell viability of NRCM with OGD injury, while knockdown of MALAT1 inhibited the hCVPC-EV-promoted tube formation of HUVECs. Furthermore, luciferase activity assay, RNA pull-down, and manipulation of miR-497 levels showed that MALAT1 improved NRCMs survival and HUVEC tube formation through targeting miR-497. These results reveal that hCVPC-EVs promote the infarct healing through improvement of cardiomyocyte survival and angiogenesis. The cardioprotective effects of hCVPC-EVs can be enhanced by hypoxia-conditioning of hCVPCs and are partially contributed by MALAT1 via targeting the miRNA.
Collapse
|
24
|
Salameh A, Zöbisch H, Schröder B, Vigelahn J, Jahn M, Abraham G, Seeger J, Dähnert I, Dhein S. Effects of Hypoxia and Acidosis on Cardiac Electrophysiology and Hemodynamics. Is NHE-Inhibition by Cariporide Still Advantageous? Front Physiol 2020; 11:224. [PMID: 32265732 PMCID: PMC7103633 DOI: 10.3389/fphys.2020.00224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/27/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxia often leads to severe cardiac malfunctions. It is assumed that intracellular calcium overload is -inter alia- responsible for left ventricular (LV) deterioration. Inhibition of the sodium-proton exchanger (NHE), which finally inhibits/slows calcium overload, may ameliorate cardiac function. Our aim was to evaluate cariporide, an inhibitor of NHE1 in a Langendorff-perfused heart model. To discriminate a potentially different impact of extracellular acidosis and hypoxia we examined 48 Chinchilla Bastard rabbits divided into 8 experimental groups: control group (pH = 7.4, O2 = 100%) without or with cariporide (1 μM), acidosis group (pH = 7.0, O2 = 100%) without or with cariporide (1 μM), hypoxia group (pH = 7.4, O2 = 40%) without or with cariporide (1 μM) and hypoxia+acidosis group (pH = 7.0, O2 = 40%) without or with cariporide (1 μM). Hearts were subjected to acidotic/hypoxic conditions for 90 min followed by 60 min of reperfusion. Hypoxia and hypoxia+acidosis led to a severe deterioration of LV function with a decrease in LV pressure by about 70% and an increase of end-diastolic pressure from 6.7 ± 0.6 to 36.8 ± 5.4 (hypoxia) or from 7.0 ± 0.2 to 18.6 ± 4.1 (hypoxia+acidosis). Moreover, maximum contraction velocity decreased from about 1,800 mmHg/s to 600 mmHg/s during hypoxia ± acidosis and maximum relaxation velocity deteriorated from −1,500 mmHg/s to about −600 mmHg/s. During reperfusion hearts subjected to hypoxia+acidosis recovered faster than hearts subjected to hypoxia alone, reaching control levels after 5 min of reperfusion. Electrophysiologic analysis revealed an 1.2 fold increase in both dispersion of activation-recovery interval and in total activation time in the hypoxia ± acidosis group. Cariporide application significantly improved LV hemodynamics and electrophysiology in the hypoxia group but not in the group subjected to hypoxia+acidosis. Immunohistologic analysis of cardiac specimen revealed a significant increase of factors involved in hypoxia/reperfusion injury like nitrotyrosine and poly-ADP-ribose as well as apoptosis-inducing factors like AIF or cleaved-caspase 3 in LV after hypoxia ± acidosis. ATP was reduced by hypoxia but not by acidosis. Again, cariporide mitigated these processes only in the hypoxia alone group, but not in the group with additional acidosis. Acidosis without hypoxia only marginally disturbed LV function and electrophysiology, and was not affected by cariporide. Thus, our study demonstrated that several detrimental effects of hypoxia were mitigated or abrogated by acidosis and that NHE-inhibition improved only hypoxia-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Aida Salameh
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Helena Zöbisch
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Bianca Schröder
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Jonas Vigelahn
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Mandy Jahn
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Getu Abraham
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Ingo Dähnert
- Heart Centre Clinic for Paediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Stefan Dhein
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Mariángelo JIE, Román B, Silvestri MA, Salas M, Vittone L, Said M, Mundiña‐Weilenmann C. Chemical chaperones improve the functional recovery of stunned myocardium by attenuating the endoplasmic reticulum stress. Acta Physiol (Oxf) 2020; 228:e13358. [PMID: 31385408 DOI: 10.1111/apha.13358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
AIM Myocardial ischaemia/reperfusion (I/R) produces structural and functional alterations depending on the duration of ischaemia. Brief ischaemia followed by reperfusion causes reversible contractile dysfunction (stunned heart) but long-lasting ischaemia followed by reperfusion can result in irreversible injury with cell death. Events during I/R can alter endoplasmic reticulum (ER) function leading to the accumulation of unfolded/misfolded proteins. The resulting ER stress induces activation of several signal transduction pathways, known as unfolded protein response (UPR). Experimental evidence shows that UPR contributes to cell death in irreversible I/R injury; however, there is still uncertainty for its occurrence in the stunned myocardium. This study investigated the ER stress response and its functional impact on the post-ischaemic cardiac performance of the stunned heart. METHODS Perfused rat hearts were subjected to 20 minutes of ischaemia followed by 30 minutes of reperfusion. UPR markers were evaluated by qRT-PCR and western blot. Post-ischaemic mechanical recovery was measured in absence and presence of two chemical chaperones: tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA). RESULTS Analysis of mRNA and protein levels of various ER stress effectors demonstrated that different UPR signalling cascades, involving both pro-survival and pro-apoptotic pathways, are activated. Inhibition of the UPR with chemical chaperones improved the post-ischaemic recovery of cardiac mechanical function without affecting the I/R-induced increase in oxidative stress. CONCLUSION Our results suggest that prevention of ER stress by chemical chaperones could be a therapeutic tool to limit deterioration of the contractile function in clinical settings in which the phenomenon of myocardial stunning is present.
Collapse
Affiliation(s)
- Juan Ignacio Elio Mariángelo
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Bárbara Román
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - María Agustina Silvestri
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Margarita Salas
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Leticia Vittone
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Cecilia Mundiña‐Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| |
Collapse
|
26
|
Li J, Zhou W, Chen W, Wang H, Zhang Y, Yu T. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post‑conditioning. Mol Med Rep 2020; 21:1527-1536. [PMID: 32016463 PMCID: PMC7003038 DOI: 10.3892/mmr.2020.10966] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023] Open
Abstract
Ischemic post-conditioning (IPO) and diazoxide post-conditioning (DPO) has been proven to reduce myocardial ischemia reperfusion injury (MIRI); however, the mechanisms of IPO/DPO are still not clear. The present study aimed to investigate whether mitochondrial ATP-sensitive potassium channels (mitoKATP) channels are activated by IPO/DPO, which may further activate the hypoxia inducible factor 1/hypoxic response element (HIF-1/HRE) pathway to mitigate MIRI. Using a Langendorff perfusion device, healthy male (250–300 g) Sprague Dawley rat hearts were randomly divided into the following groups. Group N was aerobically perfused with K-H solution for 120 min. Group ischaemia/reperfusion (I/R) was aerobically perfused for 20 min, then subjected to 40 min hypoxia plus 60 min reperfusion. Group IPO was treated like the I/R group, but with 10 sec of hypoxia plus 10 sec of reperfusion for six rounds before reperfusion. Group DPO was exposed to 50 µM diazoxide for 5 min before reperfusion and otherwise treated the same as group I/R. In groups IPO+5-hydroxydecanoic acid (5HD), DPO+5HD and I/R+5HD, exposure to 100 µM 5HD (a mitoKATP channel specific blocker) for 5 min before reperfusion as described for groups IPO, DPO and I/R, respectively. In groups IPO+2-methoxyestradiol (2ME2), DPO+2ME2 and I/R+2ME2, exposure to 2 µM 2ME2 (a HIF-1α specific blocker) for 10 min before reperfusion as described for groups IPO, DPO and I/R respectively. Cardiac hemodynamics, myocardial injury and the expression of HIF-1/HRE pathway [HIF-1α, heme oxygenase (HO-1), inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF)] were detected in each group. The infarct size and mitochondrial Flameng scores of groups IPO/DPO were significantly decreased compared with the I/R group (P<0.05), but the myocardial protective effects of IPO/DPO could be eliminated by 5HD or 2ME2 (P<0.05). In addition, IPO/DPO could increase the mRNA expression of HIF-1α and the downstream factors of the HIF-1/HRE pathway (the mRNA and protein expression of HO-1, iNOS and VEGF; P<0.05). However, the myocardial protective effects and the activation the HIF-1/HRE pathway mediated by IPO/DPO could be eliminated by 5HD or 2ME2 (P<0.05). Therefore, the activation of the HIF-1/HRE pathway by opening mitoKATP channels may work with the mechanism of IPO/DPO in reducing MIRI.
Collapse
Affiliation(s)
- Jin Li
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wenjing Zhou
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wei Chen
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Haiying Wang
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yu Zhang
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
27
|
Wu H, Zhu H, Zhuang Y, Zhang J, Ding X, Zhan L, Luo S, Zhang Q, Sun F, Zhang M, Pan Z, Lu Y. LncRNA ACART protects cardiomyocytes from apoptosis by activating PPAR-γ/Bcl-2 pathway. J Cell Mol Med 2019; 24:737-746. [PMID: 31749326 PMCID: PMC6933347 DOI: 10.1111/jcmm.14781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022] Open
Abstract
Cardiomyocyte apoptosis is an important process occurred during cardiac ischaemia‐reperfusion injury. Long non‐coding RNAs (lncRNA) participate in the regulation of various cardiac diseases including ischaemic reperfusion (I/R) injury. In this study, we explored the potential role of lncRNA ACART (anti‐cardiomyocyte apoptosis‐related transcript) in cardiomyocyte injury and the underlying mechanism for the first time. We found that ACART was significantly down‐regulated in cardiac tissue of mice subjected to I/R injury or cultured cardiomyocytes treated with hydrogen peroxide (H2O2). Knockdown of ACART led to significant cardiomyocyte injury as indicated by reduced cell viability and increased apoptosis. In contrast, overexpression of ACART enhanced cell viability and reduced apoptosis of cardiomyocytes treated with H2O2. Meanwhile, ACART increased the expression of the B cell lymphoma 2 (Bcl‐2) and suppressed the expression of Bcl‐2‐associated X (Bax) and cytochrome‐C (Cyt‐C). In addition, PPAR‐γ was up‐regulated by ACART and inhibition of PPAR‐γ abolished the regulatory effects of ACART on cell apoptosis and the expression of Bcl‐2, Bax and Cyt‐C under H2O2 treatment. However, the activation of PPAR‐γ reversed the effects of ACART inhibition. The results demonstrate that ACART protects cardiomyocyte injury through modulating the expression of Bcl‐2, Bax and Cyt‐C, which is mediated by PPAR‐γ activation. These findings provide a new understanding of the role of lncRNA ACART in regulation of cardiac I/R injury.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haixia Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuting Zhuang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jifan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Ding
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linfeng Zhan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shenjian Luo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fei Sun
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingyu Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanjie Lu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Wu L, Tan JL, Chen ZY, Huang G. Cardioprotection of post-ischemic moderate ROS against ischemia/reperfusion via STAT3-induced the inhibition of MCU opening. Basic Res Cardiol 2019; 114:39. [DOI: 10.1007/s00395-019-0747-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
|
29
|
Chen J, Yu T, He X, Fu Y, Dai L, Wang B, Wu Y, He J, Li Y, Zhang F, Zhao J, Liu C. Dual roles of hydrogen peroxide in promoting zebrafish renal repair and regeneration. Biochem Biophys Res Commun 2019; 516:680-685. [PMID: 31248596 DOI: 10.1016/j.bbrc.2019.06.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Acute renal injury (AKI) is a serious disorder of renal failure or renal damage that occurs within hours or days. At present, there is no approved pharmaceutical treatment for AKI. Zebrafish is an excellent model for studying the repair of AKI because of its remarkable ability to repair kidney injury. Using zebrafish AKI model inducing by gentamicin, we found that hydrogen peroxide (H2O2) plays dual roles during the period of AKI recovery including renal repair and kidney regeneration. In the repair stage of AKI, H2O2 was produced in proximal and distal segments of renal tubules. By inhibiting H2O2 generation using Duox Vivo-Morpholino or chemical inhibitor, it was observed of severe damage of renal tubules, and extensive cell apoptosis. In the stage of regeneration, we found that H2O2 was highly generated in renal interstitium. Inhibiting production of H2O2 could significantly down-regulate the ability of kidney regeneration, which was associated with the failure of proliferation of renal progenitor cells. Therefore, H2O2 acts as a protective factor in renal repair and an initial signal of kidney regeneration, indicating the key roles of H2O2 in promoting recovery of AKI in zebrafish.
Collapse
Affiliation(s)
- Jianli Chen
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Ting Yu
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xian He
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yao Fu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Lu Dai
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Bin Wang
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yan Wu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jianbo He
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yang Li
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Fang Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
30
|
Ma J, Jin G. Epidermal growth factor protects against myocardial ischaemia reperfusion injury through activating Nrf2 signalling pathway. Free Radic Res 2019; 53:313-323. [PMID: 30773943 DOI: 10.1080/10715762.2019.1584399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alleviating the oxidant stress associated with myocardial ischaemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischaemia reperfusion (I/R)-induced cardiac damage. It is reported that EGFR/erbB2 signalling is an important cardiac survival pathway in cardiac function and activation of EGFR has a cardiovascular effect in global ischaemia. Epidermal growth factor (EGF), a typical EGFR ligand, was considered to have a significant role in activating EGFR. However, no evidence has been published whether exogenous EGF has protective effects on myocardial ischaemia reperfusion. This study aims to investigate the effects of EGF in I/R-induced heart injury and to demonstrate its mechanisms. H9c2 cells challenged with H2O2 were used for in vitro biological activity and mechanistic studies. The malondialdehyde (MDA) and Superoxide Dismutase (SOD) levels in H9c2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse administrated with or without EGF were used for in vivo studies. Pretreatment of H9c2 cells with EGF activated Nrf2 signalling pathway, attenuated H2O2-increased MDA and H2O2-reduced SOD level, followed by the inhibition of H2O2-induced cell death. In in vivo animal models of myocardial I/R, administration of EGF reduced infarct size and myocardial apoptosis. These data support that EGF decreases oxidative stress and attenuates myocardial ischaemia reperfusion injury via activating Nrf2.
Collapse
Affiliation(s)
- Jun Ma
- a Department of Cardiology , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , P. R. China
| | - Ge Jin
- a Department of Cardiology , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , P. R. China
| |
Collapse
|
31
|
Park HJ, Shin KC, Yoou SK, Kang M, Kim JG, Sung DJ, Yu W, Lee Y, Kim SH, Bae YM, Park SW. Hydrogen peroxide constricts rat arteries by activating Na +-permeable and Ca 2+-permeable cation channels. Free Radic Res 2018; 53:94-103. [PMID: 30526150 DOI: 10.1080/10715762.2018.1556394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative stress is associated with many cardiovascular diseases, such as hypertension and arteriosclerosis. Oxidative stress reportedly activates the L-type voltage-gated calcium channel (VDCCL) and elevates [Ca2+]i in many cells. However, how oxidative stress activates VDCCL under clinical setting and the consequence for arteries are unclear. Here, we examined the hypothesis that hydrogen peroxide (H2O2) regulates membrane potential (Em) by altering Na+ influx through cation channels, which consequently activates VDCCL to induce vasoconstriction in rat mesenteric arteries. To measure the tone of the endothelium-denuded arteries, a conventional isometric organ chamber was used. Membrane currents and Em were recorded by the patch-clamp technique. [Ca2+]i and [Na+]i were measured with microfluorometry using Fura2-AM and SBFI-AM, respectively. We found that H2O2 (10 and 100 µM) increased arterial contraction, and nifedipine blocked the effects of H2O2 on isometric contraction. H2O2 increased [Ca2+]i as well as [Na+]i, and depolarised Em. Gd3+ (1 µM) blocked all these H2O2-induced effects including Em depolarisation and increases in [Ca2+]i and [Na+]i. Although both nifedipine (30 nM) and low Na+ bath solution completely prevented the H2O2-induced increase in [Na+], they only partly inhibited the H2O2-induced effects on [Ca2+]i and Em. Taken together, the results suggested that H2O2 constricts rat arteries by causing Em depolarisation and VDCCL activation through activating Gd3+-and nifedipine-sensitive, Na+-permeable channels as well as Gd3+-sensitive Ca2+-permeable cation channels. We suggest that unidentified Na+-permeable cation channels as well as Ca2+-permeable cation channels may function as important mediators for oxidative stress-induced vascular dysfunction.
Collapse
Affiliation(s)
- Hyun Ji Park
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Kyung Chul Shin
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Soon-Kyu Yoou
- b Department of Emergency Medical Services , Eulji University , Seongnam , Republic of Korea
| | - Myeongsin Kang
- b Department of Emergency Medical Services , Eulji University , Seongnam , Republic of Korea
| | - Jae Gon Kim
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Dong Jun Sung
- c Division of Sport and Health Science, College of Biomedical and Health Science , Konkuk University , Chungju , Republic of Korea
| | - Wonjong Yu
- d Department of Physical Therapy , Eulji University , Eulji , Republic of Korea
| | - Youngjin Lee
- e Department of Radiological Science , Gachon University , Yeonsu-gu , Republic of Korea
| | - Sung Hea Kim
- f Department of Cardiology , Konkuk University School of Medicine , Seoul , Republic of Korea
| | - Young Min Bae
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Sang Woong Park
- b Department of Emergency Medical Services , Eulji University , Seongnam , Republic of Korea
| |
Collapse
|
32
|
Wu B, Feng J, Yu L, Wang Y, Chen Y, Wei Y, Han J, Feng X, Zhang Y, Di S, Ma Z, Fan C, Ha X. Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage. Br J Pharmacol 2018; 175:4137-4153. [PMID: 30051466 PMCID: PMC6177614 DOI: 10.1111/bph.14457] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Icariin, a major active ingredient in traditional Chinese medicines, is attracting increasing attention because of its unique pharmacological effects against ischaemic heart disease. The histone deacetylase, sirtuin-1, plays a protective role in ischaemia/reperfusion (I/R) injury, and this study was designed to investigate the protective role of icariin in models of cardiac I/R injury and to elucidate the potential involvement of sirtuin-1. EXPERIMENTAL APPROACH I/R injury was simulated in vivo (mouse hearts), ex vivo (isolated rat hearts) and in vitro (neonatal rat cardiomyocytes and H9c2 cells). Prior to I/R injury, animals or cells were exposed to icariin, with or without inhibitors of sirtuin-1 (sirtinol and SIRT1 siRNA). KEY RESULTS In vivo and in vitro, icariin given before I/R significantly improved post-I/R heart contraction and limited the infarct size and leakage of creatine kinase-MB and LDH from the damaged myocardium. Icariin also attenuated I/R-induced mitochondrial oxidative damage, decreasing malondialdehyde content and increasing superoxide dismutase activity and expression of Mn-superoxide dismutase. Icariin significantly improved mitochondrial membrane homeostasis by increasing mitochondrial membrane potential and cytochrome C stabilization, which further inhibited cell apoptosis. Sirtuin-1 was significantly up-regulated in hearts treated with icariin, whereas Ac-FOXO1 was simultaneously down-regulated. Importantly, sirtinol and SIRT1 siRNA either blocked icariin-induced cardioprotection or disrupted icariin-mediated mitochondrial homeostasis. CONCLUSIONS AND IMPLICATIONS Pretreatment with icariin protected cardiomyocytes from I/R-induced oxidative stress through activation of sirtuin-1 /FOXO1 signalling.
Collapse
Affiliation(s)
- Bing Wu
- Department of GeriatricsLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
- Department of CardiologyTangdu Hospital, Fourth Military Medical UniversityXi'anChina
| | - Jian‐yu Feng
- Department of Cardiovascular Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Li‐ming Yu
- Department of Cardiovascular SurgeryGeneral Hospital of Shenyang Military Area CommandShenyangChina
| | - Yan‐chun Wang
- Department of GeriatricsLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Yong‐qing Chen
- Department of CardiologyLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Yan Wei
- Department of ophthalmologyLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Jin‐song Han
- Department of Cardiovascular SurgeryGeneral Hospital of Shenyang Military Area CommandShenyangChina
| | - Xiao Feng
- Department of Cardiovascular Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yu Zhang
- Department of Cardiovascular SurgeryLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Shou‐yin Di
- Department of Thoracic SurgeryTangdu Hospital, Fourth Military Medical UniversityXi'anChina
| | - Zhi‐qiang Ma
- Department of Thoracic SurgeryTangdu Hospital, Fourth Military Medical UniversityXi'anChina
| | - Chong‐xi Fan
- Department of Thoracic SurgeryTangdu Hospital, Fourth Military Medical UniversityXi'anChina
- Department of Biomedical EngineeringFourth Military Medical UniversityXi'anChina
| | - Xiao‐qin Ha
- Department of Clinical LaboratoryLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| |
Collapse
|
33
|
Costiniti V, Spera I, Menabò R, Palmieri EM, Menga A, Scarcia P, Porcelli V, Gissi R, Castegna A, Canton M. Monoamine oxidase-dependent histamine catabolism accounts for post-ischemic cardiac redox imbalance and injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3050-3059. [DOI: 10.1016/j.bbadis.2018.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/25/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
|
34
|
Gao JL, Zhao J, Zhu HB, Peng X, Zhu JX, Ma MH, Fu Y, Hu N, Tai Y, Xuan XC, Dong DL. Characterizations of mitochondrial uncoupling induced by chemical mitochondrial uncouplers in cardiomyocytes. Free Radic Biol Med 2018; 124:288-298. [PMID: 29935261 DOI: 10.1016/j.freeradbiomed.2018.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023]
Abstract
Induction of mild mitochondrial uncoupling is protective in a variety of disorders; however, it is unclear how to recognize the mild mitochondrial uncoupling induced by chemical mitochondrial uncouplers. The aim of the present study is to identify the pharmacological properties of mitochondrial uncoupling induced by mitochondrial uncouplers in cardiomyocytes. Neonatal rat cardiomyocytes were cultured. Protein levels were measured by using western blot technique. The whole cell respiratory function was determined by using high-resolution respirometry. The typical types of chemical mitochondrial uncouplers, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), niclosamide, and BAM15, induced biphasic change of STAT3 activity in cardiomyocytes, activating STAT3 at low dose and inhibiting STAT3 at high dose, though the dose range of these drugs was distinct. Low-dose uncouplers induced STAT3 activation through the mild increase of mitochondrial ROS (mitoROS) generation and the subsequent JAK/STAT3 activation in cardiomyocytes. However, high-dose uncouplers induced inhibition of STAT3, decrease of ATP production, and cardiomyocyte death. High-dose uncouplers induced STAT3 inhibition through the excessive mitoROS generation and the decreased ATP -induced AMPK activation. Low-dose mitochondrial uncouplers attenuated doxorubicin (DOX)-induced STAT3 inhibition and cardiomyocyte death, and activated STAT3 contributed to the cardioprotection of low-dose mitochondrial uncouplers. Uncoupler-induced mild mitochondrial uncoupling in cardiomyocytes is characterized by STAT3 activation and ATP increase whereas excessive mitochondrial uncoupling is characterized by STAT3 inhibition, ATP decrease and cell injury. Development of mitochondrial uncoupler with optimal dose window of inducing mild uncoupling is a promising strategy for heart protection.
Collapse
Affiliation(s)
- Jin-Lai Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Jing Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Hai-Bin Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Xuan Peng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Jun-Xue Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Ming-Hui Ma
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Yao Fu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Nan Hu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Yu Tai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Xiu-Chen Xuan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin 150086, Heilongjiang Province, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China.
| |
Collapse
|
35
|
Abstract
Several interventions, such as ischemic preconditioning, remote pre/perconditioning, or postconditioning, are known to decrease lethal myocardial ischemia-reperfusion injury. While several signal transduction pathways become activated by such maneuvers, they all have a common end point, namely, the mitochondria. These organelles represent an essential target of the cardioprotective strategies, and the preservation of mitochondrial function is central for the reduction of ischemia-reperfusion injury. In the present review, we address the role of mitochondria in the different conditioning strategies; in particular, we focus on alterations of mitochondrial function in terms of energy production, formation of reactive oxygen species, opening of the mitochondrial permeability transition pore, and mitochondrial dynamics induced by ischemia-reperfusion.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig Universität , Giessen , Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| |
Collapse
|
36
|
Wang CK, Cheng J, Liang XG, Tan C, Jiang Q, Hu YZ, Lu YM, Fukunaga K, Han F, Li X. A H 2O 2-Responsive Theranostic Probe for Endothelial Injury Imaging and Protection. Am J Cancer Res 2017; 7:3803-3813. [PMID: 29109778 PMCID: PMC5667350 DOI: 10.7150/thno.21068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/15/2017] [Indexed: 02/06/2023] Open
Abstract
Overproduction of H2O2 causes oxidative stress and is the hallmark of vascular diseases. Tracking native H2O2 in the endothelium is therefore indispensable to gain fundamental insights into this pathogenesis. Previous fluorescent probes for H2O2 imaging were generally arylboronates which were decomposed to emissive arylphenols in response to H2O2. Except the issue of specificity challenged by peroxynitrite, boric acid by-produced in this process is actually a waste with unknown biological effects. Therefore, improvements could be envisioned if a therapeutic agent is by-produced instead. Herein, we came up with a "click-to-release-two" strategy and demonstrate that dual functional probes could be devised by linking a fluorophore with a therapeutic agent via a H2O2-responsive bond. As a proof of concept, probe AP consisting of a 2-(2'-hydroxyphenyl) benzothiazole fluorophore and an aspirin moiety has been prepared and confirmed for its theranostic effects. This probe features high specificity towards H2O2 than other reactive species including peroxynitrite. Its capability to image and ameliorate endothelial injury has been verified both in vitro and in vivo. Noteworthy, as a result of its endothelial-protective effect, AP also works well to reduce thrombosis formation in zebrafish model.
Collapse
|
37
|
Cytoprotective effects of mild plasma-activated medium against oxidative stress in human skin fibroblasts. Sci Rep 2017; 7:42208. [PMID: 28169359 PMCID: PMC5294635 DOI: 10.1038/srep42208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
Non-thermal atmospheric pressure plasma (NTAPP) has recently been applied to living cells and tissues and has emerged as a novel technology for medical applications. NTAPP affects cells not only directly, but also indirectly with previously prepared plasma-activated medium (PAM). The objective of this study was to demonstrate the preconditioning effects of “mild PAM” which was prepared under relatively mild conditions, on fibroblasts against cellular injury generated by a high dose of hydrogen peroxide (H2O2). We observed the preconditioning effects of mild PAM containing approximately 50 μM H2O2. Hydrogen peroxide needs to be the main active species in mild PAM for it to exert preconditioning effects because the addition of catalase to mild PAM eliminated these effects. The nuclear translocation and recruitment of nuclear factor erythroid 2-related factor 2 (Nrf2) to antioxidant response elements (ARE) in heme oxygenase 1 (HO-1) promoters and the up-regulation of HO-1 were detected in fibroblasts treated with mild PAM. The addition of ZnPP, a HO-1-specific inhibitor, or the knockdown of Nrf2 completely abrogated the preconditioning effects. Our results demonstrate that mild PAM protects fibroblasts from oxidative stress by up-regulating HO-1, and the H2O2-induced activation of the Nrf2-ARE pathway needs to be involved in this reaction.
Collapse
|
38
|
Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis 2017; 8:e2577. [PMID: 28151484 PMCID: PMC5386498 DOI: 10.1038/cddis.2017.7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/17/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022]
Abstract
Pretreatment of berbamine protects the heart from ischemia/reperfusion (I/R) injury. However it is unknown whether it has cardioprotection when given at the onset of reperfusion (postconditioning (PoC)), a protocol with more clinical impact. Autophagy is upregulated in I/R myocardium and exacerbates cardiomyocyte death during reperfusion. However, it is unknown whether the autophagy during reperfusion is regulated by berbamine. Here we investigated whether berbamine PoC (BMPoC) protects the heart through regulation of autophagy by analyzing the effects of BMPoC on infarct size and/or cell death, functional recovery and autophagy in perfused rat hearts and isolated cardiomyocytes subjected to I/R. Berbamine from 10 to 100 nM given during the first 5 min of reperfusion concentration-dependently improved post-ischemic myocardial function and attenuated cell death. Similar protections were observed in cardiomyocytes subjected to simulated I/R. Meanwhile, BMPoC prevented I/R-induced impairment of autophagosome processing in cardiomyocytes, characterized by increased LC3-II level and GFP-LC3 puncta, and decreased p62 degradation. Besides, lysosomal inhibitor chloroquine did not induce additional increase of LC3-II and P62 abundance after I/R but it reversed the effects of BMPoC in those parameters in cardiomyocytes, suggesting that I/R-impaired autophagic flux is restored by BMPoC. Moreover, I/R injury was accompanied by enhanced expression of Beclin 1, which was significantly inhibited by BMPoC. In vitro and in vivo adenovirus-mediated knockdown of Beclin 1 in myocardium and cardiomyocytes restored I/R-impaired autophagosome processing, associated with an improvement of post-ischemic recovery of myocardial contractile function and a reduction of cell death, but it did not have additive effects to BMPoC. Conversely, overexpression of Beclin 1 abolished the cardioprotection of BMPoC as did by overexpression of an essential autophagy gene Atg5. Furthermore, BMPoC-mediated cardioprotection was abolished by a specific Akt1/2 inhibitor A6730. Our results demonstrate that BMPoC confers cardioprotection by modulating autophagy during reperfusion through the activation of PI3K/Akt signaling pathway.
Collapse
|
39
|
Preconditioning is hormesis part I: Documentation, dose-response features and mechanistic foundations. Pharmacol Res 2016; 110:242-264. [DOI: 10.1016/j.phrs.2015.12.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
|
40
|
Wang S, Wang Z, Fan Q, Guo J, Galli G, Du G, Wang X, Xiao W. Ginkgolide K protects the heart against endoplasmic reticulum stress injury by activating the inositol-requiring enzyme 1α/X box-binding protein-1 pathway. Br J Pharmacol 2016; 173:2402-18. [PMID: 27186946 PMCID: PMC4945765 DOI: 10.1111/bph.13516] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/23/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Endoplasmic reticulum (ER) stress is increasingly recognized as an important causal factor of many diseases. Targeting ER stress has now emerged as a new therapeutic strategy for treating cardiovascular diseases. Here, we investigated the effects and underlying mechanism of ginkgolide K (1,10-dihydroxy-3,14-didehydroginkgolide, GK) on cardiac ER stress. EXPERIMENTAL APPROACH Cell death, apoptosis and ER stress-related signalling pathways were measured in cultured neonatal rat cardiomyocytes, treated with the ER stress inducers tunicamycin, hydrogen peroxide and thapsigargin. Acute myocardial infarction was established using left coronary artery occlusion in mice, and infarct size was measured by triphenyltetrazolium chloride staining. Echocardiography was used to assess heart function and transmission electron microscopy for evaluating ER expansion. KEY RESULTS Ginkgolide K (GK) significantly decreased ER stress-induced cell death in both in vitro and in vivo models. In ischaemic injured mice, GK treatment reduced infarct size, rescued heart dysfunction and ameliorated ER dilation. Mechanistic studies revealed that the beneficial effects of GK occurred through enhancement of inositol-requiring enzyme 1α (IRE1α)/X box-binding protein-1 (XBP1) activity, which in turn led to increased ER-associated degradation-mediated clearance of misfolded proteins and autophagy. In addition, GK was also able to partly repress the pro-apoptotic action of regulated IRE1-dependent decay and JNK pathway. CONCLUSIONS AND IMPLICATIONS In conclusion, GK acts through selective activation of the IRE1α/XBP1 pathway to limit ER stress injury. GK is revealed as a promising therapeutic agent to ameliorate ER stress for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Shoubao Wang
- Faculty of Life SciencesThe University of ManchesterManchesterUK
- Beijing Key Laboratory of Drug Targets Identification and Drug ScreeningInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenzhong Wang
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| | - Qiru Fan
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
- Faculty of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Jing Guo
- Faculty of Life SciencesThe University of ManchesterManchesterUK
| | - Gina Galli
- Faculty of Life SciencesThe University of ManchesterManchesterUK
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug ScreeningInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Wang
- Faculty of Life SciencesThe University of ManchesterManchesterUK
| | - Wei Xiao
- State Key Laboratory of New‐tech for Chinese Medicine Pharmaceutical ProcessLianyungangChina
| |
Collapse
|
41
|
Feng H, Wang JY, Zheng M, Zhang CL, An YM, Li L, Wu LL. CTRP3 promotes energy production by inducing mitochondrial ROS and up-expression of PGC-1α in vascular smooth muscle cells. Exp Cell Res 2016; 341:177-86. [PMID: 26844631 DOI: 10.1016/j.yexcr.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 11/25/2022]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine with modulation effects on metabolism and inflammation. Adenosine triphosphate (ATP) exerts multiple biological effects in vascular smooth muscle cells (VSMCs) and energy imbalance is involved in vascular diseases. This study aimed to explore the effect of CTRP3 on energy production and its underlying mechanism in VSMCs. Our results indicated that exogenous CTRP3 increased ATP synthesis and the protein expression of oxidative phosphorylation (OXPHOS)-related molecules, including peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, sirtuin-3 (SIRT3), complex I, II, III, and V in cultured VSMCs. Depletion of endogenous CTRP3 by small interfering RNA (siRNA) reduced ATP synthesis and the expression of those molecules. PGC-1α knockdown abrogated CTRP3-induced ATP production and OXPHOS-related protein expression. Furthermore, CTRP3 increased mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential level. Pretreatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, and cyanidem-chlorophenylhydrazone, an uncoupler of OXPHOS, suppressed CTRP3-induced ROS production, PGC-1α expression and ATP synthesis. In conclusion, CTRP3 modulates mitochondrial energy production through targets of ROS and PGC-1α in VSMCs.
Collapse
Affiliation(s)
- Han Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Jin-Yu Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Yuan-Ming An
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China.
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China.
| |
Collapse
|
42
|
Triptolide Attenuates Myocardial Ischemia/Reperfusion Injuries in Rats by Inducing the Activation of Nrf2/HO-1 Defense Pathway. Cardiovasc Toxicol 2015; 16:325-35. [DOI: 10.1007/s12012-015-9342-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Wu L, Tan JL, Wang ZH, Chen YX, Gao L, Liu JL, Shi YH, Endoh M, Yang HT. ROS generated during early reperfusion contribute to intermittent hypobaric hypoxia-afforded cardioprotection against postischemia-induced Ca(2+) overload and contractile dysfunction via the JAK2/STAT3 pathway. J Mol Cell Cardiol 2015; 81:150-61. [PMID: 25731682 DOI: 10.1016/j.yjmcc.2015.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 01/09/2023]
Abstract
Moderate enhanced reactive oxygen species (ROS) during early reperfusion trigger the cardioprotection against ischemia/reperfusion (I/R) injury, while the mechanism is largely unknown. Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) contributes to the cardioprotection but whether it is activated by ROS and how it regulates Ca(2+) homeostasis remain unclear. Here we investigated whether the ROS generated during early reperfusion protect the heart/cardiomyocyte against I/R-induced Ca(2+) overload and contractile dysfunction via the activation of JAK2/STAT3 signaling pathway by using a cardioprotective model of intermittent hypobaric hypoxia (IHH) preconditioning. IHH improved the postischemic recovery of myocardial contractile performance in isolated rat I/R hearts as well as Ca(2+) homeostasis and cell contraction in simulated I/R cardiomyocytes. Meanwhile, IHH enhanced I/R-increased STAT3 phosphorylation at tyrosine 705 in the nucleus and reversed I/R-suppressed STAT3 phosphorylation at serine 727 in the nucleus and mitochondria during reperfusion. Moreover, IHH improved I/R-suppressed sarcoplasmic reticulum (SR) Ca(2+)-ATPase 2 (SERCA2) activity, enhanced I/R-increased Bcl-2 expression, and promoted the co-localization and interaction of Bcl-2 with SERCA2 during reperfusion. These effects were abolished by scavenging ROS with N-(2-mercaptopropionyl)-glycine (2-MPG) and/or by inhibiting JAK2 with AG490 during the early reperfusion. Furthermore, IHH-improved postischemic SERCA2 activity and Ca(2+) homeostasis as well as cell contraction were reversed after Bcl-2 knockdown by short hairpin RNA. In addition, the reversal of the I/R-suppressed mitochondrial membrane potential by IHH was abolished by 2-MPG and AG490. These results indicate that during early reperfusion the ROS/JAK2/STAT3 pathways play a crucial role in (i) the IHH-maintained intracellular Ca(2+) homeostasis via the improvement of postischemic SERCA2 activity through the increase of SR Bcl-2 and its interaction with SERCA2; and (ii) the IHH-improved mitochondrial function.
Collapse
Affiliation(s)
- Lan Wu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Ji-Liang Tan
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Zhi-Hua Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Yi-Xiong Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Ling Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jin-Long Liu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yun-Hua Shi
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Masao Endoh
- Department of Pharmacology, Yamagata University School of Medicine, Yamagata, Japan
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| |
Collapse
|
44
|
Kalyuzhin VV, Teplyakov AT, Bespalova ID, Kalyuzhina YV. TOWARD THE QUESTION OF ISCHEMIC MYOCARDIAL DYSFUNCTION. ACTA ACUST UNITED AC 2014. [DOI: 10.20538/1682-0363-2014-6-57-71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - A. T. Teplyakov
- Institute of Cardiology, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk
| | | | | |
Collapse
|
45
|
Chen Y, Liu J, Zheng Y, Wang J, Wang Z, Gu S, Tan J, Jing Q, Yang H. Uncoupling protein 3 mediates H₂O₂ preconditioning-afforded cardioprotection through the inhibition of MPTP opening. Cardiovasc Res 2014; 105:192-202. [PMID: 25514931 DOI: 10.1093/cvr/cvu256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS Uncoupling protein 3 (UCP3), located in the mitochondrial inner membrane, is cardioprotective, but its mechanisms of preserving mitochondrial function during ischaemia/reperfusion (I/R) are not fully understood. This study investigated whether UCP3 mediates/mimics the cardioprotection of H₂O₂ preconditioning (H₂O₂PC) against I/R injury and the downstream pathway that mediates H₂O₂PC- and UCP3-afforded cardioprotection. METHODS AND RESULTS H₂O₂PC at 20 µM for 5 min significantly improved post-ischaemic functional recovery and reduced lactate dehydrogenase (LDH) release and infarct size with concurrently up-regulated UCP3 expressions in perfused rat hearts subjected to global no-flow I/R. These protections were blocked by UCP3 knockdown with short hairpin RNA but mimicked by UCP3 overexpression. Consistently, H₂O₂PC-attenuated I/R-induced cytosolic and mitochondrial Ca(2+) overload, Ca(2+) transient suppression, mitochondrial reactive oxygen species burst, and loss of mitochondrial inner membrane potential were reversed by UCP3 knockdown but mimicked by UCP3 overexpression. Moreover, co-immunoprecipitation assay revealed an interaction of UCP3 with the mitochondrial permeability transition pore (mPTP) component, adenine nucleotide translocator (ANT), while the cardioprotection induced by H₂O₂PC- and UCP3 overexpression in mitochondria, cardiac function, and cell survival was abolished by atractyloside, a mPTP opener binding to ANT, and partially inhibited by a PI3K/Akt inhibitor wortmannin. Furthermore, H₂O₂PC up-regulated the phosphorylation of Akt, and glycogen synthase kinase 3β was blocked by UCP3 knockdown but mimicked by UCP3 overexpression. CONCLUSION UCP3 mediates the cardioprotection of H₂O₂PC against I/R injury by preserving the mitochondrial function through inhibiting mPTP opening via the interaction with ANT and the PI3K/Akt pathway. Our findings reveal novel mechanisms of UCP3 in the cardioprotection.
Collapse
Affiliation(s)
- Yixiong Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Jinlong Liu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Yanjun Zheng
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Jinxi Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Zhihua Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Shanshan Gu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Jiliang Tan
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| | - Huangtian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China
| |
Collapse
|