1
|
Shen Y, Chen JQ, Li XP. Differences between lung adenocarcinoma and lung squamous cell carcinoma: Driver genes, therapeutic targets, and clinical efficacy. Genes Dis 2025; 12:101374. [PMID: 40083325 PMCID: PMC11904499 DOI: 10.1016/j.gendis.2024.101374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 06/22/2024] [Indexed: 03/16/2025] Open
Abstract
With the rapid advancements in second-generation gene sequencing technologies, a growing number of driver genes and associated therapeutic targets have been unveiled for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). While they are clinically classified as non-small cell lung cancer (NSCLC), they display distinct genomic features and substantial variations in clinical efficacy, underscoring the need for particular attention. Hence, this review provides a comprehensive overview of the latest advancements in driver genes, epigenetic targets, chemotherapy, targeted therapy, and immunotherapy for LUAD and LUSC. Additionally, it delves into the distinctions in signaling pathways and pivotal facets of clinical management specific to these two categories of lung cancer. Moreover, we furnish pertinent details regarding clinical trials pertaining to driver genes and epigenetics, thus establishing a theoretical foundation for the realization of precision treatments for LUAD and LUSC.
Collapse
Affiliation(s)
- Yue Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie-Qi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
2
|
Luciano N, Coppola L, Salvatore G, Primo P, Parasole R, Mirabelli P, Orlandella FM. Aberrant Expression of Non-Coding RNAs in Pediatric T Acute Lymphoblastic Leukemia and Their Potential Application as Biomarkers. Genes (Basel) 2025; 16:420. [PMID: 40282377 PMCID: PMC12027238 DOI: 10.3390/genes16040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Less than 5% of the DNA sequence encodes for proteins, and the remainder encodes for non-coding RNAs (ncRNAs). Among the members of the ncRNA family, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play a pivotal role in the insurgence and progression of several cancers, including leukemia. Thought to have different molecular mechanisms, both miRNAs and lncRNAs act as epigenetic factors modulating gene expression and influencing hematopoietic differentiation, proliferation and immune system function. Here, we discuss the most recent findings on the main molecular mechanisms by which miRNAs and lncRNAs are involved in the pathogenesis and progression of pediatric T acute lymphoblastic leukemia (T-ALL), pointing out their potential utility as therapeutic targets and as biomarkers for early diagnosis, risk stratification and prognosis. miRNAs are involved in the pathogenesis of T-ALL, acting both as tumor suppressors and as oncomiRs. By contrast, to the best of our knowledge, the literature highlights lncRNAs as acting only as oncogenes in this type of cancer by inhibiting apoptosis and promoting cell cycle and drug resistance. Additionally, here, we discuss how these molecules could be detected in the plasma of T-ALL patients, highlighting that lncRNAs may represent a new class of promising accurate and sensitive biomarkers in these young patients. Thus, the unveiling of the aberrant signature of circulating and intracellular levels of lncRNAs could have great clinical utility for obtaining a more accurate definition of prognosis and uncovering novel therapeutic strategies against T-ALL in children. However, further investigations are needed to better define the standard methodological procedure for their quantification and to obtain their specific targeting in T-ALL pediatric patients.
Collapse
Affiliation(s)
- Neila Luciano
- Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, 80133 Naples, Italy; (N.L.); (G.S.)
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy
| | - Luigi Coppola
- UOS Research Laboratories and Biobank, AORN Santobono-Pausilipon, 80122 Naples, Italy; (L.C.); (P.P.); (P.M.)
| | - Giuliana Salvatore
- Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, 80133 Naples, Italy; (N.L.); (G.S.)
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy
| | - Pasquale Primo
- UOS Research Laboratories and Biobank, AORN Santobono-Pausilipon, 80122 Naples, Italy; (L.C.); (P.P.); (P.M.)
| | - Rosanna Parasole
- UOC Clinical and Translational Research, AORN Santobono-Pausilipon, 80122 Naples, Italy;
| | - Peppino Mirabelli
- UOS Research Laboratories and Biobank, AORN Santobono-Pausilipon, 80122 Naples, Italy; (L.C.); (P.P.); (P.M.)
| | - Francesca Maria Orlandella
- Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, 80133 Naples, Italy; (N.L.); (G.S.)
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy
| |
Collapse
|
3
|
Arif S, Qazi TJ, Quan Z, Ni J, Li Z, Qiu Y, Qing H. Extracellular vesicle-packed microRNAs profiling in Alzheimer's disease: The molecular intermediary between pathology and diagnosis. Ageing Res Rev 2025; 104:102614. [PMID: 39626853 DOI: 10.1016/j.arr.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
MicroRNAs (miRNAs), referring to a type of non-coding RNAs functioning in various biological processes, participate in the pathophysiology of Alzheimer's disease (AD) through increasing amyloid-beta (Aβ) production, enhancing Tau phosphorylation, and inducing neuroinflammation. Meanwhile, extracellular vesicles (EVs) have been suggested as promising carriers of AD biomarkers as they possess the ability to transmit information from cerebral tissue to peripheral blood. Inspired by the above findings, we in this review systematically generalized the roles of miRNAs in AD and explored the potential of EV-packed miRNA as biomarkers for early diagnosis of AD. Through the detailed investigation, this review may highlight the promise of EV-packed miRNAs in advancing our understanding of AD, and underscore the imperative needs of further studies on their diagnostic potential.
Collapse
Affiliation(s)
- Sandila Arif
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Talal Jamil Qazi
- The Department of Biomedical Engineering, Balochistan University of Engineering & Technology, Khuzdar 89120, Pakistan
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaohan Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
4
|
Taghavi S, Keshtkar S, Abedanzadeh M, Hashemi M, Heidari R, Abolmaali SS, Dara M, Aghdaei MH, Sabegh A, Azarpira N. Exosome Loaded in Microneedle Patch Ameliorates Renal Ischemia-Reperfusion Injury in a Mouse Model. Stem Cells Int 2025; 2025:3106634. [PMID: 39845407 PMCID: PMC11753846 DOI: 10.1155/sci/3106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction: Renal dysfunction due to ischemia-reperfusion injury (IRI) is a common problem after kidney transplantation. In recent years, studies on animal models have shown that exosomes derived from mesenchymal stem cells (MSC-Exo) play an important role in treating acute kidney injury (AKI) and promoting tissue repair. The microneedle patch provides a noninvasive and targeted delivery system for exosomes. The purpose of this innovative approach is to combine MSC-Exo with microneedle patches. Method: Exosomes were isolated from MSCs, characterized, and placed in the prepared microneedle patch. Then this construct was applied to the IRI mice model. After 7 days, the gene expression of miR-34a and its targets B-cell lymphoma-2 (BCL-2) and BCL-2-associated X (BAX), along with reactive oxygen species (ROS) and lipid peroxidation (LPO) production, was investigated. Additionally, renoprotection was evaluated for measuring blood urea nitrogen (BUN) and creatinine (Cr) and histopathology detection. Results: After using microneedle patches containing exosomes, the reduction of miR-34a and BAX and enhancement of BCL-2 were observed. Moreover, treatment by this construct decreased the production of ROS, LPO, BUN, and Cr and improved tissue damage. Conclusion: The use of a microneedle patch containing exosomes is a noninvasive method that enables the release of exosomes in a slow manner. In comparison to exosome injection alone, microneedle patch-exosome treatment offers a longer and more targeted effect that improves renal IRI dysfunction and reduces tissue damage, potentially facilitating the clinical application of exosomes and improving graft survival.
Collapse
Affiliation(s)
- Samin Taghavi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhgan Abedanzadeh
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Sabegh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Yang H, Hua J, Han Y, Chang D, Zheng W. Development and preliminary validation of five miRNAs for lung adenocarcinoma prognostic model associated with immune infiltration. Sci Rep 2025; 15:528. [PMID: 39747924 PMCID: PMC11695782 DOI: 10.1038/s41598-024-84128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Our aim was to investigate the potential value of immune-related miRNA signaling in predicting clinical prognosis and immunotherapy. We first identified immune-related miRNAs in lung adenocarcinoma (LUAD), and then constructed a miRNA-based risk model by lasso regression modeling. Finally, we validated our findings using RT-qPCR in serum from LUAD patients and normal patients. Weighted gene co-expression network analysis (WGCNA) was used to screen the aberrantly expressed genes associated with immune scores, and then correlation analysis and prognostic analysis were used to identify and immune-associated miRNAs, and lasso-cox regression was used to construct an immune-associated 5-miRNA model. Risk score as an independent prognostic factor could accurately predict the prognosis of LUAD patients. Immunotherapy analysis revealed that patients with low-risk scores benefited more from anti-PD-1 and CTLA-4 therapy. Experimental validation showed that only miRNA-200b-3p was significantly differentially expressed in 91 cases of clinically collected cancer tissues and normal tissue serum. We constructed a 5-miRNA model that can be used for risk stratification of LUAD patients. Targeted therapy against miRNA-200b-3p is expected to be a prospective new strategy for the clinical treatment of LUAD.
Collapse
Affiliation(s)
- Huanzhang Yang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jingli Hua
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yanxia Han
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Wenlong Zheng
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
6
|
Ghosal J, Sinchana VK, Chakrabarty S. Ferroptosis meets microRNAs: A new frontier in anti-cancer therapy. Free Radic Biol Med 2025; 226:266-278. [PMID: 39547521 DOI: 10.1016/j.freeradbiomed.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Ferroptosis is an iron-dependent lipid peroxidation-mediated cell death. It is distinct from other types of cellular death and is recognized as a potential target for cancer therapy. This review discusses the mechanisms of ferroptosis, including its induction and inhibition pathways, its role in lipid metabolism, and its connection to various signaling pathways. We also explored the relationship between microRNAs and ferroptosis, highlighting the potential role of miRNAs targeting genes involved in ferroptosis. Role of miRNAs in metabolic reprogramming during carcinogenesis is well documented. We have discussed the role of miRNAs regulating expression of genes involved in iron metabolism, lipid metabolism, and redox metabolism which are associated with regulation of ferroptosis. In conclusion, we addressed various opportunities and challenges identified in ferroptosis research and its clinical implementation stressing the necessity of customized treatment plans based on each patient's unique vulnerability to the disease. Our article provides a complete overview of microRNAs and ferroptosis, with possible implications for cancer therapy.
Collapse
Affiliation(s)
- Joydeep Ghosal
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - V K Sinchana
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
7
|
Nam YH, Kwak T, Kim H, Jeon S, Bae S, Yang Y, Son S, Cha W, Yang M, Lee E, Yang H, Kim B, Ahn K, Kim N, Kim H, Bae JH, Shin JS. A new quantitative real-time PCR method to measure human miRNAs using the PROMER technology. Biochem Biophys Res Commun 2024; 741:151069. [PMID: 39616937 DOI: 10.1016/j.bbrc.2024.151069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression. Dysregulation of miRNAs is associated with various human diseases, including cancer. Accurate quantification of miRNAs in bodily fluids or tissue biopsy samples is essential for their use as biomarkers in tumor diagnosis, yet current methods remain suboptimal. In this study, we introduce a novel quantitative real-time PCR platform based on PROMER technology, which relies on RNA:DNA perfect matching in the primer-template interaction, followed by RNAse H2 cleavage to generate a 3'-hydroxyl group for new DNA synthesis. We selected 16 miRNAs implicated in lung cancer and evaluated the specificity and performance of the platform using synthesized miRNA mimics. Each miRNA could be measured with high specificity and accuracy, even at copy numbers as low as 1-10, while non-template controls exhibited minimal amplification. Additionally, key miRNAs involved in tumor progression, such as miR-210, miR-331, and miR-505, were accurately quantified using minimal amounts of plasma. In summary, we present a new quantitative real-time PCR method for miRNA detection using PROMER technology. This platform successfully measured miRNA mimics and was further applied to quantify miRNA species in plasma samples from cancer patients. Our findings support the potential clinical application of this method for early cancer diagnosis using liquid biopsy samples.
Collapse
Affiliation(s)
- Young-Hyean Nam
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Taeho Kwak
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Hyemin Kim
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Saemi Jeon
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Suyeon Bae
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Younjoo Yang
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Seungwan Son
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Woolim Cha
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Mihwa Yang
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Esder Lee
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Hichang Yang
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Bonggyu Kim
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Kookhee Ahn
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Namhyo Kim
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Hyunmi Kim
- Seegene, Taewon Bldg., 91, Ogeum-Ro, Songpa-Gu, Seoul, 05548, Republic of Korea
| | - June Hahk Bae
- Oracle Venture Investment, Unjoo-ro 603, Kangnam-Gu, 06109, Republic of Korea
| | - Jun-Seop Shin
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea; iYoung Inc., Anyang-si, Gyeonggi-Do, 14056, Republic of Korea.
| |
Collapse
|
8
|
Hashem M, Mohandesi Khosroshahi E, Aliahmady M, Ghanei M, Soofi Rezaie Y, alsadat Jafari Y, rezaei F, Khodaparast eskadehi R, Kia Kojoori K, jamshidian F, Nabavi N, Rashidi M, Hasani Sadi F, Taheriazam A, Entezari M. Non-coding RNA transcripts, incredible modulators of cisplatin chemo-resistance in bladder cancer through operating a broad spectrum of cellular processes and signaling mechanism. Noncoding RNA Res 2024; 9:560-582. [PMID: 38515791 PMCID: PMC10955558 DOI: 10.1016/j.ncrna.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer (BC) is a highly frequent neoplasm in correlation with significant rate of morbidity, mortality, and cost. The onset of BC is predominantly triggered by environmental and/or occupational exposures to carcinogens, such as tobacco. There are two distinct pathways by which BC can be developed, including non-muscle-invasive papillary tumors (NMIBC) and non-papillary (or solid) muscle-invasive tumors (MIBC). The Cancer Genome Atlas project has further recognized key genetic drivers of MIBC along with its subtypes with particular properties and therapeutic responses; nonetheless, NMIBC is the predominant BC presentation among the suffering individuals. Radical cystoprostatectomy, radiotherapy, and chemotherapy have been verified to be the common therapeutic interventions in metastatic tumors, among which chemotherapeutics are more conventionally utilized. Although multiple chemo drugs have been broadly administered for BC treatment, cisplatin is reportedly the most effective chemo drug against the corresponding malignancy. Notwithstanding, tumor recurrence is usually occurred following the consumption of cisplatin regimens, particularly due to the progression of chemo-resistant trait. In this framework, non-coding RNAs (ncRNAs), as abundant RNA transcripts arise from the human genome, are introduced to serve as crucial contributors to tumor expansion and cisplatin chemo-resistance in bladder neoplasm. In the current review, we first investigated the best-known ncRNAs, i.e. microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), correlated with cisplatin chemo-resistance in BC cells and tissues. We noticed that these ncRNAs could mediate the BC-related cisplatin-resistant phenotype through diverse cellular processes and signaling mechanisms, reviewed here. Eventually, diagnostic and prognostic potential of ncRNAs, as well as their therapeutic capabilities were highlighted in regard to BC management.
Collapse
Affiliation(s)
- Mehrdad Hashem
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmady
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morvarid Ghanei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - faranak jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Castilho RM, Castilho LS, Palomares BH, Squarize CH. Determinants of Chromatin Organization in Aging and Cancer-Emerging Opportunities for Epigenetic Therapies and AI Technology. Genes (Basel) 2024; 15:710. [PMID: 38927646 PMCID: PMC11202709 DOI: 10.3390/genes15060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We discuss the pathological impacts of chromatin state misregulation, particularly in cancer and accelerated aging conditions such as progeroid syndromes, and highlight the innovative role of epigenetic therapies and artificial intelligence (AI) in comprehending and harnessing the histone code toward personalized medicine. In the context of aging, this review explores the use of AI and advanced machine learning (ML) algorithms to parse vast biological datasets, leading to the development of predictive models for epigenetic modifications and providing a framework for understanding complex regulatory mechanisms, such as those governing cell identity genes. It supports innovative platforms like CEFCIG for high-accuracy predictions and tools like GridGO for tailored ChIP-Seq analysis, which are vital for deciphering the epigenetic landscape. The review also casts a vision on the prospects of AI and ML in oncology, particularly in the personalization of cancer therapy, including early diagnostics and treatment optimization for diseases like head and neck and colorectal cancers by harnessing computational methods, AI advancements and integrated clinical data for a transformative impact on healthcare outcomes.
Collapse
Affiliation(s)
- Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Leonard S. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
| | - Bruna H. Palomares
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Sao Paulo, Brazil;
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
10
|
Wu HH, Leng S, Sergi C, Leng R. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci 2024; 25:5865. [PMID: 38892054 PMCID: PMC11172831 DOI: 10.3390/ijms25115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.
Collapse
Affiliation(s)
- Hong Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
11
|
Jigari Asl F, Khordadmehr M, Baradaran B, Baghbani E, Noorolyai S, Rahmani S, Saberivand A. Restoration of miR-451a-5p/miR-34a-5p could suppress the proliferation and migration of human breast cancer cells through Wnt/β- catenin and ERK/P-ERK signaling pathways. ARCHIVES OF RAZI INSTITUTE 2024; 79:367-377. [PMID: 39463723 PMCID: PMC11512187 DOI: 10.32592/ari.2024.79.2.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2024]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs with a length of 21-25 nucleotides and play an essential role in the regulation of cancer initiation, development and progression. Breast cancer (BC) is the most commonly detected malignancy in women and one of the leading causes of death worldwide. In this study, the effects of transfection of microRNA-451a-5p and miR-34a-5p (tumor suppressors), individually and in combination on apoptosis, proliferation and migration of breast cancer cells in vitro were investigated. For this study, malignant breast cancer cells (MDA-MB-231) were transfected with the miR-451a-5p and miR-34a-5p mimics. Subsequently cytotoxicity, apoptosis, proliferation, migration protein and gene expression of caspase-3, caspase-8, MMP9, ROCK, vimentin and c-Myc of the cancer cells were analyzed by MTT, flow cytometry, q-RT-PCR (expression level of caspase-3, caspase-8, MMP9, ROCK, vimentin and c-Myc genes), wound healing and Western blot assays. The results showed that miR-34a-5p and miR-451a-5p could additionally induce apoptosis and cell cycle arrest in the sub-G1phase, suppress proliferation and migration in breast cancer cells, and also decrease the expression of β- catenin and ERK/P-ERK proteins . The present data document that restoration of the tumor suppressor miR-451/miR-34 strongly induces programmed cell death in vitro and apparently inhibits cell proliferation and migration in human breast cancer cells. In summary, miR-451a and miR-34a play an important role in breast cancer cell proliferation and migration via the Wnt/β-catenin and ERK/P-ERK signaling pathways. Therefore, the simultaneous restoration of the presented tumor suppressor miRNAs can be proposed as a valuable and potential therapeutic strategy in the treatment of breast cancer. However, further studies should be useful.
Collapse
Affiliation(s)
- F Jigari Asl
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - M Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - B Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - E Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - S Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - S Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - A Saberivand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| |
Collapse
|
12
|
Kelley CM, Maloney B, Beck JS, Ginsberg SD, Liang W, Lahiri DK, Mufson EJ, Counts SE. Micro-RNA profiles of pathology and resilience in posterior cingulate cortex of cognitively intact elders. Brain Commun 2024; 6:fcae082. [PMID: 38572270 PMCID: PMC10988646 DOI: 10.1093/braincomms/fcae082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John S Beck
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Scott E Counts
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| |
Collapse
|
13
|
ABDELLATEIF MONAS, HASSAN NAGLAAM, KAMEL MAHMOUDM, EL-MELIGUI YOMNAM. Bone marrow microRNA-34a is a good indicator for response to treatment in acute myeloid leukemia. Oncol Res 2024; 32:577-584. [PMID: 38361758 PMCID: PMC10865737 DOI: 10.32604/or.2023.043026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/06/2023] [Indexed: 02/17/2024] Open
Abstract
Background microRNA-34a (miR-34a) had been reported to have a diagnostic role in acute myeloid leukemia (AML). However, its value in the bone marrow (BM) of AML patients, in addition to its role in response to therapy is still unclear. The current study was designed to assess the diagnostic, prognostic, and predictive significance of miR-34a in the BM of AML patients. Methods The miR-34a was assessed in BM aspirate of 82 AML patients in relation to 12 normal control subjects using qRT-PCR. The data were assessed for correlation with the relevant clinical criteria, response to therapy, disease-free survival (DFS), and overall survival (OS) rates. Results miR-34a was significantly downregulated in AML patients [0.005 (3.3 × 10-6-1.32)], compared to the control subjects [0.108 (3.2 × 10-4-1.64), p = 0.021]. The median relative quantification (RQ) of miR-34a was 0.106 (range; 0-32.12). The specificity, sensitivity, and area under the curve (AUC) for the diagnosis of AML were (58.3%, 69.5%, 0.707, respectively, p = 0.021). patients with upregulated miR-34a showed decreased platelets count <34.5 × 109/L, and achieved early complete remission (CR, p = 0.031, p = 0.044, respectively). Similarly, patients who were refractory to therapy showed decreased miR-34a levels in comparison to those who achieved CR [0.002 (0-0.01) and 0.12 (0-32.12), respectively, p = 0.002]. Therefore, miR-34a could significantly identify patients with CR with a specificity of 75% and sensitivity of 100% at a cut-off of 0.014 (AUC = 0.927, p = 0.005). There was no considerable association between miR-34a expression and survival rates of the included AML patients. Conclusion miR-34a could be a beneficial diagnostic biomarker for AML patients. In addition, it serves as a good indicator for response to therapy, which could possibly identify patients who are refractory to treatment with 100% sensitivity and 75% specificity.
Collapse
Affiliation(s)
- MONA S. ABDELLATEIF
- Department of Cancer Biology, Medical Biochemistry and Molecular Biology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - NAGLAA M. HASSAN
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - MAHMOUD M. KAMEL
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| | - YOMNA M. EL-MELIGUI
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, 11976, Egypt
| |
Collapse
|
14
|
Chen Z, Ge C, Zhu X, Sun P, Sun Z, Derkach T, Zhou M, Wang Y, Luan M. A novel nanoprobe for visually investigating the controversial role of miRNA-34a as an oncogene or tumor suppressor in cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:667-675. [PMID: 38230518 DOI: 10.1039/d3ay02270f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
MiRNA-targeted therapy has become a hot topic in current cancer research. The key to this treatment strategy is to clarify the specific role of miRNA in cancer. However, the roles of some miRNAs acting as oncogenic or tumor suppressors are still controversial, which are influenced by different tumor types, even in the same cancer type. Hence, we designed a novel fluorescent nanoprobe based on polydopamine nanoparticles (PDA NPs) for simultaneously detecting caspase-3 and miRNA-34a within living cells. The specific role of miRNA-34a in different cancer cells could be further identified by studying the expression alterations of caspase-3 and miRNA-34a. Confocal imaging indicated that miRNA-34a indeed acted as a tumor suppressor in anticancer drug-treated MCF-7 and HeLa cells, where the effect of miRNA-34a remains controversial. The designed nanoprobe can offer a promising approach to ascertain the oncogenic or tumor-suppressing role of miRNA in different cancer cells with a simple visualization method, which has valuable implications for exploring the practicability of precision therapy focused on miRNA and evaluating the efficacy of new miRNA-targeted anticancer medications.
Collapse
Affiliation(s)
- Zhe Chen
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chuandong Ge
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaokai Zhu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ping Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zeyuan Sun
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Tetiana Derkach
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Mingyang Zhou
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yaoguang Wang
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingming Luan
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
15
|
Mehrzad N, Zamani MS, Rahimi A, Shamaei M, Karimipoor M. Methylation Status of miR-34a and miR-126 in Non-Small Cell Lung Cancer (NSCLC) Tumor Tissues. IRANIAN BIOMEDICAL JOURNAL 2024; 28:53-8. [PMID: 38445462 PMCID: PMC10994634 DOI: 10.61186/ibj.3845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/11/2023] [Indexed: 03/07/2024]
Abstract
Background MiR-34a and miR-126 mainly act as tumor suppressors and are often downregulated in various cancers, including non-small cell lung cancer (NSCLC). We aimed to determine the methylation status of miR-34a and miR-126 in NSCLC patients. Methods The current study included 63 paraffin-embedded NSCLC and paired adjacent normal tissues. After DNA extraction and bisulfite treatment, the methylation status of miR-34a and miR-126 were evaluated using the MSP method. Results There was no statistically significant difference between tumor and normal tissues regarding the methylation status of miR-34a and miR-126 (p > 0.05). Moreover, we found no significant correlation between the methylation status of miR-34a and miR-126 with patients’ demographic parameters, including gender, age, and pathology subtype (p > 0.05). Conclusion Considering the low expression of mir-126 and mir-34 in NSCLC, more sensitive methods are recommended to be exploited for detecting the level of methylation or underlying mechanisms other than promoter hypermethylation in silencing these genes in NSCLC.
Collapse
Affiliation(s)
- Nazanin Mehrzad
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Saber Zamani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Amirabbas Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Masoud Shamaei
- Mesih Deneshvari Hospital Shahid Beheshti Medical Sciences University, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Quraishi R, Sanyal S, Dwivedi M, Moitra M, Dwivedi M. Genetic Factors and MicroRNAs in the Development of Gallbladder Cancer: The Prospective Clinical Targets. Curr Drug Targets 2024; 25:375-387. [PMID: 38544392 DOI: 10.2174/0113894501182288240319074330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/01/2024] [Indexed: 07/19/2024]
Abstract
Gallbladder cancer (GBC) is an uncommon condition in which malignant (cancer) cells are detected in gallbladder tissue. Cancer is often triggered when normal cells turn malignant and begin to spread. Cancer can also be caused by genetic anomalies that result in uncontrolled cell proliferation and tumor development. MicroRNAs (also known as miRNAs or miRs) are a group of small, endogenous, non-coding RNAs of 19-23 nucleotides in length, which play a key role in post-transcriptional gene regulation. These miRNAs serve as negative gene regulators by supervising target genes and regulating biological processes, including cell proliferation, migration, invasion, and apoptosis. Cancer development and progression relate to aberrant miRNA expression. This review demonstrated the implication of various genetic factors and microRNAs in developing and regulating GBC. This suggests the potential of genes and RNAs as the diagnostic, prognostic, and therapeutic targets in gallbladder cancer.
Collapse
Affiliation(s)
- Roshni Quraishi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| | - Somali Sanyal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| | - Medha Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| | - Monika Moitra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow-226028, India
| |
Collapse
|
17
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
18
|
Yerukala Sathipati S, Aimalla N, Tsai MJ, Carter T, Jeong S, Wen Z, Shukla SK, Sharma R, Ho SY. Prognostic microRNA signature for estimating survival in patients with hepatocellular carcinoma. Carcinogenesis 2023; 44:650-661. [PMID: 37701974 DOI: 10.1093/carcin/bgad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is one of the leading cancer types with increasing annual incidence and high mortality in the USA. MicroRNAs (miRNAs) have emerged as valuable prognostic indicators in cancer patients. To identify a miRNA signature predictive of survival in patients with HCC, we developed a machine learning-based HCC survival estimation method, HCCse, using the miRNA expression profiles of 122 patients with HCC. METHODS The HCCse method was designed using an optimal feature selection algorithm incorporated with support vector regression. RESULTS HCCse identified a robust miRNA signature consisting of 32 miRNAs and obtained a mean correlation coefficient (R) and mean absolute error (MAE) of 0.87 ± 0.02 and 0.73 years between the actual and estimated survival times of patients with HCC; and the jackknife test achieved an R and MAE of 0.73 and 0.97 years between actual and estimated survival times, respectively. The identified signature has seven prognostic miRNAs (hsa-miR-146a-3p, hsa-miR-200a-3p, hsa-miR-652-3p, hsa-miR-34a-3p, hsa-miR-132-5p, hsa-miR-1301-3p and hsa-miR-374b-3p) and four diagnostic miRNAs (hsa-miR-1301-3p, hsa-miR-17-5p, hsa-miR-34a-3p and hsa-miR-200a-3p). Notably, three of these miRNAs, hsa-miR-200a-3p, hsa-miR-1301-3p and hsa-miR-17-5p, also displayed association with tumor stage, further emphasizing their clinical relevance. Furthermore, we performed pathway enrichment analysis and found that the target genes of the identified miRNA signature were significantly enriched in the hepatitis B pathway, suggesting its potential involvement in HCC pathogenesis. CONCLUSIONS Our study developed HCCse, a machine learning-based method, to predict survival in HCC patients using miRNA expression profiles. We identified a robust miRNA signature of 32 miRNAs with prognostic and diagnostic value, highlighting their clinical relevance in HCC management and potential involvement in HCC pathogenesis.
Collapse
Affiliation(s)
| | - Nikhila Aimalla
- Department of Internal Medicine-Pediatrics, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Tonia Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Sohyun Jeong
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Zhi Wen
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Rohit Sharma
- Department of Surgical Oncology, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
19
|
Abtahi NA, Salehi S, Naghib SM, Haghiralsadat F, Edgahi MA, Ghorbanzadeh S, Zhang W. Multi-sensitive functionalized niosomal nanocarriers for controllable gene delivery in vitro and in vivo. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
AbstractMicroRNAs, which can contribute to numerous cellular functions through post-transcriptional silencing, have become well-documented candidates for cancer treatment applications, particularly in chemo-resistant cancers. Herein, several formulations were examined to optimize the essential parameters, and the niosomal formulation consisting of cholesterol:tween-80:DOTAP:PEG with 9:69:15:7 ratio had the best physicochemical parameters including spherical shape, high entrapment efficiency, small diameter (81 ± 0.65 nm), and appropriate positive charge (23 ± 0.64 mV). Here, we aimed to design a system with increased delivery efficiency which was tested by the encapsulation of miR-34a within niosome NPs and assessed the nano-niosomal delivery of miR-34a as a tumor suppressor in MCF-7 human adenocarcinoma cells. The results showed that our novel niosome systems with non-ionic surfactants can successfully eliminate cancer cells by increasing the expression of p53 and reducing the expression of NF-κB. In comparison with the free dispersion of miR-34a, the lysis of a nano-sized delivery system demonstrated a better cytotoxicity effect against cancer cells. Similar results were obtained by performing in vivo test on the 4T1 xenografted Balb/C mouse tumor model and the miR-34a-loaded niosomes displayed a better reduction in tumor size by improving approximately + 13% in tumor inhabitation rate while maintaining the bodyweight close to the first day. Therefore, it is concluded that miR-34a delivery via niosomes has high potential as a tumor suppressor and a reliable procedure for breast cancer treatment.
Graphical Abstract
Collapse
|
20
|
Farsi NR, Naghipour B, Shahabi P, Safaralizadeh R, Hajiasgharzadeh K, Dastmalchi N, Alipour MR. The role of microRNAs in hepatocellular carcinoma: Therapeutic targeting of tumor suppressor and oncogenic genes. Clin Exp Hepatol 2023; 9:307-319. [PMID: 38774201 PMCID: PMC11103798 DOI: 10.5114/ceh.2023.131669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 05/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe malignant liver cancer with a poor prognosis and a high mortality rate. This carcinoma is a multistage process that begins with chronic hepatitis and progresses to cirrhosis, dysplastic nodules, and eventually HCC. However, the exact molecular etiology remains unclear. MicroRNAs (miRs) are small non-coding RNAs that modulate the expression of numerous genes. These molecules have become significant participants in several functions, including cell proliferation, differentiation, development, and tumorrelated properties. They have a pivotal role in carcinogenesis as oncogenes or tumor suppressor genes. Furthermore, some investigations have shown that particular miRs might be used as predictive or diagnostic markers and therapeutic targets in HCC therapy. This review study summarizes the current level of knowledge on the role of miRs in the initiation and progression of HCC.
Collapse
Affiliation(s)
- Nasim Rahimi Farsi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Bahman Naghipour
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Mohammad Reza Alipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Lv T, Meng Y, Liu Y, Han Y, Xin H, Peng X, Huang J. RNA nanotechnology: A new chapter in targeted therapy. Colloids Surf B Biointerfaces 2023; 230:113533. [PMID: 37713955 DOI: 10.1016/j.colsurfb.2023.113533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Nanoparticles have been widely studied in the fields of biotechnology, pharmacy, optics and medicine and have broad application prospects. Numerous studies have shown significant interest in utilizing nanoparticles for chemically coating or coupling drugs, aiming to address the challenges of drug delivery, including degradability and uncertainty. Furthermore, the utilization of lipid nanoparticles loaded with novel coronavirus antigen mRNA to control the COVID-19 pandemic has led to a notable surge in research on nanoparticle vaccines. Hence, nanoparticles have emerged as a crucial delivery system for disease prevention and treatment, bearing immense significance. Current research highlights that nanoparticles offer superior efficacy and potential compared to conventional drug treatment and prevention methods. Notably, for drug delivery applications, it is imperative to utilize biodegradable nanoparticles. This paper reviews the structures and characteristics of various biodegradable nanoparticles and their applications in biomedicine in order to inspire more researchers to further explore the functions of nanoparticles. RNA plays a pivotal role in regulating the occurrence and progression of diseases, but its inherent susceptibility to degradation poses a challenge. In light of this, we conducted a comprehensive review of the research advancements concerning RNA-containing biodegradable nanoparticles in the realm of disease prevention and treatment, focusing on cancer, inflammatory diseases, and viral infections.
Collapse
Affiliation(s)
- Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yingying Meng
- Department of Gastroenterology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifan Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Oncology, Jingzhou Hospital Affifiliated to Yangtze University, Jingzhou, Hubei, China
| | - Yukun Han
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affifiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| | - Hongwu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| | - Jinbai Huang
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affifiliated Hospital, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
22
|
Sarlak Z, Eidi A, Ghorbanzadeh V, Moghaddasi M, Mortazavi P. miR-34a/SIRT1/HIF-1α axis is involved in cardiac angiogenesis of type 2 diabetic rats: The protective effect of sodium butyrate combined with treadmill exercise. Biofactors 2023; 49:1085-1098. [PMID: 37560982 DOI: 10.1002/biof.1979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/11/2023] [Indexed: 08/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders worldwide. Recent research has indicated that sodium butyrate (NaB) affects glucose metabolism and exercise has an anti-hyperglycemic effect in diabetes. This study aimed to evaluate the effects of NaB and treadmill exercise on heart angiogenesis through the miR-34a/SIRT1/FOXO1-HIF-1α pathway. Diabetic animals received NaB (400 mg/kg daily, orally) and treadmill exercise for 6 weeks. The effect of NaB and treadmill exercise, alone or combined, on miR-34a expression, SIRT1, FOXO1, HIF-1α levels, and angiogenesis in diabetic heart tissue was measured. Diabetes caused increased miR-34a (p < 0.01) and FOXO1 (p < 0.001) expression levels. Also, SIRT1 (p < 0.001) and HIF-1α (not significant) expression levels were reduced in diabetic rats. NaB and treadmill exercise decreased miR-34a (respectively p < 0.05 and not significant) and FOXO1 (both p < 0.001) expression levels and improved SIRT1 (both not significant) and HIF-1α (respectively p < 0.01 and p < 0.001) levels. Also, NaB combined with treadmill exercise decreased miR-34a (p < 0.001) and FOXO1 (p < 0.001) expression levels, and elevated SIRT1 (p < 0.05) and HIF-1α (p < 0.001) levels in comparison with the diabetic group. NaB and treadmill exercises modulate the expression of miR-34a and the levels of SIRT1, FOXO1, and HIF-1α proteins, thus increasing angiogenesis in the heart tissue of diabetic rats. It can be concluded that NaB and treadmill exercise, alone or combined, may be useful in the treatment of diabetes through the miR-34a/SIRT1/FOXO1-HIF-1α pathway.
Collapse
Affiliation(s)
- Zeynab Sarlak
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehrnoush Moghaddasi
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pejman Mortazavi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Kan Changez MI, Mubeen M, Zehra M, Samnani I, Abdul Rasool A, Mohan A, Wara UU, Tejwaney U, Kumar V. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a comprehensive review. J Int Med Res 2023; 51:3000605231197058. [PMID: 37676968 PMCID: PMC10492500 DOI: 10.1177/03000605231197058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver condition that affects people who do not overconsume alcohol. Uncertainties exist over how microRNAs (miRNAs) in the blood and liver relate to NAFLD. The aim of this narrative review was to investigate the role of miRNAs in the onset and progression of non-alcoholic steatohepatitis (NASH) from NAFLD, and explore their potential as diagnostic tools and treatment targets for NAFLD patients. Liver miRNA-34a levels were found to accurately represent the degree of liver damage, with lower levels suggesting more damage. In patients with NAFLD and severe liver fibrosis, higher levels of miRNA-193a-5p and miRNA-378d were found. Moreover, miRNA-34a, miRNA-122, and miRNA-192 levels might aid in differentiating NASH from NAFLD. Similar to this, miRNA-21 and miRNA-27 levels in rats were able to distinguish between steatosis and steatohepatitis. High-fat diets enhanced the expression of 15 distinct miRNAs in rats, and there were substantial differences in the miRNA expression patterns between obese and lean people. The results from the present review imply that miRNA microarrays and sequencing may be helpful diagnostic tools, and miRNAs may be a possible treatment target for patients with NAFLD.
Collapse
Affiliation(s)
- Mah I Kan Changez
- Department of Medicine, Quetta Institute of Medical Sciences, Quetta, Pakistan
| | - Maryam Mubeen
- Department of Medicine, Punjab Medical College, Faisalabad, Pakistan
| | - Monezahe Zehra
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Inara Samnani
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | | | - Anmol Mohan
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Um Ul Wara
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Usha Tejwaney
- Department of Pharmacy, Valley Health System, New Jersey, USA
| | - Vikash Kumar
- Department of Internal Medicine, The Brooklyn Hospital Center, New York City, NY, USA
| |
Collapse
|
24
|
Han Y, Shin SH, Lim CG, Heo YH, Choi IY, Kim HH. Synthetic RNA Therapeutics in Cancer. J Pharmacol Exp Ther 2023; 386:212-223. [PMID: 37188531 DOI: 10.1124/jpet.123.001587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Recent advances in the RNA delivery system have facilitated the development of a separate field of RNA therapeutics, with modalities including mRNA, microRNA (miRNA), antisense oligonucleotide (ASO), small interfering RNA, and circular (circRNA) that have been incorporated into oncology research. The main advantages of the RNA-based modalities are high flexibility in designing RNA and rapid production for clinical screening. It is challenging to eliminate tumors by tackling a single target in cancer. In the era of precision medicine, RNA-based therapeutic approaches potentially constitute suitable platforms for targeting heterogeneous tumors that possess multiple sub-clonal cancer cell populations. In this review, we discussed how synthetic coding and non-coding RNAs, such as mRNA, miRNA, ASO, and circRNA, can be applied in the development of therapeutics. SIGNIFICANCE STATEMENT: With development of vaccines against coronavirus, RNA-based therapeutics have received attention. Here, the authors discuss different types of RNA-based therapeutics potentially effective against tumor that are highly heterogeneous giving rise to resistance and relapses to the conventional therapeutics. Moreover, this study summarized recent findings suggesting combination approaches of RNA therapeutics and cancer immunotherapy.
Collapse
Affiliation(s)
- Youngjin Han
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Seung-Hyun Shin
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Chang Gyu Lim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Yong Ho Heo
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - In Young Choi
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Ha Hyung Kim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| |
Collapse
|
25
|
Gujrati H, Ha S, Wang BD. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers (Basel) 2023; 15:3140. [PMID: 37370750 PMCID: PMC10296615 DOI: 10.3390/cancers15123140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. Complex genetic and epigenetic mechanisms are involved in the development and progression of PCa. MicroRNAs (miRNAs) are short noncoding RNAs that regulate protein expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. In the past two decades, the field of miRNA research has rapidly expanded, and emerging evidence has revealed miRNA dysfunction to be an important epigenetic mechanism underlying a wide range of diseases, including cancers. This review article focuses on understanding the functional roles and molecular mechanisms of deregulated miRNAs in PCa aggressiveness and drug resistance based on the existing literature. Specifically, the miRNAs differentially expressed (upregulated or downregulated) in PCa vs. normal tissues, advanced vs. low-grade PCa, and treatment-responsive vs. non-responsive PCa are discussed. In particular, the oncogenic and tumor-suppressive miRNAs involved in the regulation of (1) the synthesis of the androgen receptor (AR) and its AR-V7 splice variant, (2) PTEN expression and PTEN-mediated signaling, (3) RNA splicing mechanisms, (4) chemo- and hormone-therapy resistance, and (5) racial disparities in PCa are discussed and summarized. We further provide an overview of the current advances and challenges of miRNA-based biomarkers and therapeutics in clinical practice for PCa diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Iqbal MJ, Javed Z, Sadia H, Mehmood S, Akbar A, Zahid B, Nadeem T, Roshan S, Varoni EM, Iriti M, Gürer ES, Sharifi-Rad J, Calina D. Targeted therapy using nanocomposite delivery systems in cancer treatment: highlighting miR34a regulation for clinical applications. Cancer Cell Int 2023; 23:84. [PMID: 37149609 PMCID: PMC10164299 DOI: 10.1186/s12935-023-02929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
The clinical application of microRNAs in modern therapeutics holds great promise to uncover molecular limitations and conquer the unbeatable castle of cancer metastasis. miRNAs play a decisive role that regulating gene expression at the post-transcription level while controlling both the stability and translation capacity of mRNAs. Specifically, miR34a is a master regulator of the tumor suppressor gene, cancer progression, stemness, and drug resistance at the cell level in p53-dependent and independent signaling. With changing, trends in nanotechnology, in particular with the revolution in the field of nanomedicine, nano drug delivery systems have emerged as a prominent strategy in clinical practices coupled with miR34a delivery. Recently, it has been observed that forced miR34a expression in human cancer cell lines and model organisms limits cell proliferation and metastasis by targeting several signaling cascades, with various studies endorsing that miR34a deregulation in cancer cells modulates apoptosis and thus requires targeted nano-delivery systems for cancer treatment. In this sense, the present review aims to provide an overview of the clinical applications of miR34a regulation in targeted therapy of cancer.
Collapse
Affiliation(s)
| | - Zeeshan Javed
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Sajid Mehmood
- Department of Biochemistry, Islam Medical and Dental College, Sialkot, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan Quetta, Quetta, Pakistan
| | - Benish Zahid
- Department of Pathobiology, KBCMA, CVAS, Sub Campus University of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Tariq Nadeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Roshan
- Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Elena Maria Varoni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania.
| |
Collapse
|
27
|
Abtahi NA, Naghib SM, Haghiralsadat F, Akbari Edgahi M. Development of highly efficient niosomal systems for co-delivery of drugs and genes to treat breast cancer in vitro and in vivo. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractIn this paper, we step forward in optimizing the efficiency of niosomal systems for carrying curcumin and miR-34a as single-/co-delivery to treat breast cancer. Curcumin, via regulation of p53 protein, affects the molecular signaling pathways and leads to cell death. Likewise, miRNAs, via alternation of the expression of genes, can suppress the development of tumor activities. To conquer and optimize the delivery limitation of curcumin and miRNA, niosomal systems with certain compositions (seven formulations) of Tween-80:Tween-60:cholesterol:DOTAP:PEG are introduced, which enhances the carrier size, surface charge, entrapment efficiency, transfection, and drug release. The results showed that Tween-60 has a significant influence on the entrapment efficiency of the composition. By including the PEG and DOTAP, high enhancements in the overall characteristics of the delivery system were observed. To assess the biological activity of samples, with/without the niosomal delivery system, cytotoxicity, apoptosis, in-vitro, and in-vivo cellular uptake were studied. The recorded data revealed better results from niosomal carriers than their free forms. The best result in single delivery was achieved by miRNA in F6, which had the highest apoptosis, uptake, and smallest tumor volumes under a controlled release. In conclusion, we successfully designed a nanoscale niosomal system to carry drugs and genes to the tumor site to treat cancer cells and provided remarkable data for the scientific society.
Collapse
|
28
|
Skalsky RL. MicroRNA-mediated control of Epstein-Barr virus infection and potential diagnostic and therapeutic implications. Curr Opin Virol 2022; 56:101272. [PMID: 36242893 DOI: 10.1016/j.coviro.2022.101272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Herpesviruses, such as Epstein-Barr virus (EBV), encode multiple viral microRNAs that are expressed throughout various infection stages. While much progress has been made in evaluating both the viral and host microRNAs (miRNAs) that are detected during infection as well as elucidating their molecular targets in vitro, our understanding of their contributions to pathogenesis in vivo, viral oncogenesis, and clinical implications for these small molecules remains limited. miRNAs are widely recognized as key regulators of global cellular processes, including apoptosis, cell differentiation, and development of immune responses. This review discusses the roles of miRNAs in EBV infection and current advances in miRNA-based diagnostic and therapeutic strategies potentially applicable toward EBV-associated diseases.
Collapse
Affiliation(s)
- Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA.
| |
Collapse
|
29
|
Parayath NN, Gandham SK, Amiji MM. Tumor-targeted miRNA nanomedicine for overcoming challenges in immunity and therapeutic resistance. Nanomedicine (Lond) 2022; 17:1355-1373. [PMID: 36255330 PMCID: PMC9706370 DOI: 10.2217/nnm-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
miRNA are critical messengers in the tumor microenvironment (TME) that influence various processes leading to immune suppression, tumor progression, metastasis and resistance. Strategies to modulate miRNAs in the TME have important implications in overcoming these challenges. However, miR delivery to specific cells in the TME has been challenging. This review discusses nanomedicine strategies to achieve cell-specific delivery of miRNAs. The key goal of delivery is to activate the tumor immune landscape as well as to prevent chemotherapy resistance. Specifically, the use of hyaluronic acid-based nanoparticle miRNA delivery to the TME is discussed. The discussion is focused on miRNA-125b for reprogramming tumor-associated macrophages to overcome immunosuppression and miRNA-let-7b to overcome resistance to anticancer chemotherapeutics because both these miRNAs have been extensively evaluated for delivery with hyaluronic acid-based delivery systems.
Collapse
Affiliation(s)
- Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Srujan K Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA,Author for correspondence: Tel.: +1 617 373 3137;
| |
Collapse
|
30
|
Singh G, Sharma SK, Singh SK. miR-34a negatively regulates cell cycle factor Cdt2/DTL in HPV infected cervical cancer cells. BMC Cancer 2022; 22:777. [PMID: 35840896 PMCID: PMC9288023 DOI: 10.1186/s12885-022-09879-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs have emerged as an important regulator of cell cycle and various other cellular processes. Aberration in microRNAs has been linked with development of several cancers and other diseases but still very little is known about the mechanism by which they regulate these cellular events. High risk human papilloma virus (HR HPV) is the causative agent of 99% of cervical cancer cases which attenuates multiple tumor suppressors and checkpoint factors of the host cell. The viral proteins also stabilize many oncogenic factors, including an essential cell cycle regulator Cdt2/DTL which in turn promotes cell transformation and proliferation. In this study, we report that a micro-RNA, miR-34a by suppressing HPV E6 protein, destabilizes Cdt2/DTL protein level in HPV infected cervical cancer cell lines. Destabilization of Cdt2 stabilizes pro-apoptotic and onco-suppressor proteins like p21 and Set8 and suppresses cell proliferation, invasion and migration capabilities of the HPV positive cervical cancer cells. Overexpression of either HPV E6 or Cdt2 genes along with miR-34a restored back the suppressed proliferation rate. This study is the first-ever report to show that miR-34a regulates cell cycle factor Cdt2 by suppressing viral E6 protein level, thus opening up the possibility of exploring miR-34a as a specific therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Garima Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Sonika Kumari Sharma
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Samarendra Kumar Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India.
| |
Collapse
|
31
|
Golafzani FN, Vaziri AZ, Javanmardi M, Seyfan F, Yazdanifar M, Khaleghi S. Delivery of miRNA-126 through folic acid-targeted biocompatible polymeric nanoparticles for effective lung cancer therapy. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221095152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Nanoparticle-based drug delivery systems (DDSs) have been playing a considerable role in the eradication of cancer. In this experimental study, we designed and synthesized folic acid (FA)-decorated chitosan (CS) nanocarrier for targeted delivery of miR-126 (as a therapeutic agent) to lung cancer A549 cells. Materials and methods: Therefore, the FA-CS-miR-126 nano-complex was perfectly developed and characterized by various analytical devices such as Fourier transform infrared (FT-IR) and dynamic light scattering (DLS) spectroscopies and as well as transmission electron microscopy (TEM). The size was determined lower than 100 nm for synthetics. Then, a gel retardation assay was performed to investigate the entrapment efficiency of nano-complex. Afterward, the sort of in vitro assays was implemented on A549 (FA receptor-positive lung cancer cell line) and MRC5 (normal human diploid cell line) to evaluate the therapeutic efficiency of FA-CS-miR-126. Results: As the cell viability (40.7 ± 2.98% cell viability after 72 h treatment with 500 nM), migration assay (weaker migration after 24 h and 48 h), apoptotic and autophagy genes expression level (Caspse9: sixfolds; BAX: 17 folds; ATG5: fourfolds; and BECLIN1: threefolds more than the control group), the reduced expression level of EGF-L7, as a target gene for miR-126 was evaluated by Real-Time PCR too, then, cell cycle arrest (8.66% of cells in sub-G1 phase), and cell apoptosis assay (21.0% of cancer cell in late apoptosis phase) were scrutinized. Conclusion: These results are remarkably approved the biocompatible and efficient performance of FA-CS-miR-126 as a promising DDS.
Collapse
Affiliation(s)
- Forough N Golafzani
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Z Vaziri
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoud Javanmardi
- Department of Medical Biotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Seyfan
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Department of pediatrics, Stem cell transplantation and regenerative medicine, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Jothimani G, Bhatiya M, Pathak S, Paul S, Banerjee A. Tumor Suppressor microRNAs in Gastrointestinal Cancers: A Mini-Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:5-15. [PMID: 35670340 DOI: 10.2174/2772270816666220606112727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gastrointestinal (GI) cancer is associated with a group of cancers affecting the organs in the GI tract, with a high incidence and mortality rate. This type of cancer development involves a series of molecular events that arise by the dysregulation of gene expressions and microRNAs (miRNAs). OBJECTIVES This mini-review focuses on elucidating the mechanism of tumor suppressor miRNA-mediated oncogenic gene silencing, which may contribute to a better understanding of miRNA-mediated gene expression regulation of cell cycle, proliferation, invasion, and apoptosis in GI cancers. In this review, the biological significance of tumor suppressor miRNAs involved in gastrointestinal cancers is briefly explained. METHODS The articles were searched with the keywords 'miRNA', 'gastrointestinal cancers', 'esophageal cancer', 'gastric cancer', 'colorectal cancer', 'pancreatic cancer', 'liver cancer', and 'gall bladder cancer' from the Google Scholar and PubMed databases. A total of 71 research and review articles have been collected and referred for this study. RESULTS This review summarises recent research enhancing the effectiveness of miRNAs as novel prognostic, diagnostic, and therapeutic markers for GI cancer treatment strategies. The expression pattern of various miRNAs has been dysregulated in GI cancers, which are associated with proliferation, cell cycle regulation, apoptosis, migration, and invasion. CONCLUSION The role of tumor suppressor miRNAs in the negative regulation of oncogenic gene expression was thoroughly explained in this review. Its potential role as a microRNA therapeutic candidate is also discussed. Profiling and regulating tumor suppressor miRNA expression in gastrointestinal cancers using miRNA mimics could be used as a prognostic, diagnostic, and therapeutic marker, as well as an elucidating molecular therapeutic approach to tumor suppression.
Collapse
Affiliation(s)
- Ganesan Jothimani
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Meenu Bhatiya
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Querétaro CP 76130, Mexico
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
33
|
Popov A, Mandys V. Senescence-Associated miRNAs and Their Role in Pancreatic Cancer. Pathol Oncol Res 2022; 28:1610156. [PMID: 35570840 PMCID: PMC9098800 DOI: 10.3389/pore.2022.1610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 01/17/2023]
Abstract
Replicative senescence is irreversible cell proliferation arrest for somatic cells which can be circumvented in cancers. Cellular senescence is a process, which may play two opposite roles. On the one hand, this is a natural protection of somatic cells against unlimited proliferation and malignant transformation. On the other hand, cellular secretion caused by senescence can stimulate inflammation and proliferation of adjacent cells that may promote malignancy. The main genes controlling the senescence pathways are also well known as tumor suppressors. Almost 140 genes regulate both cellular senescence and cancer pathways. About two thirds of these genes (64%) are regulated by microRNAs. Senescence-associated miRNAs can stimulate cancer progression or act as tumor suppressors. Here we review the role playing by senescence-associated miRNAs in development, diagnostics and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czechia
| | | |
Collapse
|
34
|
Wang B, Li D, Cherkasova V, Gerasymchuk M, Narendran A, Kovalchuk I, Kovalchuk O. Cannabinol Inhibits Cellular Proliferation, Invasion, and Angiogenesis of Neuroblastoma via Novel miR-34a/tRiMetF31/PFKFB3 Axis. Cancers (Basel) 2022; 14:cancers14081908. [PMID: 35454815 PMCID: PMC9027424 DOI: 10.3390/cancers14081908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The prognosis of high-risk neuroblastoma is poor due to its high relapse rate. To date, no effective treatment for this disease has been developed. In this study, we utilized two neuroblastoma cell lines (IMR-5 and SK-N-AS) as a model system to explore the effects of cannabinol (CBN) on neuroblastoma and elucidate the potential mechanisms of action. We reveal an inhibitory role of CBN on neuroblastoma cell proliferation, invasion, and angiogenesis through miR-34a-mediated targeting. We identified 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) as a direct target of a novel 31 nt tRNAiMet fragment tRiMetF31 generated from miR-34a-guided cleavage, highlighting the crucial role of the miR-34a/tRiMetF31/PFKFB3 axis in CBN-mediated suppression in neuroblastoma biology. Abstract High-risk neuroblastoma is an aggressive pediatric tumor. Despite great advances in neuroblastoma therapy and supportive care protocols, no curative treatment is available for most patients with this disease. Here, we uncover that CBN attenuated the cell proliferation, invasion, and angiogenesis of neuroblastoma cell lines in a dose-dependent manner via the inhibition of the AKT pathway and the upregulation of miR-34a that targets E2F1. Both miR-34a and a 31-nt tRNAiMet fragment (tRiMetF31) derived from miR-34a-guided cleavage were downregulated in 4 examined neuroblastoma cell lines inversely correlated with the levels of its direct target, the PFKFB3 protein. Moreover, ectopic tRiMetF31 suppressed proliferation, migration, and angiogenesis in the studied neuroblastoma cell lines. Conversely, tRiMetF31 knockdown promoted PFKFB3 expression, resulting in enhanced angiogenesis. Our findings reveal a suppressive role of CBN in neuroblastoma tumorigenesis, highlighting a novel and crucial miR-34a tumor suppressor network in CBN’s antineuroblastoma actions.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada; (B.W.); (D.L.); (V.C.); (M.G.)
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada; (B.W.); (D.L.); (V.C.); (M.G.)
| | - Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada; (B.W.); (D.L.); (V.C.); (M.G.)
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada; (B.W.); (D.L.); (V.C.); (M.G.)
| | - Aru Narendran
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada; (B.W.); (D.L.); (V.C.); (M.G.)
- Correspondence: (I.K.); (O.K.)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada; (B.W.); (D.L.); (V.C.); (M.G.)
- Correspondence: (I.K.); (O.K.)
| |
Collapse
|
35
|
Mohamed AA, Allam AE, Aref AM, Mahmoud MO, Eldesoky NA, Fawazy N, Sakr Y, Sobeih ME, Albogami S, Fayad E, Althobaiti F, Jafri I, Alsharif G, El-Sayed M, Abdelgeliel AS, Abdel Aziz RS. Evaluation of Expressed MicroRNAs as Prospective Biomarkers for Detection of Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12040789. [PMID: 35453838 PMCID: PMC9026478 DOI: 10.3390/diagnostics12040789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Early detection and screening of breast cancer (BC) might help improve the prognosis of BC patients. This study evaluated the use of serum microRNAs (miRs) as non-invasive biomarkers in BC patients. Methods: Using quantitative real-time polymerase chain reaction, we evaluated the serum expression of four candidate miRs (miR-155, miR-373, miR-10b, and miR-34a) in 99 Egyptian BC patients and 40 healthy subjects (as a control). The miRs expression was correlated with clinicopathological data. In addition, the sensitivity and specificity of the miRs were determined using receiver operating characteristic (ROC) curve analysis. Results: Serum miR-155, miR-373, and miR-10b expression were significantly upregulated (p < 0.001), while serum miR-34a was downregulated (p < 0.00) in nonmetastatic (M0) BC patients compared to the control group. In addition, serum miR-155 and miR-10b were upregulated in BC patients with large tumor sizes and extensive nodal involvement (p < 0.001). ROC curve analysis showed high diagnostic accuracy (area under the curve = 1.0) when the four miRs were combined. Serum miR-373 was significantly upregulated in the human epidermal growth factor 2−negative (p < 0.001), estrogen receptor−positive (p < 0.005), and progesterone receptor (PR)-positive (p < 0.024) in BC patients, and serum miR-155 was significantly upregulated in PR-negative (p < 0.001) BC patients while both serum miR-155 and miR-373 were positively correlated with the tumor grade. Conclusions: Circulating serum miR-155, miR-373, miR-10b, and miR-34a are potential biomarkers for early BC detection in Egyptian patients and their combination shows high sensitivity and specificity.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Department of Biochemistry and Molecular Biology, National Hepatology and Tropical Medicine Research Institute, Cairo 11511, Egypt;
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Correspondence: (A.E.A.); (M.E.-S.)
| | - Ahmed M. Aref
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Cairo 11511, Egypt;
| | - Maha Osama Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11511, Egypt;
| | - Noha A. Eldesoky
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11511, Egypt;
| | - Naglaa Fawazy
- Department of Clinical Pathology, National Institute of Diabetes & Endocrinology, Cairo 11511, Egypt; (N.F.); (Y.S.)
| | - Yasser Sakr
- Department of Clinical Pathology, National Institute of Diabetes & Endocrinology, Cairo 11511, Egypt; (N.F.); (Y.S.)
| | | | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.A.); (E.F.); (F.A.); (I.J.)
| | - Ghadi Alsharif
- College of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
| | - Marwa El-Sayed
- Department of Microbiology and Immunology, Faculty of Medicine, South Valley University, Qena 83523, Egypt
- Correspondence: (A.E.A.); (M.E.-S.)
| | - Asmaa Sayed Abdelgeliel
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Rania S. Abdel Aziz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo 11976, Egypt;
| |
Collapse
|
36
|
Shomali N, Suliman Maashi M, Baradaran B, Daei Sorkhabi A, Sarkesh A, Mohammadi H, Hemmatzadeh M, Marofi F, Sandoghchian Shotorbani S, Jarahian M. Dysregulation of Survivin-Targeting microRNAs in Autoimmune Diseases: New Perspectives for Novel Therapies. Front Immunol 2022; 13:839945. [PMID: 35309327 PMCID: PMC8927965 DOI: 10.3389/fimmu.2022.839945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
It has been well established that the etiopathogenesis of diverse autoimmune diseases is rooted in the autoreactive immune cells' excessively proliferative state and impaired apoptotic machinery. Survivin is an anti-apoptotic and mitotic factor that has sparked a considerable research interest in this field. Survivin overexpression has been shown to contribute significantly to the development of autoimmune diseases via autoreactive immune cell overproliferation and apoptotic dysregulation. Several microRNAs (miRNAs/miRs) have been discovered to be involved in survivin regulation, rendering the survivin-miRNA axis a perspective target for autoimmune disease therapy. In this review, we discuss the role of survivin as an immune regulator and a highly implicated protein in the pathogenesis of autoimmune diseases, the significance of survivin-targeting miRNAs in autoimmunity, and the feasibility of targeting the survivin-miRNA axis as a promising therapeutic option for autoimmune diseases.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marwah Suliman Maashi
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hemmatzadeh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
37
|
Hua CC, Liu XM, Liang LR, Wang LF, Zhong JC. Targeting the microRNA-34a as a Novel Therapeutic Strategy for Cardiovascular Diseases. Front Cardiovasc Med 2022; 8:784044. [PMID: 35155600 PMCID: PMC8828972 DOI: 10.3389/fcvm.2021.784044] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are still the main cause of morbidity and mortality worldwide and include a group of disorders varying from vasculature, myocardium, arrhythmias and cardiac development. MicroRNAs (miRs) are endogenous non-coding RNAs with 18–23 nucleotides that regulate gene expression. The miR-34 family, including miR-34a/b/c, plays a vital role in the regulation of myocardial physiology and pathophysiological processes. Recently, miR-34a has been implicated in cardiovascular fibrosis, dysfunction and related cardiovascular disorders as an essential regulator. Interestingly, there is a pivotal link among miR-34a, cardiovascular fibrosis, and Smad4/TGF-β1 signaling. Notably, both loss-of-function and gain-of-function approaches identified the critical roles of miR-34a in cardiovascular apoptosis, autophagy, inflammation, senescence and remodeling by modulating multifunctional signaling pathways. In this article, we focus on the current understanding of miR-34a in biogenesis, its biological effects and its implications for cardiac pathologies including myocardial infarction, heart failure, ischaemia reperfusion injury, cardiomyopathy, atherosclerosis, hypertension and atrial fibrillation. Thus, further understanding of the effects of miR-34a on cardiovascular diseases will aid the development of effective interventions. Targeting for miR-34a has emerged as a potential therapeutic target for cardiovascular dysfunction and related diseases.
Collapse
Affiliation(s)
- Cun-Cun Hua
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin-Ming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Li-Rong Liang
- Department of Clinical Epidemiology and Tobacco Dependence Treatment Research, Beijing Institute of Respiratory Medicine, Beijing, China
| | - Le-Feng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jiu-Chang Zhong
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Clinical Epidemiology and Tobacco Dependence Treatment Research, Beijing Institute of Respiratory Medicine, Beijing, China
- Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
- Le-Feng Wang
| |
Collapse
|
38
|
Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2. Pharmaceutics 2022; 14:pharmaceutics14010097. [PMID: 35056993 PMCID: PMC8778715 DOI: 10.3390/pharmaceutics14010097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
The B-cell lymphoma 2 (Bcl-2) family, comprised of pro- and anti-apoptotic proteins, regulates the delicate balance between programmed cell death and cell survival. The Bcl-2 family is essential in the maintenance of tissue homeostasis, but also a key culprit in tumorigenesis. Anti-apoptotic Bcl-2, the founding member of this family, was discovered due to its dysregulated expression in non-Hodgkin’s lymphoma. Bcl-2 is a central protagonist in a wide range of human cancers, promoting cell survival, angiogenesis and chemotherapy resistance; this has prompted the development of Bcl-2-targeting drugs. Antisense oligonucleotides (ASO) are highly specific nucleic acid polymers used to modulate target gene expression. Over the past 25 years several Bcl-2 ASO have been developed in preclinical studies and explored in clinical trials. This review will describe the history and development of Bcl-2-targeted ASO; from initial attempts, optimizations, clinical trials undertaken and the promising candidates at hand.
Collapse
|
39
|
Eslamkhah S, Alizadeh N, Safaei S, Mokhtarzadeh A, Amini M, Baghbanzadeh A, Baradaran B. Micro RNA-34a sensitizes MCF-7 breast cancer cells to carboplatin through the apoptosis induction. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Xiong S, Zhao Y, Xu T. DNA methyltransferase 3 beta mediates the methylation of the microRNA-34a promoter and enhances chondrocyte viability in osteoarthritis. Bioengineered 2021; 12:11138-11155. [PMID: 34783292 PMCID: PMC8810119 DOI: 10.1080/21655979.2021.2005308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is characterized by destruction of articular cartilage with an imbalance between synthesis and degradation of extracellular matrix (ECM). In the current study, we explored the role of microRNA-34a (miR-34a) and the behind epigenetic mechanism in the degradation of ECM in OA. Using miRNA-based microarray analysis, we found that miR-34a was overexpressed in cartilage tissues of OA patients relative to patients with acute traumatic amputations. Moreover, its expression was positively correlated with the ECM degradation and inflammation. Mechanistically, miR-34a targeted MCL1, and possible target genes of miR-34a were enriched in the PI3K/AKT pathway. Furthermore, DNMT3B inhibited miR-34a by promoting miR-34a methylation. Functional experiments using CCK-8, flow cytometry, Safranin O staining, RT-qPCR, ELISA, Western blot, and HE staining revealed that miR-34a inhibitor suppressed ECM degradation and inflammatory response of chondrocytes and cartilage tissues. By contrast, downregulation of DNMT3B and MCL1 reversed the repressive effects of miR-34a inhibitor in vitro and in vivo. Altogether, our findings establish that silencing of miR-34a by DNMT3B could effectively reduce chondrocyte ECM degradation and inflammatory response in mice by targeting MCL1 and mediating the downstream PI3K/AKT pathway. This present study revealed that miR-34a knockdown might develop a novel intervention for OA treatment.
Collapse
Affiliation(s)
- Shouliang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Yong Zhao
- Department of Orthopedics, The Central Hospital of Fengxian District, Shanghai, P.R. China
| | - Tiantong Xu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| |
Collapse
|
41
|
Alyami NM. MicroRNAs Role in Breast Cancer: Theranostic Application in Saudi Arabia. Front Oncol 2021; 11:717759. [PMID: 34760689 PMCID: PMC8573223 DOI: 10.3389/fonc.2021.717759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is an aggressive silent disease, representing 11.7% of the diagnosed cancer worldwide, and it is also a leading cause of death in Saudi Arabia. Consequently, microRNAs have emerged recently as potential biomarkers to diagnose and monitor such cases at the molecular level, which tends to be problematic during diagnosis. MicroRNAs are highly conserved non- coding oligonucleotide RNA. Over the last two decades, studies have determined the functional significance of these small RNAs and their impact on cellular development and the interaction between microRNAs and messenger RNAs, which affect numerous molecular pathways and physiological functions. Moreover, many disorders, including breast cancer, are associated with the dysregulation of microRNA. Sparingly, many microRNAs can suppress cancer cell proliferation, apoptosis, angiogenesis, invasion, metastasis, and vice versa. Remarkably, microRNAs can be harvested from patients’ biofluids to predict disease progression that considered a non-invasive method. Nevertheless, MicroRNAs are currently utilized as anti- cancer therapies combined with other drug therapies or even as a single agents’ treatment. Therefore, this review will focus on microRNAs’ role in breast cancer as an indicator of disease progression. In addition, this review summarizes the current knowledge of drug sensitivity and methods in detecting microRNA and their application to improve patient care and identifies the current gaps in this field.
Collapse
Affiliation(s)
- Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Amiri S, Rabbani-Chadegani A, Davoodi J, Fakhrabadi HG. Restoration of MiR-34a Expression by 5-Azacytidine Augments Alimta -Induced Cell Death in Non-Small Lung Cancer Cells by Downregulation of HMG B1, A2 and Bcl-2 Pathway. CELL JOURNAL 2021; 23:674-683. [PMID: 34939761 PMCID: PMC8665979 DOI: 10.22074/cellj.2021.7332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/16/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Alimta (Pemetrexed) as an antifolate drug has been approved for the treatment of lung cancer. The aim of the present study was to investigate the combination effect of 5-Azacytidine (5-aza) and Alimta on the miR-34a and its target genes expression and induction of apoptotic cell death in non-small lung cancer A549 cells. MATERIALS AND METHODS In this experimental study, lung cancer A549 cells were treated with various concentrations of Alimta alone and combined with 5-Aza. Then, viability was assessed by trypan blue and MTT assays. mRNA expressions were performed by real time-polymerase chain reaction (PCR) and western blot. Flow cytometry used to detect apoptotic/ necrotic cells and cell cycle arrest. RESULTS Alimta alone reduced viability of the cells in a dose dependent manner with the half-maximal inhibitory concentration (IC50) value of 12 μM. Pretreatment of the cells with 5-aza (5 μM) induced a synergistic cytotoxic effect with IC50 of 3 μM. Sequential exposure of the cells to 5-aza and Alimta enhanced miR-34a expression and significantly downregulated HMGB1, HMGA2 and BCL-2 expressions. Also, it was associated with reduction of nuclear HMGB1 and HMGA2 content. Caspase-3 activation, HMGB1 release into extracellular space and staining of the cells with annexine V/PI suggested that 5-aza reduced late apoptotic/necrotic cell death induced by Alimta. In addition, combination of 5-aza and Alimta arrested the cells at S and sub-G1 phases and inhibited colony formation. CONCLUSION 5-aza synergistically enhances Alimta induced apoptotic cell death through HMG proteins regulation, MIR34A gene expression and intrinsic apoptosis mechanism, providing a promising combination therapy in clinical lung cancer therapy.
Collapse
Affiliation(s)
| | - Azra Rabbani-Chadegani
- P.O.Box: 13145-1384Department of BiochemistryInstitute of Biochemistry and BiophysicsUniversity of TehranTehranIran
| | | | | |
Collapse
|
43
|
Ribeiro AO, de Oliveira AC, Costa JM, Nachtigall PG, Herkenhoff ME, Campos VF, Delella FK, Pinhal D. MicroRNA roles in regeneration: Multiple lessons from zebrafish. Dev Dyn 2021; 251:556-576. [PMID: 34547148 DOI: 10.1002/dvdy.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.
Collapse
Affiliation(s)
- Amanda Oliveira Ribeiro
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Arthur Casulli de Oliveira
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Juliana Mara Costa
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Laboratório Especial de Toxicologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávia Karina Delella
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
44
|
Sharma S, Pukale S, Sahel DK, Singh P, Mittal A, Chitkara D. Folate targeted hybrid lipo-polymeric nanoplexes containing docetaxel and miRNA-34a for breast cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112305. [PMID: 34474856 DOI: 10.1016/j.msec.2021.112305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
In spite of established evidence of the synergistic combination of hydrophobic anticancer molecule and microRNA for breast cancer treatment, their in vivo delivery has not been realized owing to their instability in the biological milieu and varied physicochemical properties. The present work reports folate targeted hybrid lipo-polymeric nanoplexes for co-delivering DTX and miR-34a. These nanoplexes exhibited a mean size of 129.3 nm with complexation efficiency at an 8:1 N/P ratio. The obtained nanoplexes demonstrated higher entrapment efficiency of DTX (94.8%) with a sustained release profile up to 85% till 48 h. Further, an improved transfection efficiency in MDA-MB-231 and 4T1 breast cancer cells was observed with uptake primarily through lipid-raft and clathrin-mediated endocytosis. Further, nanoplexes showed improved cytotoxicity (~3.5-5 folds), apoptosis (~1.6-2.0 folds), and change in expression of apoptotic genes (~4-7 folds) compared to the free treatment group in breast cancer cells. In vivo systemic administration of FA-functionalized DTX and FAM-siRNA-loaded nanoplexes showed an improved area under the curve (AUC) as well as circulation half-life compared to free DTX and naked FAM-labelled siRNA. Acute toxicity studies of the cationic polymer showed no toxicity at a dose equivalent to 10 mg/kg based on the hematological, biochemical, and histopathological examination.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India; School of Health Sciences, Department of Pharmaceutical Sciences, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| | - Sudeep Pukale
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
45
|
Petrović N, Stanojković TP, Nikitović M. MicroRNAs in prostate cancer following radiotherapy: Towards predicting response to radiation treatment. Curr Med Chem 2021; 29:1543-1560. [PMID: 34348602 DOI: 10.2174/0929867328666210804085135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed male cancer worldwide. Early diagnosis of PCa, response to therapy and prognosis still represent a challenge. Nearly 60% of PCa patients undergo radiation therapy (RT) which might cause side effects. In spite of numerous researches in this field, predictive biomarkers for radiation toxicity are still not elucidated. MicroRNAs as posttranscriptional regulators of gene expression are shown to be changed during and after irradiation. Manipulation with miRNA levels might be used to modulate response to RT-to reverse radioresistance-to induce radiosensitivity, or if needed, to reduce sensitivity to treatment to avoid side effects. In this review we have listed and described miRNAs involved in response to RT in PCa, and highlighted potential candidates for future biological tests predicting radiation response to RT, with the special focus on side effects of RT. Individual radiation response is a result of the interactions between physical characteristics of radiation treatment and biological background of each patient, and miRNA expression changes among others. According to described literature we concluded that let-7, miR-21, miR-34a, miR-146a, miR-155, and members of miR-17/92 cluster might be promising candidates for biological tests predicting radiosensitivity of PCa patients undergoing radiation treatment, and as future agents for modulation of radiation response. Predictive miRNA panels, especially for acute and late side effects of RT can serve as a starting point for decisions for individualized RT planning. We believe that this review might be one step closer to understanding molecular mechanisms underlying individual radiation response of patients with PCa.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade. Serbia
| | - Tatjana P Stanojković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade. Serbia
| | - Marina Nikitović
- Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia, Pasterova 14, 11000 Belgrade. Serbia
| |
Collapse
|
46
|
Hussein RM, Al-Dalain SM. Betaine downregulates microRNA 34a expression via a p53-dependent manner in cisplatin-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2021; 35:e22856. [PMID: 34318554 DOI: 10.1002/jbt.22856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023]
Abstract
Cisplatin-induced nephrotoxicity limits its wide application as a chemotherapeutic drug. Betaine is a natural trimethylglycine compound involved in several biological reactions. In this study, the protective effect of betaine against cisplatin-induced nephrotoxicity through modulating the expression of microRNA 34a (miRNA 34a), p53, apoptosis, and inflammation was investigated. Adult Wistar rats were divided into normal group (received vehicle); betaine group (received 250 mg betaine/kg BW/day via oral gavage from Day 1 to Day 25); cisplatin group (received a single intraperitoneal dose of cisplatin at 5 mg/kg BW on Day 21) and betaine + cisplatin group (received the same doses of betaine and cisplatin). The results demonstrated that the cisplatin group exhibited severe kidney tissue damage and an increase in blood creatinine and urea levels. Furthermore, the cisplatin group showed a significant upregulation of miRNA 34a and higher levels of phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1β compared to the normal group. Remarkably, the betaine + cisplatin group showed significantly decreased blood creatinine and urea concentrations, decreased levels of miRNA 34a, phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1β as well as improved kidney tissue integrity compared to the cisplatin group. In conclusion, cisplatin-induced nephrotoxicity in rats was associated with upregulation of miRNA 34a expression, apoptosis, and inflammation in p53-dependent manner. These effects were reversed by betaine administration that ultimately improved the kidney function and tissue integrity.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan.,Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Saed M Al-Dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
47
|
Ghatak D, Datta A, Roychowdhury T, Chattopadhyay S, Roychoudhury S. MicroRNA-324-5p-CUEDC2 Axis Mediates Gain-of-Function Mutant p53-Driven Cancer Stemness. Mol Cancer Res 2021; 19:1635-1650. [PMID: 34257080 DOI: 10.1158/1541-7786.mcr-20-0717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/21/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Regulation of cancer stemness has recently emerged as a new gain-of-function (GOF) property of mutant p53. In this study, we identify miR-324-5p as a critical epigenetic regulator of cancer stemness and demonstrate its role in mediating GOF-mutant p53-driven stemness phenotypes. We report that miR-324-5p is upregulated in human cancer cell lines and non-small cell lung carcinoma (NSCLC) tumors carrying TP53 GOF mutations. Mechanistically, we show that GOF mutant p53 upregulates miR-324-5p expression via c-Myc, an oncogenic transcription factor in cancer cells. Our experimental results suggest that miR-324-5p-induced CSC phenotypes stem from the downregulation of CUEDC2, a downstream target gene of miR-324-5p. Accordingly, CUEDC2 complementation diminishes elevated CSC marker expression in miR-324-5p-overexpressing cancer cells. We further demonstrate that mutant p53 cancer cells maintain a low level of CUEDC2 that is rescued upon miR-324-5p inhibition. Importantly, we identify CUEDC2 downregulation as a novel characteristic feature of TP53-mutated human cancers. We show that activation of NF-κB due to downregulation of CUEDC2 by miR-324-5p imparts stemness in GOF mutant p53 cancer cells. Finally, we provide evidence that TP53 mutations coupled with high miR-324-5p expression predict poor prognosis in patients with lung adenocarcinoma. Thus, our study delineates an altered miR-324-5p-CUEDC2-NF-κB pathway as a novel regulator of GOF mutant p53-driven cancer stemness. IMPLICATIONS: Our findings implicate miRNA-324-5p as a novel epigenetic modifier of human cancer stemness.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Arindam Datta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Samit Chattopadhyay
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Department of Biological Sciences, BITS-Pilani, K K Birla Goa Campus, Goa, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India. .,Division of Research, Saroj Gupta Cancer Center and Research Institute, Thakurpukur, Kolkata, India
| |
Collapse
|
48
|
Ward DM, Shodeinde AB, Peppas NA. Innovations in Biomaterial Design toward Successful RNA Interference Therapy for Cancer Treatment. Adv Healthc Mater 2021; 10:e2100350. [PMID: 33973393 PMCID: PMC8273125 DOI: 10.1002/adhm.202100350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Gene regulation using RNA interference (RNAi) therapy has been developed as one of the frontiers in cancer treatment. The ability to tailor the expression of genes by delivering synthetic oligonucleotides to tumor cells has transformed the way scientists think about treating cancer. However, its clinical application has been limited due to the need to deliver synthetic RNAi oligonucleotides efficiently and effectively to target cells. Advances in nanotechnology and biomaterials have begun to address the limitations to RNAi therapeutic delivery, increasing the likelihood of RNAi therapeutics for cancer treatment in clinical settings. Herein, innovations in the design of nanocarriers for the delivery of oligonucleotides for successful RNAi therapy are discussed.
Collapse
Affiliation(s)
- Deidra M Ward
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Aaliyah B Shodeinde
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX, 78712, USA
- Department of Pediatrics and Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX, 78712, USA
| |
Collapse
|
49
|
Baghbani E, Noorolyai S, Duijf PHG, Silvestris N, Kolahian S, Hashemzadeh S, Baghbanzadeh Kojabad A, FallahVazirabad A, Baradaran B. The impact of microRNAs on myeloid-derived suppressor cells in cancer. Hum Immunol 2021; 82:668-678. [PMID: 34020831 DOI: 10.1016/j.humimm.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023]
Abstract
Inflammation promotes cancer development. To a large extent, this can be attributed to the recruitment of myeloid-derived suppressor cells (MDSCs) to tumors. These cells are known for establishing an immunosuppressive tumor microenvironment by suppressing T cell activities. However, MDSCs also promote metastasis and angiogenesis. Critically, as small non-coding RNAs that regulate gene expression, microRNAs (miRNAs) control MDSC activities. In this review, we discuss how miRNA networks regulate key MDSC signaling pathways, how they shape MDSC development, differentiation and activation, and how this impacts tumor development. By targeting the expression of miRNAs in MDSCs, we can alter their main signaling pathways. In turn, this can compromise their ability to promote multiple hallmarks of cancer. Therefore, this may represent a new powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Nicola Silvestris
- IRCCS Bari, Italy. Medical Oncology Unit-IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy, Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany; Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Shahryar Hashemzadeh
- General and Vascular Surgery Department, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Li Y, Jia F, Deng X, Wang X, Lu J, Shao L, Cui X, Pan Z, Wu Y. Combinatorial miRNA-34a replenishment and irinotecan delivery via auto-fluorescent polymeric hybrid micelles for synchronous colorectal cancer theranostics. Biomater Sci 2021; 8:7132-7144. [PMID: 33150879 DOI: 10.1039/d0bm01579b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synergistic combination of microRNA (miRNA) modulation and chemotherapy has emerged as an effective strategy to combat cancer. Irinotecan (IRI) is a potent antitumor chemotherapeutic in clinical practice and has been used for treating various malignant tumors, including colorectal cancer (CRC). However, IRI is not effective for advanced CRC or metastatic behavior. Herein, novel polymeric hybrid micelles were engineered based on two different amphiphilic copolymers, polyethyleneimine-poly(d,l-lactide) (PEI-PLA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethyleneglycol) (DSPE-PEG), in which IRI and a tumor suppressive microRNA-34a (miR-34a) gene were efficiently co-loaded (MINPs) to achieve a chemo-miRNA combination therapy against CRC. MINPs were successfully constructed by two-step film dispersion and electrostatic interaction methods. IRI and miR-34a could be efficaciously encapsulated as MINPs and transferred to CRC cells. After encapsulation, MINPs would then upregulate miR-34a expression and regulate miR-34a-related downstream genes, which in turn led to enhanced cell cytotoxicity and apoptosis ratios. MINPs presented an excitation-dependent multi-wavelength emission feature due to the intrinstic fluorescence properties of PEI-PLA and could be utilized for in vitro/vivo imaging. According to the in vivo experimental results, MINPs possess the great characteristic of accumulating in situ in a tumor site and lightening it after intravenous administration. Furthermore, MINPs presented extraordinary antitumor efficacy owing to the combined therapy effects of IRI and miR-34a with good biocompability. Overall, our findings validated MINPs-mediated miR-34a replenishment and IRI co-delivery to serve as an effective theranostic platform and provided an innovative horizon for combining chemo-gene therapy against CRC.
Collapse
Affiliation(s)
- Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|