1
|
Mohan M, Mannan A, Singh TG. Unravelling the role of protein kinase R (PKR) in neurodegenerative disease: a review. Mol Biol Rep 2025; 52:377. [PMID: 40205152 DOI: 10.1007/s11033-025-10484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Protein Kinase R is an essential regulator of many cell activities and belongs to one of the largest and most functionally complex gene families. These are found all over the body, and by adding phosphate groups to the substrate proteins, they regulate their activity and coordinate the action of almost all cellular processes. Recent research has illuminated the involvement of PKR in the pathogenesis of neurodegenerative disorders (NDs), thereby expanding our understanding of intricate molecular mechanisms underlying disease progression. Through their inhibition or activation, they hold potential therapeutic targets for the pathogenesis or protection of NDs. In the case of AD (AD), PKR contributes to the protection or elevation of Aβ accumulation, neuroinflammation, synaptic plasticity alterations, and neuronal excitability. Similarly, in Parkinson's disease (PD), PKR again has a dual role in dopaminergic neuronal loss, gene mutations, and mitochondrial dysfunction via various pathways. Notably, neuronal excitotoxicity, as well as genetic mutations, have been linked to ALS. In Huntington's disease (HD), PKR is associated with decreased or increased mutated genes, striatal neuron degeneration, neuroinflammation, and excitotoxicity. This review emphasizes strategies that target PKR for the treatment of neurodegenerative disorders. Doing so offers valuable insights that can guide future research endeavors and the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Rajpura, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Rajpura, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Rajpura, India.
| |
Collapse
|
2
|
Guo SK, Liu CX, Xu YF, Wang X, Nan F, Huang Y, Li S, Nan S, Li L, Kon E, Li C, Wei MY, Su R, Wei J, Peng S, Ad-El N, Liu J, Peer D, Chen T, Yang L, Chen LL. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis. Nat Biotechnol 2025; 43:236-246. [PMID: 38653797 DOI: 10.1038/s41587-024-02204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Efforts to advance RNA aptamers as a new therapeutic modality have been limited by their susceptibility to degradation and immunogenicity. In a previous study, we demonstrated synthesized short double-stranded region-containing circular RNAs (ds-cRNAs) with minimal immunogenicity targeted to dsRNA-activated protein kinase R (PKR). Here we test the therapeutic potential of ds-cRNAs in a mouse model of imiquimod-induced psoriasis. We find that genetic supplementation of ds-cRNAs leads to inhibition of PKR, resulting in alleviation of downstream interferon-α and dsRNA signals and attenuation of psoriasis phenotypes. Delivery of ds-cRNAs by lipid nanoparticles to the spleen attenuates PKR activity in examined splenocytes, resulting in reduced epidermal thickness. These findings suggest that ds-cRNAs represent a promising approach to mitigate excessive PKR activation for therapeutic purposes.
Collapse
Affiliation(s)
- Si-Kun Guo
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Feng Xu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Wang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang Nan
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Youkui Huang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siqi Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan Nan
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Edo Kon
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Center for Nanoscience and Nanotechnology, Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Chen Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Yuan Wei
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rina Su
- Department of Dermatology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shiguang Peng
- Department of Dermatology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Nitay Ad-El
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Center for Nanoscience and Nanotechnology, Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Jiaquan Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Center for Nanoscience and Nanotechnology, Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Ting Chen
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- New Cornerstone Science Laboratory, Shenzhen, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Wang C, Zhai J, Zhou X, Chen Y. Lipid metabolism: Novel approaches for managing idiopathic epilepsy. Neuropeptides 2024; 108:102475. [PMID: 39366134 DOI: 10.1016/j.npep.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Epilepsy is a common neurological condition characterized by abnormal neuronal activity, often leading to cellular damage and death. There is evidence to suggest that lipid imbalances resulting in cellular death play a key role in the development of epilepsy, including changes in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Disrupted lipid metabolism acts as a crucial pathological mechanism in epilepsy, potentially linked to processes such as cellular ferroptosis, lipophagy, and immune modulation of gut microbiota (thus influencing the gut-brain axis). Understanding these mechanisms could open up new avenues for epilepsy treatment. This study investigates the association between disturbances in lipid metabolism and the onset of epilepsy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuemei Zhou
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
4
|
Xia Y, Qian T, Fei G, Cheng X, Zhao L, Sang S, Zhong C. Low expression of thiamine pyrophosphokinase-1 contributes to brain susceptibility to thiamine deficiency. Neuroreport 2024; 35:1000-1009. [PMID: 39190417 PMCID: PMC11389888 DOI: 10.1097/wnr.0000000000002094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Thiamine deficiency is a well-known risk factor for the development of severe encephalopathy, such as Wernicke encephalopathy and Korsakoff syndrome, but the underlying mechanism is still mysterious. This study aims to investigate the expression levels of thiamine metabolism genes in different tissues and their impact on brain susceptibility to thiamine deficiency. The mRNA and protein levels of four genes known to be associated with thiamine metabolism: thiamine pyrophosphokinase-1 ( Tpk ), Solute carrier family 19 member 2 ( Slc19a2 ), Slc19a3 , and Slc25a19 , in the brain, kidney, and liver of mice were examined. Thiamine diphosphate (TDP) levels were measured in these tissues. Mice were subjected to dietary thiamine deprivation plus pyrithiamine (PTD), a specific TPK inhibitor, or pyrithiamine alone to observe the reduction in TDP and associated pathological changes. TPK mRNA and protein expression levels were lowest in the brain compared to the kidney and liver. Correspondingly, TDP levels were also lowest in the brain. Mice treated with PTD or pyrithiamine alone showed an initial reduction in brain TDP levels, followed by reductions in the liver and kidney. PTD treatment caused significant neuron loss, neuroinflammation, and blood-brain barrier disruption, whereas dietary thiamine deprivation alone did not. TPK expression level is the best indicator of thiamine metabolism status. Low TPK expression in the brain appears likely to contribute to brain susceptibility to thiamine deficiency, underscoring a critical role of TPK in maintaining cerebral thiamine metabolism and preventing thiamine deficiency-related brain lesions.
Collapse
Affiliation(s)
- Yingfeng Xia
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| | - Ting Qian
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| | - Lei Zhao
- Department of Neurology, Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| |
Collapse
|
5
|
Dorrity TJ, Shin H, Gertie JA, Chung H. The Sixth Sense: Self-nucleic acid sensing in the brain. Adv Immunol 2024; 161:53-83. [PMID: 38763702 PMCID: PMC11186578 DOI: 10.1016/bs.ai.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Our innate immune system uses pattern recognition receptors (PRRs) as a first line of defense to detect microbial ligands and initiate an immune response. Viral nucleic acids are key ligands for the activation of many PRRs and the induction of downstream inflammatory and antiviral effects. Initially it was thought that endogenous (self) nucleic acids rarely activated these PRRs, however emerging evidence indicates that endogenous nucleic acids are able to activate host PRRs in homeostasis and disease. In fact, many regulatory mechanisms are in place to finely control and regulate sensing of self-nucleic acids by PRRs. Sensing of self-nucleic acids is particularly important in the brain, as perturbations to nucleic acid sensing commonly leads to neuropathology. This review will highlight the role of nucleic acid sensors in the brain, both in disease and homeostasis. We also indicate the source of endogenous stimulatory nucleic acids where known and summarize future directions for the study of this growing field.
Collapse
Key Words
- Brain
- DNA sensing PRRs: cGAS, AIM2, TLR9
- Neurodegeneration: Aicardi-Goutieres syndrome (AGS), Alzheimer's disease, Amyotrophic lateral sclerosis, Stroke, Traumatic brain injury
- Neurodevelopment
- Neuroinflammation
- Nuecleic acid immunity
- Pattern recognition receptors (PRRs)
- RNA sensing PRRs: MDA5, RIG-I, PKR, TLR3, TLR7/8
Collapse
Affiliation(s)
- Tyler J Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jake A Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
6
|
Ji K, Sun M, Hong Y, Li L, Wang X, Li C, Yang S, Du W, Xu K, Zhou H. Association of vitamin B1 intake with geriatric cognitive function: An analysis of the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. Heliyon 2024; 10:e28119. [PMID: 38601615 PMCID: PMC11004520 DOI: 10.1016/j.heliyon.2024.e28119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The association between dietary vitamin B1 intake and cognitive performance in the noninstitutionalized older adult population of the United States remains unclear. PURPOSE This study aimed to investigate the association between vitamin B1 intake and cognitive performance in older adults in the United States. METHODS Vitamin B1 intake was assessed through two 24-h dietary recalls. Weighted logistic regression was used to evaluate the association between vitamin B1 intake and three cognitive scores (immediate recall test [IRT], animal fluency test [AFT], and digit symbol substitution test [DSST]). Cognitive performance was measured by these three tests, and individuals scoring below the lowest quartile were categorized as cognitive impairment. Sensitivity analysis, including dose-response curves, subgroup analyses, interaction effects, per 1 SD, and quartiles, were performed to ensure the accuracy of the conclusion. RESULTS A total of 2896 participants over the age of 60 were included in this study. In the adjusted final model, the association between vitamin B1 intake and low cognitive performance in old age was statistically significant, with the following odds ratios (ORs) and 95% confidence intervals (CIs): IRT, 0.75 (0.57, 0.97), P = 0.018; AFT, 0.68 (0.50, 0.92), P = 0.007; DSST, 0.71 (0.54, 0.92), P = 0.005. Subgroup analyses showed that this association was statistically significant among males, white, low-education, and no memory impairment. The results of the sensitivity analyses confirmed the association between VB1 and cognitive function in old age and the absence of interactions in the final calibrated model. CONCLUSION Dietary vitamin B1 intake is negatively associated with cognitive performance in older adults.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng 224000, China
- Department of Clinical Nutrition, Binhai County People's Hospital, Yancheng 224000, China
| | - Minli Sun
- Department of Geriatrics, Binhai County People's Hospital, Yancheng 224000, China
| | - Ye Hong
- Department of Clinical Nutrition, Binhai County People's Hospital, Yancheng 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng 224000, China
| | - Xin Wang
- Department of Geriatrics, Binhai County People's Hospital, Yancheng 224000, China
| | - Chaonian Li
- Department of Geriatrics, Binhai County People's Hospital, Yancheng 224000, China
| | - Shengkai Yang
- Department of Neurocentres, Binhai County People's Hospital, Yancheng 224000, China
| | - Wenjuan Du
- Department of Neurocentres, Binhai County People's Hospital, Yancheng 224000, China
| | - Kangjie Xu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng 224000, China
- Department of Neurocentres, Binhai County People's Hospital, Yancheng 224000, China
| |
Collapse
|
7
|
Machlovi SI, Neuner SM, Hemmer BM, Khan R, Liu Y, Huang M, Zhu JD, Castellano JM, Cai D, Marcora E, Goate AM. APOE4 confers transcriptomic and functional alterations to primary mouse microglia. Neurobiol Dis 2022; 164:105615. [PMID: 35031484 PMCID: PMC8934202 DOI: 10.1016/j.nbd.2022.105615] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Common genetic variants in more than forty loci modulate risk for Alzheimer's disease (AD). AD risk alleles are enriched within enhancers active in myeloid cells, suggesting that microglia, the brain-resident macrophages, may play a key role in the etiology of AD. A major genetic risk factor for AD is Apolipoprotein E (APOE) genotype, with the ε4/ε4 (E4) genotype increasing risk for AD by approximately 15 fold compared to the most common ε3/ε3 (E3) genotype. However, the impact of APOE genotype on microglial function has not been thoroughly investigated. To address this, we cultured primary microglia from mice in which both alleles of the mouse Apoe gene have been humanized to encode either human APOE ε3 or APOE ε4. Relative to E3 microglia, E4 microglia exhibit altered morphology, increased endolysosomal mass, increased cytokine/chemokine production, and increased lipid and lipid droplet accumulation at baseline. These changes were accompanied by decreased translation and increased phosphorylation of eIF2ɑ and eIF2ɑ-kinases that participate in the integrated stress response, suggesting that E4 genotype leads to elevated levels of cellular stress in microglia relative to E3 genotype. Using live-cell imaging and flow cytometry, we also show that E4 microglia exhibited increased phagocytic uptake of myelin and other substrates compared to E3 microglia. While transcriptomic profiling of myelin-challenged microglia revealed a largely overlapping response profile across genotypes, differential enrichment of genes in interferon signaling, extracellular matrix and translation-related pathways was identified in E4 versus E3 microglia both at baseline and following myelin challenge. Together, our results suggest E4 genotype confers several important functional alterations to microglia even prior to myelin challenge, providing insight into the molecular and cellular mechanisms by which APOE4 may increase risk for AD.
Collapse
Affiliation(s)
- Saima I Machlovi
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah M Neuner
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brittany M Hemmer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Riana Khan
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiyuan Liu
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min Huang
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA; Department of Neurology, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey D Zhu
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph M Castellano
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Neurology, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongming Cai
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; James J Peters VA Medical Center, Research & Development, Bronx, NY, USA; Department of Neurology, New York, NY, USA; Alzheimer Disease Research Center, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Department of Neurology, New York, NY, USA; Alzheimer Disease Research Center, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Davidson S, Yu CH, Steiner A, Ebstein F, Baker PJ, Jarur-Chamy V, Hrovat Schaale K, Laohamonthonkul P, Kong K, Calleja DJ, Harapas CR, Balka KR, Mitchell J, Jackson JT, Geoghegan ND, Moghaddas F, Rogers KL, Mayer-Barber KD, De Jesus AA, De Nardo D, Kile BT, Sadler AJ, Poli MC, Krüger E, Goldbach Mansky R, Masters SL. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci Immunol 2022; 7:eabi6763. [PMID: 35148201 PMCID: PMC11036408 DOI: 10.1126/sciimmunol.abi6763] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteasome dysfunction can lead to autoinflammatory disease associated with elevated type I interferon (IFN-αβ) and NF-κB signaling; however, the innate immune pathway driving this is currently unknown. Here, we identified protein kinase R (PKR) as an innate immune sensor for proteotoxic stress. PKR activation was observed in cellular models of decreased proteasome function and in multiple cell types from patients with proteasome-associated autoinflammatory disease (PRAAS). Furthermore, genetic deletion or small-molecule inhibition of PKR in vitro ameliorated inflammation driven by proteasome deficiency. In vivo, proteasome inhibitor-induced inflammatory gene transcription was blunted in PKR-deficient mice compared with littermate controls. PKR also acted as a rheostat for proteotoxic stress by triggering phosphorylation of eIF2α, which can prevent the translation of new proteins to restore homeostasis. Although traditionally known as a sensor of RNA, under conditions of proteasome dysfunction, PKR sensed the cytoplasmic accumulation of a known interactor, interleukin-24 (IL-24). When misfolded IL-24 egress into the cytosol was blocked by inhibition of the endoplasmic reticulum-associated degradation pathway, PKR activation and subsequent inflammatory signaling were blunted. Cytokines such as IL-24 are normally secreted from cells; therefore, cytoplasmic accumulation of IL-24 represents an internal danger-associated molecular pattern. Thus, we have identified a mechanism by which proteotoxic stress is detected, causing inflammation observed in the disease PRAAS.
Collapse
Affiliation(s)
- Sophia Davidson
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chien-Hsiung Yu
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Annemarie Steiner
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Institute of Structural Biology, University Hospital Bonn, Bonn 53127, Germany
| | - Frédéric Ebstein
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald 17475, Germany
| | - Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Valentina Jarur-Chamy
- Immunogenetics and Translational Immunology Program. Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago, Chile
| | - Katja Hrovat Schaale
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Klara Kong
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Dale J. Calleja
- Ubiquitin Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Cassandra R. Harapas
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Katherine R. Balka
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jacob Mitchell
- Translational Autoinflammatory Disease Studies (TADS), Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jacob T. Jackson
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Niall D. Geoghegan
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Fiona Moghaddas
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kelly L. Rogers
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Adriana A. De Jesus
- Translational Autoinflammatory Disease Studies (TADS), Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Dominic De Nardo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin T. Kile
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Anthony J. Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - M. Cecilia Poli
- Immunogenetics and Translational Immunology Program. Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago, Chile
- Division of Pediatric Immunology, Allergy, and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elke Krüger
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald 17475, Germany
| | - Raphaela Goldbach Mansky
- Translational Autoinflammatory Disease Studies (TADS), Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Seth L. Masters
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Olsen I. Porphyromonas gingivalis-Induced Neuroinflammation in Alzheimer's Disease. Front Neurosci 2021; 15:691016. [PMID: 34720846 PMCID: PMC8551391 DOI: 10.3389/fnins.2021.691016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
"Chronic" periodontitis and its keystone pathogen Porphyromonas gingivalis have repeatedly been associated with Alzheimer's disease (AD). Pathological hallmarks in AD are brain accumulations of amyloid-beta and neurofibrillary tangles consisting of aggregated and hyperphosphorylated tau. In addition, neuroinflammation induced by P. gingivalis has increasingly been recognized as a factor in the pathogenesis of AD. The present mini-review discusses possible mechanisms for the induction of neuroinflammation by P. gingivalis in AD, involving factors such as pro-inflammatory mediators, amyloid-beta, tau, microglia, cathepsin B, and protein kinase R. Inflammagens of P. gingivalis such as lipopolysaccharide and gingipains are also discussed.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Lopez-Grancha M, Bernardelli P, Moindrot N, Genet E, Vincent C, Roudieres V, Krick AI, Sabuco JF, Machnik D, Ibghi D, Pradier L, Taupin V. A Novel Selective PKR Inhibitor Restores Cognitive Deficits and Neurodegeneration in Alzheimer Disease Experimental Models. J Pharmacol Exp Ther 2021; 378:262-275. [PMID: 34531308 DOI: 10.1124/jpet.121.000590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
In Alzheimer disease (AD), the double-strand RNA-dependent kinase protein kinase R (PKR )/EIF2AK2 is activated in brain with increased phosphorylation of its substrate eukaryotic initiation factor 2α (eIF2α). AD risk-promoting factors, such as ApoE4 allele or the accumulation of neurotoxic amyloid-β oligomers (AβOs), have been associated with activation of PKR-dependent signaling. Here, we report the discovery of a novel potent and selective PKR inhibitor (SAR439883) and demonstrate its neuroprotective pharmacological activity in AD experimental models. In ApoE4 human replacement male mice, 1-week oral treatment with SAR439883 rescued short-term memory impairment in the spatial object recognition test and dose-dependently reduced learning and memory deficits in the Barnes maze test. Moreover, in AβO-injected male mice, a 2-week administration of SAR439883 in diet dose-dependently ameliorated the AβO-induced cognitive impairment in both Y-maze and Morris Water Maze, prevented loss of synaptic proteins, and reduced levels of the proinflammatory cytokine interleukin-1β In both mouse models, these effects were associated with a dose-dependent inhibition of brain PKR activity as measured by both PKR occupancy and partial lowering of peIF2α levels. Our results provide evidence that selective pharmacological inhibition of PKR by a small selective molecule can rescue memory deficits and prevent neurodegeneration in animal models of AD-like pathology, suggesting that inhibition of PKR is a potential therapeutic approach for AD. SIGNIFICANCE STATEMENT: This study reports the identification of a new small molecule potent and selective protein kinase R (PKR) inhibitor that can prevent cognitive deficits and neurodegeneration in Alzheimer disease (AD) experimental models, including a mouse model expressing the most prevalent AD genetic risk factor ApoE4. With high potency and selectivity, this PKR inhibitor represents a unique tool for investigating the physiological role of PKR and a starting point for developing new drug candidates for AD.
Collapse
Affiliation(s)
- Matilde Lopez-Grancha
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Patrick Bernardelli
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Nicolas Moindrot
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Elisabeth Genet
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Carine Vincent
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Valerie Roudieres
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - AIain Krick
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Jean-François Sabuco
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - David Machnik
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Delphine Ibghi
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Laurent Pradier
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Veronique Taupin
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| |
Collapse
|
11
|
Moya M, San Felipe D, Ballesta A, Alén F, Rodríguez de Fonseca F, García-Bueno B, Marco EM, Orio L. Cerebellar and cortical TLR4 activation and behavioral impairments in Wernicke-Korsakoff Syndrome: Pharmacological effects of oleoylethanolamide. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110190. [PMID: 33271211 DOI: 10.1016/j.pnpbp.2020.110190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
Wernicke-Korsakoff Syndrome (WKS) is a neuropsychiatric disorder whose etiology is a thiamine deficiency (TD), with alcoholism being the main underlying cause. Previous evidence suggests the presence of initial neuroinflammation and oxidative/nitrosative stress in the physiopathology, although the specific molecular mechanisms underlying TD-induced brain damage and behavioral disabilities are unknown. We explored the specific role of the innate immune receptor TLR4 in three murine models of WKS, based on the combination of a thiamine-deficient diet and pyrithiamine injections (0.25 mg/kg, i.p.) over time. The Symptomatic Model (SM) allowed us to describe the complete neurological/neurobehavioral symptomatology over 16 days of TD. Animals showed an upregulation of the TLR4 signaling pathway both in the frontal cortex (FC) and cerebellum and clear motor impairments related with cerebellar dysfunction. However, in the Pre-Symptomatic Model (PSM), 12 days of TD induced the TLR4 pathway upregulation in the FC, which correlated with disinhibited-like behavior, but not in the cerebellum, and no motor impairments. In addition, we tested the effects of the biolipid oleoylethanolamide (OEA, 10 mg/kg, i.p., once daily, starting before any symptom of the pathology is manifested) through the Glucose-Precipitated Model (GPM), which was generated by glucose loading (5 g/kg, i.v., last day) in thiamine-deficient animals to accelerate damage. Pretreatment with OEA prevented the TLR4-induced signature in the FC, as well as an underlying incipient memory disability and disinhibited-like behavior. This study suggests a key role for TLR4 in TD-induced neuroinflammation in the FC and cerebellum, and it reveals different vulnerability of these brain regions in WKS over time. Pre-treatment with OEA counteracts TD-induced TLR4-associated neuroinflammation and may serve as co-adjuvant therapy to prevent WKS-induced neurobehavioral alterations.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego San Felipe
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain
| | - Antonio Ballesta
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco Alén
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional de Málaga, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Spain
| | - Eva M Marco
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
12
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
13
|
Hugon J, Paquet C. The PKR/P38/RIPK1 Signaling Pathway as a Therapeutic Target in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22063136. [PMID: 33808629 PMCID: PMC8003462 DOI: 10.3390/ijms22063136] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Neuropathological lesions in Alzheimer’s disease (AD) include amyloid plaques formed by the accumulation of amyloid peptides, neurofibrillary tangles made of hyperphosphorylated tau protein, synaptic and neuronal degenerations, and neuroinflammation. The cause of AD is unknown, but according to the amyloid hypothesis, amyloid oligomers could lead to the activation of kinases such as eukaryotic translation initiation factor 2-alpha kinase 2 (PKR), p38, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), which all belong to the same stress-activated pathway. Many toxic kinase activations have been described in AD patients and in experimental models. A p38 mitogen-activated protein kinase inhibitor was recently tested in clinical trials but with unsuccessful results. The complex PKR/P38/RIPK1 (PKR/dual specificity mitogen-activated protein kinase kinase 6 (MKK6)/P38/MAP kinase-activated protein kinase 2 (MK2)/RIPK1) is highly activated in AD brains and in the brains of AD transgenic animals. To delineate the implication of this pathway in AD, we carried out a search on PubMed including PKR/MKK6/p38/MK2/RIPK1, Alzheimer, and therapeutics. The involvement of this signaling pathway in the genesis of AD lesions, including Aβ accumulations and tau phosphorylation as well as cognitive decline, is demonstrated by the reports described in this review. A future combination strategy with kinase inhibitors should be envisaged to modulate the consequences for neurons and other brain cells linked to the abnormal activation of this pathway.
Collapse
Affiliation(s)
- Jacques Hugon
- Correspondence: ; Tel.: +33-140-054-313; Fax: +33-140-054-339
| | | |
Collapse
|
14
|
Reimer L, Betzer C, Kofoed RH, Volbracht C, Fog K, Kurhade C, Nilsson E, Överby AK, Jensen PH. PKR kinase directly regulates tau expression and Alzheimer's disease-related tau phosphorylation. Brain Pathol 2020; 31:103-119. [PMID: 32716602 PMCID: PMC8018097 DOI: 10.1111/bpa.12883] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022] Open
Abstract
Deposition of extensively hyperphosphorylated tau in specific brain cells is a clear pathological hallmark in Alzheimer's disease and a number of other neurodegenerative disorders, collectively termed the tauopathies. Furthermore, hyperphosphorylation of tau prevents it from fulfilling its physiological role as a microtubule‐stabilizing protein and leaves it increasingly vulnerable to self‐assembly, suggestive of a central underlying role of hyperphosphorylation as a contributing factor in the etiology of these diseases. Via in vitro phosphorylation and regulation of kinase activity within cells and acute brain tissue, we reveal that the inflammation associated kinase, protein kinase R (PKR), directly phosphorylates numerous abnormal and disease‐modifying residues within tau including Thr181, Ser199/202, Thr231, Ser262, Ser396, Ser404 and Ser409. Similar to disease processes, these PKR‐mediated phosphorylations actively displace tau from microtubules in cells. In addition, PKR overexpression and knockdown, respectively, increase and decrease tau protein and mRNA levels in cells. This regulation occurs independent of noncoding transcriptional elements, suggesting an underlying mechanism involving intra‐exonic regulation of the tau‐encoding microtubule‐associated protein tau (MAPT) gene. Finally, acute encephalopathy in wild type mice, induced by intracranial Langat virus infection, results in robust inflammation and PKR upregulation accompanied by abnormally phosphorylated full‐length‐ and truncated tau. These findings indicate that PKR, independent of other kinases and upon acute brain inflammation, is capable of triggering pathological modulation of tau, which, in turn, might form the initial pathologic seed in several tauopathies such as Alzheimer's disease and Chronic traumatic encephalopathy where inflammation is severe.
Collapse
Affiliation(s)
- Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Hahn Kofoed
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Chaitanya Kurhade
- Department of Clinical Microbiology, Virology, Umeå University, Umea, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Virology, Umeå University, Umea, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umea, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C, Jordan-Sciutto KL. The Integrated Stress Response and Phosphorylated Eukaryotic Initiation Factor 2α in Neurodegeneration. J Neuropathol Exp Neurol 2020; 79:123-143. [PMID: 31913484 DOI: 10.1093/jnen/nlz129] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proposed molecular mechanisms underlying neurodegenerative pathogenesis are varied, precluding the development of effective therapies for these increasingly prevalent disorders. One of the most consistent observations across neurodegenerative diseases is the phosphorylation of eukaryotic initiation factor 2α (eIF2α). eIF2α is a translation initiation factor, involved in cap-dependent protein translation, which when phosphorylated causes global translation attenuation. eIF2α phosphorylation is mediated by 4 kinases, which, together with their downstream signaling cascades, constitute the integrated stress response (ISR). While the ISR is activated by stresses commonly observed in neurodegeneration, such as oxidative stress, endoplasmic reticulum stress, and inflammation, it is a canonically adaptive signaling cascade. However, chronic activation of the ISR can contribute to neurodegenerative phenotypes such as neuronal death, memory impairments, and protein aggregation via apoptotic induction and other maladaptive outcomes downstream of phospho-eIF2α-mediated translation inhibition, including neuroinflammation and altered amyloidogenic processing, plausibly in a feed-forward manner. This review examines evidence that dysregulated eIF2a phosphorylation acts as a driver of neurodegeneration, including a survey of observations of ISR signaling in human disease, inspection of the overlap between ISR signaling and neurodegenerative phenomenon, and assessment of recent encouraging findings ameliorating neurodegeneration using developing pharmacological agents which target the ISR. In doing so, gaps in the field, including crosstalk of the ISR kinases and consideration of ISR signaling in nonneuronal central nervous system cell types, are highlighted.
Collapse
Affiliation(s)
- Sarah Bond
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claudia Lopez-Lloreda
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J Gannon
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay-Espinoza
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L Jordan-Sciutto
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Li L, Wang Y, Wang H, Lv L, Zhu ZY. Metabolic responses of BV-2 cells to puerarin on its polarization using ultra-performance liquid chromatography-mass spectrometry. Biomed Chromatogr 2020; 34:e4796. [PMID: 31960437 DOI: 10.1002/bmc.4796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
Microglia are the primary immune cells in the central nervous system with functional plasticity. They can be activated into M1 and M2 phenotypes when neuroinflammation-related diseases occur. M1 phenotype cells produce pro-inflammatory mediators that cause neuroinflammation and the M2 phenotype can secrete anti-inflammatory cytokines that protect neurons from damage. Therefore, inhibiting the M1 phenotype while stimulating the M2 phenotype has been suggested as a potential therapeutic approach for treating neuroinflammation-related diseases. Puerarin has been demonstrated to exert anti-inflammatory and neuroprotective effects. However, the role of puerarin in regulating microglia polarization and its reaction mechanism has not been fully elucidated. In this paper, a metabolomics approach with ultra-performance liquid chromatography-mass spectrometry was performed to investigate the metabolic changes of BV-2 cells in different phenotypes and test the effects of puerarin on polarization. Thirty-nine metabolites were identified as the biomarkers related to the polarization of BV-2 cells and puerarin intervention reverted the content of most of the biomarkers. Our study demonstrated that puerarin could play a key role in M1/M2 polarization of BV-2 cells from a perspective of metabolomics, and it could regulate the balance between promotion and suppression of inflammation.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yan Wang
- Department of Pharmacy, Shanghai First People's Hospital Baoshan Branch, Shanghai, China
| | - Hui Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhen-Yu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
Aleshin VA, Mkrtchyan GV, Bunik VI. Mechanisms of Non-coenzyme Action of Thiamine: Protein Targets and Medical Significance. BIOCHEMISTRY (MOSCOW) 2019; 84:829-850. [PMID: 31522667 DOI: 10.1134/s0006297919080017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thiamine (vitamin B1) is a precursor of the well-known coenzyme of central metabolic pathways thiamine diphosphate (ThDP). Highly intense glucose oxidation in the brain requires ThDP-dependent enzymes, which determines the critical significance of thiamine for neuronal functions. However, thiamine can also act through the non-coenzyme mechanisms. The well-known facilitation of acetylcholinergic neurotransmission upon the thiamine and acetylcholine co-release into the synaptic cleft has been supported by the discovery of thiamine triphosphate (ThTP)-dependent phosphorylation of the acetylcholine receptor-associated protein rapsyn, and thiamine interaction with the TAS2R1 receptor, resulting in the activation of synaptic ion currents. The non-coenzyme regulatory binding of thiamine compounds has been demonstrated for the transcriptional regulator p53, poly(ADP-ribose) polymerase, prion protein PRNP, and a number of key metabolic enzymes that do not use ThDP as a coenzyme. The accumulated data indicate that the molecular mechanisms of the neurotropic action of thiamine are far broader than it has been originally believed, and closely linked to the metabolism of thiamine and its derivatives in animals. The significance of this topic has been illustrated by the recently established competition between thiamine and the antidiabetic drug metformin for common transporters, which can be the reason for the thiamine deficiency underlying metformin side effects. Here, we also discuss the medical implications of the research on thiamine, including the role of thiaminases in thiamine reutilization and biosynthesis of thiamine antagonists; molecular mechanisms of action of natural and synthetic thiamine antagonists, and biotransformation of pharmacological forms of thiamine. Given the wide medical application of thiamine and its synthetic forms, these aspects are of high importance for medicine and pharmacology, including the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- V A Aleshin
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 19991 Moscow, Russia
| | - G V Mkrtchyan
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - V I Bunik
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 19991 Moscow, Russia
| |
Collapse
|
18
|
Therapeutic targeting of the PI4K2A/PKR lysosome network is critical for misfolded protein clearance and survival in cancer cells. Oncogene 2019; 39:801-813. [PMID: 31554935 PMCID: PMC6976521 DOI: 10.1038/s41388-019-1010-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
The role of RNA-dependent protein kinase R (PKR) and its association with misfolded protein expression in cancer cells are unclear. Herein we report that PKR regulates misfolded protein clearance by preventing it release through exosomes and promoting lysosomal degradation of misfolded prion proteins in cancer cells. We demonstrated that PKR contributes to the lysosome function and regulates misfolded prion protein clearance. We hypothesized that PKR-associated lysosome function is critical for cancer but not normal cell survival, representing an effective approach for highly targeted cancer therapy. In screening a compound library, we identified two PKR-associated compounds 1 and 2 (Pac 1 and 2) did not affect normal cells but selectively induced cell death in cancer cells depending on their PKR expression status. Pac 1 significantly inhibited the growth of human lung and breast xenograft tumors in mice with no toxicity. Pac 1 binds to PI4K2A and disrupts the PKR/PI4K2A-associated lysosome complex, contributing to destabilization of cancer cell lysosomes and triggering cell death. We observed that PKR and PI4K2A play significant prognostic roles in breast cancer patients. These results demonstrate that targeting of a PI4K2A/PKR lysosome complex may be an effective approach for cancer therapy.
Collapse
|
19
|
Makino M, Takahashi-Ito K, Murasawa H, Pawlak A, Kashimoto Y, Kitano Y. Memantine ameliorates learning and memory disturbance and the behavioral and psychological symptoms of dementia in thiamine-deficient mice. Pharmacol Biochem Behav 2019; 183:6-13. [PMID: 31175916 DOI: 10.1016/j.pbb.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022]
Abstract
Several studies have reported on the beneficial effects of memantine on behavioral and psychological symptoms of dementia (BPSD) in patients with Alzheimer's disease. However, the effects of memantine on BPSD-like behaviors in animals have not been well addressed. Here, the effects of memantine on memory disturbance and BPSD-like behaviors were evaluated in thiamine-deficient (TD) mice. Memantine (3 and 10 mg/kg, b.i.d.) was orally administered to ddY mice fed a TD diet for 22 days. During the treatment period, the forced swimming test, elevated plus-maze test, passive avoidance test, and locomotor activity test were performed. Neurotransmitter levels in the brain were analyzed after the treatment period. Daily oral administration of memantine ameliorated the memory disturbances, anxiety-like behavior, and depression-like behavior observed in TD mice. Memantine did not have a significant effect on monoamine levels, but increased glutamate levels in the hippocampus in TD mice. These results suggest that memantine prevents or suppresses the progression of BPSD-like behaviors that develop due to TD. This effect may be mediated in part by the enhancement of glutamatergic neuron activity in the hippocampus.
Collapse
Affiliation(s)
- Mitsuhiro Makino
- Specialty Medicine Research Laboratories II, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Kaori Takahashi-Ito
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyasu Murasawa
- Department of Pharmacology, Nihon Bioresearch Inc., 6-104 Majima, Fukuju-cho, Hashima, Gifu 501-6251, Japan
| | - Akiko Pawlak
- Department of Pharmacology, Nihon Bioresearch Inc., 6-104 Majima, Fukuju-cho, Hashima, Gifu 501-6251, Japan
| | - Yoshinori Kashimoto
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yutaka Kitano
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
20
|
Tible M, Mouton Liger F, Schmitt J, Giralt A, Farid K, Thomasseau S, Gourmaud S, Paquet C, Rondi Reig L, Meurs E, Girault J, Hugon J. PKR knockout in the 5xFAD model of Alzheimer's disease reveals beneficial effects on spatial memory and brain lesions. Aging Cell 2019; 18:e12887. [PMID: 30821420 PMCID: PMC6516179 DOI: 10.1111/acel.12887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023] Open
Abstract
Brain lesions in Alzheimer's disease (AD) include amyloid plaques made of Aβ peptides and neurofibrillary tangles composed of hyperphosphorylated tau protein with synaptic and neuronal loss and neuroinflammation. Aβ oligomers can trigger tau phosphorylation and neuronal alterations through activation of neuronal kinases leading to progressive cognitive decline. PKR is a ubiquitous pro-apoptotic serine/threonine kinase, and levels of activated PKR are increased in AD brains and AD CSF. In addition, PKR regulates negatively memory formation in mice. To assess the role of PKR in an AD in vivo model, we crossed 5xFAD transgenic mice with PKR knockout (PKRKO) mice and we explored the contribution of PKR on cognition and brain lesions in the 5xFAD mouse model of AD as well as in neuron-microglia co-cultures exposed to the innate immunity activator lipopolysaccharide (LPS). Nine-month-old double-mutant mice revealed significantly improved memory consolidation with the new object location test, starmaze test, and elevated plus maze test as compared to 5xFAD mice. Brain amyloid accumulation and BACE1 levels were statistically decreased in double-mutant mice. Apoptosis, neurodegeneration markers, and synaptic alterations were significantly reduced in double-mutant mice as well as neuroinflammation markers such as microglial load and brain cytokine levels. Using cocultures, we found that PKR in neurons was essential for LPS microglia-induced neuronal death. Our results demonstrate the clear involvement of PKR in abnormal spatial memory and brain lesions in the 5xFAD model and underline its interest as a target for neuroprotection in AD.
Collapse
Affiliation(s)
| | | | - Julien Schmitt
- Institut de Biologie Paris Seine CNRS, UMR 8246 Paris France
- Inserm U1130 Paris France
- Sorbonne Université Paris France
| | - Albert Giralt
- Sorbonne Université Paris France
- Inserm U839 Paris France
- Institut du Fer à Moulin Paris France
| | - Karim Farid
- Department of Nuclear Medicine CHU Fort de France Martinique France
- Center of Cognitive Neurology, Lariboisière Fernand Widal Hospital APHP Paris France
| | | | - Sarah Gourmaud
- Inserm U1144 Paris France
- Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Claire Paquet
- Inserm U1144 Paris France
- Center of Cognitive Neurology, Lariboisière Fernand Widal Hospital APHP Paris France
- Paris Diderot University Paris France
| | - Laure Rondi Reig
- Institut de Biologie Paris Seine CNRS, UMR 8246 Paris France
- Inserm U1130 Paris France
- Sorbonne Université Paris France
| | - Eliane Meurs
- Hepacivirus and Innate Immunity Unit Institut Pasteur Paris France
- CNRS, UMR 3569 Paris France
| | - Jean‐Antoine Girault
- Sorbonne Université Paris France
- Inserm U839 Paris France
- Institut du Fer à Moulin Paris France
| | - Jacques Hugon
- Inserm U1144 Paris France
- Center of Cognitive Neurology, Lariboisière Fernand Widal Hospital APHP Paris France
- Paris Diderot University Paris France
| |
Collapse
|
21
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
22
|
Tapias V, Jainuddin S, Ahuja M, Stack C, Elipenahli C, Vignisse J, Gerges M, Starkova N, Xu H, Starkov AA, Bettendorff L, Hushpulian DM, Smirnova NA, Gazaryan IG, Kaidery NA, Wakade S, Calingasan NY, Thomas B, Gibson GE, Dumont M, Beal MF. Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Hum Mol Genet 2018; 27:2874-2892. [PMID: 29860433 PMCID: PMC6077804 DOI: 10.1093/hmg/ddy201] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Impaired glucose metabolism, decreased levels of thiamine and its phosphate esters, and reduced activity of thiamine-dependent enzymes, such as pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and transketolase occur in Alzheimer's disease (AD). Thiamine deficiency exacerbates amyloid beta (Aβ) deposition, tau hyperphosphorylation and oxidative stress. Benfotiamine (BFT) rescued cognitive deficits and reduced Aβ burden in amyloid precursor protein (APP)/PS1 mice. In this study, we examined whether BFT confers neuroprotection against tau phosphorylation and the generation of neurofibrillary tangles (NFTs) in the P301S mouse model of tauopathy. Chronic dietary treatment with BFT increased lifespan, improved behavior, reduced glycated tau, decreased NFTs and prevented death of motor neurons. BFT administration significantly ameliorated mitochondrial dysfunction and attenuated oxidative damage and inflammation. We found that BFT and its metabolites (but not thiamine) trigger the expression of Nrf2/antioxidant response element (ARE)-dependent genes in mouse brain as well as in wild-type but not Nrf2-deficient fibroblasts. Active metabolites were more potent in activating the Nrf2 target genes than the parent molecule BFT. Docking studies showed that BFT and its metabolites (but not thiamine) bind to Keap1 with high affinity. These findings demonstrate that BFT activates the Nrf2/ARE pathway and is a promising therapeutic agent for the treatment of diseases with tau pathology, such as AD, frontotemporal dementia and progressive supranuclear palsy.
Collapse
Affiliation(s)
- Victor Tapias
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shari Jainuddin
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Manuj Ahuja
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Cliona Stack
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ceyhan Elipenahli
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Julie Vignisse
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium
| | - Meri Gerges
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Natalia Starkova
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hui Xu
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anatoly A Starkov
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium
| | - Dmitry M Hushpulian
- D. Rogachev Federal Scientific and Clinical Center for Pediatric Hematology, Oncology, and Immunology, 117997 Moscow, Russia
- Veropharm, Abbott EPD, 115088 Moscow, Russia
| | - Natalya A Smirnova
- D. Rogachev Federal Scientific and Clinical Center for Pediatric Hematology, Oncology, and Immunology, 117997 Moscow, Russia
| | - Irina G Gazaryan
- Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY 10570, USA
- Department of Enzymology, School of Chemistry, 119991 Moscow, Russia
| | - Navneet A Kaidery
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Sushama Wakade
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Noel Y Calingasan
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bobby Thomas
- Department of Pharmacology, Toxicology and Neurology, Augusta University, Augusta, GA 30912, USA
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Burke Medical Research Institute, Weill Cornell Medicine, White Plains, NY 10605, USA
| | - Magali Dumont
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - M Flint Beal
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
23
|
Taga M, Mouton-Liger F, Sadoune M, Gourmaud S, Norman J, Tible M, Thomasseau S, Paquet C, Nicoll JAR, Boche D, Hugon J. PKR modulates abnormal brain signaling in experimental obesity. PLoS One 2018; 13:e0196983. [PMID: 29795582 PMCID: PMC5968403 DOI: 10.1371/journal.pone.0196983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Metabolic disorders including obesity and type 2 diabetes are known to be associated with chronic inflammation and are obvious risk factors for Alzheimer's disease. Recent evidences concerning obesity and diabetes suggest that the metabolic inflammasome ("metaflammasome") mediates chronic inflammation. The double-stranded RNA-dependent protein kinase (PKR) is a central component of the metaflammasome. In wild type (WT) and PKR-/- mice, blood glucose, insulin and lipid levels and the brain expression of the phosphorylated components of the metaflammasome-PKR, JNK, IRS1 and IKKbeta-were studied after the induction of obesity by a high fat diet (HFD). The results showed significant increased levels of activated brain metaflammasome proteins in exposed WT mice but the changes were not significant in PKR-/- mice. In addition, gain weight was observed in WT mice and also in PKR-/- mice exposed to HFD. Increased blood insulin level was more accentuated in PKR -/- mice. The modulation of PKR activity could be an appropriate therapeutic approach, aimed at reducing abnormal brain metabolism and inflammation linked to metabolic disorders in order to reduce the risk of neurodegeneration.
Collapse
Affiliation(s)
- Mariko Taga
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- INSERM Units U942, Paris, France
| | | | | | | | - Jenny Norman
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | - Claire Paquet
- INSERM Units U942, Paris, France
- Center of Cognitive Neurology Lariboisière Hospital, APHP, University Paris Diderot, Paris, France
| | - James A. R. Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, Southampton, United Kingdom
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jacques Hugon
- INSERM Units U942, Paris, France
- Center of Cognitive Neurology Lariboisière Hospital, APHP, University Paris Diderot, Paris, France
| |
Collapse
|
24
|
Taccola C, Cartot-Cotton S, Valente D, Barneoud P, Aubert C, Boutet V, Gallen F, Lochus M, Nicolic S, Dodacki A, Smirnova M, Cisternino S, Declèves X, Bourasset F. High brain distribution of a new central nervous system drug candidate despite its P-glycoprotein-mediated efflux at the mouse blood-brain barrier. Eur J Pharm Sci 2018; 117:68-79. [DOI: 10.1016/j.ejps.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
|
25
|
Moon SL, Sonenberg N, Parker R. Neuronal Regulation of eIF2α Function in Health and Neurological Disorders. Trends Mol Med 2018; 24:575-589. [PMID: 29716790 DOI: 10.1016/j.molmed.2018.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
A key site of translation control is the phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α), which reduces the rate of GDP to GTP exchange by eIF2B, leading to altered translation. The extent of eIF2α phosphorylation within neurons can alter synaptic plasticity. Phosphorylation of eIF2α is triggered by four stress-responsive kinases, and as such eIF2α is often phosphorylated during neurological perturbations or disease. Moreover, in some cases decreasing eIF2α phosphorylation mitigates neurodegeneration, suggesting that this could be a therapeutic target. Mutations in the γ subunit of eIF2, the guanine exchange factor eIF2B, an eIF2α phosphatase, or in two eIF2α kinases can cause disease in humans, demonstrating the importance of proper regulation of eIF2α phosphorylation for health.
Collapse
Affiliation(s)
- Stephanie L Moon
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
26
|
Reimer L, Vesterager LB, Betzer C, Zheng J, Nielsen LD, Kofoed RH, Lassen LB, Bølcho U, Paludan SR, Fog K, Jensen PH. Inflammation kinase PKR phosphorylates α-synuclein and causes α-synuclein-dependent cell death. Neurobiol Dis 2018; 115:17-28. [PMID: 29501855 DOI: 10.1016/j.nbd.2018.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy comprise a group of neurodegenerative diseases termed synucleinopathies. Synucleinopathie are, characterized by presence of inclusion bodies in degenerating brain cells which contain aggregated α-synuclein phosphorylated on Ser129. Although the inflammation-associated serine-threonine kinase, PKR (EIF2AK2), promotes cellular protection against infection, we demonstrate a pro-degenerative role of activated PKR in an α-synuclein-dependent cell model of multiple system atrophy, where inhibition and silencing of PKR decrease cellular degeneration. In vitro phosphorylation demonstrates that PKR can directly bind and phosphorylate monomeric and filamenteous α-synuclein on Ser129. Inhibition and knockdown of PKR reduce Ser129 phosphorylation in different models (SH-SY5Y ASYN cells, OLN-AS7 cells, primary mouse hippocampal neurons, and acute brain slices), while overexpression of constitutively active PKR increases Ser129 α-syn phosphorylation. Treatment with pre-formed α-synuclein fibrils, proteostatic stress-promoting MG-132 and known PKR activators, herpes simplex virus-1-∆ICP34.5 and LPS, as well as PKR inducer, IFN-β-1b, lead to increased levels of phosphorylated Ser129 α-synuclein that is completely blocked by simultaneous PKR inhibition. These results reveal a direct link between PKR and the phosphorylation and toxicity of α-synuclein, and they support that neuroinflammatory processes play a role in modulating the pathogenicity of α-synuclein.
Collapse
Affiliation(s)
- Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark.
| | | | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Jin Zheng
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Lærke Dalsgaard Nielsen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Rikke Hahn Kofoed
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Louise Berkhoudt Lassen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Ulrik Bølcho
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | | | | | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| |
Collapse
|
27
|
Gourmaud S, Mouton-Liger F, Abadie C, Meurs EF, Paquet C, Hugon J. Dual Kinase Inhibition Affords Extended in vitro Neuroprotection in Amyloid-β Toxicity. J Alzheimers Dis 2018; 54:1659-1670. [PMID: 27636848 DOI: 10.3233/jad-160509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Alzheimer's disease (AD), the amyloid cascade hypothesis proposes that amyloid-beta (Aβ) neurotoxicity leads to neuroinflammation, synaptic loss, and neuronal degeneration. In AD patients, anti-amyloid immunotherapies did not succeed because they were possibly administered late in AD progression. Modulating new targets associated with Aβ toxicity, such as PKR (double-stranded RNA dependent kinase), and JNK (c-Jun N-terminal kinase) is a major goal for neuroprotection. These two pro-apoptotic kinases are activated in AD brains and involved in Aβ production, tau phosphorylation, neuroinflammation, and neuronal death. In HEK cells transfected with siRNA directed against PKR, and in PKR knockout (PKR-/-) mice neurons, we showed that PKR triggers JNK activation. Aβ-induced neuronal apoptosis, measured by cleaved PARP (Poly ADP-ribose polymerase) and cleaved caspase 3 levels, was reduced in PKR-/- neurons. Two selective JNK inhibitory peptides also produced a striking reduction of Aβ toxicity. Finally, the dual inhibition of PKR and JNK nearly abolished Aβ toxicity in primary cultured neurons. These results reveal that dual kinase inhibition can afford neuroprotection and this approach is worth being tested in in vivo AD and oxidative stress models.
Collapse
Affiliation(s)
| | | | | | - Eliane F Meurs
- Institut Pasteur, Hepacivirus and Innate Immunity Unit, Paris, France
| | - Claire Paquet
- Inserm UMR-S 942, Paris, France.,Research Memory Centre, Paris Nord Ile de France Saint Louis Lariboisière Fernand Widal Hospital, Paris, France
| | - Jacques Hugon
- Inserm UMR-S 942, Paris, France.,Research Memory Centre, Paris Nord Ile de France Saint Louis Lariboisière Fernand Widal Hospital, Paris, France
| |
Collapse
|
28
|
Abstract
Extracellular exosomes are formed inside the cytoplasm of cells in compartments known as multivesicular bodies. Thus, exosomes contain cytoplasmic content. Multivesicular bodies fuse with the plasma membrane and release exosomes into the extracellular environment. Comprehensive research suggests that exosomes act as both inflammatory intermediaries and critical inducers of oxidative stress to drive progression of Alzheimer's disease. An important role of exosomes in Alzheimer's disease includes the formation of neurofibrillary tangles and beta-amyloid production, clearance, and accumulation. In addition, exosomes are involved in neuroinflammation and oxidative stress, which both act as triggers for beta-amyloid pathogenesis and tau hyperphosphorylation. Further, it has been shown that exosomes are strongly associated with beta-amyloid clearance. Thus, effective measures for regulating exosome metabolism may be novel drug targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Zhi-You Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Sohel H Quazi
- Department of Biological and Health Sciences, Texas A & M University-Kingsville, Kingsville, TX, USA
| | - Zun-Yu Ke
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
29
|
Dabo S, Maillard P, Collados Rodriguez M, Hansen MD, Mazouz S, Bigot DJ, Tible M, Janvier G, Helynck O, Cassonnet P, Jacob Y, Bellalou J, Gatignol A, Patel RC, Hugon J, Munier-Lehmann H, Meurs EF. Inhibition of the inflammatory response to stress by targeting interaction between PKR and its cellular activator PACT. Sci Rep 2017; 7:16129. [PMID: 29170442 PMCID: PMC5701060 DOI: 10.1038/s41598-017-16089-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
PKR is a cellular kinase involved in the regulation of the integrative stress response (ISR) and pro-inflammatory pathways. Two N-terminal dsRNA Binding Domains (DRBD) are required for activation of PKR, by interaction with either dsRNA or PACT, another cellular DRBD-containing protein. A role for PKR and PACT in inflammatory processes linked to neurodegenerative diseases has been proposed and raised interest for pharmacological PKR inhibitors. However, the role of PKR in inflammation is subject to controversy. We identified the flavonoid luteolin as an inhibitor of the PKR/PACT interaction at the level of their DRBDs using high-throughput screening of chemical libraries by homogeneous time-resolved fluorescence. This was further validated using NanoLuc-Based Protein Complementation Assay. Luteolin inhibits PKR phosphorylation, the ISR and the induction of pro-inflammatory cytokines in human THP1 macrophages submitted to oxidative stress and toll-like receptor (TLR) agonist. Similarly, luteolin inhibits induction of pro-inflammatory cytokines in murine microglial macrophages. In contrast, luteolin increased activation of the inflammasome, in a PKR-independent manner. Collectively, these data delineate the importance of PKR in the inflammation process to the ISR and induction of pro-inflammatory cytokines. Pharmacological inhibitors of PKR should be used in combination with drugs targeting directly the inflammasome.
Collapse
Affiliation(s)
- Stephanie Dabo
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Patrick Maillard
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Milagros Collados Rodriguez
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Marianne Doré Hansen
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7006, Trondheim, Norway
| | - Sabrina Mazouz
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Donna-Joe Bigot
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Marion Tible
- Center of Cognitive Neurology, Lariboisière Hospital AP-HP University Paris Diderot, Paris, France.,Inserm, U942, Paris, France
| | - Geneviève Janvier
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3523, Paris, France
| | - Patricia Cassonnet
- CNRS, UMR 3569, Paris, France.,Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Yves Jacob
- CNRS, UMR 3569, Paris, France.,Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Jacques Bellalou
- Plate-forme des protéines recombinantes, Institut Pasteur, 75015, CNRS UMR 3528, Paris, France
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Department of Medicine, department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Rekha C Patel
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina, 29208, USA
| | - Jacques Hugon
- Center of Cognitive Neurology, Lariboisière Hospital AP-HP University Paris Diderot, Paris, France.,Inserm, U942, Paris, France
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3523, Paris, France
| | - Eliane F Meurs
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France. .,CNRS, UMR 3569, Paris, France.
| |
Collapse
|
30
|
Hugon J, Mouton-Liger F, Dumurgier J, Paquet C. PKR involvement in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:83. [PMID: 28982375 PMCID: PMC5629792 DOI: 10.1186/s13195-017-0308-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Brain lesions in Alzheimer's disease (AD) are characterized by Aβ accumulation, neurofibrillary tangles, and synaptic and neuronal vanishing. According to the amyloid cascade hypothesis, Aβ1-42 oligomers could trigger a neurotoxic cascade with kinase activation that leads to tau phosphorylation and neurodegeneration. Detrimental pathways that are associated with kinase activation could also be linked to the triggering of direct neuronal death, the production of free radicals, and neuroinflammation. RESULTS Among these kinases, PKR (eukaryotic initiation factor 2α kinase 2) is a pro-apoptotic enzyme that inhibits translation and that has been implicated in several molecular pathways that lead to AD brain lesions and disturbed memory formation. PKR accumulates in degenerating neurons and is activated by Aβ1-42 neurotoxicity. It might modulate Aβ synthesis through BACE 1 induction. PKR is increased in cerebrospinal fluid from patients with AD and mild cognitive impairment and can induce the activation of pro-inflammatory pathways leading to TNFα and IL1-β production. In addition, experimentally, PKR seems to down-regulate the molecular processes of memory consolidation. This review highlights the major findings linking PKR and abnormal brain metabolism associated with AD lesions. CONCLUSIONS Studying the detrimental role of PKR signaling in AD could pave the way for a neuroprotective strategy in which PKR inhibition could reduce neuronal demise and alleviate cognitive decline as well as the cumbersome burden of AD for patients.
Collapse
Affiliation(s)
- Jacques Hugon
- Center of Cognitive Neurology and Inserm U942 Lariboisière Hospital AP-HP University Paris Diderot, 75010, Paris, France. .,Center of Cognitive Neurology, Lariboisière FW Hospital, 200 rue du Faubourg Saint Denis, 75010, Paris, France.
| | | | - Julien Dumurgier
- Center of Cognitive Neurology and Inserm U942 Lariboisière Hospital AP-HP University Paris Diderot, 75010, Paris, France
| | - Claire Paquet
- Center of Cognitive Neurology and Inserm U942 Lariboisière Hospital AP-HP University Paris Diderot, 75010, Paris, France
| |
Collapse
|
31
|
Kim MW, Abid NB, Jo MH, Jo MG, Yoon GH, Kim MO. Suppression of adiponectin receptor 1 promotes memory dysfunction and Alzheimer's disease-like pathologies. Sci Rep 2017; 7:12435. [PMID: 28963462 PMCID: PMC5622055 DOI: 10.1038/s41598-017-12632-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Recent studies on neurodegeneration have focused on dysfunction of CNS energy metabolism as well as proteinopathies. Adiponectin (ADPN), an adipocyte-derived hormone, plays a major role in the regulation of insulin sensitivity and glucose homeostasis in peripheral organs via adiponectin receptors. In spite of accumulating evidence that adiponectin has neuroprotective properties, the underlying role of adiponectin receptors has not been illuminated. Here, using gene therapy-mediated suppression with shRNA, we found that adiponectin receptor 1 (AdipoR1) suppression induces neurodegeneration as well as metabolic dysfunction. AdipoR1 knockdown mice exhibited increased body weight and abnormal plasma chemistry and also showed spatial learning and memory impairment in behavioural studies. Moreover, AdipoR1 suppression resulted in neurodegenerative phenotypes, diminished expression of the neuronal marker NeuN, and increased expression and activity of caspase 3. Furthermore, AD-like pathologies including insulin signalling dysfunction, abnormal protein aggregation and neuroinflammatory responses were highly exhibited in AdipoR1 knockdown groups, consistent with brain pathologies in ADPN knockout mice. Together, these results suggest that ADPN-AdipoR1 signalling has the potential to alleviate neurodegenerative diseases such as Alzheimer’s diseases.
Collapse
Affiliation(s)
- Min Woo Kim
- Division of Life Science and Applied Life Science (BK 21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Noman Bin Abid
- Division of Life Science and Applied Life Science (BK 21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Hoon Jo
- Division of Life Science and Applied Life Science (BK 21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Gi Jo
- Division of Life Science and Applied Life Science (BK 21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gwang Ho Yoon
- Division of Life Science and Applied Life Science (BK 21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK 21 plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
32
|
Mechanisms Responsible for the High Sensitivity of Neural Cells to Vitamin B1 Deficiency. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9620-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Bunik V, Aleshin V. Analysis of the Protein Binding Sites for Thiamin and Its Derivatives to Elucidate the Molecular Mechanisms of the Noncoenzyme Action of Thiamin (Vitamin B1). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase. Neurochem Int 2016; 101:66-75. [PMID: 27773789 DOI: 10.1016/j.neuint.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Decreased thiamine and reduced activity of thiamine diphosphate (ThDP)-dependent 2-oxoglutarate dehydrogenase (OGDH) cause neurodegeneration. We hypothesized on concerted cell-specific regulation of the thiamine metabolism and ThDP-dependent reactions. We identified a smaller thiamine pool, a lower expression of the mitochondrial ThDP transporter, and a higher expression of OGDH in rat astrocytes versus neuroblastoma N2A. According to the data, the astrocytic OGDH may be up-regulated by an increase in intracellular ThDP, while the neuroblastomal OGDH functions at full ThDP saturation. Indeed, in rat astrocytes and brain cortex, OGDH inhibition by succinyl phosphonate (SP) enlarged the pool of thiamine compounds. Increased ThDP level in response to the OGDH inhibition presumably up-regulated the enzyme to compensate for a decrease in reducing power which occurred in SP-treated astrocytes. Under the same SP treatment of N2A cells, their thiamine pool and reducing power were unchanged, although SP action was evident from accumulation of glutamate. The presented data indicate that functional interplay between OGDH, other proteins of the tricarbocylic acid cycle and proteins of thiamine metabolism is an important determinant of physiology-specific networks and their homeostatic mechanisms.
Collapse
|
35
|
Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. Mol Neurobiol 2016; 54:5440-5448. [PMID: 27596507 DOI: 10.1007/s12035-016-0079-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.
Collapse
|
36
|
Zhang JS, Zhou SF, Wang Q, Guo JN, Liang HM, Deng JB, He WY. Gastrodin suppresses BACE1 expression under oxidative stress condition via inhibition of the PKR/eIF2α pathway in Alzheimer's disease. Neuroscience 2016; 325:1-9. [PMID: 26987953 DOI: 10.1016/j.neuroscience.2016.03.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
The expression of β-site APP-cleaving enzyme 1 (BACE1) is increased in the brain of late-onset sporadic Alzheimer's disease (AD) and oxidative stress may be the potential cause of this event. The phenolic glucoside gastrodin (Gas), a main component of a Chinese herbal medicine Gastrodia elata Blume, has been demonstrated to display antioxidant activity and suppresses BACE1 expression. However, the mechanisms by which Gas suppresses BACE1 expression are not clear. Morris water maze test was performed to assess the effect of Gas treatment on memory impairments in Tg2576 mice. The level of oxidative stress in the brain of Tg2576 mice was determined by measuring the superoxide dismutase (SOD) activity, catalase (CAT) activity, and the levels of malondialdehyde (MDA) and ROS. In vivo and in vitro, we detected the expression levels of BACE1, pPKRThr446, PKR, pPERKThr981, PERK, peIF2αSer51, and eIF2α using western blot analysis. We found that Gas improved learning and memory abilities of Tg2576 transgenic mice and attenuated intracellular oxidative stress in hippocampi of Tg2576 mice. We discovered that the expression levels of BACE1, activated PKR (pPKRThr446) and activated eIF2α (peIF2αSer51) were elevated in the brains of Tg2576 mice and hydrogen peroxide (H2O2)-stimulated SH-SY5Y cells. Moreover, peptide PKR inhibitor (PRI) and Gas down-regulated BACE1 expression in Tg2576 mice and H2O2-stimulated SH-SY5Y cells by inhibiting activation of PKR and eIF2α. Gas alleviates memory deficits in mice and suppresses BACE1 expression by inhibiting the protein kinase/Eukaryotic initiation factor-2α (PKR/eIF2α) pathway. The research suggested that Gas may develop as an drug candidate in neurodegenerative diseases.
Collapse
Affiliation(s)
- J-S Zhang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - S-F Zhou
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Q Wang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - J-N Guo
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - H-M Liang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - J-B Deng
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China; Department of Neurobiology, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - W-Y He
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|
37
|
Poon DCH, Ho YS, You R, Tse HL, Chiu K, Chang RCC. PKR deficiency alters E. coli-induced sickness behaviors but does not exacerbate neuroimmune responses or bacterial load. J Neuroinflammation 2015; 12:212. [PMID: 26585788 PMCID: PMC4653925 DOI: 10.1186/s12974-015-0433-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/14/2015] [Indexed: 11/15/2022] Open
Abstract
Background Systemic inflammation induces neuroimmune activation, ultimately leading to sickness (e.g., fever, anorexia, motor impairments, exploratory deficits, and social withdrawal). In this study, we evaluated the role of protein kinase R (PKR), a serine-threonine kinase that can control systemic inflammation, on neuroimmune responses and sickness. Methods Wild-type (WT) PKR+/+ mice and PKR−/− mice were subcutaneously injected with live Escherichia coli (E. coli) or vehicle. Food consumption, rotarod test performance, burrowing, open field activity, object investigation, and social interaction were monitored. Plasma TNF-α and corticosterone were measured by ELISA. The percentage of neutrophils in blood was deduced from blood smears. Inflammatory gene expression (IL-1β, TNF-α, IL-6, cyclooxygenase (COX)-2, iNOS) in the liver and the brain (hypothalamus and hippocampus) were quantified by real-time PCR. Blood and lavage fluid (injection site) were collected for microbiological plate count and for real-time PCR of bacterial 16S ribosomal DNA (rDNA). Corticotrophin-releasing hormone (CRH) expression in the hypothalamus was also determined by real-time PCR. Results Deficiency of PKR diminished peripheral inflammatory responses following E. coli challenge. However, while the core components of sickness (anorexia and motor impairments) were similar between both strains of mice, the behavioral components of sickness (reduced burrowing, exploratory activity deficits, and social withdrawal) were only observable in PKR−/− mice but not in WT mice. Such alteration of behavioral components was unlikely to be caused by exaggerated neuroimmune activation, by an impaired host defense to the infection, or due to a dysregulated corticosterone response, because both strains of mice displayed similar neuroimmune responses, bacterial titers, and plasma corticosterone profiles throughout the course of infection. Nevertheless, the induction of hypothalamic corticotrophin-releasing hormone (CRH) by E. coli was delayed in PKR−/− mice relative to WT mice, suggesting that PKR deficiency may postpone the CRH response during systemic inflammation. Conclusions Taken together, our findings show that (1) loss of PKR could alter E. coli-induced sickness behaviors and (2) this was unlikely to be due to exacerbated neuroimmune activation, (3) elevated bacterial load, or (4) dysregulation in the corticosterone response. Further studies can address the role of PKR in the CRH response together with its consequence on sickness.
Collapse
Affiliation(s)
- David Chun-Hei Poon
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Ran You
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Hei-Long Tse
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Kin Chiu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China. .,Rm. L1-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|