1
|
Duan Y, Yang F, Zhang Y, Zhang M, Shi Y, Lang Y, Sun H, Wang X, Jin H, Kang X. Role of mitophagy in spinal cord ischemia-reperfusion injury. Neural Regen Res 2026; 21:598-611. [PMID: 39665804 DOI: 10.4103/nrr.nrr-d-24-00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024] Open
Abstract
Spinal cord ischemia-reperfusion injury, a severe form of spinal cord damage, can lead to sensory and motor dysfunction. This injury often occurs after traumatic events, spinal cord surgeries, or thoracoabdominal aortic surgeries. The unpredictable nature of this condition, combined with limited treatment options, poses a significant burden on patients, their families, and society. Spinal cord ischemia-reperfusion injury leads to reduced neuronal regenerative capacity and complex pathological processes. In contrast, mitophagy is crucial for degrading damaged mitochondria, thereby supporting neuronal metabolism and energy supply. However, while moderate mitophagy can be beneficial in the context of spinal cord ischemia-reperfusion injury, excessive mitophagy may be detrimental. Therefore, this review aims to investigate the potential mechanisms and regulators of mitophagy involved in the pathological processes of spinal cord ischemia-reperfusion injury. The goal is to provide a comprehensive understanding of recent advancements in mitophagy related to spinal cord ischemia-reperfusion injury and clarify its potential clinical applications.
Collapse
Affiliation(s)
- Yanni Duan
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Fengguang Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Yibao Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Mingtao Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Yujun Shi
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Yun Lang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Hongli Sun
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xin Wang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Hongyun Jin
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xuewen Kang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
2
|
Li H, Sun W, Gong W, Han Y. Transfer and fates of damaged mitochondria: role in health and disease. FEBS J 2024; 291:5342-5364. [PMID: 38545811 DOI: 10.1111/febs.17119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 12/19/2024]
Abstract
Intercellular communication is pivotal in mediating the transfer of mitochondria from donor to recipient cells. This process orchestrates various biological functions, including tissue repair, cell proliferation, differentiation and cancer invasion. Typically, dysfunctional and depolarized mitochondria are eliminated through intracellular or extracellular pathways. Nevertheless, increasing evidence suggests that intercellular transfer of damaged mitochondria is associated with the pathogenesis of diverse diseases. This review investigates the prevalent triggers of mitochondrial damage and the underlying mechanisms of mitochondrial transfer, and elucidates the role of directional mitochondrial transfer in both physiological and pathological contexts. Additionally, we propose potential previously unknown mechanisms mediating mitochondrial transfer and explore their prospective roles in disease prevention and therapy.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Chen YJ, Guo ZT, Chen HQ, Zhang SF, Bao YX, Xie Z, Ke JL, Ye WJ, Liang JC, Chen JC, Li N, Zheng FX, Liao H, Wu T, Pang JX. Salinomycin, a potent inhibitor of XOD and URAT1, ameliorates hyperuricemic nephropathy by activating NRF2, modulating the gut microbiota, and promoting SCFA production. Chem Biol Interact 2024; 403:111220. [PMID: 39222901 DOI: 10.1016/j.cbi.2024.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Long-term hyperuricemia can induce kidney damage, clinically referred to as hyperuricemic nephropathy (HN), which is characterized by renal fibrosis, inflammation, and oxidative stress. However, currently used uric acid-lowering drugs are not capable of protecting the kidneys from damage. Therefore, uric acid-lowering drugs that can also protect the kidneys are urgently needed. In this study, we first discovered that salinomycin, an antibiotic, can regulate uric acid homeostasis and ameliorate kidney damage in mice with HN. Mechanistically, salinomycin inhibited serum and hepatic xanthine oxidase (XOD) activities and downregulated renal urate transporter 1 (URAT1) expression and transport activity, thus exerting uric acid-lowering effects in mice with HN. Furthermore, we found that salinomycin promoted p-NRF2 Ser40 expression, resulting in increased nuclear translocation of NRF2 and activation of NRF2. More importantly, salinomycin affected the gut microbiota and promoted the generation of short-chain fatty acids (SCFAs) in mice with HN. In conclusion, our results revealed that salinomycin maintains uric acid homeostasis and alleviates kidney injury in mice with HN by multiple mechanisms, suggesting that salinomycin might be a desirable candidate for HN treatment in the clinic.
Collapse
Affiliation(s)
- Yong-Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Tao Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hai-Qiao Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Fan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Xia Bao
- Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou, 510515, China; Key Laboratory of Key Technology Research on Chemical Raw Materials and Preparations of Guangdong Province, Guangzhou, 510515, China
| | - Zhoufan Xie
- Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou, 510515, China; Key Laboratory of Key Technology Research on Chemical Raw Materials and Preparations of Guangdong Province, Guangzhou, 510515, China
| | - Jia-le Ke
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Jie Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Cheng Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Chen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ning Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Feng-Xin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jian-Xin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Rokitskaya TI, Firsov AM, Khailova LS, Kotova EA, Antonenko YN. Selectivity of cation transport across lipid membranes by the antibiotic salinomycin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184182. [PMID: 37276926 DOI: 10.1016/j.bbamem.2023.184182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
The ionophoric antibiotic salinomycin is in the phase of preclinical tests against several types of malignant tumors including breast cancer. Notwithstanding, the data on its ion selectivity, although being critical for its therapeutic activity, are rather scarce. In the present work, we studied the ability of salinomycin to exert cation/H+-exchange across artificial bilayer lipid membranes (BLM) by measuring electrical potential on planar BLM in the presence of a protonophore and fluorescence responses of the pH-sensitive dye pyranine entrapped in liposomes. The following order of ion selectivity was obtained by these two methods: K+ > Na+ > Rb+ > Cs+ > Li+. Measurements of the monovalent cation-induced quenching of fluorescence of thallium ions in methanol showed that salinomycin effectively binds potassium and calcium but poorly binds sodium and lithium ions. At high concentrations, salinomycin transports Ca2+ through membranes of liposomes and mitochondria, as measured by using the calcium-sensitive dye Fluo-5 N. The data obtained can be used in the mechanistic studies of the anti-tumor activity of salinomycin and its selective cytotoxicity towards cancer stem cells.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia.
| |
Collapse
|
5
|
Marjanović M, Mikecin Dražić AM, Mioč M, Paradžik M, Kliček F, Novokmet M, Lauc G, Kralj M. Salinomycin disturbs Golgi function and specifically affects cells in epithelial-to-mesenchymal transition. J Cell Sci 2023; 136:jcs260934. [PMID: 37545292 DOI: 10.1242/jcs.260934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) gives rise to cells with properties similar to cancer stem cells (CSCs). Targeting the EMT program to selectively eliminate CSCs is a promising way to improve cancer therapy. Salinomycin (Sal), a K+/H+ ionophore, was identified as highly selective towards CSC-like cells, but its mechanism of action and selectivity remains elusive. Here, we show that Sal, similar to monensin and nigericin, disturbs the function of the Golgi. Sal alters the expression of Golgi-related genes and leads to marked changes in Golgi morphology, particularly in cells that have undergone EMT. Moreover, Golgi-disturbing agents severely affect post-translational modifications of proteins, including protein processing, glycosylation and secretion. We discover that the alterations induced by Golgi-disturbing agents specifically affect the viability of EMT cells. Collectively, our work reveals a novel vulnerability related to the EMT, suggesting an important role for the Golgi in the EMT and that targeting the Golgi could represent a novel therapeutic approach against CSCs.
Collapse
Affiliation(s)
- Marko Marjanović
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Ana-Matea Mikecin Dražić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Marija Mioč
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Mladen Paradžik
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Filip Kliček
- GENOS, Glycoscience Research Laboratory, Borongajska c. 83, 10000 Zagreb, Croatia
| | - Mislav Novokmet
- GENOS, Glycoscience Research Laboratory, Borongajska c. 83, 10000 Zagreb, Croatia
| | - Gordan Lauc
- GENOS, Glycoscience Research Laboratory, Borongajska c. 83, 10000 Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu S, Dey S, Soni AG, Jain V. F3 peptide functionalized liquid crystalline nanoparticles for delivering Salinomycin against breast cancer. Int J Pharm 2023; 643:123226. [PMID: 37451328 DOI: 10.1016/j.ijpharm.2023.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Salinomycin (Sal) is a potent veterinary antibiotic known to offer significant toxicity to the variety of neoplastic cells. Its therapeutic utility is limited due to its higher lipophilicity (logP 7.5) and poor hydrophilicity. Liquid crystalline nanoparticles (LCNPs) known to offer a suitable delivery platform for these kinds of drugs. The overexpressed nucleolin receptor on the cell surface and cytoplasm, could be selected as a target in cancer therapy. The present study involves the development and characterization of the F3 peptide functionalized LCNPs for delivering Sal (F3-Sal-NPs) for selectively targeting to the nucleolin receptor. The optimized LCNPs were characterized for particle size, zeta potential, surface morphology, drug release kinetics and stability. The LCNPs have a structure similar to nematic phases. In vitro drug release studies revealed sustained drug release characteristics (89.5 ± 1.5% at 120 h) with F3-Sal-NPs. The cytotoxicity results demonstrated that F3-Sal-NPs were 4.8, 2.6 and 5.5 folds more effective than naïve drug in MDA-MB-468, MDA-MB-231 and MCF-7 cells, respectively and the cell cycle was arrested in the S and G2/M phases. The expression of the gene responsible for the stemness (CD44 gene), apoptosis (BAX/Bcl-2 ration) and angiogenesis (LCN-2) was reduced by F3-Sal-NPs treatment. Ex vivo hemolytic toxicity was reduced (6.5 ± 1.5%) and the pharmacokinetics and bioavailability of Sal was improved with F3-Sal-NPs. The in vivo antitumor efficacy was tested in EAC bearing mice, where F3-Sal-NPs significantly reduced the tumor growth by 2.8-fold compared to pure Sal and induced necrosis of tumor cells. The results clearly demonstrate the outstanding performance of F3 peptide functionalized LCNPs for delivering Sal against breast cancer.
Collapse
Affiliation(s)
- Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - Surajit Dey
- Roseman University of Health Sciences, College of Pharmacy, Henderson, Nevada, USA
| | - Anshita Gupta Soni
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg-491001, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, India.
| |
Collapse
|
7
|
Tang L, Duan W, Zhang C, Shi Y, Tu W, Lei K, Zhang W, Wu S, Zhang J. Potent salinomycin C20-O-alkyl oxime derivative SAL-98 efficiently inhibits tumor growth and metastasis by affecting Wnt/β-catenin signal pathway. Biochem Pharmacol 2023:115666. [PMID: 37391086 DOI: 10.1016/j.bcp.2023.115666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
The dysregulation of Wnt/β-catenin signaling pathway is closely related to tumorigenesis, metastasis and cancer stem cell maintenance. Salinomycin is a polyether ionophore antibiotic that selectively eliminates cancer stem cells by inhibiting the Wnt/β-catenin signal pathway. Salinomycin selectively target cancer stem cells, but the toxicity limits its further use. In this study, we explore the anti-tumor mechanism of one most active salinomycin C20-O-alkyl oximederivative SAL-98 and found that SAL-98 exerts 10 times higher anti-tumor and anti-CSCs activities compared with salinomycin, which induces cell cycle arrest, ER stress and mitochondria dysfunction and inhibits Wnt/β-catenin signal pathway in vitro with high efficacy. Moreover, SAL-98 shows good anti-metastasis effect in vivo. In addition, SAL-98 demonstrates same anti-tumor activities as salinomycin with less 5 times concentration in vivo, the ER stress, autophagy and anti-CSCs effects were also confirmed in vivo. Mechanistically, SAL-98 inhibits the Wnt/β-catenin signaling pathway associated with CHOP expression induced by ER stress, the induced CHOP disrupts the β-catenin/TCF4 complex and represses the Wnt targeted genes. This study provides an alternative strategy for rational drug development to target Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lei Tang
- Faculty of Life Science, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenfang Duan
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yulu Shi
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenlian Tu
- The First Hospital of Yunnan Province, the affiliated Hospital of Kunming University of Science and Technology, 650032, China
| | - Kangfan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, 650032, China.
| |
Collapse
|
8
|
Noguchi M, Kohno S, Pellattiero A, Machida Y, Shibata K, Shintani N, Kohno T, Gotoh N, Takahashi C, Hirao A, Scorrano L, Kasahara A. Inhibition of the mitochondria-shaping protein Opa1 restores sensitivity to Gefitinib in a lung adenocarcinomaresistant cell line. Cell Death Dis 2023; 14:241. [PMID: 37019897 PMCID: PMC10076284 DOI: 10.1038/s41419-023-05768-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
Drug resistance limits the efficacy of chemotherapy and targeted cancer treatments, calling for the identification of druggable targets to overcome it. Here we show that the mitochondria-shaping protein Opa1 participates in resistance against the tyrosine kinase inhibitor gefitinib in a lung adenocarcinoma cell line. Respiratory profiling revealed that oxidative metabolism was increased in this gefitinib-resistant lung cancer cell line. Accordingly, resistant cells depended on mitochondrial ATP generation, and their mitochondria were elongated with narrower cristae. In the resistant cells, levels of Opa1 were increased and its genetic or pharmacological inhibition reverted the mitochondrial morphology changes and sensitized them to gefitinib-induced cytochrome c release and apoptosis. In vivo, the size of gefitinib-resistant lung orthotopic tumors was reduced when gefitinib was combined with the specific Opa1 inhibitor MYLS22. The combo gefitinib-MYLS22 treatment increased tumor apoptosis and reduced its proliferation. Thus, the mitochondrial protein Opa1 participates in gefitinib resistance and can be targeted to overcome it.
Collapse
Affiliation(s)
- Masafumi Noguchi
- Department of Biology, University of Padua, 35121, Padua, Italy
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, 640-8156, Wakayama, Japan
| | - Susumu Kohno
- Cancer Research Institute, Kanazawa University, 920-1192, Kanazawa, Japan
| | - Anna Pellattiero
- Department of Biology, University of Padua, 35121, Padua, Italy
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy
| | - Yukino Machida
- Department of Veterinary Pathology, Nippon Veterinary and Life Science University Musashino, Tokyo, 180-8602, Japan
| | - Keitaro Shibata
- Department of Biology, University of Padua, 35121, Padua, Italy
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy
| | - Norihito Shintani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, 640-8156, Wakayama, Japan
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Takashi Kohno
- National Cancer Center Research Institute, 104-0045, Tokyo, Japan
| | - Noriko Gotoh
- Cancer Research Institute, Kanazawa University, 920-1192, Kanazawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University, 920-1192, Kanazawa, Japan
| | - Chiaki Takahashi
- Cancer Research Institute, Kanazawa University, 920-1192, Kanazawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University, 920-1192, Kanazawa, Japan
| | - Atsushi Hirao
- Cancer Research Institute, Kanazawa University, 920-1192, Kanazawa, Japan.
- WPI Nano Life Science Institute (WPI- Nano LSI), Kanazawa University, 920-1192, Kanazawa, Japan.
| | - Luca Scorrano
- Department of Biology, University of Padua, 35121, Padua, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy.
| | - Atsuko Kasahara
- Cancer Research Institute, Kanazawa University, 920-1192, Kanazawa, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, 920-1192, Kanazawa, Japan.
- WPI Nano Life Science Institute (WPI- Nano LSI), Kanazawa University, 920-1192, Kanazawa, Japan.
| |
Collapse
|
9
|
Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 2023; 13:736-766. [PMID: 36632220 PMCID: PMC9830443 DOI: 10.7150/thno.79876] [Citation(s) in RCA: 257] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Cellular mitophagy means that cells selectively wrap and degrade damaged mitochondria through an autophagy mechanism, thus maintaining mitochondria and intracellular homeostasis. In recent years, mitophagy has received increasing attention as a research hotspot related to the pathogenesis of clinical diseases, such as neurodegenerative diseases, cardiovascular diseases, cancer, metabolic diseases, and so on. It has been found that the regulation of mitophagy may become a new direction for the treatment of some diseases. In addition, numerous small molecule modulators of mitophagy have also been reported, which provides new opportunities to comprehend the procedure and potential of therapeutic development. Taken together, in this review, we summarize current understanding of the mechanism of mitophagy, discuss the roles of mitophagy and its relationship with diseases, introduce the existing small-molecule pharmacological modulators of mitophagy and further highlight the significance of their development.
Collapse
Affiliation(s)
- Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| |
Collapse
|
10
|
Riedel A, Helal M, Pedro L, Swietlik JJ, Shorthouse D, Schmitz W, Haas L, Young T, da Costa ASH, Davidson S, Bhandare P, Wolf E, Hall BA, Frezza C, Oskarsson T, Shields JD. Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma. Cancer Immunol Res 2022; 10:482-497. [PMID: 35362044 DOI: 10.1158/2326-6066.cir-21-0778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 01/21/2023]
Abstract
Communication between tumors and the stroma of tumor-draining lymph nodes (TDLN) exists before metastasis arises, altering the structure and function of the TDLN niche. Transcriptional profiling of fibroblastic reticular cells (FRC), the dominant stromal population of lymph nodes, has revealed that FRCs in TDLNs are reprogrammed. However, the tumor-derived factors driving the changes in FRCs remain to be identified. Taking an unbiased approach, we have shown herein that lactic acid (LA), a metabolite released by cancer cells, was not only secreted by B16.F10 and 4T1 tumors in high amounts, but also that it was enriched in TDLNs. LA supported an upregulation of Podoplanin (Pdpn) and Thy1 and downregulation of IL7 in FRCs of TDLNs, making them akin to activated fibroblasts found at the primary tumor site. Furthermore, we found that tumor-derived LA altered mitochondrial function of FRCs in TDLNs. Thus, our results demonstrate a mechanism by which a tumor-derived metabolite connected with a low pH environment modulates the function of fibroblasts in TDLNs. How lymph node function is perturbed to support cancer metastases remains unclear. The authors show that tumor-derived LA drains to lymph nodes where it modulates the function of lymph node stromal cells, prior to metastatic colonization.
Collapse
Affiliation(s)
- Angela Riedel
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany.,MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom.,The Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany
| | - Luisa Pedro
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan J Swietlik
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - David Shorthouse
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Werner Schmitz
- Institute for Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Lisa Haas
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Young
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ana S H da Costa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Davidson
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany.,Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Benjamin A Hall
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Thordur Oskarsson
- The Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jacqueline D Shields
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Rate of translocation across lipid bilayer of triphenylphosphonium-linked salinomycin derivatives contributes significantly to their K+/H+exchange activity on membranes. Bioelectrochemistry 2022; 145:108089. [DOI: 10.1016/j.bioelechem.2022.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
|
12
|
Cannabidiol Induces Cell Death in Human Lung Cancer Cells and Cancer Stem Cells. Pharmaceuticals (Basel) 2021; 14:ph14111169. [PMID: 34832951 PMCID: PMC8624994 DOI: 10.3390/ph14111169] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022] Open
Abstract
Currently, there is no effective therapy against lung cancer due to the development of resistance. Resistance contributes to disease progression, recurrence, and mortality. The presence of so-called cancer stem cells could explain the ineffectiveness of conventional treatment, and the development of successful cancer treatment depends on the targeting also of cancer stem cells. Cannabidiol (CBD) is a cannabinoid with anti-tumor properties. However, the effects on cancer stem cells are not well understood. The effects of CBD were evaluated in spheres enriched in lung cancer stem cells and adherent lung cancer cells. We found that CBD decreased viability and induced cell death in both cell populations. Furthermore, we found that CBD activated the effector caspases 3/7, increased the expression of pro-apoptotic proteins, increased the levels of reactive oxygen species, as well as a leading to a loss of mitochondrial membrane potential in both populations. We also found that CBD decreased self-renewal, a hallmark of cancer stem cells. Overall, our results suggest that CBD is effective against the otherwise treatment-resistant cancer stem cells and joins a growing list of compounds effective against cancer stem cells. The effects and mechanisms of CBD in cancer stem cells should be further explored to find their Achilles heel.
Collapse
|
13
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|
14
|
Huang B, Yan X, Li Y. Cancer Stem Cell for Tumor Therapy. Cancers (Basel) 2021; 13:cancers13194814. [PMID: 34638298 PMCID: PMC8508418 DOI: 10.3390/cancers13194814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although many methods have been applied in clinical treatment for tumors, they still always show a poor prognosis. Molecule targeted therapy has revolutionized tumor therapy, and a proper target must be found urgently. With a crucial role in tumor development, metastasis and recurrence, cancer stem cells have been found to be a feasible and potential target for tumor therapy. We list the unique biological characteristics of cancer stem cells and summarize the recent strategies to target cancer stem cells for tumor therapy, through which we hope to provide a comprehensive understanding of cancer stem cells and find a better combinational strategy to target cancer stem cells for tumor therapy. Abstract Tumors pose a significant threat to human health. Although many methods, such as operations, chemotherapy and radiotherapy, have been proposed to eliminate tumor cells, the results are unsatisfactory. Targeting therapy has shown potential due to its specificity and efficiency. Meanwhile, it has been revealed that cancer stem cells (CSCs) play a crucial role in the genesis, development, metastasis and recurrence of tumors. Thus, it is feasible to inhibit tumors and improve prognosis via targeting CSCs. In this review, we provide a comprehensive understanding of the biological characteristics of CSCs, including mitotic pattern, metabolic phenotype, therapeutic resistance and related mechanisms. Finally, we summarize CSCs targeted strategies, including targeting CSCs surface markers, targeting CSCs related signal pathways, targeting CSC niches, targeting CSC metabolic pathways, inducing differentiation therapy and immunotherapy (tumor vaccine, CAR-T, oncolytic virus, targeting CSCs–immune cell crosstalk and immunity checkpoint inhibitor). We highlight the potential of immunity therapy and its combinational anti-CSC therapies, which are composed of different drugs working in different mechanisms.
Collapse
Affiliation(s)
- Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xin Yan
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-138-9361-5421
| |
Collapse
|
15
|
Li J, Min Y. Pre-clinical evidence that salinomycin is active against retinoblastoma via inducing mitochondrial dysfunction, oxidative damage and AMPK activation. J Bioenerg Biomembr 2021; 53:513-523. [PMID: 34365583 DOI: 10.1007/s10863-021-09915-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
The poor outcomes in retinoblastoma necessitate new treatments. Salinomycin is an attractive candidate, and has demonstrated selective anti-cancer properties in different cancer types. This work addressed the efficacy of salinomycin in retinoblastoma models and probe the associated mechanisms. Cellular functional assays were conducted to determine the effects salinomycin in vitro. Xenograft retinoblastoma mouse model was established to investigate the efficacy of salinomycin in vivo. Biochemical assays were conducted to analyze the mechanism of salinomycin's action focusing on mitochondrial functions, energy reduction-related signaling pathways. Salinomycin has positive effects towards retinoblastoma cells regardless of heterogeneity through suppressing growth and inducing apoptosis. Salinomycin also specifically inhibits cells displaying stemness and highly invasive phenotypes. Using retinoblastoma xenograft mouse model, we show that salinomycin at non-toxic dose effectively inhibits growth and induces apoptosis. Mechanistic studies show that salinomycin inhibits mitochondrial respiration via specifically suppressing complex I and II activities, reduces mitochondrial membrane potential and decreases energy reduction, followed by induction of oxidative stress and damage, AMPK activation and mTOR inhibition. Our study highlights that adding salinomycin to the existing treatment armamentarium for retinoblastoma is beneficial.
Collapse
Affiliation(s)
- Jing Li
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Yao Min
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China.
| |
Collapse
|
16
|
From Channels to Canonical Wnt Signaling: A Pathological Perspective. Int J Mol Sci 2021; 22:ijms22094613. [PMID: 33924772 PMCID: PMC8125460 DOI: 10.3390/ijms22094613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is an important pathway mainly active during embryonic development and controlling cell proliferation. This regulatory pathway is aberrantly activated in several human diseases. Ion channels are known modulators of several important cellular functions ranging from the tuning of the membrane potential to modulation of intracellular pathways, in particular the influence of ion channels in Wnt signaling regulation has been widely investigated. This review will discuss the known links between ion channels and canonical Wnt signaling, focusing on their possible roles in human metabolic diseases, neurological disorders, and cancer.
Collapse
|
17
|
Kuran D, Flis S, Antoszczak M, Piskorek M, Huczyński A. Ester derivatives of salinomycin efficiently eliminate breast cancer cells via ER-stress-induced apoptosis. Eur J Pharmacol 2020; 893:173824. [PMID: 33347821 DOI: 10.1016/j.ejphar.2020.173824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
The polyether ionophore salinomycin (SAL) has been found to selectively target breast cancer cells, including those with stem-like phenotype. On the other hand, SAL amides and esters obtained through derivatisation of the C1 carboxyl of the ionophore were found to exhibit anticancer properties, whilst reducing potential toxicity issues which often occur during standard chemotherapy. However, the studies on the activity and especially on the mechanisms of action of this class of semi-synthetic products against breast cancer cells are very limited. Therefore, in this work, we confirmed the anti-breast cancer activity of SAL, and further investigated the potential of its selected C1 amide and ester analogs to destroy breast cancer cells, including the highly aggressive triple-negative MDA-MB-231 cells. Importantly, SAL esters were found to be more potent than the native structure and their amide counterparts. Our data revealed that SAL ester derivatives, particularly compounds 5 and 7 (2,2,2-trifluoroethyl and benzotriazole ester of SAL, respectively), increase the level of p-eIF2α (Ser51) and IRE1α proteins. Additionally, an increased level of DNA damage indicators such as γH2AX protein and modified guanine (8-oxoG) was observed. These findings suggest that the apoptosis of MCF-7 and MDA-MB-231 cells induced by the most promising esters derived from SAL may result from the interaction between ER stress and DNA damage response mechanisms.
Collapse
Affiliation(s)
- Dominika Kuran
- Department of Pharmacology, National Medicines Institute, Chełmska 30/34, 00‒725, Warsaw, Poland
| | - Sylwia Flis
- Department of Pharmacology, National Medicines Institute, Chełmska 30/34, 00‒725, Warsaw, Poland.
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland
| | - Marlena Piskorek
- Department of Pharmacology, National Medicines Institute, Chełmska 30/34, 00‒725, Warsaw, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland.
| |
Collapse
|
18
|
Costa R, Muccioli S, Brillo V, Bachmann M, Szabò I, Leanza L. Mitochondrial dysfunction interferes with neural crest specification through the FoxD3 transcription factor. Pharmacol Res 2020; 164:105385. [PMID: 33348025 DOI: 10.1016/j.phrs.2020.105385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/28/2022]
Abstract
The neural crest is an important group of cells with pluripotency and migratory ability that is crucially involved in tissue and cell specification during development. Craniofacial shaping, sensory neurons, body asymmetry, and pigmentation are linked to neural crest functionality. Despite its prominent role in embryogenesis, neural crest specification as well as the possible part mitochondria play in such a process remains unclarified. Mitochondria are important organelles not only for respiration, but also for regulation of cell proliferation, differentiation and death. Modulation of mitochondrial fitness and depletion of mitochondrial ATP synthesis has been shown to down-regulate Wnt signaling, both in vitro and in vivo. Since Wnt signaling is one of the crucial players during neural crest induction/specification, we hypothesized a signaling cascade connecting mitochondria to embryonic development and neural crest migration and differentiation. Here, by using pharmacological and genetic modulators of mitochondrial function, we provide evidence that a crosstalk between mitochondrial energy homeostasis and Wnt signaling is important in the development of neural crest-derived tissues. Furthermore, our results highlight the possibility to modulate neural crest cell specification by tuning mitochondrial metabolism via FoxD3, an important transcription factor that is regulated by Wnt. FoxD3 ensures the correct embryonic development and contributes to the maintenance of cell stemness and to the induction of epithelial-to-mesenchymal transition. In summary, our work offers new insights into the molecular mechanism of action of FoxD3 and demonstrates that mitochondrial fitness is linked to the regulation of this important transcription factor via Wnt signaling in the context of neural crest specification.
Collapse
Affiliation(s)
- Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
19
|
Bazhin AA, Sinisi R, De Marchi U, Hermant A, Sambiagio N, Maric T, Budin G, Goun EA. A bioluminescent probe for longitudinal monitoring of mitochondrial membrane potential. Nat Chem Biol 2020; 16:1385-1393. [PMID: 32778841 DOI: 10.1038/s41589-020-0602-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
Mitochondrial membrane potential (ΔΨm) is a universal selective indicator of mitochondrial function and is known to play a central role in many human pathologies, such as diabetes mellitus, cancer and Alzheimer's and Parkinson's diseases. Here, we report the design, synthesis and several applications of mitochondria-activatable luciferin (MAL), a bioluminescent probe sensitive to ΔΨm, and partially to plasma membrane potential (ΔΨp), for non-invasive, longitudinal monitoring of ΔΨm in vitro and in vivo. We applied this new technology to evaluate the aging-related change of ΔΨm in mice and showed that nicotinamide riboside (NR) reverts aging-related mitochondrial depolarization, revealing another important aspect of the mechanism of action of this potent biomolecule. In addition, we demonstrated application of the MAL probe for studies of brown adipose tissue (BAT) activation and non-invasive in vivo assessment of ΔΨm in animal cancer models, opening exciting opportunities for understanding the underlying mechanisms and for discovery of effective treatments for many human pathologies.
Collapse
Affiliation(s)
- Arkadiy A Bazhin
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Riccardo Sinisi
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | | | - Nicolas Sambiagio
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Tamara Maric
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Ghyslain Budin
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Elena A Goun
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
20
|
Tsakiris N, Fauvet F, Ruby S, Puisieux A, Paquot A, Muccioli GG, Vigneron AM, Préat V. Combined nanomedicines targeting colorectal cancer stem cells and cancer cells. J Control Release 2020; 326:387-395. [DOI: 10.1016/j.jconrel.2020.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
|
21
|
Al‐Bari MAA. Co-targeting of lysosome and mitophagy in cancer stem cells with chloroquine analogues and antibiotics. J Cell Mol Med 2020; 24:11667-11679. [PMID: 32935427 PMCID: PMC7578893 DOI: 10.1111/jcmm.15879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The catabolic autophagy eliminates cytoplasmic components and organelles via lysosomes. Non-selective bulk autophagy and selective autophagy (mitophagy) are linked in intracellular homeostasis both normal and cancer cells. Autophagy has complex and paradoxical dual role in cancers; it can play either tumour suppressor or tumour promoter depending on the tumour type, stage, microenvironment and genetic context. Cancer stem cells (CSCs) cause tumour recurrence and promote resistant to therapy for driving poor clinical consequences. Thus, new healing strategies are urgently needed to annihilate and eradicate CSCs. As chloroquine (CQ) analogues show positive clinical outcome in several clinical trials either standalone or combination with several chemotherapies. Moreover, CQ analogues are known to eliminate CSCs via altering DNA methylation. However, several obstacles such as higher concentrations and dose-dependent toxicity are noticeable in the treatment of cancers. As tumour cells predominantly rely on mitochondrial actions, mitochondrial targeting FDA-approved antibiotics are reported to effectively eradicate CSCs alone or combination with chemotherapy. However, antibiotics cause metabolic glycolytic shift in cancer cells for survival and repopulation. This review will provide a sketch of the inhibiting roles of current chloroquine analogues and antibiotic combination in CSC autophagy process and discuss the possibility that pre-clinical and clinical potential therapeutic strategy for anticancer therapy.
Collapse
|
22
|
Shen FF, Dai SY, Wong NK, Deng S, Wong AST, Yang D. Mediating K +/H + Transport on Organelle Membranes to Selectively Eradicate Cancer Stem Cells with a Small Molecule. J Am Chem Soc 2020; 142:10769-10779. [PMID: 32441923 DOI: 10.1021/jacs.0c02134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecules that are capable of disrupting cellular ion homeostasis offer unique opportunities to treat cancer. However, previously reported synthetic ion transporters showed limited value, as promiscuous ionic disruption caused toxicity to both healthy cells and cancer cells indiscriminately. Here we report a simple yet efficient synthetic K+ transporter that takes advantage of the endogenous subcellular pH gradient and membrane potential to site-selectively mediate K+/H+ transport on the mitochondrial and lysosomal membranes in living cells. Consequent mitochondrial and lysosomal damages enhanced cytotoxicity to chemo-resistant ovarian cancer stem cells (CSCs) via apoptosis induction and autophagy suppression with remarkable selectivity (up to 47-fold). The eradication of CSCs blunted tumor formation in mice. We believe this strategy can be exploited in the structural design and applications of next-generation synthetic cation transporters for the treatment of cancer and other diseases related to dysfunctional K+ channels.
Collapse
Affiliation(s)
- Fang-Fang Shen
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sheng-Yao Dai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nai-Kei Wong
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Shan Deng
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alice Sze-Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
23
|
Salinomycin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy. NANOMATERIALS 2020; 10:nano10030477. [PMID: 32155938 PMCID: PMC7153627 DOI: 10.3390/nano10030477] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Salinomycin is an antibiotic introduced recently as a new and effective anticancer drug. In this study, magnetic iron oxide nanoparticles (IONPs) were utilized as a drug carrier for salinomycin for potential use in glioblastoma (GBM) chemotherapy. The biocompatible polyethylenimine (PEI)-polyethylene glycol (PEG)-IONPs (PEI-PEG-IONPs) exhibited an efficient uptake in both mouse brain-derived microvessel endothelial (bEnd.3) and human U251 GBM cell lines. The salinomycin (Sali)-loaded PEI-PEG-IONPs (Sali-PEI-PEG-IONPs) released salinomycin over 4 days, with an initial release of 44% ± 3% that increased to 66% ± 5% in acidic pH. The Sali-IONPs inhibited U251 cell proliferation and decreased their viability (by approximately 70% within 48 h), and the nanoparticles were found to be effective in reactive oxygen species-mediated GBM cell death. Gene studies revealed significant activation of caspases in U251 cells upon treatment with Sali-IONPs. Furthermore, the upregulation of tumor suppressors (i.e., p53, Rbl2, Gas5) was observed, while TopII, Ku70, CyclinD1, and Wnt1 were concomitantly downregulated. When examined in an in vitro blood–brain barrier (BBB)-GBM co-culture model, Sali-IONPs had limited penetration (1.0% ± 0.08%) through the bEnd.3 monolayer and resulted in 60% viability of U251 cells. However, hyperosmotic disruption coupled with an applied external magnetic field significantly enhanced the permeability of Sali-IONPs across bEnd.3 monolayers (3.2% ± 0.1%) and reduced the viability of U251 cells to 38%. These findings suggest that Sali-IONPs combined with penetration enhancers, such as hyperosmotic mannitol and external magnetic fields, can potentially provide effective and site-specific magnetic targeting for GBM chemotherapy.
Collapse
|
24
|
Mitophagy contributes to alpha-tocopheryl succinate toxicity in GSNOR-deficient hepatocellular carcinoma. Biochem Pharmacol 2020; 176:113885. [PMID: 32112881 DOI: 10.1016/j.bcp.2020.113885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
The downregulation of the denitrosylating enzyme S-nitrosoglutathione reductase (GSNOR, EC:1.1.1.284), is a feature of hepatocellular carcinoma (HCC). This condition causes mitochondrial rearrangements that sensitize these tumors to mitochondrial toxins, in particular to the mitochondrial complex II inhibitor alpha-tocopheryl succinate (αTOS). It has also been reported the GSNOR depletion impairs the selective degradation of mitochondria through mitophagy; however, if this contributes to GSNOR-deficient HCC cell sensitivity to αTOS and can be applied to anticancer therapies, is still not known. Here, we provide evidence that GSNOR-deficient HCC cells show defective mitophagy which contributes to αTOS toxicity. Mitophagy inhibition by Parkin (EC: 2.3.2.31) depletion enhances αTOS anticancer effects, thus suggesting that this drug could be effective in treating mitophagy-defective tumors.
Collapse
|
25
|
Denisenko TV, Gorbunova AS, Zhivotovsky B. Mitochondrial Involvement in Migration, Invasion and Metastasis. Front Cell Dev Biol 2019; 7:355. [PMID: 31921862 PMCID: PMC6932960 DOI: 10.3389/fcell.2019.00355] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria in addition to be a main cellular power station, are involved in the regulation of many physiological processes, such as generation of reactive oxygen species, metabolite production and the maintenance of the intracellular Ca2+ homeostasis. Almost 100 years ago Otto Warburg presented evidence for the role of mitochondria in the development of cancer. During the past 20 years mitochondrial involvement in programmed cell death regulation has been clarified. Moreover, it has been shown that mitochondria may act as a switchboard between various cell death modalities. Recently, accumulated data have pointed to the role of mitochondria in the metastatic dissemination of cancer cells. Here we summarize the modern knowledge concerning the contribution of mitochondria to the invasion and dissemination of tumor cells and the possible mechanisms behind that and attempts to target metastatic cancers involving mitochondria.
Collapse
Affiliation(s)
| | - Anna S Gorbunova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Costa R, Peruzzo R, Bachmann M, Montà GD, Vicario M, Santinon G, Mattarei A, Moro E, Quintana-Cabrera R, Scorrano L, Zeviani M, Vallese F, Zoratti M, Paradisi C, Argenton F, Brini M, Calì T, Dupont S, Szabò I, Leanza L. Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction. Cell Rep 2019; 28:1949-1960.e6. [PMID: 31433973 DOI: 10.1016/j.celrep.2019.07.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/01/2019] [Accepted: 07/16/2019] [Indexed: 02/02/2023] Open
Abstract
Wnt signaling affects fundamental development pathways and, if aberrantly activated, promotes the development of cancers. Wnt signaling is modulated by different factors, but whether the mitochondrial energetic state affects Wnt signaling is unknown. Here, we show that sublethal concentrations of different compounds that decrease mitochondrial ATP production specifically downregulate Wnt/β-catenin signaling in vitro in colon cancer cells and in vivo in zebrafish reporter lines. Accordingly, fibroblasts from a GRACILE syndrome patient and a generated zebrafish model lead to reduced Wnt signaling. We identify a mitochondria-Wnt signaling axis whereby a decrease in mitochondrial ATP reduces calcium uptake into the endoplasmic reticulum (ER), leading to endoplasmic reticulum stress and to impaired Wnt signaling. In turn, the recovery of the ATP level or the inhibition of endoplasmic reticulum stress restores Wnt activity. These findings reveal a mechanism that links mitochondrial energetic metabolism to the control of the Wnt pathway that may be beneficial against several pathologies.
Collapse
Affiliation(s)
- Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Mattia Vicario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giulia Santinon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Rubén Quintana-Cabrera
- Department of Biology, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Padova, Italy
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy; CNR Institute of Neuroscience, Padova, Italy.
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
27
|
Antoszczak M, Huczyński A. Salinomycin and its derivatives - A new class of multiple-targeted "magic bullets". Eur J Med Chem 2019; 176:208-227. [PMID: 31103901 DOI: 10.1016/j.ejmech.2019.05.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
The history of drug development clearly shows the scale of painstaking effort leading to a finished product - a highly biologically active agent that would be at the same time no or little toxic to human organism. Moreover, the aim of modern drug discovery can move from "one-molecule one-target" concept to more promising "one-molecule multiple-targets" one, particularly in the context of effective fight against cancer and other complex diseases. Gratifyingly, natural compounds are excellent source of potential drug leads. One of such promising naturally-occurring drug candidates is a polyether ionophore - salinomycin (SAL). This compound should be identified as multi-target agent for two reasons. Firstly, SAL combines a broad spectrum of bioactivity, including antibacterial, antifungal, antiviral, antiparasitic and anticancer activity, with high selectivity of action, proving its significant therapeutic potential. Secondly, the multimodal mechanism of action of SAL has been shown to be related to its interactions with multiple molecular targets and signalling pathways that are synergistic for achieving a therapeutic anticancer effect. On the other hand, according to the Paul Ehrlich's "magic bullet" concept, invariably inspiring the scientists working on design of novel target-selective molecules, a very interesting direction of research is rational chemical modification of SAL. Importantly, many of SAL derivatives have been found to be more promising as chemotherapeutics than the native structure. This concise review article is focused both on the possible role of SAL and its selected analogues in future antimicrobial and/or cancer therapy, and on the potential use of SAL as a new class of multiple-targeted "magic bullet" because of its multimodal mechanism of action.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland.
| |
Collapse
|
28
|
Zhang Y, Li F, Liu L, Jiang H, Hu H, Du X, Ge X, Cao J, Wang Y. Salinomycin triggers endoplasmic reticulum stress through ATP2A3 upregulation in PC-3 cells. BMC Cancer 2019; 19:381. [PMID: 31023247 PMCID: PMC6482559 DOI: 10.1186/s12885-019-5590-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background Salinomycin is a monocarboxylic polyether antibiotic and is a potential chemotherapy drug. Our previous studies showed that salinomycin inhibited cell growth and targeted CSCs in prostate cancer. However, the precise target of salinomycin action is unclear. Methods In this work, we analyzed and identified differentially expressed genes (DEGs) after treatment with or without salinomycin using a gene expression microarray in vitro (PC-3 cells) and in vivo (NOD/SCID mice xenograft model generated from implanted PC-3 cells). Western blotting and immunohistochemical staining were used to analyze the expression of ATP2A3 and endoplasmic reticulum (ER) stress biomarkers. Flow cytometry was used to analyze the cell cycle, apoptosis and intracellular Ca2+ concentration. Results A significantly upregulated gene, ATPase sarcoplasmatic/endoplasmatic reticulum Ca2+ transporting 3 (ATP2A3), was successfully identified. In subsequent studies, we found that ATP2A3 overexpression could trigger ER stress and exert anti-cancer effects in PC-3 and DU145 cells. ATP2A3 was slightly expressed, but the ER stress biomarkers showed strong staining in prostate cancer tissues. We also found that salinomycin could trigger ER stress, which might be related to ATP2A3-mediated Ca2+ release in PC-3 cells. Furthermore, we found that salinomycin-triggered ER stress could promote apoptosis and thus exert anti-cancer effects in prostate cancer cells. Conclusion This study demonstrates that ATP2A3 might be one of the potential targets for salinomycin, which can inhibit Ca2+ release and trigger ER stress to exert anti-cancer effects.
Collapse
Affiliation(s)
- Yunsheng Zhang
- Clinical Research Institute, The Second Affiliated Hospital, University of South China; Clinical Research Center For Breast & Thyroid Disease Prevention In Hunan Province, Hengyang, 421001, People's Republic of China
| | - Fang Li
- College of Nursing, Hunan Polytechnic of Environment and Biology, Hengyang, 421005, People's Republic of China
| | - Luogen Liu
- Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Hongtao Jiang
- Department of Urology, The Second Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Hua Hu
- Cancer Research Institute, The Second Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaobo Du
- Department of Urology, The First People's Hospital Yueyang, Yueyang, 414000, People's Republic of China
| | - Xin Ge
- Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Jingsong Cao
- Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, People's Republic of China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570102; Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
29
|
Zhao Y, Zhao W, Lim YC, Liu T. Salinomycin-Loaded Gold Nanoparticles for Treating Cancer Stem Cells by Ferroptosis-Induced Cell Death. Mol Pharm 2019; 16:2532-2539. [DOI: 10.1021/acs.molpharmaceut.9b00132] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Wei Zhao
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yi Chieh Lim
- Danish Cancer Society Research Center, Copenhagen 2100, Denmark
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 1006, Australia
| |
Collapse
|
30
|
A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur J Med Chem 2019; 166:48-64. [DOI: 10.1016/j.ejmech.2019.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
|
31
|
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur J Med Chem 2019; 164:366-377. [DOI: 10.1016/j.ejmech.2018.12.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023]
|
32
|
Targeting Mitochondria for Treatment of Chemoresistant Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20010229. [PMID: 30626133 PMCID: PMC6337358 DOI: 10.3390/ijms20010229] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the Western world. This is due, in part, to the fact that despite standard treatment of surgery and platinum/paclitaxel most patients recur with ultimately chemoresistant disease. Ovarian cancer is a unique form of solid tumor that develops, metastasizes and recurs in the same space, the abdominal cavity, which becomes a unique microenvironment characterized by ascites, hypoxia and low glucose levels. It is under these conditions that cancer cells adapt and switch to mitochondrial respiration, which becomes crucial to their survival, and therefore an ideal metabolic target for chemoresistant ovarian cancer. Importantly, independent of microenvironmental factors, mitochondria spatial redistribution has been associated to both tumor metastasis and chemoresistance in ovarian cancer while specific sets of genetic mutations have been shown to cause aberrant dependence on mitochondrial pathways in the most aggressive ovarian cancer subtypes. In this review we summarize on targeting mitochondria for treatment of chemoresistant ovarian cancer and current state of understanding of the role of mitochondria respiration in ovarian cancer. We feel this is an important and timely topic given that ovarian cancer remains the deadliest of the gynecological diseases, and that the mitochondrial pathway has recently emerged as critical in sustaining solid tumor progression.
Collapse
|
33
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Fu C, Wang L, Tian G, Zhang C, Zhao Y, Xu H, Su M, Wang Y. Enhanced anticancer effect of oncostatin M combined with salinomycin in CD133 + HepG2 liver cancer cells. Oncol Lett 2018; 17:1798-1806. [PMID: 30675240 PMCID: PMC6341778 DOI: 10.3892/ol.2018.9796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022] Open
Abstract
Oncostatin M (OSM) induces the differentiation of liver cancer stem cells (LCSCs) and increases sensitivity to the chemotherapeutic agent 5-fluorouracil, whereas salinomycin (Sal) induces apoptosis in cancer stem cells and inhibits the proliferation of liver cancer cells. However, there have been no studies investigating the anticancer effects of combination treatment with OSM and Sal. In the present study, we investigated the synergistic effects of OSM and Sal on LCSCs, the CD133+ subpopulations from HepG2 human liver cancer cells. CD133+ LCSCs were isolated using an immunomagnetic bead technique and identified through colony formation. After incubating with OSM and Sal, the ability of LCSC proliferation and invasion, as well as apoptosis rates were evaluated, and the expression of stemness-related genes was examined by quantitative real-time polymerase chain reaction. Additionally, the secretion of α-fetoprotein (AFP) and albumin (ALB) were analyzed by enzyme-linked immunosorbent assay. Our results indicated that OSM combined with Sal significantly suppressed LCSC proliferation and invasion and induced apoptosis, as determined by flow cytometry and increases in cleaved caspase-3 levels detected by western blotting. The results of the JC-1 staining assay indicated that this effect involved the mitochondrial pathway. Moreover, combination treatment reduced the expression of CD133 in LCSCs and suppressed stemness-related gene expression. Furthermore, the LCSCs produced lower levels of AFP and higher levels of ALB following combination treatment. In all experiments, combination treatment elicited more efficient anticancer effects on LCSCs as compared with single-drug treatment; therefore, our results demonstrated that combined treatment with OSM and Sal inhibited proliferation and induced differentiation and apoptosis in LCSCs, suggesting combined use of OSM and Sal as a therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Changhao Fu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lu Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Geer Tian
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chen Zhang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China.,Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian 361021, P.R. China
| | - Yuanyuan Zhao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hao Xu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Manman Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
35
|
Kaushik V, Yakisich JS, Kumar A, Azad N, Iyer AKV. Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers. Cancers (Basel) 2018; 10:E360. [PMID: 30262730 PMCID: PMC6211070 DOI: 10.3390/cancers10100360] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Ion homeostasis is extremely important for the survival of both normal as well as neoplastic cells. The altered ion homeostasis found in cancer cells prompted the investigation of several ionophores as potential anticancer agents. Few ionophores, such as Salinomycin, Nigericin and Obatoclax, have demonstrated potent anticancer activities against cancer stem-like cells that are considered highly resistant to chemotherapy and responsible for tumor relapse. The preclinical success of these compounds in in vitro and in vivo models have not been translated into clinical trials. At present, phase I/II clinical trials demonstrated limited benefit of Obatoclax alone or in combination with other anticancer drugs. However, future development in targeted drug delivery may be useful to improve the efficacy of these compounds. Alternatively, these compounds may be used as leading molecules for the development of less toxic derivatives.
Collapse
Affiliation(s)
- Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anil Kumar
- Great Plains Health, North Platte, NE 69101, USA.
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anand K V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| |
Collapse
|
36
|
Versini A, Saier L, Sindikubwabo F, Müller S, Cañeque T, Rodriguez R. Chemical biology of salinomycin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Vu HT, Kobayashi M, Hegazy AM, Tadokoro Y, Ueno M, Kasahara A, Takase Y, Nomura N, Peng H, Ito C, Ino Y, Todo T, Nakada M, Hirao A. Autophagy inhibition synergizes with calcium mobilization to achieve efficient therapy of malignant gliomas. Cancer Sci 2018; 109:2497-2508. [PMID: 29902340 PMCID: PMC6113445 DOI: 10.1111/cas.13695] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 01/02/2023] Open
Abstract
Autophagy plays a critical role in tumorigenesis, but how autophagy contributes to cancer cells' responses to chemotherapeutics remains controversial. To investigate the roles of autophagy in malignant gliomas, we used CRISPR/CAS9 to knock out the ATG5 gene, which is essential for autophagosome formation, in tumor cells derived from patients with glioblastoma. While ATG5 disruption inhibited autophagy, it did not change the phenotypes of glioma cells and did not alter their sensitivity to temozolomide, an agent used for glioblastoma patient therapy. Screening of an anticancer drug library identified compounds that showed greater efficacy to ATG5-knockout glioma cells compared to control. While several selected compounds, including nigericin and salinomycin, remarkably induced autophagy, potent autophagy inducers by mTOR inhibition did not exhibit the ATG5-dependent cytoprotective effects. Nigericin in combination with ATG5 deficiency synergistically suppressed spheroid formation by glioma cells in a manner mitigated by Ca2+ chelation or CaMKK inhibition, indicating that, in combination with autophagy inhibition, calcium-mobilizing compounds contribute to efficient anticancer therapeutics. ATG5-knockout cells treated with nigericin showed increased mitochondria-derived reactive oxygen species and apoptosis compared to controls, indicating that autophagy protects glioma cells from mitochondrial reactive oxygen species-mediated damage. Finally, using a patient-derived xenograft model, we demonstrated that chloroquine, a pharmacological autophagy inhibitor, dramatically enhanced the efficacy of compounds selected in this study. Our findings propose a novel therapeutic strategy in which calcium-mobilizing compounds are combined with autophagy inhibitors to treat patients with glioblastoma.
Collapse
Affiliation(s)
- Ha Thi Vu
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Masahiko Kobayashi
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Ahmed M. Hegazy
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Yuko Tadokoro
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Masaya Ueno
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Atsuko Kasahara
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- Institute for Frontier Science InitiativeKanazawa UniversityKanazawaIshikawaJapan
| | - Yusuke Takase
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Naho Nomura
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Hui Peng
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Chiaki Ito
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Yasushi Ino
- Division of Innovative Cancer TherapyInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Tomoki Todo
- Division of Innovative Cancer TherapyInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Mitsutoshi Nakada
- Department of NeurosurgeryGraduate School of Medical ScienceKanazawa UniversityKanazawaIshikawaJapan
| | - Atsushi Hirao
- Cancer and Stem Cell Research ProgramDivision of Molecular GeneticsCancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
38
|
Cuyàs E, Verdura S, Folguera-Blasco N, Bastidas-Velez C, Martin ÁG, Alarcón T, Menendez JA. Mitostemness. Cell Cycle 2018; 17:918-926. [PMID: 29886796 DOI: 10.1080/15384101.2018.1467679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Unraveling the key mechanisms governing the retention versus loss of the cancer stem cell (CSC) state would open new therapeutic avenues to eradicate cancer. Mitochondria are increasingly recognized key drivers in the origin and development of CSC functional traits. We here propose the new term "mitostemness" to designate the mitochondria-dependent signaling functions that, evolutionary rooted in the bacterial origin of mitochondria, regulate the maintenance of CSC self-renewal and resistance to differentiation. Mitostemness traits, namely mitonuclear communication, mitoproteome components, and mitochondrial fission/fusion dynamics, can be therapeutically exploited to target the CSC state. We briefly review the pre-clinical evidence of action of investigational compounds on mitostemness traits and discuss ongoing strategies to accelerate the clinical translation of new mitostemness drugs. The recognition that the bacterial origin of present-day mitochondria can drive decision-making signaling phenomena may open up a new therapeutic dimension against life-threatening CSCs. New therapeutics aimed to target mitochondria not only as biochemical but also as biophysical and morpho-physiological hallmarks of CSC might certainly guide improvements to cancer treatment.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | - Sara Verdura
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | | | | | | | - Tomás Alarcón
- c Centre de Recerca Matemàtica , Barcelona , Spain.,e Barcelona Graduate School of Mathematics (BGSMath) , Barcelona , Spain.,f ICREA , Barcelona , Spain.,g Departament de Matemàtiques , Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Javier A Menendez
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| |
Collapse
|
39
|
Huang X, Borgström B, Stegmayr J, Abassi Y, Kruszyk M, Leffler H, Persson L, Albinsson S, Massoumi R, Scheblykin IG, Hegardt C, Oredsson S, Strand D. The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin. ACS CENTRAL SCIENCE 2018; 4:760-767. [PMID: 29974072 PMCID: PMC6026786 DOI: 10.1021/acscentsci.8b00257] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 05/13/2023]
Abstract
Tumors are phenotypically heterogeneous and include subpopulations of cancer cells with stemlike properties. The natural product salinomycin, a K+-selective ionophore, was recently found to exert selectivity against such cancer stem cells. This selective effect is thought to be due to inhibition of the Wnt signaling pathway, but the mechanistic basis remains unclear. Here, we develop a functionally competent fluorescent conjugate of salinomycin to investigate the molecular mechanism of this compound. By subcellular imaging, we demonstrate a rapid cellular uptake of the conjugate and accumulation in the endoplasmic reticulum (ER). This localization is connected to induction of Ca2+ release from the ER into the cytosol. Depletion of Ca2+ from the ER induces the unfolded protein response as shown by global mRNA analysis and Western blot analysis of proteins in the pathway. In particular, salinomycin-induced ER Ca2+ depletion up-regulates C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating β-catenin. The increased cytosolic Ca2+ also activates protein kinase C, which has been shown to inhibit Wnt signaling. These results reveal that salinomycin acts in the ER membrane of breast cancer cells to cause enhanced Ca2+ release into the cytosol, presumably by mediating a counter-flux of K+ ions. The clarified mechanistic picture highlights the importance of ion fluxes in the ER as an entry to inducing phenotypic effects and should facilitate rational development of cancer treatments.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
| | - Björn Borgström
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| | - John Stegmayr
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
- Department of Laboratory Medicine, Lund University, BMC C12, 221 84 Lund, Sweden
| | - Yasmin Abassi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 8, 223 63 Lund, Sweden
| | - Monika Kruszyk
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, BMC C12, 221 84 Lund, Sweden
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, BMC D12, 221 84 Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, BMC D12, 221 84 Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 8, 223 63 Lund, Sweden
| | - Ivan G Scheblykin
- Department of Chemical Physics and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Cecilia Hegardt
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Medicon Village, 223 81 Lund, Sweden
| | - Stina Oredsson
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
40
|
Ohkubo S, Dalla Via L, Grancara S, Kanamori Y, García-Argáez AN, Canettieri G, Arcari P, Toninello A, Agostinelli E. The antioxidant, aged garlic extract, exerts cytotoxic effects on wild-type and multidrug-resistant human cancer cells by altering mitochondrial permeability. Int J Oncol 2018; 53:1257-1268. [PMID: 29956777 DOI: 10.3892/ijo.2018.4452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 11/06/2022] Open
Abstract
Aged garlic extract (AGE) has been shown to possess therapeutic properties in cancer; however its mechanisms of action are unclear. In this study, we demonstrate by MTT assay that AGE exerts an anti-proliferative effect on a panel of both sensitive and multidrug-resistant (MDR) human cancer cell lines and enhances the effects of hyperthermia (42˚C) on M14 melanoma cells. The evaluation of the mitochondrial activity in whole cancer cells treated with AGE, performed by cytofluorimetric analysis in the presence of the lipophilic cationic fluorochrome JC-1, revealed the occurrence of dose-dependent mitochondrial membrane depolarization. Membrane potential was measured by the TPP+ selective electrode. In order to shed light on its mechanisms of action, the effects of AGE on isolated rat liver mitochondria were also examined. In this regard, AGE induced a mitochondrial membrane hyperpolarization of approximately 15 mV through a mechanism that was similar to that observed with the ionophores, nigericin or salinomycin, by activating an exchange between endogenous K+ with exogenous H+. The prolonged incubation of the mitochondria with AGE induced depolarization and matrix swelling, indicative of mitochondrial permeability transition induction that, however, occurs through a different mechanism from the well-known one. In particular, the transition pore opening induced by AGE was due to the rearrangement of the mitochondrial membranes following the increased activity of the K+/H+ exchanger. On the whole, the findings of this study indicate that AGE exerts cytotoxic effects on cancer cells by altering mitochondrial permeability. In particular, AGE in the mitochondria activates K+/H+ exchanger, causes oxidative stress and induces mitochondrial permeability transition (MPT).
Collapse
Affiliation(s)
- Shinji Ohkubo
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy
| | - Silvia Grancara
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Yuta Kanamori
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Aída Nelly García-Argáez
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine - Sapienza University of Rome, 00161 Rome, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80138 Naples, Italy
| | - Antonio Toninello
- Department of Biomedical Sciences, University of Padua, I-35131 Padua, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| |
Collapse
|
41
|
Liu C, Wang L, Qiu H, Dong Q, Feng Y, Li D, Li C, Fan C. Combined Strategy of Radioactive 125I Seeds and Salinomycin for Enhanced Glioma Chemo-radiotherapy: Evidences for ROS-Mediated Apoptosis and Signaling Crosstalk. Neurochem Res 2018; 43:1317-1327. [DOI: 10.1007/s11064-018-2547-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 01/29/2023]
|
42
|
Fiorillo M, Lamb R, Tanowitz HB, Mutti L, Krstic-Demonacos M, Cappello AR, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget 2018; 7:34084-99. [PMID: 27136895 PMCID: PMC5085139 DOI: 10.18632/oncotarget.9122] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Atovaquone is an FDA-approved anti-malarial drug, which first became clinically available in the year 2000. Currently, its main usage is for the treatment of pneumocystis pneumonia (PCP) and/or toxoplasmosis in immune-compromised patients. Atovaquone is a hydroxy-1,4-naphthoquinone analogue of ubiquinone, also known as Co-enzyme Q10 (CoQ10). It is a well-tolerated drug that does not cause myelo-suppression. Mechanistically, it is thought to act as a potent and selective OXPHOS inhibitor, by targeting the CoQ10-dependence of mitochondrial complex III. Here, we show for the first time that atovaquone also has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that atovaquone treatment of MCF7 breast cancer cells inhibits oxygen-consumption and metabolically induces aerobic glycolysis (the Warburg effect), as well as oxidative stress. Remarkably, atovaquone potently inhibits the propagation of MCF7-derived CSCs, with an IC-50 of 1 μM, as measured using the mammosphere assay. Atovaquone also maintains this selectivity and potency in mixed populations of CSCs and non-CSCs. Importantly, these results indicate that glycolysis itself is not sufficient to maintain the proliferation of CSCs, which is instead strictly dependent on mitochondrial function. In addition to targeting the proliferation of CSCs, atovaquone also induces apoptosis in both CD44+/CD24low/− CSC and ALDH+ CSC populations, during exposure to anchorage-independent conditions for 12 hours. However, it has no effect on oxygen consumption in normal human fibroblasts and, in this cellular context, behaves as an anti-inflammatory, consistent with the fact that it is well-tolerated in patients treated for infections. Future studies in xenograft models and human clinical trials may be warranted, as the IC-50 of atovaquone's action on CSCs (1 μM) is >50 times less than its average serum concentration in humans.
Collapse
Affiliation(s)
- Marco Fiorillo
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Rebecca Lamb
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Herbert B Tanowitz
- Department of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luciano Mutti
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | | | - Anna Rita Cappello
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | | | - Federica Sotgia
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Pellegrini P, Dyczynski M, Sbrana FV, Karlgren M, Buoncervello M, Hägg-Olofsson M, Ma R, Hartman J, Bajalica-Lagercrantz S, Grander D, Kharaziha P, De Milito A. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells. Oncotarget 2018; 7:35703-35723. [PMID: 27248168 PMCID: PMC5094956 DOI: 10.18632/oncotarget.9601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023] Open
Abstract
Sustained autophagy contributes to the metabolic adaptation of cancer cells to hypoxic and acidic microenvironments. Since cells in such environments are resistant to conventional cytotoxic drugs, inhibition of autophagy represents a promising therapeutic strategy in clinical oncology. We previously reported that the efficacy of hydroxychloroquine (HCQ), an autophagy inhibitor under clinical investigation is strongly impaired in acidic tumor environments, due to poor uptake of the drug, a phenomenon widely associated with drug resistance towards many weak bases. In this study we identified salinomycin (SAL) as a potent inhibitor of autophagy and cytotoxic agent effective on several cancer cell lines under conditions of transient and chronic acidosis. Since SAL has been reported to specifically target cancer-stem cells (CSC), we used an established model of breast CSC and CSC derived from breast cancer patients to examine whether this specificity may be associated with autophagy inhibition. We indeed found that CSC-like cells are more sensitive to autophagy inhibition compared to cells not expressing CSC markers. We also report that the ability of SAL to inhibit mammosphere formation from CSC-like cells was dramatically enhanced in acidic conditions. We propose that the development and use of clinically suitable SAL derivatives may result in improved autophagy inhibition in cancer cells and CSC in the acidic tumor microenvironment and lead to clinical benefits.
Collapse
Affiliation(s)
- Paola Pellegrini
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Matheus Dyczynski
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | | | - Maria Karlgren
- Department of Pharmacy and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP) - Science for Life Laboratory, Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, Sweden
| | | | - Maria Hägg-Olofsson
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Ran Ma
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | | | - Dan Grander
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Pedram Kharaziha
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
44
|
Klose J, Guerlevik E, Trostel T, Kühnel F, Schmidt T, Schneider M, Ulrich A. Salinomycin inhibits cholangiocarcinoma growth by inhibition of autophagic flux. Oncotarget 2017; 9:3619-3630. [PMID: 29423070 PMCID: PMC5790487 DOI: 10.18632/oncotarget.23339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction Cholangiocarcinoma is characterized by aggressive tumor growth, high recurrence rates, and resistance against common chemotherapeutical regimes. The polyether-antibiotic Salinomycin is a promising drug in cancer therapy because of its ability to overcome apoptosis resistance of cancer cells and its selectivity against cancer stem cells. Here, we investigated the effectiveness of Salinomycin against cholangiocarcinoma in vivo, and analyzed interference of Salinomycin with autophagic flux in human cholangiocarcinoma cells. Results Salinomycin reduces tumor cell viability, proliferation, migration, invasion, and induced apoptosis in vitro. Subcutaneous and intrahepatic cholangiocarcinoma growth in vivo was inhibited upon Salinomycin treatment. Analysis of autophagy reveals inhibition of autophagic activity. This was accompanied by accumulation of mitochondrial mass and increased generation of reactive oxygen species. Conclusions This study demonstrates the effectiveness of Salinomycin against cholangiocarcinoma in vivo. Inhibition of autophagic flux represents an underlying molecular mechanism of Salinomycin against cholangiocarcinoma. Methods The two murine cholangiocarcinoma cell lines p246 and p254 were used to analyze tumor cell proliferation, viability, migration, invasion, and apoptosis in vitro. For in vivo studies, murine cholangiocarcinoma cells were injected into syngeneic C57-BL/6-mice to initiate subcutaneous cholangiocarcinoma growth. Intrahepatic tumor growth was induced by electroporation of oncogenic transposon-plasmids into the left liver lobe. For mechanistic studies in human cells, TFK-1 and EGI-1 were used, and activation of autophagy was analyzed after exposure to Salinomycin.
Collapse
Affiliation(s)
- Johannes Klose
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Engin Guerlevik
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Tina Trostel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
45
|
Loureiro R, Mesquita KA, Magalhães-Novais S, Oliveira PJ, Vega-Naredo I. Mitochondrial biology in cancer stem cells. Semin Cancer Biol 2017; 47:18-28. [DOI: 10.1016/j.semcancer.2017.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
|
46
|
Fiorillo M, Lamb R, Tanowitz HB, Cappello AR, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging (Albany NY) 2017; 8:1593-607. [PMID: 27344270 PMCID: PMC5032685 DOI: 10.18632/aging.100983] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Abstract
Bedaquiline (a.k.a., Sirturo) is an anti-microbial agent, which is approved by the FDA for the treatment of multi-drug resistant pulmonary tuberculosis (TB). Bedaquiline is a first-in-class diaryl-quinoline compound, that mechanistically inhibits the bacterial ATP-synthase, and shows potent activity against both drug-sensitive and drug-resistant TB. Interestingly, eukaryotic mitochondria originally evolved from engulfed aerobic bacteria. Thus, we hypothesized that, in mammalian cells, bedaquiline might also target the mitochondrial ATP-synthase, leading to mitochondrial dysfunction and ATP depletion. Here, we show that bedaquiline has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that bedaquiline treatment of MCF7 breast cancer cells inhibits mitochondrial oxygen-consumption, as well as glycolysis, but induces oxidative stress. Importantly, bedaquiline significantly blocks the propagation and expansion of MCF7-derived CSCs, with an IC-50 of approx. 1-μM, as determined using the mammosphere assay. Similarly, bedaquiline also reduces both the CD44+/CD24low/− CSC and ALDH+ CSC populations, under anchorage-independent growth conditions. In striking contrast, bedaquiline significantly increases oxygen consumption in normal human fibroblasts, consistent with the fact that it is well-tolerated in patients treated for TB infections. As such, future pre-clinical studies and human clinical trials in cancer patients may be warranted. Interestingly, we also highlight that bedaquiline shares certain structural similarities with trans-piceatannol and trans-resveratrol, which are known natural flavonoid inhibitors of the mitochondrial ATP-synthase (complex V) and show anti-aging properties.
Collapse
Affiliation(s)
- Marco Fiorillo
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Rebecca Lamb
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Herbert B Tanowitz
- Departments of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anna Rita Cappello
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | | | - Federica Sotgia
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
47
|
Peruzzo R, Mattarei A, Romio M, Paradisi C, Zoratti M, Szabò I, Leanza L. Regulation of Proliferation by a Mitochondrial Potassium Channel in Pancreatic Ductal Adenocarcinoma Cells. Front Oncol 2017; 7:239. [PMID: 29034212 PMCID: PMC5626813 DOI: 10.3389/fonc.2017.00239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
Previous results link the mitochondrial potassium channel Kv1.3 (mitoKv1.3) to the regulation of apoptosis. By synthesizing new, mitochondria-targeted derivatives (PAPTP and PCARBTP) of PAP-1, a specific membrane-permeant Kv1.3 inhibitor, we have recently provided evidence that both drugs acting on mitoKv1.3 are able to induce apoptosis and reduce tumor growth in vivo without affecting healthy tissues and cells. In the present article, by exploiting these new drugs, we addressed the question whether mitoKv1.3 contributes to the regulation of cell proliferation as well. When used at low concentrations, which do not compromise cell survival, both drugs slightly increased the percentage of cells in S phase while decreased the population at G0/G1 stage of cells from two different pancreatic ductal adenocarcinoma lines. Our data suggest that the observed modulation is related to ROS levels within the cells, opening the way to link mitochondrial ion channel function to downstream, ROS-related signaling events that might be important for cell cycle progression.
Collapse
Affiliation(s)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Mario Zoratti
- Institute of Neuroscience, CNR, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy.,Institute of Neuroscience, CNR, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
48
|
Shikata Y, Kiga M, Futamura Y, Aono H, Inoue H, Kawada M, Osada H, Imoto M. Mitochondrial uncoupler exerts a synthetic lethal effect against β-catenin mutant tumor cells. Cancer Sci 2017; 108:772-784. [PMID: 28107588 PMCID: PMC5406605 DOI: 10.1111/cas.13172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 01/06/2023] Open
Abstract
The wingless/int‐1 (Wnt) signal transduction pathway plays a central role in cell proliferation, survival, differentiation and apoptosis. When β‐catenin: a component of the Wnt pathway, is mutated into an active form, cell growth signaling is hyperactive and drives oncogenesis. As β‐catenin is mutated in a wide variety of tumors, including up to 10% of all sporadic colon carcinomas and 20% of hepatocellular carcinomas, it has been considered a promising target for therapeutic interventions. Therefore, we screened an in‐house natural product library for compounds that exhibited synthetic lethality towards β‐catenin mutations and isolated nonactin, an antibiotic mitochondrial uncoupler, as a hit compound. Nonactin, as well as other mitochondrial uncouplers, induced apoptosis selectively in β‐catenin mutated tumor cells. Significant tumor regression was observed in the β‐catenin mutant HCT 116 xenograft model, but not in the β‐catenin wild type A375 xenograft model, in response to daily administration of nonactin in vivo. Furthermore, we found that expression of an active mutant form of β‐catenin induced a decrease in the glycolysis rate. Taken together, our results demonstrate that tumor cells with mutated β‐catenin depend on mitochondrial oxidative phosphorylation for survival. Therefore, they undergo apoptosis in response to mitochondrial dysfunction following the addition of mitochondrial uncouplers, such as nonactin. These results suggest that targeting mitochondria is a potential chemotherapeutic strategy for tumor cells that harbor β‐catenin mutations.
Collapse
Affiliation(s)
- Yuki Shikata
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Masaki Kiga
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Saitama, Japan
| | - Harumi Aono
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Saitama, Japan
| | - Hiroyuki Inoue
- Numazu Branch, Institute of Microbial Chemistry, Shizuoka, Japan
| | - Manabu Kawada
- Numazu Branch, Institute of Microbial Chemistry, Shizuoka, Japan.,Laboratory of Oncology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Saitama, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
49
|
Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 2017; 8:15996-16016. [PMID: 27911871 PMCID: PMC5362541 DOI: 10.18632/oncotarget.13723] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
All classic, non-surgical anticancer approaches like chemotherapy, radiotherapy or photodynamic therapy kill cancer cells by inducing severe oxidative stress. Even tough chemo- and radiotherapy are still a gold standard in cancer treatment, the identification of non-toxic compounds that enhance their selectivity, would allow for lowering their doses, reduce side effects and risk of second cancers. Many natural products have the ability to sensitize cancer cells to oxidative stress induced by chemo- and radiotherapy by limiting antioxidant capacity of cancer cells. Blocking antioxidant defense in tumors decreases their ability to balance oxidative insult and results in cell death. Though one should bear in mind that the same natural compound often exerts both anti-oxidant and pro-oxidant properties, depending on concentration used, cell type, exposure time and environmental conditions. Here we present a comprehensive overview of natural products that inhibit major antioxidant defense mechanisms in cancer cells and discuss their potential in clinical application.
Collapse
Affiliation(s)
- Alicja Sznarkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Anna Kostecka
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Meller
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Piotr Bielawski
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
50
|
Salinomycin Exerts Anticancer Effects on PC-3 Cells and PC-3-Derived Cancer Stem Cells In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4101653. [PMID: 28676857 PMCID: PMC5476894 DOI: 10.1155/2017/4101653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/27/2017] [Indexed: 12/27/2022]
Abstract
Salinomycin is an antibiotic isolated from Streptomyces albus that selectively kills cancer stem cells (CSCs). However, the antitumor mechanism of salinomycin is unclear. This study investigated the chemotherapeutic efficacy of salinomycin in human prostate cancer PC-3 cells. We found that cytotoxicity of salinomycin to PC-3 cells was stronger than to nonmalignant prostate cell RWPE-1, and exposure to salinomycin induced G2/M phage arrest and apoptosis of PC-3 cells. A mechanistic study found salinomycin suppressed Wnt/β-catenin pathway to induce apoptosis of PC-3 cells. An in vivo experiment confirmed that salinomycin suppressed tumorigenesis in a NOD/SCID mice xenograft model generated from implanted PC-3 cells by inhibiting the Wnt/β-catenin pathway, since the total β-catenin protein level was reduced and the downstream target c-Myc level was significantly downregulated. We also showed that salinomycin, but not paclitaxel, triggered more apoptosis in aldehyde dehydrogenase- (ALDH-) positive PC-3 cells, which were considered as the prostate cancer stem cells, suggesting that salinomycin may be a promising chemotherapeutic to target CSCs. In conclusion, this study suggests that salinomycin reduces resistance and relapse of prostate tumor by killing cancer cells as well as CSCs.
Collapse
|