1
|
Alghareeb SA, Alsughayyir J, Alfhili MA. Picolinic acid, a tryptophan metabolite, triggers cellular senescence by targeting NOS/p38 MAPK/CK1α/MLKL signaling and metabolic exhaustion in red blood cells. Toxicol Res 2025; 41:245-253. [PMID: 40291116 PMCID: PMC12021779 DOI: 10.1007/s43188-025-00280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/13/2024] [Accepted: 01/14/2025] [Indexed: 04/30/2025] Open
Abstract
Anemia is among the most commonly reported adverse events of anticancer therapy. Picolinic acid (PA), an endogenous metabolite of tryptophan degradation in the kynurenine pathway, is a metal chelator with an anticancer activity. The objective of the current study is to investigate the modulation of red blood cell (RBC) lifespan by PA. Hemolytic and eryptotic markers were evaluated in the presence and absence of PA by photometric and flow cytometric methods. PA demonstrated a dual effect on hemolysis in which it was pro-hemolytic in isotonic media but anti-hemolytic under hypotonic challenge. PA also induced RBC senescence with reduced AChE activity. In addition, treated cells tested positive for annexin-V and Fluo4 and had a significantly lower forward scatter signal. Notably, ATP-replenished cells showed significantly enhanced chemoresistance against PA toxicity, which was also alleviated by ascorbic acid, L-NAME, SB203580, D4476, and necrosulfonamide. Furthermore, an inhibitory effect on PA was observed in incubation media supplemented with isosmotic sucrose but not urea. These data suggest that PA accelerates RBC aging through anticholinesterase activity and exhibits hemolytic and eryptotic properties characterized by phosphatidylserine externalization, Ca2+ mobilization, cell shrinkage, metabolic shutdown, and stimulation of the NOS/p38 MAPK/CK1α/MLKL pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-025-00280-5.
Collapse
Affiliation(s)
- Sumiah A. Alghareeb
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, 12372 Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, 12372 Riyadh, Saudi Arabia
| | - Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, 12372 Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Shen YH, Peng S, Zhu T, Shen MJ. Mechanisms of Granulosa Cell Programmed Cell Death and Follicular Atresia in Polycystic Ovary Syndrome. Physiol Res 2025; 74:31-40. [PMID: 40116548 PMCID: PMC11995941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 03/23/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age, characterized by a spectrum of reproductive, endocrine, and metabolic disturbances. The etiology of PCOS encompasses a complex interplay of genetic, metabolic, inflammatory, and oxidative factors, though the precise pathological mechanisms remain inadequately understood. Despite considerable variability in the clinical characteristics and biochemical profiles among individuals with PCOS, abnormalities in follicular development are a hallmark of the condition. Granulosa cells, integral to follicular development, play a pivotal role in follicle maturation. Recent studies have established a strong correlation between granulosa cell programmed cell death and follicular atresia in PCOS. This review provides a comprehensive analysis of the current understanding of granulosa cell programmed cell death and its contribution to follicular atresia within the pathophysiology of PCOS, providing a foundation for future research endeavors. Key words Follicular atresia, Hyperandrogenism, Insulin resistance, Polycystic ovary syndrome, Programmed cell death of granulosa cells.
Collapse
Affiliation(s)
- Y-H Shen
- Department of Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China. and
| | | | | | | |
Collapse
|
3
|
Bikouli ED, Sokou R, Piras M, Pouliakis A, Karampela E, Paliatsiou S, Volaki P, Faa G, Xanthos T, Salakos C, Iacovidou NM. Study of Ovarian Damage in Piglets in an Experimental Model of Neonatal Asphyxia. CHILDREN (BASEL, SWITZERLAND) 2025; 12:371. [PMID: 40150653 PMCID: PMC11941492 DOI: 10.3390/children12030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Background/Objectives: Perinatal asphyxia constitutes a major complication of the perinatal period with well-described effects on multiple organs and systems of the neonate; its impact, though, on the ovaries is hardly known. The objective of the present study was to investigate potential histological alterations of the ovaries in an animal model of perinatal asphyxia with or without resuscitation. Methods: This was a prospective, randomized animal study; 26 female Large White/Landrace piglets, aged 1-4 days, were the study subjects and were randomly allocated in 3 groups. In Group A (control), the animals had their ovaries surgically removed without any manipulation other than the basic preparation and mechanical ventilation. The other 2 groups, B (asphyxia) and C (asphyxia/resuscitation), underwent asphyxia until bradycardia and/or severe hypotension occurred. At the hemodynamic compromise, animals in group B had their ovaries surgically removed, while animals in group C were resuscitated. Following return of spontaneous circulation (ROSC), the latter were left for 30 min to stabilize and subsequently had their ovaries surgically removed. The ovarian tissues were assessed by the pathologists for the presence of apoptosis, balloon cells, vacuolated oocytes, and hyperplasia of the stroma. The histological parameters were graded from 0 (absence) to 3 (abundant presence). Results: The presence of balloon cells and apoptosis was found to be more prominent in the ovaries of animals in groups B and C, compared to that of the control group at a statistically significant degree (p = 0.0487 and p = 0.036, respectively). A significant differentiation in balloon cell presence was observed in cases with higher grading (2-3) in the asphyxia group (with or without resuscitation) (p value: 0.0214, OR: 9, 95% CI: 1.39-58.4). Although no statistically significant difference was noted regarding the other 2 histological parameters that were studied, there was a marked negative correlation between the duration of asphyxia and grade of vacuoles in oocytes when the potential effect of the duration of asphyxia or resuscitation on the histological findings was investigated (r = -0.54, p = 0.039). Conclusions: We aimed at investigating the potential effect on the neonatal ovaries in our animal model of perinatal asphyxia. Given that the presence of apoptosis and balloon cells was more prominent in cases of asphyxia, it can be speculated that perinatal asphyxia might have an impact on the neonatal ovaries in addition to the other, better-studied systemic effects. More research is needed in order to clarify the potential effect of perinatal asphyxia on the ovaries.
Collapse
Affiliation(s)
- Efstathia-Danai Bikouli
- Department of Neonatology, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (R.S.); (S.P.); (P.V.)
- Neonatal Intensive Care Unit, General and Maternity Hospital “Helena Venizelou”, 11521 Athens, Greece
| | - Rozeta Sokou
- Department of Neonatology, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (R.S.); (S.P.); (P.V.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (M.P.); (G.F.)
| | - Abraham Pouliakis
- Second Department of Pathology, “ATTIKON” University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eleftheria Karampela
- Experimental, Educational and Research Center, ELPEN Pharmaceutical, 19009 Pikermi, Greece;
| | - Styliani Paliatsiou
- Department of Neonatology, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (R.S.); (S.P.); (P.V.)
| | - Paraskevi Volaki
- Department of Neonatology, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (R.S.); (S.P.); (P.V.)
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (M.P.); (G.F.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Theodoros Xanthos
- School of Health Sciences, University of West Attica, 12243 Athens, Greece;
| | - Christos Salakos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nicoletta M. Iacovidou
- Department of Neonatology, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (R.S.); (S.P.); (P.V.)
| |
Collapse
|
4
|
Yang X, Chen Y, Wang X, Xu G, Wang H, Shu X, Ding H, Ma X, Guo J, Wang J, Zhao J, Fang Y, Liu H, Lu W. Ameliorative Effect of Itaconic Acid/IRG1 Against Endoplasmic Reticulum Stress-Induced Necroptosis in Granulosa Cells via PERK-ATF4-AChE Pathway in Bovine. Cells 2025; 14:419. [PMID: 40136668 PMCID: PMC11940906 DOI: 10.3390/cells14060419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The necroptosis of granulosa cells has been proven to be one of the important triggers of follicular atresia, which is an important cause of reduced reproductive capacity in cows. The rapid growth of granulosa cells is accompanied by endoplasmic reticulum stress (ERS), leading to granulosa cell death. However, the link between ERS and necroptosis, as well as its mechanism in bovine granulosa cells is still unclear. Itaconic acid is an endogenous anti-inflammatory and antioxidant small-molecule compound that can alleviate ERS. Therefore, the aim of the current study is to evaluate the effect of ERS on necroptosis and investigate the ameliorative effect of itaconic acid against ERS-induced necroptosis in granulosa cells. Bovine granulosa cells were treated with tunicamycin (Tm) to induce ERS. After the addition of the necroptosis inhibitor Nec-1 and the detection of the necroptosis inducer acetylcholinesterase (AChE), flow cytometry, transmission electron microscopy, and mass spectrometry were used to analyze the expression of itaconic acid and IRG1 in the granulosa cells. In addition, the role of the PERK pathway downstream of ERS in ERS-induced necroptosis was also investigated. We report here that ERS can induce necroptosis in granulosa cells. Itaconic acid supplementation significantly attenuates the effect of ERS-induced damage. In summary, this research provides a scientific basis and a drug reference for treating follicular atresia and improving bovine reproductive capacity.
Collapse
Affiliation(s)
- Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yue Chen
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinzi Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Gaoqing Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongjie Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinqi Shu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Ma
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Guo
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Wu H, Han Y, Liu J, Zhao R, Dai S, Guo Y, Li N, Yang F, Zeng S. The assembly and activation of the PANoptosome promote porcine granulosa cell programmed cell death during follicular atresia. J Anim Sci Biotechnol 2024; 15:147. [PMID: 39497227 PMCID: PMC11536665 DOI: 10.1186/s40104-024-01107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Follicular atresia significantly impairs female fertility and hastens reproductive senescence. Apoptosis of granulosa cells is the primary cause of follicular atresia. Pyroptosis and necroptosis, as additional forms of programmed cell death, have been reported in mammalian cells. However, the understanding of pyroptosis and necroptosis pathways in granulosa cells during follicular atresia remains unclear. This study explored the effects of programmed cell death in granulosa cells on follicular atresia and the underlying mechanisms. RESULTS The results revealed that granulosa cells undergo programmed cell death including apoptosis, pyroptosis, and necroptosis during follicular atresia. For the first time, we identified the formation of a PANoptosome complex in porcine granulosa cells. This complex was initially identified as being composed of ZBP1, RIPK3, and RIPK1, and is recruited through the RHIM domain. Additionally, we demonstrated that caspase-6 is activated and cleaved, interacting with RIPK3 as a component of the PANoptosome. Heat stress may exacerbate the activation of the PANoptosome, leading to programmed cell death in granulosa cells. CONCLUSIONS Our data identified the formation of a PANoptosome complex that promoted programmed cell death in granulosa cells during the process of follicular atresia. These findings provide new insights into the molecular mechanisms underlying follicular atresia.
Collapse
Affiliation(s)
- Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yingxue Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jikang Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rong Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shizhen Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajun Guo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Nan Li
- Department of Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Huang J, Fang Z, Wu X, Xia L, Liu Y, Wang J, Su Y, Xu D, Zhang K, Xie Q, Chen J, Liu P, Wu Q, Tan J, Kuang H, Tian L. Transcriptomic responses of cumulus granulosa cells to SARS-CoV-2 infection during controlled ovarian stimulation. Apoptosis 2024; 29:649-662. [PMID: 38409352 DOI: 10.1007/s10495-024-01942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/28/2024]
Abstract
Cumulus granulosa cells (CGCs) play a crucial role in follicular development, but so far, no research has explored the impact of SARS-CoV-2 infection on ovarian function from the perspective of CGCs. In the present study, we compared the cycle outcomes between infected and uninfected female patients undergoing controlled ovarian stimulation, performed bulk RNA-sequencing of collected CGCs, and used bioinformatic methods to explore transcriptomic changes. The results showed that women with SARS-CoV-2 infection during stimulation had significantly lower number of oocytes retrieved and follicle-oocyte index, while subsequent fertilization and embryo development were similar. CGCs were not directly infected by SARS-CoV-2, but exhibited dramatic differences in gene expression (156 up-regulated and 65 down-regulated). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses demonstrated a high enrichment in antiviral, immune and inflammatory responses with necroptosis. In addition, the pathways related to telomere organization and double strand break repair were significantly affected by infection in gene set enrichment analysis. Further weighted gene co-expression network analysis identified a key module associated with ovarian response traits, which was mainly enriched as a decrease of leukocyte chemotaxis and migration in CGCs. For the first time, our study describes how SARS-CoV-2 infection indirectly affects CGCs at the transcriptional level, which may impair oocyte-CGC crosstalk and consequently lead to poor ovarian response during fertility treatment.
Collapse
Affiliation(s)
- Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Leizhen Xia
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Yuxin Liu
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Jiawei Wang
- Reproductive and Genetic Hospital, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yufang Su
- Department of Oncology, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Dingfei Xu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Ke Zhang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Qiqi Xie
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Jia Chen
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Peipei Liu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Qiongfang Wu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Jun Tan
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China.
| | - Haibin Kuang
- Department of Physiology, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, China.
| | - Lifeng Tian
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China.
| |
Collapse
|
7
|
Chen H, Nie P, Li J, Wu Y, Yao B, Yang Y, Lash GE, Li P. Cyclophosphamide induces ovarian granulosa cell ferroptosis via a mechanism associated with HO-1 and ROS-mediated mitochondrial dysfunction. J Ovarian Res 2024; 17:107. [PMID: 38762721 PMCID: PMC11102268 DOI: 10.1186/s13048-024-01434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Abnormal granulosa cell (GC) death contributes to cyclophosphamide (CTX) induced primary ovarian insufficiency (POI). To investigate the contribution of GCs to POI, gene profiles of GCs exposed to CTX were assessed using RNA-Seq and bioinformatics analysis. The results showed the differentially expressed genes (DEGs) were enriched in the ferroptosis-related pathway, which is correlated with upregulated heme oxygenase 1 (HO-1) and downregulated glutathione peroxidase-4 (GPX4). Using CTX-induced cell culture (COV434 and KGN cells), the levels of iron, reactive oxygen species (ROS), lipid peroxide, mitochondrial superoxide, mitochondrial morphology and mitochondrial membrane potential (MMP) were detected by DCFDA, MitoSOX, C11-BODIPY, MitoTracker, Nonylacridine Orange (NAO), JC-1 and transmission electron microscopy respectively. The results showed iron overload and disrupted ROS, including cytoROS, mtROS and lipROS homeostasis, were associated with upregulation of HO-1 and could induce ferroptosis via mitochondrial dysfunction in CTX-induced GCs. Moreover, HO-1 inhibition could suppress ferroptosis induced GPX4 depletion. This implies a role for ROS in CTX-induced ferroptosis and highlights the effect of HO-1 modulators in improving CTX-induced ovarian damage, which may provide a theoretical basis for preventing or restoring GC and ovarian function in patients with POI.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Ping Nie
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Jingling Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yongqi Wu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Bo Yao
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yabing Yang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, Jinan University School of Medicine, Guangzhou, 510317, China
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Pandey AN, Yadav PK, Premkumar KV, Tiwari M, Pandey AK, Chaube SK. Reactive oxygen species signalling in the deterioration of quality of mammalian oocytes cultured in vitro: Protective effect of antioxidants. Cell Signal 2024; 117:111103. [PMID: 38367792 DOI: 10.1016/j.cellsig.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The in vitro fertilization (IVF) is the first choice of infertile couples worldwide to plan for conception. Besides having a significant advancement in IVF procedure, the success rate is still poor. Although several approaches have been tested to improve IVF protocol, minor changes in culture conditions, physical factors and/or drug treatment generate reactive oxygen species (ROS) in oocytes. Due to large size and huge number of mitochondria, oocyte is more susceptible towards ROS-mediated signalling under in vitro culture conditions. Elevation of ROS levels destabilize maturation promoting factor (MPF) that results in meiotic exit from diplotene as well as metaphase-II (M-II) arrest in vitro. Once meiotic exit occurs, these oocytes get further arrested at metaphase-I (M-I) stage or metaphase-III (M-III)-like stage under in vitro culture conditions. The M-I as well as M-III arrested oocytes are not fit for fertilization and limits IVF outcome. Further, the generation of excess levels of ROS cause oxidative stress (OS) that initiate downstream signalling to initiate various death pathways such as apoptosis, autophagy, necroptosis and deteriorates oocyte quality under in vitro culture conditions. The increase of cellular enzymatic antioxidants and/or supplementation of exogenous antioxidants in culture medium protect ROS-induced deterioration of oocyte quality in vitro. Although a growing body of evidence suggests the ROS and OS-mediated deterioration of oocyte quality in vitro, their downstream signalling and related mechanisms remain poorly understood. Hence, this review article summarizes the existing evidences concerning ROS and OS-mediated downstream signalling during deterioration of oocyte quality in vitro. The use of various antioxidants against ROS and OS-mediated impairment of oocyte quality in vitro has also been explored in order to increase the success rate of IVF during assisted reproductive health management.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Yu Y, Chen T, Zheng Z, Jia F, Liao Y, Ren Y, Liu X, Liu Y. The role of the autonomic nervous system in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 14:1295061. [PMID: 38313837 PMCID: PMC10834786 DOI: 10.3389/fendo.2023.1295061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
This article reviewed the relationship between the autonomic nervous system and the development of polycystic ovary syndrome (PCOS). PCOS is the most common reproductive endocrine disorder among women of reproductive age. Its primary characteristics include persistent anovulation, hyperandrogenism, and polycystic ovarian morphology, often accompanied by disturbances in glucose and lipid metabolism. The body's functions are regulated by the autonomic nervous system, which consists mainly of the sympathetic and parasympathetic nervous systems. The autonomic nervous system helps maintain homeostasis in the body. Research indicates that ovarian function in mammals is under autonomic neural control. The ovaries receive central nervous system information through the ovarian plexus nerves and the superior ovarian nerves. Neurotransmitters mediate neural function, with acetylcholine and norepinephrine being the predominant autonomic neurotransmitters. They influence the secretion of ovarian steroids and follicular development. In animal experiments, estrogen, androgens, and stress-induced rat models have been used to explore the relationship between PCOS and the autonomic nervous system. Results have shown that the activation of the autonomic nervous system contributes to the development of PCOS in rat. In clinical practice, assessments of autonomic nervous system function in PCOS patients have been gradually employed. These assessments include heart rate variability testing, measurement of muscle sympathetic nerve activity, skin sympathetic response testing, and post-exercise heart rate recovery evaluation. PCOS patients exhibit autonomic nervous system dysfunction, characterized by increased sympathetic nervous system activity and decreased vagal nerve activity. Abnormal metabolic indicators in PCOS women can also impact autonomic nervous system activity. Clinical studies have shown that various effective methods for managing PCOS regulate patients' autonomic nervous system activity during the treatment process. This suggests that improving autonomic nervous system activity may be an effective approach in treating PCOS.
Collapse
Affiliation(s)
- Yue Yu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng Zheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Jia
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yan Liao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehan Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmin Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Höfner M, Eubler K, Herrmann C, Berg U, Berg D, Welter H, Imhof A, Forné I, Mayerhofer A. Reduced oxygen concentrations regulate the phenotype and function of human granulosa cells in vitro and cause a diminished steroidogenic but increased inflammatory cellular reaction. Mol Hum Reprod 2023; 30:gaad049. [PMID: 38128016 DOI: 10.1093/molehr/gaad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Oxygen (O2) concentrations have recently been discussed as important regulators of ovarian cells. Human IVF-derived granulosa cells (human GCs) can be maintained in vitro and are a widely used cellular model for the human ovary. Typically, GCs are cultured at atmospheric O2 levels (approximately around 20%), yet the O2 conditions in vivo, especially in the preovulatory follicle, are estimated to be much lower. Therefore, we comprehensively evaluated the consequences of atmospheric versus hypoxic (1% O2) conditions for 4 days on human GCs. We found lower cellular RNA and protein levels but unchanged cell numbers at 1% O2, indicating reduced transcriptional and/or translational activity. A proteomic analysis showed that 391 proteins were indeed decreased, yet 133 proteins were increased under hypoxic conditions. According to gene ontology (GO) enrichment analysis, pathways associated with metabolic processes, for example amino acid-catabolic-processes, mitochondrial protein biosynthesis, and steroid biosynthesis, were downregulated. Pathways associated with glycolysis, chemical homeostasis, cellular response to hypoxia, and actin filament bundle assembly were upregulated. In accordance with lower CYP11A1 (a cholesterol side-chain cleavage enzyme) levels, progesterone release was decreased. A proteome profiler, as well as IL-6 and IL-8 ELISA assays, revealed that hypoxia led to increased secretion of pro-inflammatory and angiogenic factors. Immunofluorescence studies showed nuclear localization of hypoxia-inducible factor 1α (HIF1α) in human GCs upon acute (2 h) exposure to 1% O2 but not in cells exposed to 1% O2 for 4 days. Hence, the role of HIF1α may be restricted to initiation of the hypoxic response in human GCs. The results provide a detailed picture of hypoxia-induced phenotypic changes in human GCs and reveal that chronically low O2 conditions inhibit the steroidogenic but promote the inflammatory phenotype of these cells.
Collapse
Affiliation(s)
- Maria Höfner
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Katja Eubler
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Carola Herrmann
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Ulrike Berg
- Fertility Centre A.R.T., Bogenhausen, Munich, Germany
| | - Dieter Berg
- Fertility Centre A.R.T., Bogenhausen, Munich, Germany
| | - Harald Welter
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, BMC, Faculty of Medicine, LMU, Planegg-Martinsried, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BMC, Faculty of Medicine, LMU, Planegg-Martinsried, Germany
| | - Artur Mayerhofer
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Eubler K, Caban KM, Dissen GA, Berg U, Berg D, Herrmann C, Kreitmair N, Tiefenbacher A, Fröhlich T, Mayerhofer A. TRPV2, a novel player in the human ovary and human granulosa cells. Mol Hum Reprod 2023; 29:gaad029. [PMID: 37610352 PMCID: PMC10493183 DOI: 10.1093/molehr/gaad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The cation channel 'transient receptor potential vanilloid 2' (TRPV2) is activated by a broad spectrum of stimuli, including mechanical stretch, endogenous and exogenous chemical compounds, hormones, growth factors, reactive oxygen species, and cannabinoids. TRPV2 is known to be involved in inflammatory and immunological processes, which are also of relevance in the ovary. Yet, neither the presence nor possible roles of TRPV2 in the ovary have been investigated. Data mining indicated expression, for example, in granulosa cells (GCs) of the human ovary in situ, which was retained in cultured GCs derived from patients undergoing medical reproductive procedures. We performed immunohistochemistry of human and rhesus monkey ovarian sections and then cellular studies in cultured GCs, employing the preferential TRPV2 agonist cannabidiol (CBD). Immunohistochemistry showed TRPV2 staining in GCs of large antral follicles and corpus luteum but also in theca, endothelial, and stromal cells. TRPV2 transcript and protein levels increased upon administration of hCG or forskolin. Acutely, application of the agonist CBD elicited transient Ca2+ fluxes, which was followed by the production and secretion of several inflammatory factors, especially COX2, IL6, IL8, and PTX3, in a time- and dose-dependent manner. CBD interfered with progesterone synthesis and altered both the proteome and secretome, as revealed by a proteomic study. While studies are somewhat hampered by the lack of highly specific TRPV2 agonist or antagonists, the results pinpoint TRPV2 as a modulator of inflammation with possible roles in human ovarian (patho-)physiology. Finally, as TRPV2 is activated by cannabinoids, their possible ovarian actions should be further evaluated.
Collapse
Affiliation(s)
- Katja Eubler
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Karolina M Caban
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU Munich, Munich, Germany
| | - Gregory A Dissen
- Molecular Virology Core, Oregon Health & Science University (OHSU), Oregon National Primate Research Center, Beaverton, OR, USA
| | | | | | - Carola Herrmann
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Nicole Kreitmair
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Astrid Tiefenbacher
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU Munich, Munich, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| |
Collapse
|
13
|
Stringer JM, Alesi LR, Winship AL, Hutt KJ. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life. Hum Reprod Update 2023; 29:434-456. [PMID: 36857094 PMCID: PMC10320496 DOI: 10.1093/humupd/dmad005] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Regulated cell death is a fundamental component of numerous physiological processes; spanning from organogenesis in utero, to normal cell turnover during adulthood, as well as the elimination of infected or damaged cells throughout life. Quality control through regulation of cell death pathways is particularly important in the germline, which is responsible for the generation of offspring. Women are born with their entire supply of germ cells, housed in functional units known as follicles. Follicles contain an oocyte, as well as specialized somatic granulosa cells essential for oocyte survival. Follicle loss-via regulated cell death-occurs throughout follicle development and life, and can be accelerated following exposure to various environmental and lifestyle factors. It is thought that the elimination of damaged follicles is necessary to ensure that only the best quality oocytes are available for reproduction. OBJECTIVE AND RATIONALE Understanding the precise factors involved in triggering and executing follicle death is crucial to uncovering how follicle endowment is initially determined, as well as how follicle number is maintained throughout puberty, reproductive life, and ovarian ageing in women. Apoptosis is established as essential for ovarian homeostasis at all stages of development and life. However, involvement of other cell death pathways in the ovary is less established. This review aims to summarize the most recent literature on cell death regulators in the ovary, with a particular focus on non-apoptotic pathways and their functions throughout the discrete stages of ovarian development and reproductive life. SEARCH METHODS Comprehensive literature searches were carried out using PubMed and Google Scholar for human, animal, and cellular studies published until August 2022 using the following search terms: oogenesis, follicle formation, follicle atresia, oocyte loss, oocyte apoptosis, regulated cell death in the ovary, non-apoptotic cell death in the ovary, premature ovarian insufficiency, primordial follicles, oocyte quality control, granulosa cell death, autophagy in the ovary, autophagy in oocytes, necroptosis in the ovary, necroptosis in oocytes, pyroptosis in the ovary, pyroptosis in oocytes, parthanatos in the ovary, and parthanatos in oocytes. OUTCOMES Numerous regulated cell death pathways operate in mammalian cells, including apoptosis, autophagic cell death, necroptosis, and pyroptosis. However, our understanding of the distinct cell death mediators in each ovarian cell type and follicle class across the different stages of life remains the source of ongoing investigation. Here, we highlight recent evidence for the contribution of non-apoptotic pathways to ovarian development and function. In particular, we discuss the involvement of autophagy during follicle formation and the role of autophagic cell death, necroptosis, pyroptosis, and parthanatos during follicle atresia, particularly in response to physiological stressors (e.g. oxidative stress). WIDER IMPLICATIONS Improved knowledge of the roles of each regulated cell death pathway in the ovary is vital for understanding ovarian development, as well as maintenance of ovarian function throughout the lifespan. This information is pertinent not only to our understanding of endocrine health, reproductive health, and fertility in women but also to enable identification of novel fertility preservation targets.
Collapse
Affiliation(s)
- Jessica M Stringer
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lauren R Alesi
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Şanlı C, Atılgan R, Kuloğlu T, Pala Ş, İlhan N. The investigation of cholinergic receptor muscarinic 1 activity in the rat ovary with induced ovarian hyperstimulation. Turk J Obstet Gynecol 2023; 20:53-58. [PMID: 36908094 PMCID: PMC10013087 DOI: 10.4274/tjod.galenos.2023.75336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Objective We look at the immunoreactivity of cholinergic receptor muscarinic 1 (CHRM1) in the ovarian tissues of rats with ovarian hyperstimulation syndrome (OHSS) considering the possibility that the muscarinic activity may contribute to the pathophysiology of OHSS. Materials and Methods In this study, 14 immature female Wistar Albino rats were divided into two groups at random. The rats were 22 days old. Rats in the control group (n=7) were 22 days old, while those in the OHSS group (n=7) received 10 IU follicle-stimulating hormone subcutaneously over the course of four days and 30 IU human chorionic gonadotropin (hCG) on the fifth day to induce ovarian hyperstimulation. All the rats were sacrificed after all the groups' ovaries and blood samples were collected at the conclusion of the experiment. The left ovarian tissues were kept in aluminum foil at -80 °C, while the right ovarian tissues were kept in 10% formalin. Tissue vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α and malondialdehyde (MDA) levels were measured by The Enzyme Linked Immunosorbent Assay technique in the ovarian tissues. CHRM1 immunoreactivity was scored immunohistochemically. Results Ovarian weight, tissue IL-10, TNF-α, VEGF and MDA levels, and CHRM1 immunoreactivity were significantly increased in the OHSS group. Conclusion Increased levels of CHRM1 activity may play a role in the pathophysiology of OHSS. With further studies, the effect of luteinizing hormone and hCG on the ovarian and hypothalamic cholinergic system can be further investigated, and useful information can be obtained in determining OHSS prevention strategies.
Collapse
Affiliation(s)
- Cengiz Şanlı
- Fırat University Faculty of Medicine, Department of Obstetrics and Gynecology, Elazığ, Turkey
| | - Remzi Atılgan
- Fırat University Faculty of Medicine, Department of Obstetrics and Gynecology, Elazığ, Turkey
| | - Tuncay Kuloğlu
- Fırat University Faculty of Medicine, Department of Histology, Elazığ, Turkey
| | - Şehmus Pala
- Fırat University Faculty of Medicine, Department of Obstetrics and Gynecology, Elazığ, Turkey
| | - Nevin İlhan
- Fırat University Faculty of Medicine, Department of Biochemistry, Elazığ, Turkey
| |
Collapse
|
15
|
Neurotoxicity evoked by organophosphates and available countermeasures. Arch Toxicol 2023; 97:39-72. [PMID: 36335468 DOI: 10.1007/s00204-022-03397-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.
Collapse
|
16
|
Vogelsang TLR, Kast V, Bagnjuk K, Eubler K, Jeevanandan SP, Schmoeckel E, Trebo A, Topalov NE, Mahner S, Mayr D, Mayerhofer A, Jeschke U, Vattai A. RIPK1 and RIPK3 are positive prognosticators for cervical cancer patients and C2 ceramide can inhibit tumor cell proliferation in vitro. Front Oncol 2023; 13:1110939. [PMID: 37197430 PMCID: PMC10183606 DOI: 10.3389/fonc.2023.1110939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction The enzymes Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) und 3 (RIPK3) as well as the protein Mixed lineage kinase domain like pseudokinase (pMLKL) play a role in the signaling cascade of necroptosis. This is a form of programmed cell death which is caspase-independent. High-risk human papilloma virus infection can inhibit necroptosis. Thereby, a persistent infection and consequently the development of cervical cancer can be triggered. Aim of this study was the analysis of the expression of RIPK1, RIPK3 and pMLKL in cervical cancer tissue and the evaluation of its prognostic value on overall survival, progression-free survival and additional clinical parameters. Methods The expression of RIPK1, RIPK3, and pMLKL in cervical cancer tissue microarrays of n = 250 patients was analyzed immunohistochemically. Further, the effect of C2 ceramide on several cervical cancer cell lines (CaSki, HeLa, SiHa) was examined. C2 ceramide is a biologically active short-chain ceramide that induces necroptosis in human luteal granulosa cells. Results Significantly longer overall survival and progression-free survival rates could be detected in cervical cancer patients expressing nuclear RIPK1 or RIPK3 alone or simultaneously (RIPK1 and RIPK3). Cell viability and proliferation was reduced through C2 ceramide stimulation of cervical cancer cells. Simultaneous stimulation of C2 ceramide and the pan-caspase inhibitor Z-VAD-fmk, or the RIPK1-inhibitor necrostatin-1, partly reversed the negative effect of C2 ceramide on cell viability. This observation could imply that caspase-dependent and -independent forms of cell death, including necroptosis, can occur. AnnexinV-FITC apoptosis staining induced a significant increase in apoptotic cells in CaSki and SiHa cells. The stimulation of CaSki cells with C2 ceramide led to a significant percentual increase in necrotic/intermediate (dying) cells after stimulation with C2 ceramide. In addition, after stimulation with C2 ceramide, CaSki and HeLa cells live cell imaging showed morphological changes which are common for necroptosis. Discussion In conclusion, RIPK1 and RIPK3 are independent positive predictors for overall survival and progression-free survival in cervical cancer patients. C2 ceramide can reduce cell viability and proliferation in cervical cancer cells by inducing most likely both apoptosis and necroptosis.
Collapse
Affiliation(s)
- Tilman L. R. Vogelsang
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Verena Kast
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Konstantin Bagnjuk
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Katja Eubler
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Sree Priyanka Jeevanandan
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Elisa Schmoeckel
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Anna Trebo
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nicole Elisabeth Topalov
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Doris Mayr
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU) Munich, Planegg, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
- *Correspondence: Udo Jeschke,
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| |
Collapse
|
17
|
HOJO T, SKARZYNSKI DJ, OKUDA K. Apoptosis, autophagic cell death, and necroptosis: different types of programmed cell death in bovine corpus luteum regression. J Reprod Dev 2022; 68:355-360. [PMID: 36384912 PMCID: PMC9792655 DOI: 10.1262/jrd.2022-097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In mammals, the corpus luteum (CL) is a transient organ that secretes progesterone (P4). In the absence of pregnancy, the CL undergoes regression (luteolysis), which is a crucial preparation step for the next estrous cycle. Luteolysis, initiated by uterine prostaglandin F2α (PGF) in cattle, is usually divided into two phases, namely functional luteolysis characterized by a decline in P4 concentration and structural luteolysis characterized by the elimination of luteal tissues from the ovary. Programmed cell death (PCD) of luteal cells, including luteal steroidogenic cells (LSCs) and luteal endothelial cells (LECs), plays a crucial role in structural luteolysis. The main types of PCD are caspase-dependent apoptosis (type 1), autophagic cell death (ACD) via the autophagy-related gene (ATG) family (type 2), and receptor-interacting protein kinase (RIPK)-dependent programmed necrosis (necroptosis, type 3). However, these PCD signaling pathways are not completely independent and interact with each other. Over the past several decades, most studies on luteolysis have focused on apoptosis as the principal mode of bovine luteal cell death. Recently, ATG family members were reported to be expressed in bovine CL, and their levels increased during luteolysis. Furthermore, the expression of RIPKs, which are crucial mediators of necroptosis, is reported to increase in bovine CL during luteolysis and is upregulated by pro-inflammatory cytokines in bovine LSCs and LECs. Therefore, apoptosis, ACD, and necroptosis may contribute to bovine CL regression. In this article, we present the recent findings regarding the mechanisms of the three main types of PCD and the contribution of these mechanisms to luteolysis.
Collapse
Affiliation(s)
- Takuo HOJO
- Division of Livestock and Grassland Research, Kyushu Okinawa Agricultural Research Center, NARO, Kumamoto 861-1192, Japan
| | - Dariusz J. SKARZYNSKI
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Kiyoshi OKUDA
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| |
Collapse
|
18
|
Cuevas FC, Bastias D, Alanis C, Benitez A, Squicciarini V, Riquelme R, Sessenhausen P, Mayerhofer A, Lara HE. Muscarinic receptors in the rat ovary are involved in follicular development but not in steroid secretion. Physiol Rep 2022; 10:e15474. [PMID: 36325585 PMCID: PMC9630765 DOI: 10.14814/phy2.15474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023] Open
Abstract
Acetylcholine (ACh) may be involved in the regulation of ovarian functions. A previous systemic study in rats showed that a 4-week, intrabursal local delivery of the ACh-esterase blocker Huperzine-A increased intraovarian ACh levels and changed ovarian follicular development, as evidenced by increased healthy antral follicle numbers and corpora lutea, as well as enhanced fertility. To further characterize the ovarian cholinergic system in the rat, we studied whether innervation may contribute to intraovarian ACh. We explored the cellular distribution of three muscarinic receptors (MRs; M1, M3, and M5), analyzed the involvement of MRs in ovarian steroidogenesis, and examined their roles in ovarian follicular development in normal conditions and in animals exposed to stressful conditions by employing the muscarinic antagonist, atropine. Denervation studies decreased ovarian norepinephrine, but ovarian ACh was not affected, evidencing a local, nonneuronal source of ACh. M1 was located on granulosa cells (GCs), especially in large antral follicles. M5 was associated with the ovarian vascular system and only traces of M3 were found. Ex vivo ovary organo-typic incubations showed that the MR agonist Carbachol did not modify steroid production or expression of steroid biosynthetic enzymes. Intrabursal, in vivo application of atropine (an MR antagonist) for 4 weeks, however, increased atresia of the secondary follicles. The results support the existence of an intraovarian cholinergic system in the rat ovary, located mainly in follicular GCs, which is not involved in steroid production but rather via MRs exerts trophic functions and regulates follicular atresia.
Collapse
Affiliation(s)
- Fernanda C Cuevas
- Centre for Neurobiochemical Studies in Neuroendocrine Diseases, Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Daniela Bastias
- Centre for Neurobiochemical Studies in Neuroendocrine Diseases, Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Constanza Alanis
- Centre for Neurobiochemical Studies in Neuroendocrine Diseases, Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Agustin Benitez
- Centre for Neurobiochemical Studies in Neuroendocrine Diseases, Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Valentina Squicciarini
- Centre for Neurobiochemical Studies in Neuroendocrine Diseases, Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Raul Riquelme
- Centre for Neurobiochemical Studies in Neuroendocrine Diseases, Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Pia Sessenhausen
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Artur Mayerhofer
- Biomedical Center, Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Hernan E Lara
- Centre for Neurobiochemical Studies in Neuroendocrine Diseases, Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Wang F, Liu Y, Ni F, Jin J, Wu Y, Huang Y, Ye X, Shen X, Ying Y, Chen J, Chen R, Zhang Y, Sun X, Wang S, Xu X, Chen C, Guo J, Zhang D. BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency. Nat Commun 2022; 13:5871. [PMID: 36198708 PMCID: PMC9534854 DOI: 10.1038/s41467-022-33323-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by premature exhaustion of primordial follicles. POI causes infertility, severe daily life disturbances and long-term health risks. However, the underlying mechanism remains largely unknown. We previously identified a Basonuclin 1 (BNC1) mutation from a large Chinese POI pedigree and found that mice with targeted Bnc1 mutation exhibit symptoms of POI. In this study, we found that BNC1 plays key roles in ovarian reserve and maintaining lipid metabolism and redox homeostasis in oocytes during follicle development. Deficiency of BNC1 results in premature follicular activation and excessive follicular atresia. Mechanistically, BNC1 deficiency triggers oocyte ferroptosis via the NF2-YAP pathway. We demonstrated that pharmacologic inhibition of YAP signaling or ferroptosis significantly rescues Bnc1 mutation-induced POI. These findings uncover a pathologic mechanism of POI based on BNC1 deficiency and suggest YAP and ferroptosis inhibitors as potential therapeutic targets for POI. Primary ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction that results in infertility. Here they show that BCN1 mutation results in premature ovarian follicle activation and atresia through dysregulation of ferroptosis.
Collapse
Affiliation(s)
- Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jiani Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xilin Shen
- College of Computer Science and Technology, Zhejiang University, Zhejiang, 310027, PR China
| | - Yue Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jianhua Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, People's Republic of China
| | - Ruixue Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Xiao Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Chuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China. .,Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
20
|
Kaseder M, Schmid N, Eubler K, Goetz K, Müller-Taubenberger A, Dissen GA, Harner M, Wanner G, Imhof A, Forne I, Mayerhofer A. Evidence of a role for cAMP in mitochondrial regulation in ovarian granulosa cells. Mol Hum Reprod 2022; 28:6659106. [PMID: 35944223 PMCID: PMC9802053 DOI: 10.1093/molehr/gaac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/11/2022] [Indexed: 01/05/2023] Open
Abstract
In the ovary, proliferation and differentiation of granulosa cells (GCs) drive follicular growth. Our immunohistochemical study in a non-human primate, the Rhesus monkey, showed that the mitochondrial activity marker protein cytochrome c oxidase subunit 4 (COX4) increases in GCs in parallel to follicle size, and furthermore, its intracellular localization changes. This suggested that there is mitochondrial biogenesis and trafficking, and implicates the actions of gonadotropins, which regulate follicular growth and ovulation. Human KGN cells, i.e. granulosa tumour cells, were therefore used to study these possibilities. To robustly elevate cAMP, and thereby mimic the actions of gonadotropins, we used forskolin (FSK). FSK increased the cell size and the amount of mitochondrial DNA of KGN cells within 24 h. As revealed by MitoTracker™ experiments and ultrastructural 3D reconstruction, FSK treatment induced the formation of elaborate mitochondrial networks. H89, a protein kinase A (PKA) inhibitor, reduced the network formation. A proteomic analysis indicated that FSK elevated the levels of regulators of the cytoskeleton, among others (data available via ProteomeXchange with identifier PXD032160). The steroidogenic enzyme CYP11A1 (Cytochrome P450 Family 11 Subfamily A Member 1), located in mitochondria, was more than 3-fold increased by FSK, implying that the cAMP/PKA-associated structural changes occur in parallel with the acquisition of steroidogenic competence of mitochondria in KGN cells. In summary, the observations show increases in mitochondria and suggest intracellular trafficking of mitochondria in GCs during follicular growth, and indicate that they may partially be under the control of gonadotropins and cAMP. In line with this, increased cAMP in KGN cells profoundly affected mitochondrial dynamics in a PKA-dependent manner and implicated cytoskeletal changes.
Collapse
Affiliation(s)
| | | | | | - Katharina Goetz
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Annette Müller-Taubenberger
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Gregory A Dissen
- Molecular Virology Core, Oregon Health & Science University Oregon National Primate Research Center, Beaverton, OR, USA
| | - Max Harner
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Ludwig Maximilian University (LMU), Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich (BMC), Protein Analysis Unit, Faculty of Medicine, Ludwig Maximilian University (LMU), Planegg-Martinsried, Germany
| | - Ignasi Forne
- Biomedical Center Munich (BMC), Protein Analysis Unit, Faculty of Medicine, Ludwig Maximilian University (LMU), Planegg-Martinsried, Germany
| | - Artur Mayerhofer
- Correspondence address. Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine Ludwig Maximilian University of Munich, D-82152 Planegg-Martinsried, Germany. E-mail:
| |
Collapse
|
21
|
Sapuleni J, Szymanska M, Meidan R. Diverse actions of sirtuin-1 on ovulatory genes and cell death pathways in human granulosa cells. Reprod Biol Endocrinol 2022; 20:104. [PMID: 35840944 PMCID: PMC9284863 DOI: 10.1186/s12958-022-00970-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human granulosa-lutein cells (hGLCs) amply express sirtuin-1 (SIRT1), a NAD + -dependent deacetylase that is associated with various cellular functions. SIRT1 was shown to elevate cAMP on its own and additively with human chorionic gonadotropin (hCG), it is therefore interesting to examine if SIRT1 affects other essential hGLC functions. METHODS Primary hGLCs, obtained from the follicular aspirates of women undergoing IVF and SV40-transfected, immortalized hGLCs (SVOG cells), were used. Primary cells were treated with SIRT1 specific activator SRT2104, as well as hCG or their combination. Additionally, siRNA-targeting SIRT1 construct was used to silence endogenous SIRT1 in SVOG cells. PTGS2, EREG, VEGFA and FGF2 expression was determined using quantitative polymerase chain reaction (qPCR). Apoptotic and necroptotic proteins were determined by specific antibodies in western blotting. Cell viability/apoptosis was determined by the XTT and flow cytometry analyses. Data were analyzed using student t-test or Mann-Whitney U test or one-way ANOVA followed by Tukey HSD post hoc test. RESULTS In primary and immortalized hGLCs, SRT2104 significantly upregulated key ovulatory and angiogenic genes: PTGS2, EREG, FGF2 and VEGFA, these effects tended to be further augmented in the presence of hCG. Additionally, SRT2104 dose and time-dependently decreased viable cell numbers. Flow cytometry of Annexin V stained cells confirmed that SIRT1 reduced live cell numbers and increased late apoptotic and necrotic cells. Moreover, we found that SIRT1 markedly reduced anti-apoptotic BCL-XL and MCL1 protein levels and increased cleaved forms of pro-apoptotic proteins caspase-3 and PARP. SIRT1 also significantly induced necroptotic proteins RIPK1 and MLKL. RIPK1 inhibitor, necrostatin-1 mitigated SIRT1 actions on RIPK1 and MLKL but also on cleaved caspase-3 and PARP and in accordance on live and apoptotic cells, implying a role for RIPK1 in SIRT1-induced cell death. SIRT1 silencing produced inverse effects on sorted cell populations, anti-apoptotic, pro-apoptotic and necroptotic proteins, corroborating SIRT1 activation. CONCLUSIONS These findings reveal that in hGLCs, SIRT1 enhances the expression of ovulatory and angiogenic genes while eventually advancing cell death pathways. Interestingly, these seemingly contradictory events may have occurred in a cAMP-dependent manner.
Collapse
Affiliation(s)
- Jackson Sapuleni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
| | - Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel.
| |
Collapse
|
22
|
Gai Y, Zhang MY, Ji PY, You RJ, Ge ZJ, Shen W, Sun QY, Yin S. Melatonin improves meiosis maturation against diazinon exposure in mouse oocytes. Life Sci 2022; 301:120611. [PMID: 35526594 DOI: 10.1016/j.lfs.2022.120611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
AIMS Organophosphorus pesticide diazinon (DZN) has adverse effects on animals and humans by direct contact or the spread of food chain. The antioxidant melatonin has protective effects on female reproduction. This study aimed to explore the effects of DZN on meiosis maturation in mouse cumulus oocyte complexes (COCs) and the effects of melatonin. MAIN METHODS Different concentrations of DZN and melatonin were added during the in vitro maturation of COCs. Then we detected the extrusion rate of the first polar body, the number of sperms binding to oocyte, mitochondrial membrane potential, reactive oxygen species (ROS), early apoptosis. Subsequently, the expression of Juno, CX37, CX43 and ERK1/2 were detected by immunofluorescence staining and Western blotting. KEY FINDINGS DZN exposure results in the failure of nuclear and cytoplasmic maturation of oocyte meiosis. Destruction of repositioning and function of mitochondria increases the levels of ROS and early apoptosis. The DZN-exposed oocytes express less Juno resulting to bind less sperms than normal. The loss of gap junctions and failure to activate ERK1/2 also contribute to the failure of cytoplasmic maturation. All these ultimately lead to the poor oocyte quality and low fertility. Appropriate melatonin can effectively restore all these defects. SIGNIFICANCE Under DZN exposure, melatonin can significantly improve the quality of oocytes, and melatonin promotes oocyte maturation by protecting gap junction and restoring ERK1/2 pathway, which is a new breakthrough for improving female fertility.
Collapse
Affiliation(s)
- Yang Gai
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Man-Yu Zhang
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng-Yuan Ji
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Rong-Jing You
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
23
|
Death Processes in Bovine Theca and Granulosa Cells Modelled and Analysed Using a Systems Biology Approach. Int J Mol Sci 2021; 22:ijms22094888. [PMID: 34063056 PMCID: PMC8125194 DOI: 10.3390/ijms22094888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
In this paper, newly discovered mechanisms of atresia and cell death processes in bovine ovarian follicles are investigated. For this purpose the mRNA expression of receptor interacting protein kinases 1 and 3 (RIPK1 and RIPK3) of the granulosa and theca cells derived from healthy and atretic follicles are studied. The follicles were assigned as either healthy or atretic based on the estradiol to progesterone ratio. A statistically significant difference was recorded for the mRNA expression of a RIPK1 and RIPK3 between granulosa cells from healthy and atretic follicles. To further investigate this result a systems biology approach was used. The genes playing roles in necroptosis, apoptosis and atresia were chosen and a network was created based on human genes annotated by the IMEx database in Cytoscape to identify hubs and bottle-necks. Moreover, correlation networks were built in the Cluepedia plug-in. The networks were created separately for terms describing apoptosis and programmed cell death. We demonstrate that necroptosis (RIPK—dependent cell death pathway) is an alternative mechanism responsible for death of bovine granulosa and theca cells. We conclude that both apoptosis and necroptosis occur in the granulosa cells of dominant follicles undergoing luteinisation and in the theca cells from newly selected follicles.
Collapse
|
24
|
Premature ovarian insufficiency: pathogenesis and therapeutic potential of mesenchymal stem cell. J Mol Med (Berl) 2021; 99:637-650. [PMID: 33641066 DOI: 10.1007/s00109-021-02055-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Primary ovarian insufficiency (POI) is defined as a reduction in ovarian function before the expected age of menopause. POI is known to increase the risk of cardiovascular disorders, osteoporosis, cognitive decline, and mood disorders, resulting in a reduced quality of life. Appropriate hormone replacement for premenopausal women decreases these adverse health risks and improves quality of life for women with POI, but does not prolong life expectancy. The potential etiologies of POI include chromosomal abnormalities and genetic mutations, autoimmune factors, and iatrogenic causes, including surgery, chemotherapy, and radiation therapy. A major association is suggested to exist between reproductive longevity and the DNA damage pathway response genes. DNA damage and repair in ovarian granulosa cells is strongly associated with POI. Depletion of oocytes with damaged DNA occurs through different cell death mechanisms, such as apoptosis, autophagy, and necroptosis, mediated by the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead transcription factors 3 (FOXO3) pathway. Mesenchymal stem cells (MSCs) are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues. Transplantation of MSCs has been shown to functionally restore ovarian reserve in a POI mouse model. Recent advances in stem cell therapy are likely to be translated to new therapeutic options bringing new hope to patients with POI. The aim of this review is to summarize the pathogenic mechanisms that involve cell death and DNA damage and repair pathways and to discuss the stem cell-based therapies as potential therapeutic options for this gynecologic pathology.
Collapse
|
25
|
Sirtuin 1 and Sirtuin 3 in Granulosa Cell Tumors. Int J Mol Sci 2021; 22:ijms22042047. [PMID: 33669567 PMCID: PMC7923107 DOI: 10.3390/ijms22042047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sirtuins (SIRTs) are NAD+-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN cells. KGN cells are an established cellular model for the majority of GCTs and were used to explore the role of SIRT1. The SIRT1 activator SRT2104 increased cell proliferation. By contrast, the inhibitor EX527 reduced cell numbers, without inducing apoptosis. These results were supported by the outcome of siRNA-mediated silencing studies. A tissue microarray containing 92 GCTs revealed nuclear and/or cytoplasmic SIRT1 staining in the majority of the samples, and also, SIRT2-7 were detected in most samples. The expression of SIRT1-7 was not correlated with the survival of the patients; however, SIRT3 and SIRT7 expression was significantly correlated with the proliferation marker Ki-67, implying roles in tumor cell proliferation. SIRT3 was identified by a proteomic analysis as the most abundant SIRT in KGN. The results of the siRNA-silencing experiments indicate involvement of SIRT3 in proliferation. Thus, several SIRTs are expressed by GCTs, and SIRT1 and SIRT3 are involved in the growth regulation of KGN. If transferable to GCTs, these SIRTs may represent novel drug targets.
Collapse
|
26
|
Riquelme R, Ruz F, Mayerhofer A, Lara HE. Huperzine-A administration recovers rat ovary function after sympathetic stress. J Neuroendocrinol 2021; 33:e12914. [PMID: 33252842 DOI: 10.1111/jne.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Chronic cold stress affects ovarian morphology and impairs fertility in rats. It causes an ovarian polycystic ovary (PCOS)-like phenotype, which resembles PCOS in women. The mechanism of cold stress action involves increased ovarian noradrenaline (NA) levels, which remain elevated after cessation of cold stress. By contrast, ovarian acetylcholine (ACh) levels are only transiently elevated and returned to control levels after a 28-day post stress period. Because ACh can exert trophic actions in the ovary, we hypothesised that a sustained elevation of ovarian ACh levels by intraovarian exposure to the ACh-esterase blocker huperzine-A (Hup-A) may interfere with cold stress-induced ovarian changes. This possibility was examined in female Sprague-Dawley rats exposed to cold stress (4°C for 3 h day-1 for 28 days), followed by a 28-day period without stress. To elevate ACh, in a second group Hup-A was delivered into the ovary of cold stress-exposed rats. A third group was not exposed to cold stress. As expected, cold stress elevated ovarian NA, reduced the number of corpora lutea and increased the number of follicular cysts. It increased plasma testosterone and oestradiol but decreased plasma levels of progesterone. In the Hup-A group, ovarian levels of both, NA and ACh, were elevated, there were fewer cysts and normal testosterone and oestradiol plasma levels were found. However, progesterone levels remained low. Most likely, low progesterone was associated with impaired mating behaviour and low pregnancy rate. We propose that elevated intraovarian levels of ACh are involved in the rescue of ovarian function, opening a target to control ovarian diseases affecting follicular development.
Collapse
Affiliation(s)
- Raul Riquelme
- Center for Neurobiochemical studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Freddy Ruz
- Center for Neurobiochemical studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Hernán E Lara
- Center for Neurobiochemical studies in Endocrine Diseases, Laboratory of Neurobiochemistry, Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
27
|
Benitez A, Riquelme R, del Campo M, Araya C, Lara HE. Nerve Growth Factor: A Dual Activator of Noradrenergic and Cholinergic Systems of the Rat Ovary. Front Endocrinol (Lausanne) 2021; 12:636600. [PMID: 33716987 PMCID: PMC7947612 DOI: 10.3389/fendo.2021.636600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
The functioning of the ovary is influenced by the autonomic system (sympathetic and cholinergic intraovarian system) which contributes to the regulation of steroid secretion, follicular development, and ovulation. There is no information on the primary signal that activates both systems. The nerve growth factor (NGF) was the first neurotrophic factor found to regulate ovarian noradrenergic neurons and the cholinergic neurons in the central nervous system. The aim of this study was to determine whether NGF is one of the participating neurotrophic factors in the activation of the sympathetic and cholinergic system of the ovary in vivo and its role in follicular development during normal or pathological states. The administration of estradiol valerate (a polycystic ovary [PCO] phenotype model) increased norepinephrine (NE) (through an NGF-dependent mechanism) and acetylcholine (ACh) levels. Intraovarian exposure of rats for 28 days to NGF (by means of an osmotic minipump) increased the expression of tyrosine hydroxylase and acetylcholinesterase (AChE, the enzyme that degrades ACh) without affecting enzyme activity but reduced ovarian ACh levels. In vitro exposure of the ovary to NGF (100 ng/ml for 3 h) increased both choline acetyl transferase and vesicular ACh transporter expression in the ovary, with no effect in ACh level. In vivo NGF led to an anovulatory condition with the appearance of follicular cysts and decreased number of corpora lutea (corresponding to noradrenergic activation). To determine whether the predominance of a NE-induced polycystic condition after NGF is responsible for the PCO phenotype, rats were exposed to an intraovarian administration of carbachol (100 μM), a muscarinic cholinergic agonist not degraded by AChE. Decreased the number of follicular cysts and increased the number of corpora lutea, reinforcing that cholinergic activity of the ovary participates in controlling its functions. Although NGF increased the biosynthetic capacity for ACh, it was not available to act in the ovary. Hence, NGF also regulates the ovarian cholinergic system, implying that NGF is the main regulator of the dual autonomic control. These findings highlight the need for research in the treatment of PCO syndrome by modification of locally produced ACh as an in vivo regulator of follicular development.
Collapse
|
28
|
Pala S, Atilgan R, Kuloglu T, Yalçın E, Kaya N, Etem E. The decrease in hippocampal transient receptor potential M2 (TRPM2) channel and muscarinic acetylcholine receptor 1 (CHRM1) is associated with memory loss in a surgical menopause rat model. Arch Med Sci 2021; 17:228-235. [PMID: 33488875 PMCID: PMC7811316 DOI: 10.5114/aoms.2019.83760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/01/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The aim of the study was to investigate the association of transient receptor potential M2 (TRPM2) channel and muscarinic acetylcholine receptor 1 (CHRM1) activity with the memorial functions that are deteriorated in surgical menopause. MATERIAL AND METHODS A total of 14 female rats were randomly divided into 2 groups: group (G)1: sham group; group (G)2: surgical menopause group, the group in which bilateral ovariectomy was performed. Fourteen days after the surgical procedure, learning and memorial tests were performed in G1 and G2 for a totally 13 days. The time required for the rats to find the cheese in the labyrinth was recorded and statistical evaluation of it was performed between groups. On the 14th day of the memory test, the rats were decapitated and the brain tissues were fixed in 10% formalin. Hippocampal TRPM2 and CHRM1 gene expression was evaluated with RNA isolation, complementary DNA (cDNA) synthesis and quantitative real-time PCR (qRT-PCR) analysis. TRPM2 and CHRM1 immunoreactivity was evaluated in hippocampal tissue with the immunohistochemical method. Histo-score was calculated regarding the diffuseness of and severity of the staining; and statistical analyses were performed. RESULTS In the ovariectomized group, the mean time required for the rats to find the cheese was statistically significantly elongated (39.29 ±4.0 s vs. 29.86 ±2.6 s). When the hippocampal TRPM2 and CHRM1 gene expression and immunoreactivity were compared with the sham group, there was a statistically significant decrease in the surgical menopause group (p < 0.05). CONCLUSIONS In surgical menopause, in deterioration of memorial functions, hippocampal TRPM2 channel and CHRM1 activity plays an important role.
Collapse
Affiliation(s)
- Sehmus Pala
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Remzi Atilgan
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Emre Yalçın
- Department of Obstetrics and Gynecology, School of Medicine, Firat University, Elazig, Turkey
| | - Nalan Kaya
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Ebru Etem
- Department of Medical Biology, School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
29
|
ATILGAN R, PALA Ş, KULOĞLU T, ŞANLI C, YAVUZKIR Ş, ÖZKAN ZS. Comparison of the efficacy between bilateral proximal tubal occlusion and total salpingectomy on ovarian reserve and the cholinergic system: an experimental study. Turk J Med Sci 2020; 50:1097-1105. [PMID: 32394684 PMCID: PMC7379445 DOI: 10.3906/sag-2002-179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/10/2020] [Indexed: 01/11/2023] Open
Abstract
Background and aim To compare the effects of bilateral proximal tubal occlusion and bilateral total salpingectomy on ovarian reserve and the cholinergic system via rat experiment. Materials and methods Twenty-one adult female rats were randomly divided into the following three groups:G1 (n = 7), sham group;G2 (n = 7), bilateral total salpingectomy group; and G3 (n = 7), bilateral proximal tubal occlusion group. Four weeks later, the abdomen of the rats was opened. The right ovarian tissues were stored in 10% formaldehyde, whereas the left ovarian tissues were stored at –80 °C in aluminum foil. Serum samples were evaluated for antimullerian hormone. The right ovary was used for histological and immunoreactive examination, and the left ovary was used for tissue MDA analysis. Tissue samples were analyzed for MDA levels with spectrophotometric measurement, apoptosis with TUNEL staining, fibrosis score with Mason trichrome staining, ovarian reserve with HE staining, and cholinergic receptor muscarinic 1 (CHRM1) level with immunoreactivity method. Results Compared to G1 and G3, the number of corpus luteum with secondary follicles was significantly lower in G2, whereas the number of ovarian cysts and fibrosis and apoptosis scores increased significantly. The CHRM1 immunoreactivity was significantly lower in G2 than in G1 and G3. Conclusions Compared to the bilateral proximal tubal occlusion performed by using bipolar cautery, bilateral total salpingectomy in rats leads to a significant damage in ovarian histopathology and the cholinergic system.
Collapse
Affiliation(s)
- Remzi ATILGAN
- Department of Obstetrics and Gynecology, School of Medicine, Fırat University, ElazığTurkey
| | - Şehmus PALA
- Department of Obstetrics and Gynecology, School of Medicine, Fırat University, ElazığTurkey
| | - Tuncay KULOĞLU
- Department of Histology and Embryology, School of Medicine, Fırat University, ElazığTurkey
| | - Cengiz ŞANLI
- Department of Obstetrics and Gynecology, School of Medicine, Fırat University, ElazığTurkey
| | - Şeyda YAVUZKIR
- Department of Obstetrics and Gynecology, School of Medicine, Fırat University, ElazığTurkey
| | - Zehra Sema ÖZKAN
- Department of Obstetrics and Gynecology, School of Medicine, Kırıkkale University, KırıkkaleTurkey
| |
Collapse
|
30
|
A Role for H 2O 2 and TRPM2 in the Induction of Cell Death: Studies in KGN Cells. Antioxidants (Basel) 2019; 8:antiox8110518. [PMID: 31671815 PMCID: PMC6912327 DOI: 10.3390/antiox8110518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Recent studies showed that KGN cells, derived from a human granulosa cell tumor (GCT), express NADPH oxidase 4 (NOX4), an important source of H2O2. Transient receptor potential melastatin 2 (TRPM2) channel is a Ca2+ permeable cation channel that can be activated by H2O2 and plays an important role in cellular functions. It is also able to promote susceptibility to cell death. We studied expression and functionality of TRPM2 in KGN cells and examined GCT tissue microarrays (TMAs) to explore in vivo relevance. We employed live cell, calcium and mitochondrial imaging, viability assays, fluorescence activated cell sorting (FACS) analysis, Western blotting and immunohistochemistry. We confirmed that KGN cells produce H2O2 and found that they express functional TRPM2. H2O2 increased intracellular Ca2+ levels and N-(p-Amylcinnamoyl)anthranilic acid (ACA), a TRPM2 inhibitor, blocked this action. H2O2 caused mitochondrial fragmentation and apoptotic cell death, which could be attenuated by a scavenger (Trolox). Immunohistochemistry showed parallel expression of NOX4 and TRPM2 in all 73 tumor samples examined. The results suggest that GCTs can be endowed with a system that may convey susceptibility to cell death. If so, induction of oxidative stress may be beneficial in GCT therapy. Our results also imply a therapeutic potential for TRPM2 as a drug target in GCTs.
Collapse
|
31
|
Inhibitor of apoptosis proteins are potential targets for treatment of granulosa cell tumors - implications from studies in KGN. J Ovarian Res 2019; 12:76. [PMID: 31412918 PMCID: PMC6694575 DOI: 10.1186/s13048-019-0549-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 01/23/2023] Open
Abstract
Background Granulosa cell tumors (GCTs) are derived from proliferating granulosa cells of the ovarian follicle. They are known for their late recurrence and most patients with an aggressive form die from their disease. There are no treatment options for this slowly proliferating tumor besides surgery and chemotherapy. In a number of tumors, analogs of the second mitochondria-derived activator of caspases (SMAC), alone or in combination with other molecules, such as TNFα, are evolving as new treatment options. SMAC mimetics block inhibitor of apoptosis proteins (IAPs), which bind caspases (e.g. XIAP), or activate the pro-survival NF-κB pathway (e.g. cIAP1/2). Expression of IAPs by GCTs is yet not fully elucidated but recently XIAP and its inhibition by SMAC mimetics in a combination therapy was described to induce apoptosis in a GCT cell line, KGN. We evaluated the expression of cIAP1 in GCTs and elucidated the effects of the SMAC mimetic BV-6 using KGN as a model. Results Employing immunohistochemistry, we observed cIAP1 expression in a tissue microarray (TMA) of 42 GCT samples. RT-PCR confirmed expression of cIAP1/2, as well as XIAP, in primary, patient-derived GCTs and in KGN. We therefore tested the ability of the bivalent SMAC mimetic BV-6, which is known to inhibit cIAP1/2 and XIAP, to induce cell death in KGN. A dose response study indicated an EC50 ≈ 8 μM for both, early (< 8) and advanced (> 80) passages, which differ in growth rate and presumably aggressiveness. Quantitative RT-PCR showed upregulation of NF-κB regulated genes in BV-6 stimulated cells. Blocking experiments with the pan-caspase inhibitor Z-VAD-FMK indicated caspase-dependence. A concentration of 20 μM Z-VAD-FMK was sufficient to significantly reduce apoptosis. This cell death was further substantiated by results of Western Blot studies. Cleaved caspase 3 and cleaved PARP became evident in the BV-6 treated group. Conclusions Taken together, the results show that BV-6 is able to induce apoptosis in KGN cells. This approach may therefore offer a promising therapeutic avenue to treat GCTs. Electronic supplementary material The online version of this article (10.1186/s13048-019-0549-6) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Delsouc MB, Bronzi CD, Becerra CD, Bonaventura MM, Mohamed FH, Casais M. Ganglionic and ovarian action of acetylcholine during diestrous II in rats. Neuroendocrine control of the luteal regression. Steroids 2019; 148:19-27. [PMID: 31071343 DOI: 10.1016/j.steroids.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
Our aim was to investigate if acetylcholine (Ach), added to the celiac ganglion-superior ovarian nerve-ovary system (CG-SON-ovary) or in ovary incubations, modifies the release of progesterone (P4), androstenedione (A2), dopamine (DA), norepinephrine (NE), gonadotropin-releasing hormone (GnRH), and alters the expression of 3β-hydroxysteroid dehydrogenase (3β-HSD), 20α-hydroxysteroid dehydrogenase (20α-HSD), and apoptotic genes in ovarian tissue during the diestrous II (DII) in rats. The CG-SON-ovary system or the ovary alone were removed and placed into separate cuvettes both containing Krebs-Ringer solution (control groups). In experimental groups, 10-6 M Ach was added into the ganglion compartment or into the ovary compartment. P4, A2 and GnRH were measured by RIA, mRNA expression by RT-PCR, and catecholamines by HPLC. In addition, a routine histological technique was applied. In ex-vivo system, 10-6 M Ach into the ganglion compartment decreased P4 and NE release, altered 3β-HSD and 20α-HSD expression, and decreased bax/bcl-2 ratio, while increasing the release of A2 and DA, and bcl-2 expression. In ovary incubations, 10-6 M Ach decreased P4 and GnRH release, decreased 3β-HSD and bcl-2 expression, increased A2 release, increased 20α-HSD and bax expression, and the bax/bcl-2 ratio, and induced disorganization of the corpus luteum structure. The peripheral nervous system protected the ovary from the apoptotic mechanisms while in the ovary incubation the effect was reversed. Our results indicate that Ach in DII regulates steroidogenesis and apoptosis in the ovary, by modulating the concentration of neurotransmitters. In vivo, an alteration in the extrinsic cholinergic innervation of the ovary could disrupt the endocrine control of the reproductive function.
Collapse
Affiliation(s)
- María B Delsouc
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina; Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Cynthia D Bronzi
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina; Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Cristina Daneri Becerra
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina
| | - María M Bonaventura
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, CP C1428ADN, CABA, Argentina
| | - Fabián H Mohamed
- Cátedra de Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Marilina Casais
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina; Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina.
| |
Collapse
|
33
|
Buck T, Hack CT, Berg D, Berg U, Kunz L, Mayerhofer A. The NADPH oxidase 4 is a major source of hydrogen peroxide in human granulosa-lutein and granulosa tumor cells. Sci Rep 2019; 9:3585. [PMID: 30837663 PMCID: PMC6400953 DOI: 10.1038/s41598-019-40329-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/31/2019] [Indexed: 11/09/2022] Open
Abstract
H2O2 is a reactive oxygen species (ROS), which can diffuse away from its site of generation and may act as a cell-to-cell signaling factor. The mechanisms responsible for the generation of H2O2 in human ovarian follicles and possible signaling role(s) of H2O2 are not well known. We identified a source of H2O2, the enzyme NADPH oxidase (NOX) 4, in isolated differentiated, in-vitro fertilisation-derived human granulosa-lutein cells (GCs), in proliferating human granulosa tumour cells (KGN), as well as in situ in cells of growing ovarian follicles. H2O2 was readily detected in the supernatant of cultured GCs and KGN cells. H2O2 levels were significantly lowered by the NOX4 blocker GKT137831, indicating a pronounced contribution of NOX4 to overall H2O2 generation by these cells. We provide evidence that extracellular H2O2 is taken up by GCs, which is facilitated by aquaporins (peroxiporins). We thus conclude that GC-derived H2O2 might act as autocrine/paracrine factor. Addition of H2O2 increased MAPK-phosphorylation in GCs. Moreover, reducing H2O2 production with GKT137831 slowed proliferation of KGN cells. Our results pinpoint NOX4 and H2O2 as physiological players in the regulation of GC functions.
Collapse
Affiliation(s)
- Theresa Buck
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-Universität München, 82152, Planegg, Martinsried, Germany
| | - Carsten Theo Hack
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-Universität München, 82152, Planegg, Martinsried, Germany
| | | | | | - Lars Kunz
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, 82152, Planegg, Martinsried, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-Universität München, 82152, Planegg, Martinsried, Germany.
| |
Collapse
|
34
|
Bagnjuk K, Stöckl JB, Fröhlich T, Arnold GJ, Behr R, Berg U, Berg D, Kunz L, Bishop C, Xu J, Mayerhofer A. Necroptosis in primate luteolysis: a role for ceramide. Cell Death Discov 2019; 5:67. [PMID: 30774995 PMCID: PMC6370808 DOI: 10.1038/s41420-019-0149-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022] Open
Abstract
The corpus luteum (CL) is a transient endocrine organ, yet molecular mechanisms resulting in its demise are not well known. The presence of phosphorylated mixed lineage kinase domain-like pseudokinase pMLKL(T357/S358) in human and nonhuman primate CL samples (Macaca mulatta and Callithrix jacchus) implied that necroptosis of luteal cells may be involved. In M. mulatta CL, pMLKL positive staining became detectable only from the mid-late luteal phase onwards, pointing to necroptosis during regression of the CL. Cell death, including necroptosis, was previously observed in cultures of human luteal granulosa cells (GCs), an apt model for the study of the human CL. To explore mechanisms of necroptotic cell death in GCs during culture, we performed a proteomic analysis. The levels of 50 proteins were significantly altered after 5 days of culture. Interconnectivity analysis and immunocytochemistry implicated specifically the ceramide salvage pathway to be enhanced. M. mulatta CL transcriptome analysis indicated in vivo relevance. Perturbing endogenous ceramide generation by fumonisin B1 (FB1) and addition of soluble ceramide (C2-CER) yielded opposite actions on viability of GCs and therefore supported the significance of the ceramide pathway. Morphological changes indicated necrotic cell death in the C2-CER treated group. Studies with the pan caspase blocker zVAD-fmk or the necroptosis blocker necrosulfonamid (NSA) further supported that C2-CER induced necroptosis. Our data pinpoint necroptosis in a physiological process, namely CL regression. This raises the possibility that the primate CL could be rescued by pharmacological inhibition of necroptosis or by interaction with ceramide metabolism.
Collapse
Affiliation(s)
- Konstantin Bagnjuk
- 1Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU), Grosshaderner Strasse 9, Planegg, 82152 Germany
| | - Jan Bernd Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, Feodor-Lynen Strasse 25, Munich, 81375 Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, Feodor-Lynen Strasse 25, Munich, 81375 Germany
| | - Georg Josef Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, Feodor-Lynen Strasse 25, Munich, 81375 Germany
| | - Rüdiger Behr
- 3Platform Degenerative Diseases, German Primate Center, Kellnerweg 4, Göttingen, 37077 Germany
| | - Ulrike Berg
- A.R.T. Bogenhausen, Prinzregentenstrasse 69, Munich, 81675 Germany
| | - Dieter Berg
- A.R.T. Bogenhausen, Prinzregentenstrasse 69, Munich, 81675 Germany
| | - Lars Kunz
- Department Biology II, Division of Neurobiology, LMU, Grosshaderner Strasse 2, Planegg, 82152 Germany
| | - Cecily Bishop
- 6Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006 USA
| | - Jing Xu
- 6Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006 USA
| | - Artur Mayerhofer
- 1Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU), Grosshaderner Strasse 9, Planegg, 82152 Germany
| |
Collapse
|
35
|
Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, Pandey AN, Pandey AK, Chaube SK. Necroptosis in stressed ovary. J Biomed Sci 2019; 26:11. [PMID: 30665407 PMCID: PMC6340166 DOI: 10.1186/s12929-019-0504-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Stress is deeply rooted in the modern society due to limited resources and large competition to achieve the desired goal. Women are more frequently exposed to several stressors during their reproductive age that trigger generation of reactive oxygen species (ROS). Accumulation of ROS in the body causes oxidative stress (OS) and adversely affects ovarian functions. The increased OS triggers various cell death pathways in the ovary. Beside apoptosis and autophagy, OS trigger necroptosis in granulosa cell as well as in follicular oocyte. The OS could activate receptor interacting protein kinase-1(RIPK1), receptor interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) to trigger necroptosis in mammalian ovary. The granulosa cell necroptosis may deprive follicular oocyte from nutrients, growth factors and survival factors. Under these conditions, oocyte becomes more susceptible towards OS-mediated necroptosis in the follicular oocytes. Induction of necroptosis in encircling granulosa cell and oocyte may lead to follicular atresia. Indeed, follicular atresia is one of the major events responsible for the elimination of majority of germ cells from cohort of ovary. Thus, the inhibition of necroptosis could prevent precautious germ cell depletion from ovary that may cause reproductive senescence and early menopause in several mammalian species including human.
Collapse
Affiliation(s)
- Govind R Chaudhary
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, 221005, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
36
|
Bagnjuk K, Mayerhofer A. Human Luteinized Granulosa Cells-A Cellular Model for the Human Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:452. [PMID: 31338068 PMCID: PMC6629826 DOI: 10.3389/fendo.2019.00452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
In the ovary, the corpus luteum (CL) forms a temporal structure. Luteinized mural granulosa cells (GCs), which stem from the ruptured follicle, are the main cells of the CL. They can be isolated from follicular fluid of woman undergoing in vitro fertilization. In culture, human GCs are viable for several days and produce progesterone, yet eventually steroid production stops and GCs with increasing time in culture undergo changes reminiscent of the ones observed during the demise of the CL in vivo. This short review summarizes the general use of human GCs as a model for the primate CL and some of the data from our lab, which indicate that viability, functionality, survival and death of GCs can be regulated by local signal molecules (e.g., oxytocin and PEDF) and the extracellular matrix (e.g., via the proteoglycan decorin). We further summarize studies, which identified autophagocytotic events in human GCs linked to the activation of an ion channel. More recent studies identified a form of regulated cell death, namely necroptosis. This form of cell death may, in addition to apoptosis, contribute to the demise of the human CL. We believe that human GCs are a unique window into the human CL. Studies employing these cells may lead to the identification of molecular events and novel targets, which may allow to interfere with CL functions.
Collapse
|
37
|
Increased Active OMI/HTRA2 Serine Protease Displays a Positive Correlation with Cholinergic Alterations in the Alzheimer's Disease Brain. Mol Neurobiol 2018; 56:4601-4619. [PMID: 30361890 PMCID: PMC6657433 DOI: 10.1007/s12035-018-1383-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
OMI/HTRA2 (high-temperature requirement serine protease A2) is a mitochondrial serine protease involved in several cellular processes, including autophagy, chaperone activity, and apoptosis. Few studies on the role of OMI/HTRA2 in Alzheimer's disease (AD) are available, but none on its relationship with the cholinergic system and neurotrophic factors as well as other AD-related proteins. In this study, immunohistochemical analyses revealed that AD patients had a higher cytosolic distribution of OMI/HTRA2 protein compared to controls. Quantitative analyses on brain extracts indicated a significant increase in the active form of OMI/HTRA2 in the AD brain. Activated OMI/HTRA2 protein positively correlated with stress-associated read-through acetylcholinesterase activity. In addition, α7 nicotinic acetylcholine receptor gene expression, a receptor also known to be localized on the outer membrane of mitochondria, showed a strong correlation with OMI/HTRA2 gene expression in three different brain regions. Interestingly, the activated OMI/HTRA2 levels also correlated with the activity of the acetylcholine-biosynthesizing enzyme, choline acetyltransferase (ChAT); with levels of the neurotrophic factors, NGF and BDNF; with levels of the soluble fragments of amyloid precursor protein (APP); and with gene expression of the microtubule-associated protein tau in the examined brain regions. Overall, the results demonstrate increased levels of the mitochondrial serine protease OMI/HTRA2, and a coherent pattern of association between the activated form of OMI/HTRA2 and several key proteins involved in AD pathology. In this paper, we propose a new hypothetical model to highlight the importance and needs of further investigation on the role of OMI/HTRA2 in the mitochondrial function and AD.
Collapse
|
38
|
Chaudhary GR, Yadav PK, Yadav AK, Tiwari M, Gupta A, Sharma A, Sahu K, Pandey AN, Pandey AK, Chaube SK. Necrosis and necroptosis in germ cell depletion from mammalian ovary. J Cell Physiol 2018; 234:8019-8027. [PMID: 30341907 DOI: 10.1002/jcp.27562] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The maximum number of germ cells is present during the fetal life in mammals. Follicular atresia results in rapid depletion of germ cells from the cohort of the ovary. At the time of puberty, only a few hundred (<1%) germ cells are either culminated into oocytes or further get eliminated during the reproductive life. Although apoptosis plays a major role, necrosis as well as necroptosis, might also be involved in germ cell elimination from the mammalian ovary. Both necrosis and necroptosis show similar morphological features and are characterized by an increase in cell volume, cell membrane permeabilization, and rupture that lead to cellular demise. Necroptosis is initiated by tumor necrosis factor and operated through receptor interacting protein kinase as well as mixed lineage kinase domain-like protein. The acetylcholinesterase, cytokines, starvation, and oxidative stress play important roles in necroptosis-mediated granulosa cell death. The granulosa cell necroptosis directly or indirectly induces susceptibility toward necroptotic or apoptotic cell death in oocytes. Indeed, prevention of necrosis and necroptosis pathways using their specific inhibitors could enhance growth/differentiation factor-9 expression, improve survivability as well as the meiotic competency of oocytes, and prevent decline of reproductive potential in several mammalian species and early onset of menopause in women. This study updates the information and focuses on the possible involvement of necrosis and necroptosis in germ cell depletion from the mammalian ovary.
Collapse
Affiliation(s)
- Govind R Chaudhary
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Kankshi Sahu
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
39
|
Heck AL, Crestani CC, Fernández-Guasti A, Larco DO, Mayerhofer A, Roselli CE. Neuropeptide and steroid hormone mediators of neuroendocrine regulation. J Neuroendocrinol 2018; 30:e12599. [PMID: 29645316 PMCID: PMC6181757 DOI: 10.1111/jne.12599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
To maintain the health and well-being of all mammals, numerous aspects of physiology are controlled by neuroendocrine mechanisms. These mechanisms ultimately enable communication between neurones and glands throughout the body and are centrally mediated by neuropeptides and/or steroid hormones. A recent session at the International Workshop in Neuroendocrinology highlighted the essential roles of some of these neuropeptide and steroid hormone mediators in the neuroendocrine regulation of stress-, reproduction- and behaviour-related processes. Accordingly, the present review highlights topics presented in this session, including the role of the neuropeptides corticotrophin-releasing factor and gonadotrophin-releasing hormone in stress and reproductive physiology, respectively. Additionally, it details an important role for gonadal sex steroids in the development of behavioural sex preference.
Collapse
Affiliation(s)
- Ashley L. Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO USA 80523
| | - Carlos C. Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil 14800-903
| | | | | | - Artur Mayerhofer
- Biomedical Center, Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), Planegg, Germany 82152
| | - Charles E. Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR USA 97239-3098
| |
Collapse
|
40
|
Ayazgök B, Tüylü Küçükkılınç T. Low-dose bisphenol A induces RIPK1-mediated necroptosis in SH-SY5Y cells: Effects on TNF-α and acetylcholinesterase. J Biochem Mol Toxicol 2018; 33:e22233. [PMID: 30238673 DOI: 10.1002/jbt.22233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor chemical, which is commonly used in everyday products. Adverse effects of its exposure are reported even at picomolar doses. Effects of picomolar and nanomolar concentrations of BPA on cytotoxicity, nitric oxide (NO) levels, acetylcholinesterase (AChE) gene expression and activity, and tumor necrosis factor-α (TNF-α) and caspase-8 levels were determined in SH-SY5Y cells. The current study reveals that low-dose BPA treatment induced cytotoxicity, NO, and caspase-8 levels in SH-SY5Y cells. We also evaluated the mechanism underlying BPA-induced cell death. Ours is the first report that receptor-interacting serine/threonine-protein kinase 1-mediated necroptosis is induced by nanomolar BPA treatment in SH-SY5Y cells. This effect is mediated by altered AChE and decreased TNF-α levels, which result in an apoptosis-necroptosis switch. Moreover, our study reveals that BPA is an activator of AChE.
Collapse
Affiliation(s)
- Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, University of Hacettepe, Ankara, Turkey
| | - Tuba Tüylü Küçükkılınç
- Faculty of Pharmacy, Department of Biochemistry, University of Hacettepe, Ankara, Turkey
| |
Collapse
|
41
|
Du Y, Bagnjuk K, Lawson MS, Xu J, Mayerhofer A. Acetylcholine and necroptosis are players in follicular development in primates. Sci Rep 2018; 8:6166. [PMID: 29670172 PMCID: PMC5906600 DOI: 10.1038/s41598-018-24661-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/04/2018] [Indexed: 12/19/2022] Open
Abstract
Acetylcholine (ACh) in the ovary and its actions were linked to survival of human granulosa cells in vitro and improved fertility of rats in vivo. These effects were observed upon experimental blockage of the ACh-degrading enzyme (ACH esterase; ACHE), by Huperzine A. We now studied actions of Huperzine A in a three-dimensional culture of macaque follicles. Because a form of programmed necrotic cell death, necroptosis, was previously identified in human granulosa cells in vitro, we also studied actions of necrostatin-1 (necroptosis inhibitor). Blocking the breakdown of ACh by inhibiting ACHE, or interfering with necroptosis, did not improve the overall follicle survival, but promoted the growth of macaque follicles from the secondary to the small antral stage in vitro, which was correlated with oocyte development. The results from this translational model imply that ovarian function and fertility in primates may be improved by pharmacological interference with ACHE actions and necroptosis.
Collapse
Affiliation(s)
- Yongrui Du
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon, 97006, USA
- Department of Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics, No 156 Nankai Sanma Road, Nankai District, Tianjin, 300100, China
| | - Konstantin Bagnjuk
- BMC Munich, Cell Biology, Anatomy III, Ludwig-Maximilians-University, Grosshaderner Str. 9, D-82152, Planegg, Martinsried, Germany
| | - Maralee S Lawson
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon, 97006, USA
| | - Jing Xu
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon, 97006, USA
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Artur Mayerhofer
- BMC Munich, Cell Biology, Anatomy III, Ludwig-Maximilians-University, Grosshaderner Str. 9, D-82152, Planegg, Martinsried, Germany.
| |
Collapse
|
42
|
Tsui KH, Wang PH, Lin LT, Li CJ. DHEA protects mitochondria against dual modes of apoptosis and necroptosis in human granulosa HO23 cells. Reproduction 2018. [PMID: 28624766 DOI: 10.1530/rep-17-0016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Because ovarian granulosa cells are essential for oocyte maturation and development, we validated human granulosa HO23 cells to evaluate the ability of the DHEA to prevent cell death after starvation. The present study was aimed to investigate whether DHEA could protect against starvation-induced apoptosis and necroptosis in human oocyte granulosa HO23 cells. The starvation was induced by treatment of serum-free (SF) medium for 4 h in vitro Starvation-induced mitochondrial depolarization, cytochrome c release and caspase-3 activation were largely prevented by DHEA in HO23 cells. We found that treatment with DHEA can restore starvation-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential imbalance. In addition, treatment of DHEA prevents cell death via upregulation of cytochrome c and downregulation of BAX in mitochondria. Most importantly, DHEA is ameliorated to mitochondrial function mediated through the decrease in mitochondrial ROS, maintained mitochondrial morphology, and enhancing the ability of cell proliferation and ROS scavenging. Our present data strongly indicate that DHEA reduces programmed cell death (apoptosis and necroptosis) in granulosa HO23 cells through multiple interactions with the mitochondrion-dependent programmed cell death pathway. Taken together, our data suggest that the presence of DHEA could be beneficial to protect human oocyte granulosa HO23 cells under in vitro culture conditions during various assisted reproductive technology (ART) programs.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/154/2/101/suppl/DC1.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung, Taiwan .,Department of Obstetrics and GynecologyNational Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Pharmacy and Master ProgramCollege of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| | - Peng-Hui Wang
- Department of Biological ScienceNational Sun Yat-sen University, Kaohsiung, Taiwan.,Division of GynecologyDepartment of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Obstetrics and GynecologyNational Yang-Ming University Hospital, Ilan, Taiwan.,Immunology CenterTaipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical ResearchChina Medical University Hospital, Taichung, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and GynecologyKaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Obstetrics and GynecologyNational Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Biological ScienceNational Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Research Assistant CenterShow Chwan Health Memorial Hospital, Changhua, Taiwan
| |
Collapse
|
43
|
Wu M, Li N, Xu J, Wu L, Li M, Tong H, Wang F, Liu W, Feng Y. Experimental study on the regulation of the cholinergic pathway in renal macrophages by microRNA-132 to alleviate inflammatory response. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractMicroRNA-132 (miR-132) is correlated with inflammatory response regulation, although its effect on acute kidney injury to provide protection against hemorrhagic shock remains currently unknown. AChE in macrophages of the kidney subjected under hemorrhagic shock is presumed to be regulated by miR-132 after its transcription to alleviate the inflammatory response accordingly. Antagonists such as acetylcholine (Ach) (concentration 10−4mol/L) and galanthamine (Gal) (concentration 10μmol/L) were added into separate groups 1 hour after the macrophages in the kidney were isolated and cultured to induce injury under oxygen and glucose deprivation (OGD) and then cultured for 24 hours. To analyze the effect of miR-132, we placed the renal epithelial cells transfected with miR-132 plasmids with stable expression over the renal macrophages to create a double cell culture system. The expression levels of inflammatory factors and apoptosis under OGD were significantly higher in renal macrophages than in other experimental groups. Moreover, the expression of miR-132 in macrophages of the double cell culture system showing stable expression of miR-132 increased, whereas that of several inflammatory factors was significantly inhibited. The expression levels of AChE mRNA and protein in the macrophages significantly decreased. The cholinergic antiinflammatory pathway in renal macrophages is regulated by miR-132 via inhibition of the hydrolytic activity of cholinesterase to alleviate inflammatory response, which may play a role in the prevention and treatment of kidney injury caused by hemorrhagic shock.
Collapse
Affiliation(s)
- Ming Wu
- Department of Critical Care Medicine of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Nana Li
- HeNan Key Laboratory of Medical Tissue Regeneration XinXiang Medical University, Henan province, 453000, China
| | - Ji Xu
- Department of Central laboratory of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Lefeng Wu
- Department of Critical Care Medicine of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Mingli Li
- Department of interventional therapy of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Huansheng Tong
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China
| | - Feng Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China
| | - Wenlan Liu
- Department of Central laboratory of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Yongwen Feng
- Department of Critical Care Medicine of Shengzhen Second Hospital, Shenzhen, 518035, China
| |
Collapse
|
44
|
Dong W, Zhang M, Zhu Y, Chen Y, Zhao X, Li R, Zhang L, Ye Z, Liang X. Protective effect of NSA on intestinal epithelial cells in a necroptosis model. Oncotarget 2017; 8:86726-86735. [PMID: 29156831 PMCID: PMC5689721 DOI: 10.18632/oncotarget.21418] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Objective This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). Methods 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF-α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. Results In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF-α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF-α and Z-VAD-fmk. Conclusion NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD.
Collapse
Affiliation(s)
- Wei Dong
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Min Zhang
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuanhan Chen
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingchen Zhao
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruizhao Li
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Zhang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingling Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
45
|
Wessler IK, Kirkpatrick CJ. Non-neuronal acetylcholine involved in reproduction in mammals and honeybees. J Neurochem 2017; 142 Suppl 2:144-150. [PMID: 28072454 DOI: 10.1111/jnc.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 01/25/2023]
Abstract
Bacteria and archaea synthesize acetylcholine (ACh). Thus, it can be postulated that ACh was created by nature roughly three billion years ago. Therefore, the wide expression of ACh in nature (i.e., in bacteria, archaea, unicellular organisms, plants, fungi, non-vertebrates and vertebrates and in the abundance of non-neuronal cells of mammals) is not surprising. The term non-neuronal ACh and non-neuronal cholinergic system have been introduced to describe the auto- and paracrine, that is, local regulatory actions of ACh in cells not innervated by neuronal cholinergic fibers and to communicate among themselves. In this way non-neuronal ACh binds to the nicotinic or muscarinic receptors expressed on these local and migrating cells and modulates basic cells functions such as proliferation, differentiation, migration and the transport of ions and water. The present article is focused to the effects of non-neuronal ACh linked to reproduction; data on the expression and function of the non-neuronal cholinergic system in the following topics are summarized: (i) Sperm, granulosa cells, oocytes; (ii) Auxiliary systems (ovary, oviduct, placenta); (iii) Embryonic stem cells as first step for reproduction of a new individual after fertilization; (iv) Larval food as an example of reproduction in insects (honeybees) and adverse effects of the neonicotinoids, a class of world-wide applied insecticides. The review article will show that non-neuronal ACh is substantially involved in the regulation of reproduction in mammals and also non-mammals like insects (honeybees). There is a need to learn more about this biological role of ACh. In particular, we have to consider that insecticides like the neonicotinoids, but also carbamates and organophosphorus pesticides, interfere with the non-neuronal cholinergic system thus compromising for example the breeding of honeybees. But it is possible that other species may also be adversely affected as well, a mechanism which may contribute to the observed decline in biodiversity. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Ignaz Karl Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Charles James Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
46
|
Piccinno M, Rizzo A, Cariello G, Sciorsci RL. Effect of neostigmine on contractility of equine pre-ovulatory follicles: An in vitro study. Theriogenology 2017; 90:74-77. [PMID: 28166991 DOI: 10.1016/j.theriogenology.2016.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/18/2016] [Accepted: 11/26/2016] [Indexed: 11/18/2022]
Abstract
In this study, the Authors investigated the modulatory effect of three single doses (10-6, 10-5, and 10-4 M) of neostigmine on the spontaneous contractility of equine pre-ovulatory follicles in an isolated organ bath, to establish the relationship between this acetylcholinesterase inhibitor and ovulation, in the mare. The results indicate that neostigmine increases pre-ovulatory contractility in equine follicles at each dose, but in a different manner. Indeed, the rise in contractility induced by neostigmine at 10-6 M and 10-4 M was phasic, while at 10-5 M it was tonic. The data obtained indicate possible implications of these drugs in the pharmacological modulation of equine ovulation.
Collapse
Affiliation(s)
- M Piccinno
- Department of Emergency and Organ Transplantation, Section of Veterinary Medicine and Animal Production, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - A Rizzo
- Department of Emergency and Organ Transplantation, Section of Veterinary Medicine and Animal Production, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - G Cariello
- ASL, Specialist Agreement, Siav, Putignano, Bari, Italy
| | - R L Sciorsci
- Department of Emergency and Organ Transplantation, Section of Veterinary Medicine and Animal Production, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy.
| |
Collapse
|
47
|
Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain. G3-GENES GENOMES GENETICS 2016; 6:2847-56. [PMID: 27412987 PMCID: PMC5015942 DOI: 10.1534/g3.116.032961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Parasitic worms of the genus Trichinella (phylum Nematoda; class Enoplea) represent a complex of at least twelve taxa that infect a range of different host animals, including humans, around the world. They are foodborne, intracellular nematodes, and their life cycles differ substantially from those of other nematodes. The recent characterization of the genomes and transcriptomes of all twelve recognized taxa of Trichinella now allows, for the first time, detailed studies of their molecular biology. In the present study, we defined, curated, and compared the protein kinase complements (kinomes) of Trichinella spiralis and T. pseudospiralis using an integrated bioinformatic workflow employing transcriptomic and genomic data sets. We examined how variation in the kinome might link to unique aspects of Trichinella morphology, biology, and evolution. Furthermore, we utilized in silico structural modeling to discover and characterize a novel, MOS-like kinase with an unusual, previously undescribed N-terminal domain. Taken together, the present findings provide a basis for comparative investigations of nematode kinomes, and might facilitate the identification of Enoplea-specific intervention and diagnostic targets. Importantly, the in silico modeling approach assessed here provides an exciting prospect of being able to identify and classify currently unknown (orphan) kinases, as a foundation for their subsequent structural and functional investigation.
Collapse
|
48
|
Urra J, Blohberger J, Tiszavari M, Mayerhofer A, Lara HE. In vivo blockade of acetylcholinesterase increases intraovarian acetylcholine and enhances follicular development and fertility in the rat. Sci Rep 2016; 6:30129. [PMID: 27440195 PMCID: PMC4954984 DOI: 10.1038/srep30129] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Abstract
Growth and differentiation of ovarian follicles are regulated by systemic and local factors, which may include acetylcholine (ACh). Granulosa cells (GCs) of growing follicles and luteal cells produce ACh and in cultured GCs it exerts trophic actions via muscarinic receptors. However, such actions were not studied in vivo. After having established that rat ovarian GCs and luteal cells express the ACh-metabolizing enzyme ACh esterase (AChE), we examined the consequences of local application of an AChE inhibitor, huperzine A (HupA), by osmotic minipump delivery into the ovarian bursa of hemiovariectomized rats. Saline was used in the control group. Local delivery of HupA for 4 weeks increased ovarian ACh content. Estrus cyclicity was not changed indicating a locally restricted range of HupA action. The number of primordial and primary follicles was unaffected, but small secondary follicles significantly increased in the HupA group. Furthermore, a significant increase in the number of corpora lutea suggested increased ovulatory events. In support, as shown upon mating, HupA-treated females had significantly increased implantation sites and more pups. Thus the data are in support of a trophic role of ACh in follicular development and ovulation and point to an important role of ACh in female fertility.
Collapse
Affiliation(s)
- Javier Urra
- Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, 8380492 Independencia, Santiago, Chile
| | - Jan Blohberger
- BMC, Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), 82152 Planegg, Germany
| | - Michelle Tiszavari
- Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, 8380492 Independencia, Santiago, Chile
| | - Artur Mayerhofer
- BMC, Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), 82152 Planegg, Germany
| | - Hernan E Lara
- Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, 8380492 Independencia, Santiago, Chile
| |
Collapse
|
49
|
Zhang J, Yang Y, He W, Sun L. Necrosome core machinery: MLKL. Cell Mol Life Sci 2016; 73:2153-63. [PMID: 27048809 PMCID: PMC11108342 DOI: 10.1007/s00018-016-2190-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
In the study of regulated cell death, the rapidly expanding field of regulated necrosis, in particular necroptosis, has been drawing much attention. The signaling of necroptosis represents a sophisticated form of a death pathway. Anti-caspase mechanisms (e.g., using inhibitors of caspases, or genetic ablation of caspase-8) switch cell fate from apoptosis to necroptosis. The initial extracellular death signals regulate RIP1 and RIP3 kinase activation. The RIP3-associated death complex assembly is necessary and sufficient to initiate necroptosis. MLKL was initially identified as an essential mediator of RIP1/RIP3 kinase-initiated necroptosis. Recent studies on the signal transduction using chemical tools and biomarkers support the idea that MLKL is able to make more functional sense for the core machinery of the necroptosis death complex, called the necrosome, to connect to the necroptosis execution. The experimental data available now have pointed that the activated MLKL forms membrane-disrupting pores causing membrane leakage, which extends the prototypical concept of morphological and biochemical events following necroptosis happening in vivo. The key role of MLKL in necroptosis signaling thus sheds light on the logic underlying this unique "membrane-explosive" cell death pathway. In this review, we provide the general concepts and strategies that underlie signal transduction of this form of cell death, and then focus specifically on the role of MLKL in necroptosis.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Yu Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Wenyan He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Liming Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China.
| |
Collapse
|
50
|
Vanden Berghe T, Hassannia B, Vandenabeele P. An outline of necrosome triggers. Cell Mol Life Sci 2016; 73:2137-52. [PMID: 27052312 PMCID: PMC4887535 DOI: 10.1007/s00018-016-2189-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/09/2023]
Abstract
Necroptosis was initially identified as a backup cell death program when apoptosis is blocked. However, it is now recognized as a cellular defense mechanism against infections and is presumed to be a detrimental factor in several pathologies driven by cell death. Necroptosis is a prototypic form of regulated necrosis that depends on activation of the necrosome, which is a protein complex in which receptor interacting protein kinase (RIPK) 3 is activated. The RIP homotypic interaction motif (RHIM) is the core domain that regulates activation of the necrosome. To date, three RHIM-containing proteins have been reported to activate the kinase activity of RIPK3 within the necrosome: RIPK1, Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF), and DNA-dependent activator of interferon regulatory factors (DAI). Here, we review and discuss commonalities and differences of the increasing number of activators of the necrosome. Since the discovery that activation of mixed lineage kinase domain-like (MLKL) by RIPK3 kinase activity is crucial in necroptosis, interest has increased in monitoring and therapeutically targeting their activation. The availability of new phospho-specific antibodies, pharmacologic inhibitors, and transgenic models will allow us to further document the role of necroptosis in degenerative, inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- Inflammation Research Center, VIB, 9000, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| | - Behrouz Hassannia
- Inflammation Research Center, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, Department of Physiology, Ghent University, 9000, Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, 9000, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|