1
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
2
|
Günther M, Dabare S, Fuchs J, Gunesch S, Hofmann J, Decker M, Culmsee C. Flavonoid-Phenolic Acid Hybrids Are Potent Inhibitors of Ferroptosis via Attenuation of Mitochondrial Impairment. Antioxidants (Basel) 2023; 13:44. [PMID: 38247469 PMCID: PMC10812788 DOI: 10.3390/antiox13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cinnamic acid, ferulic acid, and the flavonoids quercetin and taxifolin (dihydroquercetin) are naturally occurring compounds found in plants. They are often referred to as polyphenols and are known, among others, for their pharmacological effects supporting health through the inhibition of aging processes and oxidative stress. To improve their bioavailability, pharmacological activities, and safety, the creation of novel flavonoid-phenolic acid hybrids is an area of active research. Previous work showed that such hybridization products of phenolic acids and flavonoids enhanced the resilience of neuronal cells against oxidative stress in vitro, and attenuated cognitive impairment in a mouse model of Alzheimer's disease (AD) in vivo. Notably, the therapeutic effects of the hybrid compounds we obtained were more pronounced than the protective activities of the respective individual components. The underlying mechanisms mediated by the flavonoid-phenolic acid hybrids, however, remained unclear and may differ from the signaling pathways activated by the originating structures of the respective individual phenolic acids or flavonoids. In this study, we characterized the effects of four previously described potent flavonoid-phenolic acid hybrids in models of oxidative cell death through ferroptosis. Ferroptosis is a type of iron-dependent regulated cell death characterized by lipid peroxidation and mitochondrial ROS generation and has been linked to neurodegenerative conditions. In models of ferroptosis induced by erastin or RSL3, we analyzed mitochondrial (lipid) peroxidation, mitochondrial membrane integrity, and Ca2+ regulation. Our results demonstrate the strong protective effects of the hybrid compounds against ROS formation in the cytosol and mitochondria. Importantly, these protective effects against ferroptosis were not mediated by radical scavenging activities of the phenolic hybrid compounds but through inhibition of mitochondrial complex I activity and reduced mitochondrial respiration. Our data highlight the effects of flavonoid-phenolic acid hybrids on mitochondrial metabolism and further important mitochondrial parameters that collectively determine the health and functionality of mitochondria with a high impact on the integrity and survival of the neuronal cells.
Collapse
Affiliation(s)
- Madeline Günther
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
| | - Samentha Dabare
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Jennifer Fuchs
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| |
Collapse
|
3
|
Hao XN, Zhao N, Huang JM, Li SY, Wei D, Pu N, Peng GH, Tao Y. Intravitreal Injection of ZYAN1 Restored Autophagy and Alleviated Oxidative Stress in Degenerating Retina via the HIF-1α/BNIP3 Pathway. Antioxidants (Basel) 2023; 12:1914. [PMID: 38001767 PMCID: PMC10669006 DOI: 10.3390/antiox12111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial autophagy plays a contributary role in the pathogenesis of retina degeneration (RD). ZYAN1 is a novel proline hydroxylase domain (PHD) inhibitor that can enhance the expression of hypoxia-inducible factor 1-alpha (HIF-1α). This study investigated whether ZYAN1 could alleviate progressive photoreceptor loss and oxidative damage in a pharmacologically induced RD model via the modulation of mitophagy. ZYAN1 was injected into the vitreous body of the RD model, and the retinal autophagy level was analyzed. The therapeutic effects of ZYAN1 were evaluated via a function examination, a morphological assay, in situ reactive oxygen species (ROS) detection, and an immunofluorescence assay. It was shown that the thickness of the outer nuclear layer (ONL) increased significantly, and visual function was efficiently preserved via ZYAN1 treatment. The mitochondria structure of photoreceptors was more complete in the ZYAN1-treated mice, and the number of autophagosomes also increased significantly. Membrane disc shedding and ROS overproduction were alleviated after ZYAN1 treatment, and the axonal cilia were more structurally intact. A Western blot analysis showed that the expression levels of the autophagy-related proteins LC3-B, Beclin-1, and ATG5 increased significantly after ZYAN1 treatment, while the expression of P62 was down-regulated. Moreover, the expression levels of HIF-1α and BNIP3 were up-regulated after ZYAN1 treatment. Therefore, an intravitreal injection of ZYAN1 can act as part of the pharmacologic strategy to modulate mitophagy and alleviate oxidative stress in RD. These findings enrich our knowledge of RD pathology and provide insights for the discovery of a therapeutic molecule.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guang-Hua Peng
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; (X.-N.H.); (N.Z.); (J.-M.H.); (S.-Y.L.); (D.W.); (N.P.)
| | - Ye Tao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; (X.-N.H.); (N.Z.); (J.-M.H.); (S.-Y.L.); (D.W.); (N.P.)
| |
Collapse
|
4
|
Rosiewicz KS, Muinjonov B, Kunz S, Radbruch H, Chen J, Jüttner R, Kerkering J, Ucar J, Crowley T, Wielockx B, Paul F, Alisch M, Siffrin V. HIF prolyl hydroxylase 2/3 deletion disrupts astrocytic integrity and exacerbates neuroinflammation. Glia 2023. [PMID: 37140003 DOI: 10.1002/glia.24380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Astrocytes constitute the parenchymal border of the blood-brain barrier (BBB), modulate the exchange of soluble and cellular elements, and are essential for neuronal metabolic support. Thus, astrocytes critically influence neuronal network integrity. In hypoxia, astrocytes upregulate a transcriptional program that has been shown to boost neuroprotection in several models of neurological diseases. We investigated transgenic mice with astrocyte-specific activation of the hypoxia-response program by deleting the oxygen sensors, HIF prolyl-hydroxylase domains 2 and 3 (Phd2/3). We induced astrocytic Phd2/3 deletion after onset of clinical signs in experimental autoimmune encephalomyelitis (EAE) that led to an exacerbation of the disease mediated by massive immune cell infiltration. We found that Phd2/3-ko astrocytes, though expressing a neuroprotective signature, exhibited a gradual loss of gap-junctional Connexin-43 (Cx43), which was induced by vascular endothelial growth factor-alpha (Vegf-a) expression. These results provide mechanistic insights into astrocyte biology, their critical role in hypoxic states, and in chronic inflammatory CNS diseases.
Collapse
Affiliation(s)
- Kamil Sebastian Rosiewicz
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bakhrom Muinjonov
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Séverine Kunz
- Technology Platform for Electron Microscopy, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin., Berlin, Germany
| | - Jessy Chen
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin Berlin., Berlin, Germany
| | - René Jüttner
- Neuromuscular and Cardiovascular Cell Biology Group, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Janis Kerkering
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Julia Ucar
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Tadhg Crowley
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden., Dresden, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marlen Alisch
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Volker Siffrin
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin und Max Delbrück Center or Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin Berlin., Berlin, Germany
| |
Collapse
|
5
|
Thiamine insufficiency induces Hypoxia Inducible Factor-1α as an upstream mediator for neurotoxicity and AD-like pathology. Mol Cell Neurosci 2022; 123:103785. [PMID: 36241022 DOI: 10.1016/j.mcn.2022.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Insufficiencies of the micronutrient thiamine (Vitamin B1) have been associated with inducing Alzheimer's disease (AD)-like neuropathology. The hypometabolic state associated with chronic thiamine insufficiency (TI) has been demonstrated to be a contributor towards the development of amyloid plaque deposition and neurotoxicity. However, the molecular mechanism underlying TI induced AD pathology is still unresolved. Previously, we have established that TI stabilizes the metabolic stress transcriptional factor, Hypoxia Inducible Factor-1α (HIF1α). Utilizing neuronal hippocampal cells (HT22), TI-induced HIF1α activation triggered the amyloidogenic cascade through transcriptional expression and increased activity of β-secretase (BACE1). Knockdown and pharmacological inhibition of HIF1α during TI significantly reduced BACE1 and C-terminal Fragment of 99 amino acids (C99) formation. TI also increased the expression of the HIF1α regulated pro-apoptotic protein, BCL2/adenovirus E1B 19 kDa protein-interacting protein (BNIP3). Correspondingly, cell toxicity during TI conditions was significantly reduced with HIF1α and BNIP3 knockdown. The role of BNIP3 in TI-mediated toxicity was further highlighted by localization of dimeric BNIP3 into the mitochondria and nuclear accumulation of Endonuclease G. Subsequently, TI decreased mitochondrial membrane potential and enhanced chromatin fragmentation. However, cell toxicity via the HIF1α/BNIP3 cascade required TI induced oxidative stress. HIF1α, BACE1 and BNIP3 expression was induced in 3xTg-AD mice after TI and administration with the HIF1α inhibitor YC1 significantly attenuated HIF1α and target genes levels in vivo. Overall, these findings demonstrate a critical stress response during TI involving the induction of HIF1α transcriptional activity that directly promotes neurotoxicity and AD-like pathology.
Collapse
|
6
|
Navarrete C, García-Martín A, Correa-Sáez A, Prados ME, Fernández F, Pineda R, Mazzone M, Álvarez-Benito M, Calzado MA, Muñoz E. A cannabidiol aminoquinone derivative activates the PP2A/B55α/HIF pathway and shows protective effects in a murine model of traumatic brain injury. J Neuroinflammation 2022; 19:177. [PMID: 35810304 PMCID: PMC9270745 DOI: 10.1186/s12974-022-02540-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by a primary mechanical injury and a secondary injury associated with neuroinflammation, blood-brain barrier (BBB) disruption and neurodegeneration. We have developed a novel cannabidiol aminoquinone derivative, VCE-004.8, which is a dual PPARγ/CB2 agonist that also activates the hypoxia inducible factor (HIF) pathway. VCE-004.8 shows potent antifibrotic, anti-inflammatory and neuroprotective activities and it is now in Phase II clinical trials for systemic sclerosis and multiple sclerosis. Herein, we investigated the mechanism of action of VCE-004.8 in the HIF pathway and explored its efficacy in a preclinical model of TBI. METHODS Using a phosphoproteomic approach, we investigated the effects of VCE-004.8 on prolyl hydroxylase domain-containing protein 2 (PHD2) posttranslational modifications. The potential role of PP2A/B55α in HIF activation was analyzed using siRNA for B55α. To evaluate the angiogenic response to the treatment with VCE-004.8 we performed a Matrigel plug in vivo assay. Transendothelial electrical resistance (TEER) as well as vascular cell adhesion molecule 1 (VCAM), and zonula occludens 1 (ZO-1) tight junction protein expression were studied in brain microvascular endothelial cells. The efficacy of VCE-004.8 in vivo was evaluated in a controlled cortical impact (CCI) murine model of TBI. RESULTS Herein we provide evidence that VCE-004.8 inhibits PHD2 Ser125 phosphorylation and activates HIF through a PP2A/B55α pathway. VCE-004.8 induces angiogenesis in vivo increasing the formation of functional vessel (CD31/α-SMA) and prevents in vitro blood-brain barrier (BBB) disruption ameliorating the loss of ZO-1 expression under proinflammatory conditions. In CCI model VCE-004.8 treatment ameliorates early motor deficits after TBI and attenuates cerebral edema preserving BBB integrity. Histopathological analysis revealed that VCE-004.8 treatment induces neovascularization in pericontusional area and prevented immune cell infiltration to the brain parenchyma. In addition, VCE-004.8 attenuates neuroinflammation and reduces neuronal death and apoptosis in the damaged area. CONCLUSIONS This study provides new insight about the mechanism of action of VCE-004.8 regulating the PP2A/B55α/PHD2/HIF pathway. Furthermore, we show the potential efficacy for TBI treatment by preventing BBB disruption, enhancing angiogenesis, and ameliorating neuroinflammation and neurodegeneration after brain injury.
Collapse
Affiliation(s)
| | | | - Alejandro Correa-Sáez
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Francisco Fernández
- FEA Radiodiagnóstico, Sección de Neurorradiología Diagnóstica. Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Pineda
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB-KULeuven, 3000, Louvain, Belgium
| | - Marina Álvarez-Benito
- Unidad de Radiodiagnóstico Y Cáncer de Mama, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA. .,Maimonides Biomedical Research Institute of Córdoba, University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Cellular Biology, Physiology and Immunology Department, University of Cordoba, Córdoba, Spain. .,Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
7
|
Sonoda K, Bogahawatta S, Katayama A, Ujike S, Kuroki S, Kitagawa N, Hirotsuru K, Suzuki N, Miyata T, Kawaguchi SI, Tsujita T. Prolyl Hydroxylase Domain Protein Inhibitor Not Harboring a 2-Oxoglutarate Scaffold Protects against Hypoxic Stress. ACS Pharmacol Transl Sci 2022; 5:362-372. [PMID: 35592438 PMCID: PMC9112412 DOI: 10.1021/acsptsci.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia-inducible factor-α (HIF-α) activation has shown promising results in the treatment of ischemia, such as stroke, myocardial infarction, and chronic kidney disease. A number of HIF-α activators have been developed to improve the symptoms of these diseases. Many feature 2-oxoglutarate (2-OG) scaffolds that interact with the active centers of prolyl hydroxylase domain-containing proteins (PHDs), displacing the coenzyme 2-OG. This stabilizes HIF-α. Therefore, the specificity of the 2-OG analogs is not high. Here, we identified 5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (PyrzA) among over 10 000 compounds as a novel HIF activator that does not contain a 2-OG scaffold. In cultured cells, PyrzA enhanced HIF-α stability and upregulated the expression of HIF target genes. Interestingly, PyrzA decreased HIF-1α prolyl hydroxylation, suggesting that PyrzA may activate HIF to prevent the degradation of HIF-α. These results indicate that PyrzA stabilizes HIF via a novel mechanism and could be a potential HIF activator candidate.
Collapse
Affiliation(s)
- Kento Sonoda
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Sudarma Bogahawatta
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Akito Katayama
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Saki Ujike
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Sae Kuroki
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Naho Kitagawa
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Kohichi Hirotsuru
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aobaku, Sendai, Miyagi 980-8575, Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
8
|
Musheshe N, Oun A, Sabogal-Guáqueta AM, Trombetta-Lima M, Mitchel SC, Adzemovic A, Speek O, Morra F, van der Veen CHJT, Lezoualc’h F, Cheng X, Schmidt M, Dolga AM. Pharmacological Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants (Basel) 2022; 11:antiox11020314. [PMID: 35204198 PMCID: PMC8868285 DOI: 10.3390/antiox11020314] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Exchange proteins directly activated by cAMP (Epac) proteins are implicated in a wide range of cellular functions including oxidative stress and cell survival. Mitochondrial-dependent oxidative stress has been associated with progressive neuronal death underlying the pathology of many neurodegenerative diseases. The role of Epac modulation in neuronal cells in relation to cell survival and death, as well as its potential effect on mitochondrial function, is not well established. In immortalized hippocampal (HT-22) neuronal cells, we examined mitochondria function in the presence of various Epac pharmacological modulators in response to oxidative stress due to ferroptosis. Our study revealed that selective pharmacological modulation of Epac1 or Epac2 isoforms, exerted differential effects in erastin-induced ferroptosis conditions in HT-22 cells. Epac1 inhibition prevented cell death and loss of mitochondrial integrity induced by ferroptosis, while Epac2 inhibition had limited effects. Our data suggest Epac1 as a plausible therapeutic target for preventing ferroptosis cell death associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nshunge Musheshe
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| | - Asmaa Oun
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Sarah C. Mitchel
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Ahmed Adzemovic
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Oliver Speek
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Francesca Morra
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Christina H. J. T. van der Veen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
| | - Frank Lezoualc’h
- Inserm UMR-1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse Paul Sabatier, 31400 Toulouse, France;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX 7000, USA;
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Groningen Research Institute of Asthma and COPD (GRIAC), Groningen Research Institute of Pharmacy (GRIP), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.O.); (A.M.S.-G.); (M.T.-L.); (S.C.M.); (A.A.); (O.S.); (F.M.); (C.H.J.T.v.d.V.); (M.S.)
- Correspondence: (N.M.); (A.M.D.)
| |
Collapse
|
9
|
Poloznikov AA, Nikulin SV, Hushpulian DM, Khristichenko AY, Osipyants AI, Asachenko AF, Shurupova OV, Savin SS, Lee SH, Gaisina IN, Thatcher GRJ, Narciso A, Chang EP, Kazakov SV, Krucher N, Tishkov VI, Thomas B, Gazaryan IG. Structure-Activity Relationships and Transcriptomic Analysis of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors. Antioxidants (Basel) 2022; 11:220. [PMID: 35204103 PMCID: PMC8868400 DOI: 10.3390/antiox11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
To evaluate the differences in action of commercially available 2-oxoglutarate mimetics and "branched-tail" oxyquinoline inhibitors of hypoxia-inducible factor prolyl hydroxylase (HIF PHD), the inhibitors' IC50 values in the activation of HIF1 ODD-luciferase reporter were selected for comparative transcriptomics. Structure-activity relationship and computer modeling for the oxyquinoline series of inhibitors led to the identification of novel inhibitors, which were an order of magnitude more active in the reporter assay than roxadustat and vadadustat. Unexpectedly, 2-methyl-substitution in the oxyquinoline core of the best HIF PHD inhibitor was found to be active in the reporter assay and almost equally effective in the pretreatment paradigm of the oxygen-glucose deprivation in vitro model. Comparative transcriptomic analysis of the signaling pathways induced by HIF PHD inhibitors showed high potency of the two novel oxyquinoline inhibitors (#4896-3249 and #5704-0720) at 2 μM concentrations matching the effect of 30 μM roxadustat and 500 μM dimethyl oxalyl glycine in inducing HIF1 and HIF2-linked pathways. The two oxyquinoline inhibitors exerted the same activation of HIF-triggered glycolytic pathways but opposite effects on signaling pathways linked to alternative substrates of HIF PHD 1 and 3, such as p53, NF-κB, and ATF4. This finding can be interpreted as the specificity of the 2-methyl-substitute variant for HIF PHD2.
Collapse
Affiliation(s)
- Andrey A. Poloznikov
- Faculty of Biology and Biotechnologies, Higher School of Economics, 101000 Moscow, Russia; (A.A.P.); (S.V.N.)
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, 101000 Moscow, Russia; (A.A.P.); (S.V.N.)
| | - Dmitry M. Hushpulian
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Anna Yu. Khristichenko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (A.Y.K.); (A.I.O.)
| | - Andrey I. Osipyants
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (A.Y.K.); (A.I.O.)
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia; (A.F.A.); (O.V.S.)
| | - Olga V. Shurupova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia; (A.F.A.); (O.V.S.)
| | - Svyatoslav S. Savin
- Department of Chemical Enzymology, Chemistry Faculty, M. V. Lomonosov Moscow State University, 119192 Moscow, Russia; (S.S.S.); (V.I.T.)
| | - Sue H. Lee
- Department of Pharmaceutical Sciences and UICentre, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA; (S.H.L.); (I.N.G.)
| | - Irina N. Gaisina
- Department of Pharmaceutical Sciences and UICentre, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA; (S.H.L.); (I.N.G.)
| | - Gregory R. J. Thatcher
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA;
| | - Anthony Narciso
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Eric P. Chang
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Sergey V. Kazakov
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Nancy Krucher
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Vladimir I. Tishkov
- Department of Chemical Enzymology, Chemistry Faculty, M. V. Lomonosov Moscow State University, 119192 Moscow, Russia; (S.S.S.); (V.I.T.)
- A.N. Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Departments of Pediatrics, Neuroscience and Drug Discovery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Irina G. Gazaryan
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| |
Collapse
|
10
|
Hoffmann L, Waclawczyk MS, Tang S, Hanschmann EM, Gellert M, Rust MB, Culmsee C. Cofilin1 oxidation links oxidative distress to mitochondrial demise and neuronal cell death. Cell Death Dis 2021; 12:953. [PMID: 34657120 PMCID: PMC8520533 DOI: 10.1038/s41419-021-04242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022]
Abstract
Many cell death pathways, including apoptosis, regulated necrosis, and ferroptosis, are relevant for neuronal cell death and share common mechanisms such as the formation of reactive oxygen species (ROS) and mitochondrial damage. Here, we present the role of the actin-regulating protein cofilin1 in regulating mitochondrial pathways in oxidative neuronal death. Cofilin1 deletion in neuronal HT22 cells exerted increased mitochondrial resilience, assessed by quantification of mitochondrial ROS production, mitochondrial membrane potential, and ATP levels. Further, cofilin1-deficient cells met their energy demand through enhanced glycolysis, whereas control cells were metabolically impaired when challenged by ferroptosis. Further, cofilin1 was confirmed as a key player in glutamate-mediated excitotoxicity and associated mitochondrial damage in primary cortical neurons. Using isolated mitochondria and recombinant cofilin1, we provide a further link to toxicity-related mitochondrial impairment mediated by oxidized cofilin1. Our data revealed that the detrimental impact of cofilin1 on mitochondria depends on the oxidation of cysteine residues at positions 139 and 147. Overall, our findings show that cofilin1 acts as a redox sensor in oxidative cell death pathways of ferroptosis, and also promotes glutamate excitotoxicity. Protective effects by cofilin1 inhibition are particularly attributed to preserved mitochondrial integrity and function. Thus, interfering with the oxidation and pathological activation of cofilin1 may offer an effective therapeutic strategy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lena Hoffmann
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Marcel S Waclawczyk
- Department of Neurology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Stephan Tang
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Eva-Maria Hanschmann
- Department of Neurology, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Marco B Rust
- Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany.,Molecular Neurobiology Group, Institute of Physiological Chemistry, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany.,DFG Research Training Group "Membrane Plasticity in Tissue Development and Remodeling", GRK 2213, University of Marburg, 35032, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Karl-von Frisch Straße 2, 35043, Marburg, Germany. .,Center for Mind, Brain and Behavior-CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany. .,Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Wei GZ, Saraswat Ohri S, Khattar NK, Listerman AW, Doyle CH, Andres KR, Karuppagounder SS, Ratan RR, Whittemore SR, Hetman M. Hypoxia-inducible factor prolyl hydroxylase domain (PHD) inhibition after contusive spinal cord injury does not improve locomotor recovery. PLoS One 2021; 16:e0249591. [PMID: 33819286 PMCID: PMC8021188 DOI: 10.1371/journal.pone.0249591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological condition that involves both primary and secondary tissue loss. Various cytotoxic events including hypoxia, hemorrhage and blood lysis, bioenergetic failure, oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation contribute to secondary injury. The HIF prolyl hydroxylase domain (PHD/EGLN) family of proteins are iron-dependent, oxygen-sensing enzymes that regulate the stability of hypoxia inducible factor-1α (HIF-1α) and also mediate oxidative stress caused by free iron liberated from the lysis of blood. PHD inhibition improves outcome after experimental intracerebral hemorrhage (ICH) by reducing activating transcription factor 4 (ATF4)-driven neuronal death. As the ATF4-CHOP (CCAAT-enhancer-binding protein homologous protein) pathway plays a role in the pathogenesis of contusive SCI, we examined the effects of PHD inhibition in a mouse model of moderate T9 contusive SCI in which white matter damage is the primary driver of locomotor dysfunction. Pharmacological inhibition of PHDs using adaptaquin (AQ) moderately lowers acute induction of Atf4 and Chop mRNAs and prevents the acute decline of oligodendrocyte (OL) lineage mRNAs, but does not improve long-term recovery of hindlimb locomotion or increase chronic white matter sparing. Conditional genetic ablation of all three PHD isoenzymes in OLs did not affect Atf4, Chop or OL mRNAs expression levels, locomotor recovery, and white matter sparing after SCI. Hence, PHDs may not be suitable targets to improve outcomes in traumatic CNS pathologies that involve acute white matter injury.
Collapse
Affiliation(s)
- George Z Wei
- University of Louisville School of Medicine, Louisville, Kentucky, United States of America.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Nicolas K Khattar
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Adam W Listerman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Catherine H Doyle
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Saravanan S Karuppagounder
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY, United States of America.,Feil Family Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, United States of America
| | - Rajiv R Ratan
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Neurological Institute, White Plains, NY, United States of America.,Feil Family Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, United States of America
| | - Scott R Whittemore
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Michal Hetman
- University of Louisville School of Medicine, Louisville, Kentucky, United States of America.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.,Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America.,Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States of America
| |
Collapse
|
12
|
Gao X, Li S, Cong C, Wang Y, Xu L. A Network Pharmacology Approach to Estimate Potential Targets of the Active Ingredients of Epimedium for Alleviating Mild Cognitive Impairment and Treating Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2302680. [PMID: 33574879 PMCID: PMC7861915 DOI: 10.1155/2021/2302680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The present study made use of a network pharmacological approach to evaluate the mechanisms and potential targets of the active ingredients of Epimedium for alleviating mild cognitive impairment (MCI) and treating Alzheimer's disease (AD). METHODS The active ingredients of Epimedium were acquired from the Traditional Chinese Medicine System Pharmacology database, and potential targets were predicted using the TCMSP target module, SwissTargetPrediction, and PharmMapper database. Target proteins correlating with MCI and AD were downloaded from the GeneCards, DisGeNet, and OMIM databases. The common targets of Epimedium, MCI, and AD were identified using the Jvenn online tool, and a protein-protein interaction (PPI) network was constructed using the String database and Cytoscape. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the common targets was performed using DAVID, and molecular docking between active ingredients and target genes was modeled using AutoDock Vina. RESULTS A total of 20 active ingredients were analyzed, and 337 compound-related targets were identified for Epimedium. Out of 236 proteins associated with MCI and AD, 54 overlapped with the targets of Epimedium. The top 30 interacting proteins in this set were ranked by topological analysis. GO and KEGG enrichment analysis suggested that the common targets participated in diverse biological processes and pathways, including cell proliferation and apoptosis, inflammatory response, signal transduction, and protein phosphorylation through cancer pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, sphingolipid signaling pathway, FoxO signaling pathway, and TNF signaling pathway. Molecular docking analysis suggested that the 20 active ingredients could bind to the top 5 protein targets. CONCLUSIONS The present study provides theoretical evidence for in-depth analysis of the mechanisms and molecular targets by which Epimedium protects against MCI, AD, and other neurodegenerative diseases and lays the foundation for pragmatic clinical applications and potential new drug development.
Collapse
Affiliation(s)
- Xianwei Gao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengnan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chao Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuejiao Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lianwei Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
13
|
Takemura K, Nishi H, Inagi R. Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Front Physiol 2020; 11:565023. [PMID: 33013483 PMCID: PMC7500155 DOI: 10.3389/fphys.2020.565023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, there has been an increased focus on the influences of mitochondrial dysfunction on various pathologies. Mitochondria are major intracellular organelles with a variety of critical roles, such as adenosine triphosphate production, metabolic modulation, generation of reactive oxygen species, maintenance of intracellular calcium homeostasis, and the regulation of apoptosis. Moreover, mitochondria are attracting attention as a therapeutic target in several diseases. Additionally, a lot of existing agents have been found to have pharmacological effects on mitochondria. This review provides an overview of the mitochondrial change in the kidney and skeletal muscle, which is often complicated with sarcopenia and chronic kidney disease (CKD). Furthermore, the pharmacological effects of therapeutics for CKD on mitochondria are explored.
Collapse
Affiliation(s)
- Koji Takemura
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Savyuk M, Krivonosov M, Mishchenko T, Gazaryan I, Ivanchenko M, Khristichenko A, Poloznikov A, Hushpulian D, Nikulin S, Tonevitsky E, Abuzarova G, Mitroshina E, Vedunova M. Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model. Antioxidants (Basel) 2020; 9:E662. [PMID: 32722310 PMCID: PMC7463909 DOI: 10.3390/antiox9080662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023] Open
Abstract
A novel potent analog of the branched tail oxyquinoline group of hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors, neuradapt, has been studied in two treatment regimes in an in vitro hypoxia model on murine primary hippocampal cultures. Neuradapt activates the expression of HIF1 and HIF2 target genes and shows no toxicity up to 20 μM, which is more than an order of magnitude higher than its biologically active concentration. Cell viability, functional activity, and network connectivity between the elements of neuronal networks have been studied using a pairwise correlation analysis of the intracellular calcium fluctuations in the individual cells. An immediate treatment with 1 μМ and 15 μМ neuradapt right at the onset of hypoxia not only protects from the death, but also maintains the spontaneous calcium activity in nervous cells at the level of the intact cultures. A similar neuroprotective effect in the post-treatment scenario is observed for 15 μМ, but not for 1 μМ neuradapt. Network connectivity is better preserved with immediate treatment using 1 μМ neuradapt than with 15 μМ, which is still beneficial. Post-treatment with neuradapt did not restore the network connectivity despite the observation that neuradapt significantly increased cell viability at 1 μМ and functional activity at 15 μМ. The preservation of cell viability and functional activity makes neuradapt promising for further studies in a post-treatment scenario, since it can be combined with other drugs and treatments restoring the network connectivity of functionally competent cells.
Collapse
Affiliation(s)
- Maria Savyuk
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Mikhail Krivonosov
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.K.); (M.I.)
| | - Tatiana Mishchenko
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Irina Gazaryan
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- Chemical Enzymology Department, Chemistry Faculty, M. V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Mikhail Ivanchenko
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.K.); (M.I.)
| | - Anna Khristichenko
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
| | - Andrey Poloznikov
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow 101000, Russia;
| | - Dmitry Hushpulian
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia
| | - Sergey Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow 101000, Russia;
| | - Evgeny Tonevitsky
- Development Fund of the Innovation Science and Technology Center “Mendeleev Valley”, Moscow 125480, Russia;
| | - Guzal Abuzarova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
| | - Elena Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Maria Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| |
Collapse
|
15
|
Mehrabani M, Nematollahi MH, Tarzi ME, Juybari KB, Abolhassani M, Sharifi AM, Paseban H, Saravani M, Mirzamohammadi S. Protective effect of hydralazine on a cellular model of Parkinson’s disease: a possible role of hypoxia-inducible factor (HIF)-1α. Biochem Cell Biol 2020; 98:405-414. [DOI: 10.1139/bcb-2019-0117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease accompanied by a low expression level of cerebral hypoxia-inducible factor (HIF-1α). Hence, activating the hypoxia-signaling pathway may be a favorable therapeutic approach for curing PD. This study explored the efficacy of hydralazine, a well-known antihypertensive agent, for restoring the impaired HIF-1 signaling in PD, with the aid of 6-hydroxydopamine (6-OHDA)-exposed SH-SY5Y cells. The cytotoxicity of hydralazine and 6-OHDA on the SH-SY5Y cells were evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and apoptosis detection assays. The activities of malondialdehyde, nitric oxide (NO), ferric reducing antioxidant power (FRAP), and superoxide dismutase (SOD) were also measured. Expression levels of HIF-1α and its downstream genes at the protein level were assessed by Western blotting. Hydralazine showed no toxic effects on SH-SY5Y cells, at the concentration of ≤50 μmol/L. Hydralazine decreased the levels of apoptosis, malondialdehyde, and NO, and increased the activities of FRAP and SOD in cells exposed to 6-OHDA. Furthermore, hydralazine up-regulated the protein expression levels of HIF-1α, vascular endothelial growth factor, tyrosine hydroxylase, and dopamine transporter in the cells also exposed to 6-OHDA, by comparison with the cells exposed to 6-OHDA alone. In summary, hydralazine priming could attenuate the deleterious effects of 6-OHDA on SH-SY5Y cells by increasing cellular antioxidant capacity, as well as the protein levels of HIF-1α and its downstream target genes.
Collapse
Affiliation(s)
- Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojde Esmaeili Tarzi
- Cardiovascular research center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Kobra Bahrampour Juybari
- Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Moslem Abolhassani
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University Medical Sciences, Kerman, Iran
| | - Ali Mohammad Sharifi
- Department of Pharmacology and Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamze Paseban
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Saravani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
16
|
Aimé P, Karuppagounder SS, Rao A, Chen Y, Burke RE, Ratan RR, Greene LA. The drug adaptaquin blocks ATF4/CHOP-dependent pro-death Trib3 induction and protects in cellular and mouse models of Parkinson's disease. Neurobiol Dis 2020; 136:104725. [PMID: 31911115 PMCID: PMC7545957 DOI: 10.1016/j.nbd.2019.104725] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Identifying disease-causing pathways and drugs that target them in Parkinson’s disease (PD) has remained challenging. We uncovered a PD-relevant pathway in which the stress-regulated heterodimeric transcription complex CHOP/ATF4 induces the neuron prodeath protein Trib3 that in turn depletes the neuronal survival protein Parkin. Here we sought to determine whether the drug adaptaquin, which inhibits ATF4-dependent transcription, could suppress Trib3 induction and neuronal death in cellular and animal models of PD. Neuronal PC12 cells and ventral midbrain dopaminergic neurons were assessed in vitro for survival, transcription factor levels and Trib3 or Parkin expression after exposure to 6-hydroxydopamine or 1-methyl-4-phenylpyridinium with or without adaptaquin co-treatment. 6-hydroxydopamine injection into the medial forebrain bundle was used to examine the effects of systemic adaptaquin on signaling, substantia nigra dopaminergic neuron survival and striatal projections as well as motor behavior. In both culture and animal models, adaptaquin suppressed elevation of ATF4 and/or CHOP and induction of Trib3 in response to 1-methyl-4-phenylpyridinium and/or 6-hydroxydopamine. In culture, adaptaquin preserved Parkin levels, provided neuroprotection and preserved morphology. In the mouse model, adaptaquin treatment enhanced survival of dopaminergic neurons and substantially protected their striatal projections. It also significantly enhanced retention of nigrostriatal function. These findings define a novel pharmacological approach involving the drug adaptaquin, a selective modulator of hypoxic adaptation, for suppressing Parkin loss and neurodegeneration in toxin models of PD. As adaptaquin possesses an oxyquinoline backbone with known safety in humans, these findings provide a firm rationale for advancing it towards clinical evaluation in PD.
Collapse
Affiliation(s)
- Pascaline Aimé
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, 650 W. 168(th) Street, New York, NY 10032, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 650 W. 168(th) Street, New York, NY 10032, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Medical College of Cornell University, 407 E. 61st Street, New York, NY 10065, USA
| | - Apeksha Rao
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, 650 W. 168(th) Street, New York, NY 10032, USA
| | - Yingxin Chen
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Medical College of Cornell University, 407 E. 61st Street, New York, NY 10065, USA
| | - Robert E Burke
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, 650 W. 168(th) Street, New York, NY 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, 650 W. 168(th) Street, New York, NY 10032, USA
| | - Rajiv R Ratan
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Medical College of Cornell University, 407 E. 61st Street, New York, NY 10065, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, 650 W. 168(th) Street, New York, NY 10032, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 650 W. 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
17
|
Hackler L, Gyuris M, Huzián O, Alföldi R, Szebeni GJ, Madácsi R, Knapp L, Kanizsai I, Puskás LG. Enantioselective Synthesis of 8-Hydroxyquinoline Derivative, Q134 as a Hypoxic Adaptation Inducing Agent. Molecules 2019; 24:molecules24234269. [PMID: 31771153 PMCID: PMC6930632 DOI: 10.3390/molecules24234269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Hypoxia is a common feature of neurodegenerative diseases, including Alzheimer’s disease that may be responsible for disease pathogenesis and progression. Therefore, the hypoxia-inducible factor (HIF)1 system, responsible for hypoxic adaptation, is a potential therapeutic target to combat these diseases by activators of cytoprotective protein induction. We have selected a candidate molecule from our cytoprotective hydroxyquinoline library and developed a novel enantioselective synthesis for the production of its enantiomers. The use of quinidine or quinine as a catalyst enabled the preparation of enantiomer-pure products. We have utilized in vitro assays to evaluate cytoprotective activity, a fluorescence-activated cell sorting (FACS) based assay measuring mitochondrial membrane potential changes, and gene and protein expression analysis. Our data showed that the enantiomers of Q134 showed potent and similar activity in all tested assays. We have concluded that the enantiomers exert their cytoprotective activity via the HIF1 system through HIF1A protein stabilization.
Collapse
Affiliation(s)
- László Hackler
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Márió Gyuris
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Orsolya Huzián
- Avicor Ltd., 6726 Szeged, Hungary; (O.H.); (R.A.); (L.K.)
| | - Róbert Alföldi
- Avicor Ltd., 6726 Szeged, Hungary; (O.H.); (R.A.); (L.K.)
| | - Gábor J. Szebeni
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Ramóna Madácsi
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - Levente Knapp
- Avicor Ltd., 6726 Szeged, Hungary; (O.H.); (R.A.); (L.K.)
| | - Iván Kanizsai
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
| | - László G. Puskás
- Avidin Ltd., 6726 Szeged, Hungary (M.G.); (G.J.S.); (R.M.); (I.K.)
- Aperus Pharma Co. Ltd., 6726 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-202107
| |
Collapse
|
18
|
Ganjam GK, Bolte K, Matschke LA, Neitemeier S, Dolga AM, Höllerhage M, Höglinger GU, Adamczyk A, Decher N, Oertel WH, Culmsee C. Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell Death Dis 2019; 10:865. [PMID: 31727879 PMCID: PMC6856124 DOI: 10.1038/s41419-019-2091-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
Abstract
Evolving concepts on Parkinson’s disease (PD) pathology suggest that α-synuclein (aSYN) promote dopaminergic neuron dysfunction and death through accumulating in the mitochondria. However, the consequence of mitochondrial aSYN localisation on mitochondrial structure and bioenergetic functions in neuronal cells are poorly understood. Therefore, we investigated deleterious effects of mitochondria-targeted aSYN in differentiated human dopaminergic neurons in comparison with wild-type (WT) aSYN overexpression and corresponding EGFP (enhanced green fluorescent protein)-expressing controls. Mitochondria-targeted aSYN enhanced mitochondrial reactive oxygen species (ROS) formation, reduced ATP levels and showed severely disrupted structure and function of the dendritic neural network, preceding neuronal death. Transmission electron microscopy illustrated distorted cristae and many fragmented mitochondria in response to WT-aSYN overexpression, and a complete loss of cristae structure and massively swollen mitochondria in neurons expressing mitochondria-targeted aSYN. Further, the analysis of mitochondrial bioenergetics in differentiated dopaminergic neurons, expressing WT or mitochondria-targeted aSYN, elicited a pronounced impairment of mitochondrial respiration. In a pharmacological compound screening, we found that the pan-caspase inhibitors QVD and zVAD-FMK, and a specific caspase-1 inhibitor significantly prevented aSYN-induced cell death. In addition, the caspase inhibitor QVD preserved mitochondrial function and neuronal network activity in the human dopaminergic neurons overexpressing aSYN. Overall, our findings indicated therapeutic effects by caspase-1 inhibition despite aSYN-mediated alterations in mitochondrial morphology and function.
Collapse
Affiliation(s)
- Goutham K Ganjam
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany. .,Department of Neurology, University of Marburg, Marburg, Germany. .,Center for Mind, Brain and Behaviour - CMBB, Marburg, Germany.
| | - Kathrin Bolte
- Laboratory for Cell Biology I, Department of Biology, University of Marburg, Marburg, Germany
| | - Lina A Matschke
- Institute of Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | - Sandra Neitemeier
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | | | - Agata Adamczyk
- Department of Cellular Signaling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Niels Decher
- Institute of Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behaviour - CMBB, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behaviour - CMBB, Marburg, Germany.,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed Pharmacother 2019; 118:109295. [DOI: 10.1016/j.biopha.2019.109295] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
|
20
|
Targeting Mitochondrial Defects to Increase Longevity in Animal Models of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:89-110. [PMID: 30919333 DOI: 10.1007/978-3-030-12668-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioenergetic homeostasis is a vital process maintaining cellular health and has primary importance in neuronal cells due to their high energy demand markedly at synapses. Mitochondria, the metabolic hubs of the cells, are the organelles responsible for producing energy in the form of ATP by using nutrients and oxygen. Defects in mitochondrial homeostasis result in energy deprivation and can lead to disrupted neuronal functions. Mitochondrial defects adversely contribute to the pathogenesis of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD). Mitochondrial defects not only include reduced ATP levels but also increased reactive oxygen species (ROS) leading to cellular damage. Here, we detail the mechanisms that lead to neuronal pathologies involving mitochondrial defects. Furthermore, we discuss how to target these mitochondrial defects in order to have beneficial effects as novel and complementary therapeutic avenues in neurodegenerative diseases. The critical evaluation of these strategies and their potential outcome can pave the way for finding novel therapies for neurodegenerative pathologies.
Collapse
|
21
|
Vetrovoy O, Rybnikova E. Neuroprotective action of PHD inhibitors is predominantly HIF-1-independent: An Editorial for 'Sex differences in neonatal mouse brain injury after hypoxia-ischemia and adaptaquin treatment' on page 759. J Neurochem 2019; 150:645-647. [PMID: 31373011 DOI: 10.1111/jnc.14822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 01/02/2023]
Abstract
Hypoxia-inducible factor (HIF-1) as the primary factor mediating gene-dependent cellular responses to hypoxia represents an attractive target for the therapeutic interventions. The current Editorial comments on an as yet underestimated facet of HIF-1-related research. The activity of HIF-1 is being regulated by the availability of its α-subunit HIF-1α, which undergoes quick degradation. The process of degradation is initiated by prolyl 4-hydroxylase (PHD). PHD is an oxygen-dependent enzyme and therefore is inactivated in hypoxia, in turn resulting in HIF-1α stabilization, its dimerization with HIF-1β subunit thereby producing the transcriptionally active factor. It has been suggested that pharmacological inhibition of PHD activity might give the same results. Indeed, a large body of evidence on beneficial effects of PHD inhibitors has been accumulated in multiple laboratory and clinical trials. In addition to them, a paper by Li and colleagues published in this issue of Journal of Neurochemistry also reports that inhibition of PHD by adaptaquin reduces hypoxic-ischemic brain injury in a neonatal mouse model. When dissecting the underlying molecular mechanisms, Li and colleagues surprisingly found that the observed effects appear to be independent of HIF-1. These findings draw attention back to the question about possible HIF-1 effects independent of PHD inhibitors, which has been raised several years ago but has not received sufficient attention so far, and is being discussed in this Editorial. One of the possible mechanisms might be ascribed to the ferroptosis pathway affected by PHD inhibitors but this question needs further careful studies, as well as clarification of other mechanisms possibly involved. Even if they represent a prospective therapeutic strategy, the lack of current knowledge about endogenous targets of PHD inhibitors, except for PHD, calls for a careful and balanced approach toward their clinical use.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia.,Department of Biochemistry, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Elena Rybnikova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
22
|
Li K, Li T, Wang Y, Xu Y, Zhang S, Culmsee C, Wang X, Zhu C. Sex differences in neonatal mouse brain injury after hypoxia-ischemia and adaptaquin treatment. J Neurochem 2019; 150:759-775. [PMID: 31188470 DOI: 10.1111/jnc.14790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-PHDs) are important targets against oxidative stress. We hypothesized that inhibition HIF-PHD by adaptaquin reduces hypoxic-ischemic brain injury in a neonatal mouse model. The pups were treated intraperitoneally immediately with adaptaquin after hypoxia-ischemia (HI) and then every 24 h for 3 days. Adaptaquin treatment reduced infarction volume by an average of 26.3% at 72 h after HI compared to vehicle alone, and this reduction was more pronounced in males (34.8%) than in females (11.7%). The protection was also more pronounced in the cortex. The subcortical white matter injury as measured by tissue loss volume was reduced by 24.4% in the adaptaquin treatment group, and this reduction was also more pronounced in males (28.4%) than in females (18.9%). Cell death was decreased in the cortex as indicated by Fluoro-Jade labeling, but not in other brain regions with adaptaquin treatment. Furthermore, in the brain injury area, adaptaquin did not alter the number of cells positive for caspase-3 activation or translocation of apoptosis-inducing factor to the nuclei. Adaptaquin treatment increased glutathione peroxidase 4 mRNA expression in the cortex but had no impact on 3-nitrotyrosine, 8-hydroxy-2 deoxyguanosine, or malondialdehyde production. Hif1α mRNA expression increased after HI, and adaptaquin treatment also stimulated Hif1α mRNA expression, which was also more pronounced in males than in females. However, nuclear translocation of HIF1α protein was decreased after HI, and adaptaquin treatment had no influence on HIF1α expression in the nucleus. These findings demonstrate that adaptaquin treatment is neuroprotective, but the potential mechanisms need further investigation. Read the Editorial Highlight for this article on page 645.
Collapse
Affiliation(s)
- Kenan Li
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tao Li
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafeng Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carsten Culmsee
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Institute of Pharmacology and Clinical Pharmacy, Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Mukhopadhyay D, Hammami M, Khalouf A, Shaikh YA, Mohammed AK, Hamad M, Salehi A, Taneera J. Dimethyloxalylglycine (DMOG) and the Caspase Inhibitor "Ac-LETD-CHO" Protect Neuronal ND7/23 Cells of Gluocotoxicity. Exp Clin Endocrinol Diabetes 2019; 129:420-428. [PMID: 31185507 DOI: 10.1055/a-0919-4489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It well known that long-lasting hyperglycaemia disrupts neuronal function and leads to neuropathy and other neurodegenerative diseases. The α-ketoglutarate analogue (DMOG) and the caspase-inhibitor "Ac-LETD-CHO are potential neuroprotective molecules. Whether their protections may also extend glucotoxicity-induced neuropathy is not known. Herein, we evaluated the possible cell-protective effects of DMOG and Ac-LETD-CHO against hyperglycaemia-induced reactive oxygen species and apoptosis in ND7/23 neuronal cells. The impact of glucotoxicity on the expression of HIF-1α and a panel of micro-RNAs of significance in hyperglycaemia and apoptosis was also investigated.ND7/23 cells cultured under hyperglycaemic conditions showed decreased cell viability and elevated levels of ROS production in a dose- and time-dependent manner. However, presence DMOG (500 µM) and/or Ac-LETD-CHO (50 µM) counteracted this effect and increase cell viability concomitant with reduction in ROS production, DNA damage and apoptosis. AcLETD-CHO suppressed hyperglycaemia-induced caspase 3 activation in ND7/23 cells. Both DMOG and Ac-LETD-CHO increased HIF-1α expression paralleled with the suppression of miR-126-5p, miR-128-3p and miR-181 expression and upregulation of miR-26b, 106a-5p, 106b-5p, 135a-5p, 135b-5p, 138-5p, 199a-5p, 200a-3p and 200c-3p expression.We demonstrate a mechanistic link for the DMOG and Ac-LETD-CHO protection against hyperglycaemia-induced neuronal dysfunction, DNA damage and apoptosis and thereby propose that pharmacological agents mimicking these effects may represent a promising novel therapy for the hyperglycaemia-induced neuropathy.
Collapse
Affiliation(s)
- Debasmita Mukhopadhyay
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad Hammami
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Amani Khalouf
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Yazan Al Shaikh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Albert Salehi
- Department of Clinical Science, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
24
|
Poloznikov AA, Nikulin SV, Zakhariants AA, Khristichenko AY, Hushpulian DM, Gazizov IN, Tishkov VI, Gazaryan IG. "Branched Tail" Oxyquinoline Inhibitors of HIF Prolyl Hydroxylase: Early Evaluation of Toxicity and Metabolism Using Liver-on-a-chip. Drug Metab Lett 2019; 13:45-52. [PMID: 30488807 DOI: 10.2174/1872312813666181129100950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND "Branched tail" oxyquinolines, and adaptaquin in particular, are potent HIF prolyl hydroxylase inhibitors showing promising results in in vivo hemorrhagic stroke models. The further improvement of the potency resulted in identification of a number of adaptaquin analogs. Early evaluation of toxicity and metabolism is desired right at the step of lead selection. OBJECTIVE The aim of the study is to characterize the toxicity and metabolism of adaptaquin and its new improved analogs. METHOD Liver-on-a-chip technology with differentiated HepaRG cells followed by LC-MS detection of the studied compounds and metabolites of the P450 substrate-inhibitor panel for CYP2B6, CYP2C9, CYP2C19, and CYP3A4. RESULTS The optimized adaptaquin analogs show no toxicity up to a 100-fold increased range over EC50. The drugs are metabolized by CYP3A4 and CYP2B6 as shown with the use of the cytochrome P450 substrate-inhibitor panel designed and optimized for preclinical evaluation of drugs' in vitro biotransformation on a 3D human histotypical cell model using "liver-on-a-chip" technology. Activation of CYP2B6 with the drugs tested has been observed. A scheme for adaptaquin oxidative conversion is proposed. CONCLUSION The optimized adaptaquin analogs are suitable for further preclinical trials. Activation of CYP2B6 with adaptaquin and its variants points to a potential increase in Tylenol toxicity if administered together.
Collapse
Affiliation(s)
- Andrey A Poloznikov
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Healthcare Ministry of Russia, 117997 Moscow, Russian Federation
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Koroleva, 4, 249036 Obninsk, Russian Federation
| | - Sergey V Nikulin
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region, 141700, Russian Federation
| | - Arpenik A Zakhariants
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Anna Y Khristichenko
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Healthcare Ministry of Russia, 117997 Moscow, Russian Federation
| | - Dmitry M Hushpulian
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Healthcare Ministry of Russia, 117997 Moscow, Russian Federation
| | - Ildar N Gazizov
- Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladimir I Tishkov
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences. 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
- Innovation and High Technologies MSU Ltd., Tsymlyanskaya 16, Moscow 109599, Russian Federation
| | - Irina G Gazaryan
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Healthcare Ministry of Russia, 117997 Moscow, Russian Federation
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
- Department of Anatomy and Cell Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, United States
| |
Collapse
|
25
|
Quispe RL, Jaramillo ML, Galant LS, Engel D, Dafre AL, Teixeira da Rocha JB, Radi R, Farina M, de Bem AF. Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione-dependent antioxidant system. Redox Biol 2019; 20:118-129. [PMID: 30308475 PMCID: PMC6176650 DOI: 10.1016/j.redox.2018.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are critical events in neurodegenerative diseases; therefore, molecules that increase cellular antioxidant defenses represent a future pharmacologic strategy to counteract such conditions. The aim of this study was to investigate the potential protective effect of (PhSe)2 on mouse hippocampal cell line (HT22) exposed to tert-BuOOH (in vitro model of oxidative stress), as well as to elucidate potential mechanisms underlying this protection. Our results showed that tert-BuOOH caused time- and concentration-dependent cytotoxicity, which was preceded by increased oxidants production and mitochondrial dysfunction. (PhSe)2 pre-incubation significantly prevented these cytotoxic events and the observed protective effects were paralleled by the upregulation of the cellular glutathione-dependent antioxidant system: (PhSe)2 increased GSH levels (> 60%), GPx activity (6.9-fold) and the mRNA expression of antioxidant enzymes Gpx1 (3.9-fold) and Gclc (2.3-fold). Of note, the cytoprotective effect of (PhSe)2 was significantly decreased when cells were treated with mercaptosuccinic acid, an inhibitor of GPx, indicating the involvement of GPx modulation in the observed protective effect. In summary, the present findings bring out a new action mechanism concerning the antioxidant properties of (PhSe)2. The observed upregulation of the glutathione-dependent antioxidant system represents a future pharmacologic possibility that goes beyond the well-known thiol-peroxidase activity of this compound.
Collapse
Affiliation(s)
- Ruth Liliám Quispe
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Lorenz Jaramillo
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, SC, Brazil
| | - Leticia Selinger Galant
- Biochemistry PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daiane Engel
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Alcir Luiz Dafre
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Rafael Radi
- Department of Biochemistry and Center for Free Radical and Biomedical Research (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Farina
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Andreza Fabro de Bem
- Neuroscience PhD Program, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil; Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
26
|
Lanigan SM, O'Connor JJ. Prolyl hydroxylase domain inhibitors: can multiple mechanisms be an opportunity for ischemic stroke? Neuropharmacology 2018; 148:117-130. [PMID: 30578795 DOI: 10.1016/j.neuropharm.2018.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Stroke and cerebrovascular disease are now the fifth most common cause of death behind other diseases such as heart, cancer and respiratory disease and accounts for approximately 40-50 fatalities per 100,000 people each year in the United States. Currently the only therapy for acute stroke, is intravenous administration of tissue plasminogen activator which was approved in 1996 by the FDA. Surprisingly no new treatments have come on the market since, although endovascular mechanical thrombectomy is showing promising results in trials. Recently focus has shifted towards a preventative therapy rather than trying to reverse or limit the amount of damage occurring following stroke onset. During one of the components of ischemia, hypoxia, a number of physiological changes occur within neurons which include the stabilization of hypoxia-inducible factors. The activity of these proteins is regulated by O2, Fe2+, 2-OG and ascorbate-dependant hydroxylases which contain prolyl-4-hydroxylase domains (PHDs). PHD inhibitors are capable of pharmacologically activating the body's own endogenous adaptive response to low levels of oxygen and have therefore become an attractive therapeutic target for treating ischemia. They have been widely used in the periphery and have been shown to have a preconditioning and protective effect against a later and more severe ischemic insult. Currently there are a number of these agents in phase 1, 2 and 3 clinical trials for the treatment of anemia. In this review we assess the neuroprotective effects of PHD inhibitors, including dimethyloxalylglycine and deferoxamine and suggest that not all of their effects in the CNS are HIF-dependent. Unravelling new roles and a better understanding of the function of PHD inhibitors in the CNS may be of great benefit especially when investigating their use in the treatment of stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Sinead M Lanigan
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
27
|
A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis 2018; 9:1005. [PMID: 30258181 PMCID: PMC6158189 DOI: 10.1038/s41419-018-1063-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/26/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Cystathionine β-synthase (CBS) is responsible for the first enzymatic reaction in the transsulfuration pathway of sulfur amino acids. The molecular function and mechanism of CBS as well as that of transsulfuration pathway remain ill-defined in cell proliferation and death. In the present study, we designed, synthesized and obtained a bioactive inhibitor CH004 for human CBS, which functions in vitro and in vivo. CH004 inhibits CBS activity, elevated the cellular homocysteine and suppressed the production of hydrogen sulfide in a dose-dependent manner in cells or in vivo. Chemical or genetic inhibition of CBS demonstrates that endogenous CBS is closely coupled with cell proliferation and cell cycle. Moreover, CH004 substantially retarded in vivo tumor growth in a xenograft mice model of liver cancer. Importantly, inhibition of CBS triggers ferroptosis in hepatocellular carcinoma. Overall, the study provides several clues for studying the interplays amongst transsulfuration pathway, ferroptosis and liver cancer.
Collapse
|
28
|
Li X, Cui XX, Chen YJ, Wu TT, Xu H, Yin H, Wu YC. Therapeutic Potential of a Prolyl Hydroxylase Inhibitor FG-4592 for Parkinson's Diseases in Vitro and in Vivo: Regulation of Redox Biology and Mitochondrial Function. Front Aging Neurosci 2018; 10:121. [PMID: 29755339 PMCID: PMC5935184 DOI: 10.3389/fnagi.2018.00121] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
As the main transcription factor that regulates the cellular responses to hypoxia, Hypoxia-inducible factor-1α (HIF-1α) plays an important role in the pathogenesis of Parkinson’s disease (PD). HIF-1α is normally degraded through ubiquitination after hydroxylation by prolyl hydroxylases (PHD). Emerging evidence has suggested that HIF PHD inhibitors (HIF-PHI) may have neuroprotective effects on PD through increasing HIF-1α levels. However, the therapeutic benefit of HIF-PHI for PD remains poorly explored due to the lack of proper clinical compounds and understanding of the underlying molecular mechanisms. In this study, we examined the therapeutic benefit of a new HIF-PHI, FG-4592, which is currently in phase 3 clinical trials to treat anemia in patients with chronic kidney diseases (CKD) in PD models. FG-4592 attenuates MPP+ -induced apoptosis and loss of tyrosine hydroxylase (TH) in SH-SY5Y cells. Pretreatment with FG-4592 mitigates MPP+-induced loss of mitochondrial membrane potential (MMP), mitochondrial oxygen consumption rate (OCR), production of reactive oxygen species (ROS) and ATP. Furthermore, FG-4592 counterbalances the oxidative stress through up-regulating nuclear factor erythroid 2 p45-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and superoxide dismutase 2 (SOD2). FG-4592 treatment also induces the expression of Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) through increasing the phosphorylation of AMP-activated protein kinase (AMPK). In MPTP-treated mice, FG-4592 protects against MPTP-induced loss of TH-positive neurons of substantia nigra and attenuates behavioral impairments. Collectively, our study demonstrates that FG-4592 is a promising therapeutic strategy for PD through improving the mitochondrial function under oxidative stress.
Collapse
Affiliation(s)
- Xuan Li
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Xin Cui
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Jing Chen
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Ting Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Smirnova NA, Osipyants AI, Khristichenko AY, Hushpulian DM, Nikulin SV, Chubar TA, Zakhariants AA, Tishkov VI, Gazaryan IG, Poloznikov AA. HIF2 ODD-luciferase reporter: the most sensitive assay for HIF prolyl hydroxylase inhibitors. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2051-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Ullah K, Rosendahl AH, Izzi V, Bergmann U, Pihlajaniemi T, Mäki JM, Myllyharju J. Hypoxia-inducible factor prolyl-4-hydroxylase-1 is a convergent point in the reciprocal negative regulation of NF-κB and p53 signaling pathways. Sci Rep 2017; 7:17220. [PMID: 29222481 PMCID: PMC5722952 DOI: 10.1038/s41598-017-17376-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/24/2017] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF1α) induces the expression of several hundred genes in hypoxia aiming at restoration of oxygen homeostasis. HIF prolyl-4-hydroxylases (HIF-P4Hs) regulate the stability of HIF1α in an oxygen-dependent manner. Hypoxia is a common feature in inflammation and cancer and the HIF pathway is closely linked with the inflammatory NF-κB and tumor suppressor p53 pathways. Here we show that genetic inactivation or chemical inhibition of HIF-P4H-1 leads to downregulation of proinflammatory genes, while proapoptotic genes are upregulated. HIF-P4H-1 inactivation reduces the inflammatory response under LPS stimulus in vitro and in an acute skin inflammation model in vivo. Furthermore, HIF-P4H-1 inactivation increases p53 activity and stability and hydroxylation of proline 142 in p53 has an important role in this regulation. Altogether, our data suggest that HIF-P4H-1 inhibition may be a promising therapeutic candidate for inflammatory diseases and cancer, enhancing the reciprocal negative regulation of the NF-κB and p53 pathways.
Collapse
Affiliation(s)
- Karim Ullah
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, FIN-90014, Finland.,Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, FIN-90014, Finland
| | - Ann-Helen Rosendahl
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, FIN-90014, Finland.,Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, FIN-90014, Finland
| | - Valerio Izzi
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, FIN-90014, Finland.,Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, FIN-90014, Finland
| | - Ulrich Bergmann
- Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, FIN-90014, Finland.,Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, FIN-90014, Finland
| | - Joni M Mäki
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, FIN-90014, Finland.,Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, FIN-90014, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, FIN-90014, Finland. .,Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland. .,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, FIN-90014, Finland.
| |
Collapse
|
31
|
Honrath B, Metz I, Bendridi N, Rieusset J, Culmsee C, Dolga AM. Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov 2017; 3:17076. [PMID: 29367884 PMCID: PMC5672593 DOI: 10.1038/cddiscovery.2017.76] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/20/2023] Open
Abstract
The crosstalk between different organelles allows for the exchange of proteins, lipids and ions. Endoplasmic reticulum (ER) and mitochondria are physically linked and signal through the mitochondria-associated membrane (MAM) to regulate the transfer of Ca2+ from ER stores into the mitochondrial matrix, thereby affecting mitochondrial function and intracellular Ca2+ homeostasis. The chaperone glucose-regulated protein 75 (GRP75) is a key protein expressed at the MAM interface which regulates ER–mitochondrial Ca2+ transfer. Previous studies revealed that modulation of GRP75 expression largely affected mitochondrial integrity and vulnerability to cell death. In the present study, we show that genetic ablation of GRP75, by weakening ER–mitochondrial junctions, provided protection against mitochondrial dysfunction and cell death in a model of glutamate-induced oxidative stress. Interestingly, GRP75 silencing attenuated both cytosolic and mitochondrial Ca2+ overload in conditions of oxidative stress, blocked the formation of reactive oxygen species and preserved mitochondrial respiration. These data revealed a major role for GRP75 in regulating mitochondrial function, Ca2+ and redox homeostasis. In line, GRP75 overexpression enhanced oxidative cell death induced by glutamate. Overall, our findings suggest weakening ER–mitochondrial connectivity by GRP75 inhibition as a novel protective approach in paradigms of oxidative stress in neuronal cells.
Collapse
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Isabell Metz
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Nadia Bendridi
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Gatliff J, East DA, Singh A, Alvarez MS, Frison M, Matic I, Ferraina C, Sampson N, Turkheimer F, Campanella M. A role for TSPO in mitochondrial Ca 2+ homeostasis and redox stress signaling. Cell Death Dis 2017; 8:e2896. [PMID: 28640253 PMCID: PMC5520880 DOI: 10.1038/cddis.2017.186] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS). Here we describe that TSPO deregulates mitochondrial Ca2+ signaling leading to a parallel increase in the cytosolic Ca2+ pools that activate the Ca2+-dependent NADPH oxidase (NOX) thereby increasing ROS. The inhibition of mitochondrial Ca2+ uptake by TSPO is a consequence of the phosphorylation of the voltage-dependent anion channel (VDAC1) by the protein kinase A (PKA), which is recruited to the mitochondria, in complex with the Acyl-CoA binding domain containing 3 (ACBD3). Notably, the neurotransmitter glutamate, which contributes neuronal toxicity in age-dependent conditions, triggers this TSPO-dependent mechanism of cell signaling leading to cellular demise. TSPO is therefore proposed as a novel OMM-based pathway to control intracellular Ca2+ dynamics and redox transients in neuronal cytotoxicity.
Collapse
Affiliation(s)
- Jemma Gatliff
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Daniel A East
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Regina Elena-National Cancer Institute, 00144 Rome, Italy
| | - Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Maria Soledad Alvarez
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Michele Frison
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Ivana Matic
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
| | - Caterina Ferraina
- Regina Elena-National Cancer Institute, 00144 Rome, Italy
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
| | - Natalie Sampson
- Division of Experimental Urology, Medical University of Innsbruck, A6020 Innsbruck, Austria
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
- University College London Consortium for Mitochondrial Research, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
33
|
|
34
|
Ashok BS, Ajith TA, Sivanesan S. Hypoxia-inducible factors as neuroprotective agent in Alzheimer's disease. Clin Exp Pharmacol Physiol 2017; 44:327-334. [PMID: 28004401 DOI: 10.1111/1440-1681.12717] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/17/2016] [Accepted: 12/15/2016] [Indexed: 07/31/2024]
Abstract
Beta amyloid (Aβ)-42 peptide and phosphorylated tau protein have been demonstrated as the pathological hallmarks of Alzheimer's disease (AD). A gradual decline of oxygen and glucose supply to the brain during aging or hypoxia was manifested as a contributing factor to hypometabolism. The brain regions susceptible to hypometabolism are the hippocampus, entorhinal cortex and cognition-associated neocortical regions like parietal, temporal and frontal cortex. In AD patients, the brain regions with hypometabolism can trigger overexpression of amyloid precursor protein and decrease the clearance of Aβ. Aβ and hypoxia can evoke inflammation, oxidative stress and finally neuronal cell death. Among the transcription factors involved in the compensatory mechanism, hypoxia-inducible factor-1 alpha (HIF-1α) has a major role in the cellular adaptation by inducing the expression of several proteins, including vascular endothelial growth factor, erythropoietin and inducible nitric oxide synthase. Therefore, maintaining the HIF-1α level by inhibiting the prolyl 4-hydroxylase was effective to attenuate the nerve damage during hypoxia and postpone the incidence of AD. Agents such as iron chelators, and heavy metals like cobalt and nickel were demonstrated to be effective in maintaining the HIF-1α level in the nerve. This review article discusses the possible role of HIF-1α as a neuroprotector in AD and the future perspectives.
Collapse
Affiliation(s)
- Ben Sundra Ashok
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
35
|
Structure-activity relationship for branched oxyquinoline HIF activators: Effect of modifications to phenylacetamide "tail". Biochimie 2016; 133:74-79. [PMID: 28007502 DOI: 10.1016/j.biochi.2016.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/04/2016] [Accepted: 12/09/2016] [Indexed: 11/22/2022]
Abstract
HIF prolyl hydroxylase is a major regulator of HIF stability. Branched tail oxyquinolines have been identified as specific inhibitors of HIF prolyl hydroxylase and recently demonstrated clear benefits in various scenarios of neuronal failure. The structural optimization for branched tail oxyquinolines containing an acetamide bond has been performed in the present study using HIF1 ODD-luc reporter assay. The special attention has been paid to the length of a linker between acetamide group and phenyl ring, as well as substitutions in the phenyl ring in the other branch of the tail. The optimized version of branched tail oxyquinolines is 3-fold more potent than the original one identified before and shows a submicromolar EC50 in the reporter assay. The compounds have been studied in a "liver-on-a-chip" device to question their hepatotoxicity towards differentiated human HepaRG "hepatocytes": the absence of hepatotoxicity is observed up to 200 μM concentrations for all studied derivatives of branched tail oxyquinolines.
Collapse
|