1
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2025; 39:789-874. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Xiao X, Li Z, Li Q, Qing L, Wang Y, Ye F, Dong Y, Di X, Mi J. Exploring the clinical and biological significance of the cell cycle-related gene CHMP4C in prostate cancer. BMC Med Genomics 2024; 17:210. [PMID: 39138470 PMCID: PMC11323463 DOI: 10.1186/s12920-024-01970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) stands as the second most prevalent malignancy impacting male health, and the disease's evolutionary course presents formidable challenges in the context of patient treatment and prognostic management. Charged multivesicular body protein 4 C (CHMP4C) participates in the development of several cancers by regulating cell cycle functions. However, the role of CHMP4C in prostate cancer remains unclear. METHODS In terms of bioinformatics, multiple PCa datasets were employed to scrutinize the expression of CHMP4C. Survival analysis coupled with a nomogram approach was employed to probe into the prognostic significance of CHMP4C. Gene set enrichment analysis (GSEA) was conducted to interrogate the functional implications of CHMP4C. In terms of cellular experimentation, the verification of RNA and protein expression levels was executed through the utilization of qRT-PCR and Western blotting. Upon the establishment of a cell line featuring stable CHMP4C knockdown, a battery of assays, including Cell Counting Kit-8 (CCK-8), wound healing, Transwell, and flow cytometry, were employed to discern the impact of CHMP4C on the proliferation, migration, invasion, and cell cycle function of PCa cells. RESULTS The expression of CHMP4C exhibited upregulation in both PCa cells and tissues, and patients demonstrating elevated CHMP4C expression levels experienced a notably inferior prognosis. The nomogram, constructed using CHMP4C along with clinicopathological features, demonstrated a commendable capacity for prognostic prediction. CHMP4C knockdown significantly inhibited the proliferation, migration, and invasion of PCa cells (LNcaP and PC3). CHMP4C could impact the advancement of the PCa cell cycle, and its expression might be regulated by berberine. Divergent CHMP4C expression among PCa patients could induce alterations in immune cell infiltration and gene mutation frequency. CONCLUSIONS Our findings suggest that CHMP4C might be a prognostic biomarker in PCa, potentially offering novel perspectives for the advancement of precision therapy for PCa.
Collapse
Affiliation(s)
- Xi Xiao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zonglin Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Qingchao Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Liangliang Qing
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanan Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Fuxiang Ye
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yajia Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xiaoyu Di
- Department of plastic surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jun Mi
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
4
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
6
|
Zhong X, Zhang Y, Yuan M, Xu L, Luo X, Wu R, Xi Z, Li Y, Xu H. Prunella vulgaris polysaccharide inhibits herpes simplex virus infection by blocking TLR-mediated NF-κB activation. Chin Med 2024; 19:6. [PMID: 38185640 PMCID: PMC10773030 DOI: 10.1186/s13020-023-00865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Prunella vulgaris polysaccharide extracted by hot water and 30% ethanol precipitation (PVE30) was reported to possess potent antiviral effects against herpes simplex virus (HSV) infection. However, its anti-HSV mechanism has not yet been fully elucidated. PURPOSE This study aimed to investigate the potential mechanisms of PVE30 against HSV infection. METHODS Antiviral activity was evaluated by a plaque reduction assay, and the EC50 value was calculated. Immunofluorescence staining and heparin bead pull-down assays confirmed the interactions between PVE30 and viral glycoproteins. Real-time PCR was conducted to determine the mRNA levels of viral genes, including UL54, UL29, UL27, UL44, and US6, and the proinflammatory cytokines IL-6 and TNF-α. The protein expression of viral proteins (ICP27, ICP8, gB, gC, and gD), the activity of the TLR-NF-κB signalling pathway, and necroptotic-associated proteins were evaluated by Western blotting. The proportion of necroptotic cells was determined by flow cytometric analysis. RESULTS The P. vulgaris polysaccharide PVE30 was shown to compete with heparan sulfate for interaction with HSV surface glycoprotein B and gC, thus strongly inhibiting HSV attachment to cells. In addition, PVE30 downregulated the expression of IE genes, which subsequently downregulated the expression of E and L viral gene products, and thus effectively restricted the yield of progeny virus. Further investigation confirmed that PVE30 inhibited TLR2 and TLR3 signalling, leading to the effective suppression of NF-κB activation and IL-6 and TNF-α expression levels, and blocked HSV-1-induced necroptosis by reducing HSV-1-induced phosphorylation of MLKL. CONCLUSION Our results demonstrate that the P. vulgaris polysaccharide PVE30 is a potent anti-HSV agent that blocks TLR-mediated NF-κB activation.
Collapse
Affiliation(s)
- Xuanlei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yibo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Lin Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xiaomei Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China.
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Lindell E, Zhong L, Zhang X. Quiescent Cancer Cells-A Potential Therapeutic Target to Overcome Tumor Resistance and Relapse. Int J Mol Sci 2023; 24:ijms24043762. [PMID: 36835173 PMCID: PMC9959385 DOI: 10.3390/ijms24043762] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Quiescent cancer cells (QCCs) are nonproliferating cells arrested in the G0 phase, characterized by ki67low and p27high. QCCs avoid most chemotherapies, and some treatments could further lead to a higher proportion of QCCs in tumors. QCCs are also associated with cancer recurrence since they can re-enter a proliferative state when conditions are favorable. As QCCs lead to drug resistance and tumor recurrence, there is a great need to understand the characteristics of QCCs, decipher the mechanisms that regulate the proliferative-quiescent transition in cancer cells, and develop new strategies to eliminate QCCs residing in solid tumors. In this review, we discussed the mechanisms of QCC-induced drug resistance and tumor recurrence. We also discussed therapeutic strategies to overcome resistance and relapse by targeting QCCs, including (i) identifying reactive quiescent cancer cells and removing them via cell-cycle-dependent anticancer reagents; (ii) modulating the quiescence-to-proliferation switch; and (iii) eliminating QCCs by targeting their unique features. It is believed that the simultaneous co-targeting of proliferating and quiescent cancer cells may ultimately lead to the development of more effective therapeutic strategies for the treatment of solid tumors.
Collapse
|
8
|
Feng J, Xi Z, Jiang X, Li Y, Nik Nabil WN, Liu M, Song Z, Chen X, Zhou H, Dong Q, Xu H. Saikosaponin A enhances Docetaxel efficacy by selectively inducing death of dormant prostate cancer cells through excessive autophagy. Cancer Lett 2023; 554:216011. [PMID: 36442771 DOI: 10.1016/j.canlet.2022.216011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Quiescent cancer cells (QCCs), also known as dormant cancer cells, resist and survive chemo- and radiotherapy, resulting in treatment failure and later cancer recurrence when QCCs resume cell cycle progression. However, drugs selectively targeting QCCs are lacking. Saikosaponin A (SSA) derived from Bupleurum DC., is highly potent in eradicating multidrug-resistant prostate QCCs compared with proliferative prostate cancer cells. By further exacerbating the already increased autophagy through inactivation of Akt-mTOR signaling, SSA triggered cell death in QCCs. Contrarily, inhibition of autophagy or activation of Akt signaling pathway prevented SSA-induced cell death. The multicycle of Docetaxel treatments increased the proportion of QCCs, whereas administering SSA at intervals of Docetaxel treatments aggravated cell death in vitro and led to tumor growth arrest and cell death in vivo. In conclusion, SSA is posed as a novel QCCs-eradicating agent by aggravating autophagy in QCCs. In combination with the current therapy, SSA has potential to improve treatment effectiveness and to prevent cancer recurrence.
Collapse
Affiliation(s)
- Jiling Feng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China; Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China; Pharmaceutical Services Program, Ministry of Health, Petaling Jaya, Selangor, 46200, Malaysia.
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Zejia Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Xiaoqiong Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| | - Hua Zhou
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China.
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia.
| | - Hongxi Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
9
|
Kapoor-Narula U, Lenka N. Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine 2022; 157:155968. [PMID: 35872504 DOI: 10.1016/j.cyto.2022.155968] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Tumor heterogeneity, in principle, reflects the variation among different cancer cell populations. It can be termed inter- or intra-tumoral heterogeneity, respectively, based on its occurrence in various tissues from diverse patients or within a single tumor. The intra-tumoral heterogeneity is one of the leading causes of cancer progression and treatment failure, with the cancer stem cells (CSCs) contributing immensely to the same. These niche cells, similar to normal stem cells, possess the characteristics of self-renewal and differentiation into multiple cell types. Moreover, CSCs contribute to tumor growth and surveillance by promoting recurrence, metastasis, and therapeutic resistance. Diverse factors, including intracellular signalling pathways and tumor microenvironment (TME), play a vital role in regulating these CSCs. Although a panel of markers is considered to identify the CSC pool in various cancers, further research is needed to discriminate cancer-specific CSC markers in those. CSCs have also been found to be promising therapeutic targets for cancer therapy. Several small molecules, natural compounds, antibodies, chimeric antigen receptor T (CAR-T) cells, and CAR-natural killer (CAR-NK) cells have emerged as therapeutic tools for specific targeting of CSCs. Interestingly, many of these are in clinical trials too. Despite being a much-explored avenue of research for years, and we have come to understand its nitty-gritty, there is still a tremendous gap in our knowledge concerning its precise genesis and regulation. Hence, a concrete understanding is needed to assess the CSC-TME link and how to target different cancer-specific CSCs by designing newer tools. In this review, we have summarized CSC, its causative, different pathways and factors regulating its growth, association with tumor heterogeneity, and last but not least, discussed many of the promising CSC-targeted therapies for combating cancer metastasis.
Collapse
|
10
|
Hnit SST, Yao M, Xie C, Bi L, Wong M, Liu T, De Souza P, Li Z, Dong Q. Apigenin impedes cell cycle progression at G 2 phase in prostate cancer cells. Discov Oncol 2022; 13:44. [PMID: 35670862 PMCID: PMC9174405 DOI: 10.1007/s12672-022-00505-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
As a natural flavone, apigenin is abundantly present in vegetables, fruits, oregano, tea, chamomile, wheat sprout and is regarded as a major component of the Mediterranean diet. Apigenin is known to inhibit proliferation in different cancer cell lines by inducing G2/M arrest, but it is unclear whether this action is predominantly imposed on G2 or M phases. In this study, we demonstrate that apigenin arrests prostate cancer cells at G2 phase by flow cytometric analysis of prostate cancer cells co-stained for phospho-Histone H3 and DNA. Concurrently, apigenin also reduces the mRNA and protein levels of the key regulators that govern G2-M transition. Further analysis using chromatin immunoprecipitation (ChIP) confirmed the diminished transcriptional activities of the genes coding for these regulators. Unravelling the inhibitory effect of apigenin on G2-M transition in cancer cells provides the mechanistic understanding of its action and supports the potential for apigenin as an anti-cancer agent.
Collapse
Affiliation(s)
- Su Su Thae Hnit
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Mu Yao
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Chanlu Xie
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Matthew Wong
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia
- Centre for Childhood Cancer Research, UNSW Medicine, Sydney, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia
- Centre for Childhood Cancer Research, UNSW Medicine, Sydney, Australia
| | - Paul De Souza
- School of Medicine, Western Sydney University, Sydney , Australia
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Beijing University of Traditional Chinese Medicine, 201203, Beijing, China.
| | - Qihan Dong
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- Faculty of Medicine and Health, University of Sydney, 2006, Camperdown, NSW, Australia.
| |
Collapse
|
11
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
12
|
Dai R, Liu M, Xiang X, Li Y, Xi Z, Xu H. OMICS Applications for Medicinal Plants in Gastrointestinal Cancers: Current Advancements and Future Perspectives. Front Pharmacol 2022; 13:842203. [PMID: 35185591 PMCID: PMC8855055 DOI: 10.3389/fphar.2022.842203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal cancers refer to a group of deadly malignancies of the gastrointestinal tract and organs of the digestive system. Over the past decades, considerable amounts of medicinal plants have exhibited potent anticancer effects on different types of gastrointestinal cancers. OMICS, systems biology approaches covering genomics, transcriptomics, proteomics and metabolomics, are broadly applied to comprehensively reflect the molecular profiles in mechanistic studies of medicinal plants. Single- and multi-OMICS approaches facilitate the unravelling of signalling interaction networks and key molecular targets of medicinal plants with anti-gastrointestinal cancer potential. Hence, this review summarizes the applications of various OMICS and advanced bioinformatics approaches in examining therapeutic targets, signalling pathways, and the tumour microenvironment in response to anticancer medicinal plants. Advances and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xincheng Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- *Correspondence: Zhichao Xi, ; Hongxi Xu,
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhichao Xi, ; Hongxi Xu,
| |
Collapse
|
13
|
Khan AQ, Al-Tamimi M, Uddin S, Steinhoff M. F-box proteins in cancer stemness: An emerging prognostic and therapeutic target. Drug Discov Today 2021; 26:2905-2914. [PMID: 34265459 DOI: 10.1016/j.drudis.2021.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023]
Abstract
Cancer is a complex heterogenic disease with significant therapeutic challenges. The presence of cancer stem cells (CSCs) in cancer tissue orchestrates tumor growth, progression, and metastasis, the tumor heterogeneity, disease relapse, and therapeutic resistance. Hence, it is imperative to explore how progenitor or cancer-initiating cells acquire stemness features and reprogram different biological mechanisms to maintain their sustained oncogenicity. Interestingly, deregulation of F-box proteins (FBPs) is crucial for cancer stemness features, including drug resistance and disease relapse. In this review, we highlight recent updates on the clinical significance of targeting FBPs in cancer therapy, with emphasis on eliminating CSCs and associated therapeutic challenges. Moreover, we also discuss novel strategies for the selective elimination of CSCs by targeting FBPs.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Maha Al-Tamimi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha 2713, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
14
|
Hnit SST, Ding R, Bi L, Xie C, Yao M, De Souza P, Xu L, Li Z, Dong Q. Agrimol B present in Agrimonia pilosa Ledeb impedes cell cycle progression of cancer cells through G 0 state arrest. Biomed Pharmacother 2021; 141:111795. [PMID: 34098217 DOI: 10.1016/j.biopha.2021.111795] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/16/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer recurrence poses a significant challenge. At the cellular level, recurrence takes place as a result of reactivation of dormant cancer cells residing at G0 phase. The aim of the study was to identify compounds that can trap prostate and lung cancer cells in G0 phase from a new Chinese herb recipe, Astringent recipe, consisting of Radix Paeoniae Alba, Agrimonia pilosa Ledeb, Fructus Mume, Fritillaria thunbergii Miq., Ganoderma Lucidum Karst, and Astragalus membranaceus (Fisch.) Bunge. Astringent recipe impeded cell cycle progression in prostate and lung cancer cells by rounding them up at G0 phase by flow cytometric analysis of cancer cells stained with Hoechst 33342 and Pyronin Y, respectively, for DNA and RNA. The anti-cancer efficacy of the recipe was found to be attributable to Agrimonia pilosa Ledeb. Further study established that agrimol B, a polyphenol derived from Agrimonia pilosa Ledeb, contributed to the activity of the herb. The action of agrimol B on the cancer cells was likely derived from its effect on c-MYC, SKP2 and p27 by immunoblotting and immunofluorescence. Oral administration of Agrimonia pilosa Ledeb or agrimol B reduced growth of prostate cancer cell xenograft in animal. In conclusion, Agrimol B can enrich for prostate and lung cancer cells in G0 state and influence key regulators that govern G0 status.
Collapse
Affiliation(s)
- Su Su Thae Hnit
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrisnology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Rongzhen Ding
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chanlu Xie
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrisnology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mu Yao
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrisnology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Paul De Souza
- School of Medicine, Western Sydney University, Australia
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrisnology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
15
|
Feng J, Mansouripour A, Xi Z, Zhang L, Xu G, Zhou H, Xu H. Nujiangexanthone A Inhibits Cervical Cancer Cell Proliferation by Promoting Mitophagy. Molecules 2021; 26:2858. [PMID: 34065886 PMCID: PMC8150697 DOI: 10.3390/molecules26102858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/22/2022] Open
Abstract
Nujiangexanthone A (NJXA), a bioactive component isolated from the leaves of Garcinia nujiangensis, has been reported to exhibit anti-inflammatory, antioxidant, and antitumor effects. Our previous work has shown that NJXA induced G0/1 arrest and apoptosis, thus suppressing cervical cancer cell growth. The present study provides new evidence that NJXA can induce cell death in HeLa cells by promoting mitophagy. We first identified that NJXA triggered GFP-LC3 and YFP-Parkin puncta accumulation, which are biomarkers of mitophagy. Moreover, NJXA degraded the mitochondrial membrane proteins Tom20 and Tim23 and mitochondrial fusion proteins MFN1 and MFN2, downregulated Parkin, and stabilized PINK1. Additionally, we revealed that NJXA induced lysosome degradation and colocalization of mitochondria and autophagosomes, which was attenuated by knocking down ATG7, the key regulator of mitophagy. Furthermore, since mitophagy is induced under starvation conditions, we detected the cytotoxic effect of NJXA in nutrient-deprived HeLa cells and observed better cytotoxicity. Taken together, our work contributes to the further clarification of the mechanism by which NJXA inhibits cervical cancer cell proliferation and provides evidence that NJXA has the potential to develop anticancer drugs.
Collapse
Affiliation(s)
- Jiling Feng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China;
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China; (A.M.); (Z.X.); (L.Z.)
| | - Anahitasadat Mansouripour
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China; (A.M.); (Z.X.); (L.Z.)
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China; (A.M.); (Z.X.); (L.Z.)
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China; (A.M.); (Z.X.); (L.Z.)
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China;
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China; (A.M.); (Z.X.); (L.Z.)
| | - Hongxi Xu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China;
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China; (A.M.); (Z.X.); (L.Z.)
| |
Collapse
|
16
|
Nik Nabil WN, Xi Z, Song Z, Jin L, Zhang XD, Zhou H, De Souza P, Dong Q, Xu H. Towards a Framework for Better Understanding of Quiescent Cancer Cells. Cells 2021; 10:cells10030562. [PMID: 33807533 PMCID: PMC7999675 DOI: 10.3390/cells10030562] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Quiescent cancer cells (QCCs) are cancer cells that are reversibly suspended in G0 phase with the ability to re-enter the cell cycle and initiate tumor growth, and, ultimately, cancer recurrence and metastasis. QCCs are also therapeutically challenging due to their resistance to most conventional cancer treatments that selectively act on proliferating cells. Considering the significant impact of QCCs on cancer progression and treatment, better understanding of appropriate experimental models, and the evaluation of QCCs are key questions in the field that have direct influence on potential pharmacological interventions. Here, this review focuses on existing and emerging preclinical models and detection methods for QCCs and discusses their respective features and scope for application. By providing a framework for selecting appropriate experimental models and investigative methods, the identification of the key players that regulate the survival and activation of QCCs and the development of more effective QCC-targeting therapeutic agents may mitigate the consequences of QCCs.
Collapse
Affiliation(s)
- Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
- Pharmaceutical Services Programme, Ministry of Health, Petaling Jaya 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Zejia Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Paul De Souza
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Correspondence: (Q.D.); (H.X.)
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Correspondence: (Q.D.); (H.X.)
| |
Collapse
|
17
|
Jiang X, Li Y, Feng JL, Nik Nabil WN, Wu R, Lu Y, Liu H, Xi ZC, Xu HX. Safrana l Prevents Prostate Cancer Recurrence by Blocking the Re-activation of Quiescent Cancer Cells via Downregulation of S-Phase Kinase-Associated Protein 2. Front Cell Dev Biol 2021; 8:598620. [PMID: 33392189 PMCID: PMC7772204 DOI: 10.3389/fcell.2020.598620] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
The re-proliferation of quiescent cancer cells is considered to be the primary contributor to prostate cancer (Pca) recurrence and progression. In this study, we investigated the inhibitory effect of safranal, a monoterpene aldehyde isolated from Crocus sativus (saffron), on the re-proliferation of quiescent Pca cells in vitro and in vivo. The results showed that safranal efficiently blocked the re-activation of quiescent Pca cells by downregulating the G0/G1 cell cycle regulatory proteins CDK2, CDK4, CDK6, and phospho-Rb at Ser807/811 and elevating the levels of cyclin-dependent kinase inhibitors, p21 and p27. Further investigation on the underlying mechanisms revealed that safranal suppressed the mRNA and protein expression levels of Skp2, possibly through the deregulation of the transcriptional activity of two major transcriptional factors, E2F1 and NF-κB subunits. Moreover, safranal inhibited AKT phosphorylation at Ser473 and deregulated both canonical and non-canonical NF-κB signaling pathways. Safranal suppressed the tumor growth of quiescent Pca cell xenografts in vivo. Furthermore, safranal-treated tumor tissues exhibited a reduction in Skp2, E2F1, NF-κB p65, p-IκBα (Ser32), c-MYC, p-Rb (Ser807), CDK4, CDK6, and CDK2 and an elevation of p27 and p21 protein levels. Therefore, our findings demonstrate that safranal suppresses cell cycle re-entry of quiescent Pca cells in vitro and in vivo plausibly by repressing the transcriptional activity of two major transcriptional activators of Skp2, namely, E2F1 and NF-κB, through the downregulation of AKT phosphorylation and NF-κB signaling pathways, respectively.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Ling Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Pharmaceutical Services Program, Ministry of Health, Petaling Jaya, Malaysia
| | - Rong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Liu
- Hospital Management Office, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Chao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur J Med Chem 2020; 205:112646. [PMID: 32791400 DOI: 10.1016/j.ejmech.2020.112646] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/22/2022]
Abstract
Bicyclic polyprenylated acylphloroglucinols (BPAPs), the principal bioactive benzophenone products isolated from plants of genera Garcinia and Hypericum, have attracted noticeable attention from the synthetic and biological communities due to their fascinating chemical structures and promising biological activities. However, the potential drug interaction, undesired physiochemical properties and toxicity have limited their potential use and development. In the last decade, pharmaceutical research on the structural modifications, structure-activity relationships (SARs) and mechanisms of action of BPAPs has been greatly developed to overcome the challenges. A comprehensive review of these scientific literature is extremely needed to give an overview of the rapidly emerging area and facilitate research related to BPAPs. This review, containing over 226 references, covers the progress made in the chemical synthesis-based structure modifications, SARs and the mechanism of action of BPAPs in vivo and vitro. The most relevant articles will focus on the discovery of lead compounds via synthetic modifications and the important BPAPs for which the direct targets have been deciphered. From this review, several key points of the SARs and mode of actions of this novel class of compounds have been summarized. The perspective and future direction of the research on BPAPs are concluded. This review would be helpful to get a better grasp of medicinal research of BPAPs and become a compelling guide for chemists dedicated to the synthesis of these compounds.
Collapse
|
19
|
Lieschke E, Wang Z, Kelly GL, Strasser A. Discussion of some 'knowns' and some 'unknowns' about the tumour suppressor p53. J Mol Cell Biol 2020; 11:212-223. [PMID: 30496435 PMCID: PMC6478126 DOI: 10.1093/jmcb/mjy077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Activation of the tumour suppressor p53 upon cellular stress can induce a number of different cellular processes. The diverse actions of these processes are critical for the protective function of p53 in preventing the development of cancer. However, it is still not fully understood which process(es) activated by p53 is/are critical for tumour suppression and how this might differ depending on the type of cells undergoing neoplastic transformation and the nature of the drivers of oncogenesis. Moreover, it is not clear why upon activation of p53 some cells undergo cell cycle arrest and senescence whereas others die by apoptosis. Here we discuss some of the cellular processes that are crucial for p53-mediated tumour suppression and the factors that could impact cell fate upon p53 activation. Finally, we describe therapies aimed either at activating wild-type p53 or at changing the behaviour of mutant p53 to unleash tumour growth suppressive processes for therapeutic benefit in malignant disease.
Collapse
Affiliation(s)
- Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Zilu Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY. Stem cell programs in cancer initiation, progression, and therapy resistance. Am J Cancer Res 2020; 10:8721-8743. [PMID: 32754274 PMCID: PMC7392012 DOI: 10.7150/thno.41648] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.
Collapse
|
21
|
Sui H, Tan H, Fu J, Song Q, Jia R, Han L, Lv Y, Zhang H, Zheng D, Dong L, Wang S, Li Q, Xu H. The active fraction of Garcinia yunnanensis suppresses the progression of colorectal carcinoma by interfering with tumorassociated macrophage-associated M2 macrophage polarization in vivo and in vitro. FASEB J 2020; 34:7387-7403. [PMID: 32283574 DOI: 10.1096/fj.201903011r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third most common solid tumor worldwide and has shown resistance to several immunotherapies, particularly immune checkpoint blockade therapy, which is effective in many other types of cancer. Our previous studies indicated that the active fraction of Garcinia yunnanensis (YTE-17), had potent anticancer activities by regulating multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of CRC is limited. This study tested the effects of YTE-17 on colon cancer development in vivo by using two murine models: the carcigenic azoxymethane/dextran sulfate sodium (AOM/DSS)-induced CRC model and a genetically induced model using ApcMin/+ mice. Here, the tumor load, tumor number, histology, and even some oncogenes were used to evaluate the effect of YTE-17. The intragastric administration of YTE-17 for 12 weeks significantly decreased CRC incidence, tumor number and size, immunity, and some tumor-associated macrophage (TAM) markers, including CD206, Arg-1, IL-10, and TGF-β. Importantly, the macrophages depletion by clodronate (CEL) also played a role in reducing the tumor burden and inhibiting tumor development, which were not affected by YTE-17 in the ApcMin/+ mice. Moreover, the YTE-17 treatment attenuated CRC cell growth in a co-culture system in the presence of macrophages. Consistently, YTE-17 effectively reduced the tumor burden and macrophage infiltration and enhanced immunity in the AOM/DSS and ApcMin/+ colon tumor models. Altogether, we demonstrate that macrophages in the microenvironment may contribute to the development and progression of CRC cells and propose YTE-17 as a new potential drug option for the treatment of CRC.
Collapse
Affiliation(s)
- Hua Sui
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Fu
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Song
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Lv
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songpo Wang
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Hnit SST, Yao M, Xie C, Ge G, Bi L, Jin S, Jiao L, Xu L, Long L, Nie H, Jin Y, Rogers L, Suchowerska N, Wong M, Liu T, De Souza P, Li Z, Dong Q. Transcriptional regulation of G 2/M regulatory proteins and perturbation of G 2/M Cell cycle transition by a traditional Chinese medicine recipe. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112526. [PMID: 31893534 DOI: 10.1016/j.jep.2019.112526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedyotis diffusa Willd. (H) and Scutellaria barbata D.Don (S) are ancient anti-cancer Chinese herb medicines. When combined, known as HS, it is one of the most commonly prescribed Chinese Medicines for cancer patients today in China. AIM OF THE STUDY The prevention of disease progression is a dominant concern for the growing number of men with prostate cancer. The purpose of this work is to evaluate the action and mode of action of Chinese Medicine recipe HS in inhibiting prostate cancer progression in preclinical models. METHODS Effects of HS were analyzed in prostate cancer cell lines by evaluating proliferation, cell cycle profile, DNA damage and key regulators responsible for G2 to M phase transition. The transcriptional activities of these regulators were determined by RT-PCR and ChIP. The efficacy of HS in vitro was validated in an animal model. RESULTS HS treatment was observed to reduce DNA content and accumulated prostate cancer cells at the G2/M phase. Immunolabeling for phospho-Histone H3 in association with nocodazole to capture mitotic cells confirmed that HS impeded G2 to M transition. After excluding DNA damage-induced G2 arrest, it was revealed that HS reduced expression of Cyclin B1, CDK1, PLK1 and Aurora A at both protein and mRNA levels, with concomitant reduction of H3K4 tri-methylation at their promoter-regions. Animals that received oral administration of HS with a dosage relevant to clinical application showed reduced tumor volume and weight with a reduction of Cyclin B1, CDK1, PLK1 and Aurora A protein levels. CONCLUSIONS HS acts by impeding the G2 to M transition of prostate cancer cells. It is likely that the mode of action is transcriptionally suppressing proteins governing mitotic entry, without eliciting significant DNA damage.
Collapse
Affiliation(s)
- Su Su Thae Hnit
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mu Yao
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Chanlu Xie
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenyi Jin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Long
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Hong Nie
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yu Jin
- School of Pharmacy, East China University of Science and Technology, China
| | - Linda Rogers
- VectorLAB, Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, Australia; School of Physics, The University of Sydney, Sydney, Australia
| | - Natalka Suchowerska
- VectorLAB, Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, Australia; School of Physics, The University of Sydney, Sydney, Australia
| | - Matthew Wong
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia; Centre for Childhood Cancer Research, UNSW Medicine, Sydney, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia; Centre for Childhood Cancer Research, UNSW Medicine, Sydney, Australia
| | - Paul De Souza
- School of Medicine, Western Sydney University, Australia
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia; School of Science and Health, Western Sydney University, Australia.
| |
Collapse
|
23
|
Huo W, Qi F, Wang K. Long non-coding RNA FER1L4 inhibits prostate cancer progression via sponging miR-92a-3p and upregulation of FBXW7. Cancer Cell Int 2020; 20:64. [PMID: 32140077 PMCID: PMC7049228 DOI: 10.1186/s12935-020-1143-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Dysregulation of long non-coding RNAs (lncRNAs) is involved in development of prostate cancer. However, the molecular mechanisms of many lncRNAs in prostate cancer have not been studied yet. Methods The lncRNA Fer-1-like protein 4 (FER1L4) expression was explored in prostate tumors and normal prostate tissues by RT-qPCR and bioinformatic analysis. Overexpression of FER1L4 was performed to evaluate its role in prostate cancer cell proliferation and survival. The molecular mechanism of FER1L4 was investigated by dual luciferase reporter assay, RNA pull down assay, western blotting and RT-qPCR. Results It was found that FER1L4 was lower in prostate cancer tissues than normal tissues. Higher expression of FER1L4 was associated with prostate cancer tissues of early stage (AJCC stage I/II). Overexpression of FER1L4 inhibited cell proliferation and promoted cell apoptosis in prostate cancer cells. Bioinformatic analysis, RT-qPCR, RNA pull down assay and dual luciferase assay showed that FER1L4 upregulated F-box/WD repeat-containing protein 7 (FBXW7) tumor suppressor via sponging miR-92a-3p. Silencing of FBXW7 reversed the cell phenotypes caused by FER1L4 overexpression in prostate cancer cells. Conclusion The data demonstrated that FER1L4, a downregulated lncRNA in prostate cancer, was pivotal for cell proliferation and survival of prostate cancer. The study provided new sights into understanding of the signaling network in prostate cancer and implied that FER1L4 might be a biomarker for patients with prostate cancer.
Collapse
Affiliation(s)
- Wei Huo
- 1Department of Urology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130001 People's Republic of China
| | - Fei Qi
- 2Department of Operating Room, China-Japan Union Hospital, Jilin University, Changchun, 130001 People's Republic of China
| | - Kaichen Wang
- 1Department of Urology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130001 People's Republic of China
| |
Collapse
|
24
|
Bi L, Xie C, Jiao L, Jin S, Hnit SST, Mu Y, Wang Y, Wang Q, Ge G, Wang Y, Zhao X, Shi X, Kang Y, De Souza P, Liu T, Zhou J, Xu L, Dong Q. CPF impedes cell cycle re-entry of quiescent lung cancer cells through transcriptional suppression of FACT and c-MYC. J Cell Mol Med 2020; 24:2229-2239. [PMID: 31960591 PMCID: PMC7011132 DOI: 10.1111/jcmm.14897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Blockade of cell cycle re‐entry in quiescent cancer cells is a strategy to prevent cancer progression and recurrence. We investigated the action and mode of action of CPF mixture (Coptis chinensis, Pinellia ternata and Fructus trichosanthis) in impeding a proliferative switch in quiescent lung cancer cells. The results indicated that CPF impeded cell cycle re‐entry in quiescent lung cancer cells by reduction of FACT and c‐MYC mRNA and protein levels, with concomitant decrease in H3K4 tri‐methylation and RNA polymerase II occupancy at FACT and c‐MYC promoter regions. Animals implanted with quiescent cancer cells that had been exposed to CPF had reduced tumour volume/weight. Thus, CPF suppresses proliferative switching through transcriptional suppression of FACT and the c‐MYC, providing a new insight into therapeutic target and intervention method in impeding cancer recurrence.
Collapse
Affiliation(s)
- Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chanlu Xie
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Penrith South, NSW, Australia.,Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenyi Jin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Su Su Thae Hnit
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Penrith South, NSW, Australia.,Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Yao Mu
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Yilun Wang
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Qian Wang
- Origins of Cancer Program, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, the University of Sydney, Sydney, NSW, Australia
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaqiao Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinglong Shi
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Paul De Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia.,Center for Childhood Cancer Research, UNSW Medicine, Sydney, NSW, Australia
| | - Jia Zhou
- Department of Thoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qihan Dong
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University, Penrith South, NSW, Australia.,Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Center, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
25
|
Shammugasamy B, Valtchev P, Dong Q, Dehghani F. Effect of citrus peel extracts on the cellular quiescence of prostate cancer cells. Food Funct 2019; 10:3727-3737. [PMID: 31169845 DOI: 10.1039/c9fo00455f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The re-entry of quiescent cancer cells to the cell cycle plays a key role in cancer recurrence, which can pose a high risk after primary treatment. Citrus peel extracts (CPEs) contain compounds that can potentially impair tumour growth; however the mechanism of action and effects on cell cycle regulation remain unclear. In this study, the capacity of an ethyl acetate : hexane extract (CPE/hexane) and water extract (CPE/water) to modulate the cell cycle re-entry of quiescent (PC-3 and LNCaP) prostate cancer cells was tested in an in vitro culture system. Cell cycle analysis showed that the quiescent PC-3 and LNCaP cancer cells in the presence of CPE/water were impaired in their ability to enter the S phase where only 2-3% reduction of G0/G1 cells was noted compared to 12-18% reduction of control cells. In contrast, the CPE/hexane did not show any cell cycle inhibition activity in both cell lines. A low DNA synthesis rate and weak apoptosis were observed in quiescent cancer cells treated with CPEs. Hesperidin and narirutin, the predominant flavonoids found in citrus fruits, were not responsible for the observed biological activity, implicating alternative bioactive compounds. Notably, citric acid was identified as one of the compounds present in CPEs that acts as a cell cycle re-entry inhibitor. Citric acid exhibited a higher cell toxicity effect on PC-3 prostate cancer cells than non-cancerous RWPE-1 prostate cells, suggesting specific benefits for cancer treatment. In conclusion, CPE containing citric acid together with various bioactive compounds may be used as a chemopreventive agent for post-therapy cancer patients.
Collapse
|
26
|
Hidayat M, Mitsuishi Y, Takahashi F, Tajima K, Yae T, Miyahara K, Hayakawa D, Winardi W, Ihara H, Koinuma Y, Wirawan A, Nurwidya F, Kato M, Kobayashi I, Sasaki S, Takamochi K, Hayashi T, Suehara Y, Moriyama M, Moriyama H, Habu S, Takahashi K. Role of FBXW7 in the quiescence of gefitinib-resistant lung cancer stem cells in EGFR-mutant non-small cell lung cancer. Bosn J Basic Med Sci 2019; 19:355-367. [PMID: 31202256 DOI: 10.17305/bjbms.2019.4227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
Several recent studies suggest that cancer stem cells (CSCs) are involved in intrinsic resistance to cancer treatment. Maintenance of quiescence is crucial for establishing resistance of CSCs to cancer therapeutics. F-box/WD repeat-containing protein 7 (FBXW7) is a ubiquitin ligase that regulates quiescence by targeting the c-MYC protein for ubiquitination. We previously reported that gefitinib-resistant persisters (GRPs) in EGFR-mutant non-small cell lung cancer (NSCLC) cells highly expressed octamer-binding transcription factor 4 (Oct-4) as well as the lung CSC marker CD133, and they exhibited distinctive features of the CSC phenotype. However, the role of FBXW7 in lung CSCs and their resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors in NSCLC is not fully understood. In this study, we developed GRPs from the two NSCLC cell lines PC9 and HCC827, which express an EGFR exon 19 deletion mutation, by treatment with a high concentration of gefitinib. The GRPs from both PC9 and HCC827 cells expressed high levels of CD133 and FBXW7, but low levels of c-MYC. Cell cycle analysis demonstrated that the majority of GRPs existed in the G0/G1 phase. Knockdown of the FBXW7 gene significantly reduced the cell number of CD133-positive GRPs and reversed the cell population in the G0/G1-phase. We also found that FBXW7 expression in CD133-positive cells was increased and c-MYC expression was decreased in gefitinib-resistant tumors of PC9 cells in mice and in 9 out of 14 tumor specimens from EGFR-mutant NSCLC patients with acquired resistance to gefitinib. These findings suggest that FBXW7 plays a pivotal role in the maintenance of quiescence in gefitinib-resistant lung CSCs in EGFR mutation-positive NSCLC.
Collapse
Affiliation(s)
- Moulid Hidayat
- Department of Respiratory Medicine; Research Institute for Diseases of Old Ages, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang J, Wang H, Peters M, Ding N, Ribback S, Utpatel K, Cigliano A, Dombrowski F, Xu M, Chen X, Song X, Che L, Evert M, Cossu A, Gordan J, Zeng Y, Chen X, Calvisi DF. Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. J Hepatol 2019; 71:742-752. [PMID: 31195063 PMCID: PMC6773530 DOI: 10.1016/j.jhep.2019.05.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS The ubiquitin ligase F-box and WD repeat domain-containing 7 (FBXW7) is recognized as a tumor suppressor in many cancer types due to its ability to promote the degradation of numerous oncogenic target proteins. Herein, we aimed to elucidate its role in intrahepatic cholangiocarcinoma (iCCA). METHODS Herein, we first confirmed that FBXW7 gene expression was reduced in human iCCA specimens. To identify the molecular mechanisms by which FBXW7 dysfunction promotes cholangiocarcinogenesis, we generated a mouse model by hydrodynamic tail vein injection of Fbxw7ΔF, a dominant negative form of Fbxw7, either alone or in association with an activated/myristylated form of AKT (myr-AKT). We then confirmed the role of c-MYC in human iCCA cell lines and its relationship to FBXW7 expression in human iCCA specimens. RESULTS FBXW7 mRNA expression is almost ubiquitously downregulated in human iCCA specimens. While forced overexpression of Fbxw7ΔF alone did not induce any appreciable abnormality in the mouse liver, co-expression with AKT triggered cholangiocarcinogenesis and mice had to be euthanized by 15 weeks post-injection. At the molecular level, a strong induction of Fbxw7 canonical targets, including Yap, Notch2, and c-Myc oncoproteins, was detected. However, only c-MYC was consistently confirmed as a FBXW7 target in human CCA cell lines. Most importantly, selected ablation of c-Myc completely impaired iCCA formation in AKT/Fbxw7ΔF mice, whereas deletion of either Yap or Notch2 only delayed tumorigenesis in the same model. In human iCCA specimens, an inverse correlation between the expression levels of FBXW7 and c-MYC transcriptional activity was observed. CONCLUSIONS Downregulation of FBXW7 is ubiquitous in human iCCA and cooperates with AKT to induce cholangiocarcinogenesis in mice via c-Myc-dependent mechanisms. Targeting c-MYC might represent an innovative therapy against iCCA exhibiting low FBXW7 expression. LAY SUMMARY There is mounting evidence that FBXW7 functions as a tumor suppressor in many cancer types, including intrahepatic cholangiocarcinoma, through its ability to promote the degradation of numerous oncoproteins. Herein, we have shown that the low expression of FBXW7 is ubiquitous in human cholangiocarcinoma specimens. This low expression is correlated with increased c-MYC activity, leading to tumorigenesis. Our findings suggest that targeting c-MYC might be an effective treatment for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Haichuan Wang
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Michele Peters
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Ning Ding
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Antonio Cigliano
- Institute of Pathology, University of Greifswald, Greifswald, Germany,Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Meng Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California,Department of General Surgery, The Second Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Xinyan Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California,Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Antonio Cossu
- Unit of Pathology, Azienda Ospedaliero Universitaria Sassari, Sassari, Italy
| | - John Gordan
- Department of Medicine, University of California, San Francisco, California
| | - Yong Zeng
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, United States.
| | - Diego F. Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany,Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Tiloke C, Phulukdaree A, Gengan RM, Chuturgoon AA. Moringa oleifera Aqueous Leaf Extract Induces Cell-Cycle Arrest and Apoptosis in Human Liver Hepatocellular Carcinoma Cells. Nutr Cancer 2019; 71:1165-1174. [PMID: 30945951 DOI: 10.1080/01635581.2019.1597136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aim: Hepatocellular carcinoma is one of the leading global epidemics. A medicinal tree, Moringa oleifera (MO), has been part of traditional treatments including cancer therapies. We investigated the apoptosis inducing effects of MO crude aqueous leaf extract (MOE) in human liver hepatocellular carcinoma (HepG2) cells. Methods: HepG2, PBMCs and Hek293 cell viability was evaluated using MTT assay. Oxidative stress and DNA damage was determined using TBARS and comet assays, respectively. Apoptosis was assessed by caspase-9, -3/7 activities and ATP levels (luminometry). Cell cycle, γH2AX, and cleaved PARP-1 were determined (flow cytometry). Protein expression of c-myc, Bax, p-Bcl2, Smac/DIABLO, Hsp70, SRp30a and cleaved PARP-1 was assessed using western blotting. Results: MOE displayed minimal toxicity in PBMCs and Hek293 cells for 24 h. HepG2 cells were exposed to MOE (24 h) and an IC50 (4.479 mg/mL) was determined. MOE significantly increased lipid peroxidation, DNA damage and γH2AX levels. A significant decrease in G1, S and G2-M phase was seen. Significant increase in SRp30a protein expression activated caspase-9. Caspase-9 and -3/7 was significantly increased with significant decrease in ATP levels. Apoptosis was confirmed with significant decrease in c-myc, p-Bcl2 and Hsp70 protein expression and a significant increase in Bax, Smac/DIABLO and PARP-1 cleavage. Conclusion: MOE induces cell-cycle arrest and apoptosis in cancerous HepG2 cells.
Collapse
Affiliation(s)
- Charlette Tiloke
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal , Durban , South Africa.,Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology , Durban , South Africa
| | - Alisa Phulukdaree
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal , Durban , South Africa
| | - Robert M Gengan
- Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology , Durban , South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal , Durban , South Africa
| |
Collapse
|
29
|
Zhang BJ, Fu WW, Wu R, Yang JL, Yao CY, Yan BX, Tan HS, Zheng CW, Song ZJ, Xu HX. Bioactive scalemic caged xanthones from the leaves of Garcinia bracteata. Bioorg Chem 2019; 82:274-283. [PMID: 30396061 DOI: 10.1016/j.bioorg.2018.10.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 01/22/2023]
Abstract
Four pairs of previously undescribed caged xanthones (1-4) and twelve known caged xanthones (5-16) were isolated from the leaf extract of Garcinia bracteata. Their structures were unambiguously elucidated on the basis of spectroscopic methods. The planar structure and relative configuration of 1 was confirmed by X-ray crystallographic analysis. The enantiomers of compounds 1, 2, 4 were further resolved by semi-preparative chiral HPLC, and the absolute configurations of enantiomers of compounds 1 and 4 were determined by measurement and calculation of electronic circular dichroism (ECD) spectra and specific rotations. The inhibitory activities of the isolated compounds against human HeLa, A549, PC-3, HT-29, and WPMY-1 cell lines were assayed, and garcibractatin A (4) showed the most potent inhibitory activities in vitro with IC50 values from 1.11 to 2.93 μM. A preliminary structure-activity relationship has been discussed, and some helpful conclusions have been drawn.
Collapse
Affiliation(s)
- Bao-Jun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, People's Republic of China; Departement of Pharmacy, Shanghai Putuo District People Hospital, Shanghai 200060, People's Republic of China
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, People's Republic of China
| | - Rong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, People's Republic of China
| | - Jin-Ling Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, People's Republic of China
| | - Cai-Yun Yao
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, People's Republic of China
| | - Bing-Xiong Yan
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, People's Republic of China
| | - Hong-Sheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, People's Republic of China
| | - Chang-Wu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, People's Republic of China
| | - Zhi-Jun Song
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, People's Republic of China.
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, People's Republic of China.
| |
Collapse
|
30
|
Bi L, Xie C, Yao M, Thae Hnit SS, Vignarajan S, Wang Y, Wang Q, Xi Z, Xu H, Li Z, de Souza P, Tee A, Wong M, Liu T, Zhao X, Zhou J, Xu L, Dong Q. The histone chaperone complex FACT promotes proliferative switch of G 0 cancer cells. Int J Cancer 2018; 145:164-178. [PMID: 30548853 DOI: 10.1002/ijc.32065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Cancer cell repopulation through cell cycle re-entry by quiescent (G0 ) cell is thought to be an important mechanism behind treatment failure and cancer recurrence. Facilitates Chromatin Transcription (FACT) is involved in DNA repair, replication and transcription by eviction of histones or loosening their contact with DNA. While FACT expression is known to be high in a range of cancers, the biological significance of the aberrant increase is not clear. We found that in prostate and lung cancer cells FACT mRNA and protein levels were low at G0 compared to the proliferating state but replenished upon cell cycle re-entry. Silencing of FACT with Dox-inducible shRNA hindered cell cycle re-entry by G0 cancer cells, which could be rescued by ectopic expression of FACT. An increase in SKP2, c-MYC and PIRH2 and a decrease in p27 protein levels seen upon cell cycle re-entry were prevented or diminished when FACT was silenced. Further, using mVenus-p27K- infected cancer cells to measure p27 degradation capacity, we confirm that inhibition of FACT at release from quiescence suppressed the p27 degradation capacity resulting in an increased mVenus-p27K- signal. In conclusion, FACT plays an important role in promoting the transition from G0 to the proliferative state and can be a potential therapeutic target to prevent prostate and lung cancer from progression and recurrence.
Collapse
Affiliation(s)
- Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chanlu Xie
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia.,Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Mu Yao
- Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Su Su Thae Hnit
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia
| | - Soma Vignarajan
- Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yilun Wang
- Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Qian Wang
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Paul de Souza
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Andrew Tee
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia.,Center for Childhood Cancer Research, UNSW Medicine, Sydney, NSW, Australia
| | - Matthew Wong
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia.,Center for Childhood Cancer Research, UNSW Medicine, Sydney, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia.,Center for Childhood Cancer Research, UNSW Medicine, Sydney, NSW, Australia
| | - Xiaodong Zhao
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qihan Dong
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia.,Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
31
|
Wang S, Ekoue DN, Raj GV, Kittler R. Targeting the turnover of oncoproteins as a new avenue for therapeutics development in castration-resistant prostate cancer. Cancer Lett 2018; 438:86-96. [PMID: 30217566 PMCID: PMC6186492 DOI: 10.1016/j.canlet.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
The current therapeutic armamentarium for castration-resistant prostate cancer (CRPC) includes second-generation agents such as the Androgen Receptor (AR) inhibitor enzalutamide and the androgen synthesis inhibitor abiraterone acetate, immunotherapies like sipuleucel-T, chemotherapies including docetaxel and cabazitaxel and the radiopharmaceutical radium 223 dichloride. However, relapse of CRPC resistant to these therapeutic modalities occur rapidly. The mechanisms of resistance to these treatments are complex, including specific mutations or alternative splicing of oncogenic proteins. An alternative approach to treating CRPC may be to target the turnover of these molecular drivers of CRPC. In this review, the mechanisms by which protein stability of several oncoproteins such as AR, ERG, GR, CYP17A1 and MYC, will be discussed, as well as how these findings could be translated into novel therapeutic agents.
Collapse
Affiliation(s)
- Shan Wang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Dede N Ekoue
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
La T, Liu GZ, Farrelly M, Cole N, Feng YC, Zhang YY, Sherwin SK, Yari H, Tabatabaee H, Yan XG, Guo ST, Liu T, Thorne RF, Jin L, Zhang XD. A p53-Responsive miRNA Network Promotes Cancer Cell Quiescence. Cancer Res 2018; 78:6666-6679. [PMID: 30301840 DOI: 10.1158/0008-5472.can-18-1886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 11/16/2022]
Abstract
: Cancer cells in quiescence (G0 phase) are resistant to death, and re-entry of quiescent cancer cells into the cell-cycle plays an important role in cancer recurrence. Here we show that two p53-responsive miRNAs utilize distinct but complementary mechanisms to promote cancer cell quiescence by facilitating stabilization of p27. Purified quiescent B16 mouse melanoma cells expressed higher levels of miRNA-27b-3p and miRNA-455-3p relative to their proliferating counterparts. Induction of quiescence resulted in increased levels of these miRNAs in diverse types of human cancer cell lines. Inhibition of miRNA-27b-3p or miRNA-455-3p reduced, whereas its overexpression increased, the proportion of quiescent cells in the population, indicating that these miRNAs promote cancer cell quiescence. Accordingly, cancer xenografts bearing miRNA-27b-3p or miRNA-455-3p mimics were retarded in growth. miRNA-27b-3p targeted cyclin-dependent kinase regulatory subunit 1 (CKS1B), leading to reduction in p27 polyubiquitination mediated by S-phase kinase-associated protein 2 (Skp2). miRNA-455-3p targeted CDK2-associated cullin domain 1 (CAC1), which enhanced CDK2-mediated phosphorylation of p27 necessary for its polyubiquitination. Of note, the gene encoding miRNA-27b-3p was embedded in the intron of the chromosome 9 open reading frame 3 gene that was transcriptionally activated by p53. Similarly, the host gene of miRNA-455-3p, collagen alpha-1 (XXVII) chain, was also a p53 transcriptional target. Collectively, our results identify miRNA-27b-3p and miRNA-455-3p as important regulators of cancer cell quiescence in response to p53 and suggest that manipulating miRNA-27b-3p and miRNA-455-3p may constitute novel therapeutic avenues for improving outcomes of cancer treatment. SIGNIFICANCE: Two novel p53-responsive microRNAs whose distinct mechanisms of action both stabilize p27 to promote cell quiescence and may serve as therapeutic avenues for improving outcomes of cancer treatment.
Collapse
Affiliation(s)
- Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Guang Zhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Margaret Farrelly
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Nicole Cole
- Research Infrastructure, Research and Innovation Division, The University of Newcastle, New South Wales, Australia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Simonne K Sherwin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Hamed Yari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Hessam Tabatabaee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Su Tang Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Shanxi, China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, New South Wales, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Henan, China.,School of Environmental and Life Sciences, University of Newcastle, New South Wales, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia.
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia. .,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Henan, China
| |
Collapse
|
33
|
Li Y, Xi Z, Chen X, Cai S, Liang C, Wang Z, Li Y, Tan H, Lao Y, Xu H. Natural compound Oblongifolin C confers gemcitabine resistance in pancreatic cancer by downregulating Src/MAPK/ERK pathways. Cell Death Dis 2018; 9:538. [PMID: 29749405 PMCID: PMC5970202 DOI: 10.1038/s41419-018-0574-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/28/2022]
Abstract
Gemcitabine (GEM)-induced drug resistance is the major reason for the failure of chemotherapy in pancreatic cancer (PC). In this study, we found that Oblongifolin C (OC) efficiently inhibited PC cell proliferation by inducing G0/G1 arrest and apoptosis. Also, our mechanism study demonstrated that OC re-sensitized the GEM-resistant PC cells through the ubiquitin-proteasome-dependent degradation of Src, and then downregulating the MAPK pathway. Knockdown of Src plus OC resulted in a greater inhibitory effect in GEM-resistant PC cells. In contrast, Src overexpression reversed OC-mediated chemosensitization, thereby implicating Src in the action of OC. Moreover, our in vivo study showed that OC suppressed the tumor growth via the downregulation of Src, and enhanced the chemosensitivity of GEM-resistant PC to GEM. Overall, our results have revealed that OC is applicable as a promising agent for overcoming GEM-resistant PC, especially with aberrant Src expression.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Xiaoqiong Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Shuangfan Cai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Chen Liang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingyi Li
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P. R. China.
| |
Collapse
|
34
|
Abstract
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases: RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other eukaryotes and mammalian systems, in particular stem cells.
Collapse
Affiliation(s)
- Benjamin Roche
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoit Arcangioli
- b Genome Dynamics Unit , UMR 3525 CNRS, Institut Pasteur, 25-28 rue du Docteur Roux , Paris , France
| | - Robert Martienssen
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute-Gordon and Betty Moore Foundation (HHMI-GBM) Investigator , NY , USA
| |
Collapse
|