1
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Gupta P, Sakthivel S, Jiemin N, Arul K, Tikno K, Park SH, Wu Y, Wang L, Bay BH, Ho L, Giguere V, Ghosh S, McDonnell DP, Yen PM, Singh BK. ESRRA (estrogen related receptor, alpha) induces ribosomal protein RPLP1-mediated adaptive hepatic translation during prolonged starvation. Autophagy 2025; 21:1283-1297. [PMID: 39936615 PMCID: PMC12087656 DOI: 10.1080/15548627.2025.2465183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods in vitro and in vivo to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, ESRRA (estrogen related receptor, alpha) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating Rplp1 (ribosomal protein lateral stalk subunit P1) gene expression. Overexpression or siRNA knockdown of Esrra in vitro or in vivo led to parallel changes in Rplp1 gene expression, lysosome and macroautophagy/autophagy protein translation, and autophagy activity. Remarkably, we have found that ESRRA had dual functions by not only regulating transcription but also controlling adaptive translation via the ESRRA-RPLP1-lysosome-autophagy pathway during prolonged starvation.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Karine Gauthier
- Département de Biologie, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon, Cedex, France
| | - Reddemma Sandireddy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Priyanka Gupta
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Suganya Sakthivel
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Nah Jiemin
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Kabilesh Arul
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Keziah Tikno
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, Montreal, Québec, Canada
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
- Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Zeng J, Indajang J, Pitt D, Lo CH. Lysosomal acidification impairment in astrocyte-mediated neuroinflammation. J Neuroinflammation 2025; 22:72. [PMID: 40065324 PMCID: PMC11892208 DOI: 10.1186/s12974-025-03410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Astrocytes are a major cell type in the central nervous system (CNS) that play a key role in regulating homeostatic functions, responding to injuries, and maintaining the blood-brain barrier. Astrocytes also regulate neuronal functions and survival by modulating myelination and degradation of pathological toxic protein aggregates. Astrocytes have recently been proposed to possess both autophagic activity and active phagocytic capability which largely depend on sufficiently acidified lysosomes for complete degradation of cellular cargos. Defective lysosomal acidification in astrocytes impairs their autophagic and phagocytic functions, resulting in the accumulation of cellular debris, excessive myelin and lipids, and toxic protein aggregates, which ultimately contributes to the propagation of neuroinflammation and neurodegenerative pathology. Restoration of lysosomal acidification in impaired astrocytes represent new neuroprotective strategy and therapeutic direction. In this review, we summarize pathogenic factors, including neuroinflammatory signaling, metabolic stressors, myelin and lipid mediated toxicity, and toxic protein aggregates, that contribute to lysosomal acidification impairment and associated autophagic and phagocytic dysfunction in astrocytes. We discuss the role of lysosomal acidification dysfunction in astrocyte-mediated neuroinflammation primarily in the context of neurodegenerative diseases along with other brain injuries. We then highlight re-acidification of impaired lysosomes as a therapeutic strategy to restore autophagic and phagocytic functions as well as lysosomal degradative capacity in astrocytes. We conclude by providing future perspectives on the role of astrocytes as phagocytes and their crosstalk with other CNS cells to impart neurodegenerative or neuroprotective effects.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
3
|
Liu JC, Lei SY, Zhang DH, He QY, Sun YY, Zhu HJ, Qu Y, Zhou SY, Yang Y, Li C, Guo ZN. The pleiotropic effects of statins: a comprehensive exploration of neurovascular unit modulation and blood-brain barrier protection. Mol Med 2024; 30:256. [PMID: 39707228 DOI: 10.1186/s10020-024-01025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The blood-brain barrier (BBB) is the most central component of the neurovascular unit (NVU) and is crucial for the maintenance of the internal environment of the central nervous system and the regulation of homeostasis. A multitude of neuroprotective agents have been developed to exert neuroprotective effects and improve the prognosis of patients with ischemic stroke. These agents have been designed to maintain integrity and promote BBB repair. Statins are widely used as pharmacological agents for the treatment and prevention of ischemic stroke, making them a cornerstone in the pharmacological armamentarium for this condition. The primary mechanism of action is the reduction of serum cholesterol through the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which results in a decrease in low-density lipoprotein cholesterol (LDL-C) and an increase in cholesterol clearance. Nevertheless, basic and clinical research has indicated that statins may exert additional pleiotropic effects beyond LDL-C reduction. Previous studies on ischemic stroke have demonstrated that statins can enhance neurological function, reduce inflammation, and promote angiogenic and synaptic processes following ischemic stroke. The BBB has been increasingly recognized for its role in the development and progression of ischemic stroke. Statins have also been found to play a potential BBB protective role by affecting members of the NVU. This review aimed to provide a comprehensive theoretical basis for the clinical application of statins by systematically detailing how statins influence the BBB, particularly focusing on the regulation of the function of each member of the NVU.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Shuang-Yin Lei
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China
| | - Chao Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China.
- Neuroscience Research Center, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| |
Collapse
|
4
|
Milyutina YP, Kerkeshko GO, Vasilev DS, Zalozniaia IV, Bochkovskii SK, Tumanova NL, Shcherbitskaia AD, Mikhel AV, Tolibova GH, Arutjunyan AV. Placental Transport of Amino Acids in Rats with Methionine-Induced Hyperhomocysteinemia. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1711-1726. [PMID: 39523111 DOI: 10.1134/s0006297924100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 11/16/2024]
Abstract
Maternal hyperhomocysteinemia (HHcy) is a risk factor for intrauterine growth restriction presumably caused by a decrease in the placental transport of nutrients. We investigated the effect of experimental HHcy induced by daily methionine administration to pregnant rats on the free amino acid levels in the maternal and fetal blood, as well as on morphological and biochemical parameters associated with the amino acid transport through the placenta. HHcy caused an increase in the levels of most free amino acids in the maternal blood on gestational day 20, while the levels of some amino acids in the fetal blood were decreased. In rats with HHcy, the maternal sinusoids in the placental labyrinth were narrowed, which was accompanied by aggregation of red blood cells. We also observed an increase in the neutral amino acid transporters (LAT1, SNAT2) protein levels and activation of 4E-BP1, a downstream effector of mTORC1 complex, in the labyrinth zone. Maternal HHcy affected the placental barrier permeability, as evidenced by intensification of the mother-to-fetus transfer of Evans Blue dye. The imbalance in the free amino acid levels in the maternal and fetal blood in HHcy may be due to the competition of homocysteine with other amino acids for common transporters, as well as a decrease in the area of exchange zone between maternal and fetal circulations in the placental labyrinth. Upregulation of the neutral amino acid transporter expression in the labyrinth zone may be a compensatory response to an insufficient intrauterine amino acid supply and fetal growth restriction.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia.
| | - Gleb O Kerkeshko
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Dmitrii S Vasilev
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Irina V Zalozniaia
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Sergey K Bochkovskii
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Natalia L Tumanova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Anastasiia D Shcherbitskaia
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Anastasiia V Mikhel
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Gulrukhsor H Tolibova
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Alexander V Arutjunyan
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
5
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Tripp BA, Dillon ST, Yuan M, Asara JM, Vasunilashorn SM, Fong TG, Inouye SK, Ngo LH, Marcantonio ER, Xie Z, Libermann TA, Otu HH. Integrated Multi-Omics Analysis of Cerebrospinal Fluid in Postoperative Delirium. Biomolecules 2024; 14:924. [PMID: 39199312 PMCID: PMC11352186 DOI: 10.3390/biom14080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
Preoperative risk biomarkers for delirium may aid in identifying high-risk patients and developing intervention therapies, which would minimize the health and economic burden of postoperative delirium. Previous studies have typically used single omics approaches to identify such biomarkers. Preoperative cerebrospinal fluid (CSF) from the Healthier Postoperative Recovery study of adults ≥ 63 years old undergoing elective major orthopedic surgery was used in a matched pair delirium case-no delirium control design. We performed metabolomics and lipidomics, which were combined with our previously reported proteomics results on the same samples. Differential expression, clustering, classification, and systems biology analyses were applied to individual and combined omics datasets. Probabilistic graph models were used to identify an integrated multi-omics interaction network, which included clusters of heterogeneous omics interactions among lipids, metabolites, and proteins. The combined multi-omics signature of 25 molecules attained an AUC of 0.96 [95% CI: 0.85-1.00], showing improvement over individual omics-based classification. We conclude that multi-omics integration of preoperative CSF identifies potential risk markers for delirium and generates new insights into the complex pathways associated with delirium. With future validation, this hypotheses-generating study may serve to build robust biomarkers for delirium and improve our understanding of its pathophysiology.
Collapse
Affiliation(s)
- Bridget A. Tripp
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Simon T. Dillon
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.T.D.)
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
| | - Min Yuan
- Division of Signal Transduction and Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - John M. Asara
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Division of Signal Transduction and Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sarinnapha M. Vasunilashorn
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tamara G. Fong
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, USA
| | - Sharon K. Inouye
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Aging Brain Center, Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, USA
| | - Long H. Ngo
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Edward R. Marcantonio
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Towia A. Libermann
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.T.D.)
- Harvard Medical School, Boston, MA 02215, USA; (J.M.A.); (L.H.N.); (Z.X.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
7
|
Chi WY, Lee GH, Tang MJ, Chen BH, Lin WL, Fu TF. Disturbed intracellular folate homeostasis impairs autophagic flux and increases hepatocytic lipid accumulation. BMC Biol 2024; 22:146. [PMID: 38956599 PMCID: PMC11220954 DOI: 10.1186/s12915-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD), a prevalent liver disorder affecting one-third of the global population, encompasses a spectrum ranging from fatty liver to severe hepatic steatosis. Both genetic and lifestyle factors, particularly diet and nutrition, contribute to its etiology. Folate deficiency, a frequently encountered type of malnutrition, has been associated with the pathogenesis of MAFLD and shown to impact lipid deposition. However, the underlying mechanisms of this relationship remain incompletely understood. We investigated the impact of disturbed folate-mediated one-carbon metabolism (OCM) on hepatic lipid metabolism both in vitro using human hepatoma cells and in vivo using transgenic fluorescent zebrafish displaying extent-, stage-, and duration-controllable folate deficiency upon induction. RESULTS Disturbed folate-mediated one-carbon metabolism, either by inducing folate deficiency or adding anti-folate drug, compromises autophagy and causes lipid accumulation in liver cells. Disturbed folate status down-regulates cathepsin L, a key enzyme involved in autophagy, through inhibiting mTOR signaling. Interfered mitochondrial biology, including mitochondria relocation and increased fusion-fission dynamics, also occurs in folate-deficient hepatocytes. Folate supplementation effectively mitigated the impaired autophagy and lipid accumulation caused by the inhibition of cathepsin L activity, even when the inhibition was not directly related to folate deficiency. CONCLUSIONS Disruption of folate-mediated OCM diminishes cathepsin L expression and impedes autophagy via mTOR signaling, leading to lipid accumulation within hepatocytes. These findings underscore the crucial role of folate in modulating autophagic processes and regulating lipid metabolism in the liver.
Collapse
Affiliation(s)
- Wan-Yu Chi
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gang-Hui Lee
- International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan
| | - Tzu-Fun Fu
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan.
| |
Collapse
|
8
|
Wang C, Li B, Zhu Q, Zhang Q, Xie Z, Xie H, Li X. Dietary vitamin B6 intake and stroke are negatively associated in adults: A cross-sectional study from the NHANES. Heliyon 2024; 10:e31125. [PMID: 38778939 PMCID: PMC11109891 DOI: 10.1016/j.heliyon.2024.e31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background The relationship between dietary vitamin B6 and stroke risk is controversial; thus, we analyzed their correlation using data from the National Health and Nutrition Examination Survey (NHANES). Method Data from 2005 to 2018 were collected from the NHANES database. Two 24-h dietary recalls and a standard questionnaire were used to evaluate vitamin B6 intake and stroke prevalence. We used logistic regression models to estimate the association between dietary vitamin B6 intake and stroke risk and investigated the nonlinear relationship between them using a restricted cubic spline (RCS). Sensitivity analysis was conducted using propensity score matching (PSM). Results Among 24,214 participants, 921 were patients diagnosed with stroke, while 23,293 were without stroke. The multivariate logistic regression model revealed that individuals in the highest quartile of vitamin B6 consumption had a significantly lower stroke risk than those in the lowest quartile under the fully adjusted model (OR: 0.48, 95 % CI: 0.35-0.66, P < 0.001). Subgroup analyses showed that dietary intake of vitamin B6 was a significant protective factor against stroke risk in different populations, with the most pronounced effect in the population engaging in moderate-intensity physical activity (OR: 0.34, 95%CI: 0.20-0.57). The RCS models revealed a non-linear L-shaped relationship (P for nonlinearity = 0.006) between stroke and dietary intake of vitamin B6. Conclusions Our study shows that an increased intake of vitamin B6 could be an effective strategy in reducing the risk of stroke.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Bo Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Qian Zhu
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Qikeng Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Zhenyan Xie
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Huixi Xie
- Department of Neurosurgery, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Xuesong Li
- Department of Neurosurgery, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| |
Collapse
|
9
|
Suszyńska-Zajczyk J, Witucki Ł, Perła-Kaján J, Jakubowski H. Diet-induced hyperhomocysteinemia causes sex-dependent deficiencies in offspring musculature and brain function. Front Cell Dev Biol 2024; 12:1322844. [PMID: 38559811 PMCID: PMC10979824 DOI: 10.3389/fcell.2024.1322844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (Hcy) levels, is a known risk factor for cardiovascular, renal, and neurological diseases, as well as pregnancy complications. Our study aimed to investigate whether HHcy induced by a high-methionine (high-Met) diet exacerbates cognitive and behavioral deficits in offspring and leads to other breeding problems. Dietary HHcy was induced four weeks before mating and continued throughout gestation and post-delivery. A battery of behavioral tests was conducted on offspring between postnatal days (PNDs) 5 and 30 to assess motor function/activity and cognition. The results were correlated with brain morphometric measurements and quantitative analysis of mammalian target of rapamycin (mTOR)/autophagy markers. The high-Met diet significantly increased parental and offspring urinary tHcy levels and influenced offspring behavior in a sex-dependent manner. Female offspring exhibited impaired cognition, potentially related to morphometric changes observed exclusively in HHcy females. Male HHcy pups demonstrated muscle weakness, evidenced by slower surface righting, reduced hind limb suspension (HLS) hanging time, weaker grip strength, and decreased activity in the beaker test. Western blot analyses indicated the downregulation of autophagy and the upregulation of mTOR activity in HHcy cortexes. HHcy also led to breeding impairments, including reduced breeding rate, in-utero fetal death, lower pups' body weight, and increased mortality, likely attributed to placental dysfunction associated with HHcy. In conclusion, a high-Met diet impairs memory and cognition in female juveniles and weakens muscle strength in male pups. These effects may stem from abnormal placental function affecting early neurogenesis, the dysregulation of autophagy-related pathways in the cortex, or epigenetic mechanisms of gene regulation triggered by HHcy during embryonic development.
Collapse
Affiliation(s)
- Joanna Suszyńska-Zajczyk
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers University, New Jersey Medical School, International Center for Public Health, Newark, NJ, United States
| |
Collapse
|
10
|
Bork T, Hernando-Erhard C, Liang W, Tian Z, Yamahara K, Huber TB. Cisplatin Nephrotoxicity Is Critically Mediated by the Availability of BECLIN1. Int J Mol Sci 2024; 25:2560. [PMID: 38473806 DOI: 10.3390/ijms25052560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Cisplatin nephrotoxicity is a critical limitation of solid cancer treatment. Until now, the complex interplay of various pathophysiological mechanisms leading to proximal tubular cell apoptosis after cisplatin exposure has not been fully understood. In our study, we assessed the role of the autophagy-related protein BECLIN1 (ATG6) in cisplatin-induced acute renal injury (AKI)-a candidate protein involved in autophagy and with putative impact on apoptosis by harboring a B-cell lymphoma 2 (BCL2) interaction site of unknown significance. By using mice with heterozygous deletion of Becn1, we demonstrate that reduced intracellular content of BECLIN1 does not impact renal function or autophagy within 12 months. However, these mice were significantly sensitized towards cisplatin-induced AKI, and by using Becn1+/-;Sglt2-Cre;Tomato/EGFP mice with subsequent primary cell analysis, we confirmed that nephrotoxicity depends on proximal tubular BECLIN1 content. Mechanistically, BECLIN1 did not impact autophagy or primarily the apoptotic pathway. In fact, a lack of BECLIN1 sensitized mice towards cisplatin-induced ER stress. Accordingly, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blunted cisplatin-induced cell death in Becn1 heterozygosity. In conclusion, our data first highlight a novel role of BECLIN1 in protecting against cellular ER stress independent from autophagy. These novel findings open new therapeutic avenues to intervene in this important intracellular stress response pathway with a promising impact on future AKI management.
Collapse
Affiliation(s)
- Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Camila Hernando-Erhard
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhejia Tian
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Kosuke Yamahara
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu 520-2192, Shiga, Japan
| | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
11
|
Suryavanshi U, Angadi KK, Reddy VS, Reddy GB. Neuroprotective role of vitamin B12 in streptozotocin-induced type 1 diabetic rats. Chem Biol Interact 2024; 387:110823. [PMID: 38049026 DOI: 10.1016/j.cbi.2023.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Chronic hyperglycemia-induced neuropathological changes include neuronal apoptosis, astrogliosis, decrease in neurotrophic support, impaired synaptic plasticity, and impaired protein quality control (PQC) system. Vitamin B12 is indispensable for neuronal development and brain function. Several studies reported the neuroprotective effect of B12 supplementation in diabetic patients. However, the underlying molecular basis for the neuroprotective effect of B12 supplementation in diabetes needs to be thoroughly investigated. Two-month-old Sprague-Dawley rats were randomly assigned into three groups: Control (CN), diabetes (D; induced with streptozotocin; STZ), and diabetic rats supplemented with vitamin B12 (DBS; vitamin B12; 50 μg/kg) for four months. At the end of 4 months of experimentation, the brain was dissected to collect the cerebral cortex (CC). The morphology of CC was investigated with H&E and Nissl body staining. Neuronal apoptosis was determined with TUNEL assay. The components of neurotrophic support, astrogliosis, synaptic plasticity, and PQC processes were investigated by immunoblotting and immunostaining methods. H& E, Nissl body, and TUNEL staining revealed that diabetes-induced neuronal apoptosis and degeneration. However, B12 supplementation ameliorated the diabetes-induced neuronal apoptosis. Further, B12 supplementation restored the markers of neurotrophic support (BDNF, NGF, and GDNF), and synaptic plasticity (SYP, and PSD-95) in diabetic rats. Interestingly, B12 supplementation also attenuated astrogliosis, ER stress, and ameliorated autophagy-related proteins in diabetic rats. Overall, these findings suggest that B12 acts as a neuroprotective agent by inhibiting the neuropathological changes in STZ-induced type 1 diabetes. Thus, B12 supplementation could produce beneficial outcomes including neuroprotective effects in diabetic patients.
Collapse
Affiliation(s)
- Udaykanth Suryavanshi
- Biochemistry Division, ICMR-National Institute of Nutrition, Tarnaka, Hyderabad, India
| | - Kiran Kumar Angadi
- Biochemistry Division, ICMR-National Institute of Nutrition, Tarnaka, Hyderabad, India
| | - V Sudhakar Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Tarnaka, Hyderabad, India.
| | - G Bhanuprakash Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Tarnaka, Hyderabad, India.
| |
Collapse
|
12
|
Mathew AR, Di Matteo G, La Rosa P, Barbati SA, Mannina L, Moreno S, Tata AM, Cavallucci V, Fidaleo M. Vitamin B12 Deficiency and the Nervous System: Beyond Metabolic Decompensation-Comparing Biological Models and Gaining New Insights into Molecular and Cellular Mechanisms. Int J Mol Sci 2024; 25:590. [PMID: 38203763 PMCID: PMC10778862 DOI: 10.3390/ijms25010590] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Saviana Antonella Barbati
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Sandra Moreno
- Department of Science, University Roma Tre, 00146 Rome, Italy;
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Centre of Neurobiology “Daniel Bovet”, Sapienza University of Rome, 00185 Rome, Italy
| | - Virve Cavallucci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
13
|
Zhou L, Wang J, Li M, Tan Y, Wu Y, Song X, Chen X, Yan T, Huang J, Yang Q. Low vitamin B 12 levels may predict the risk of ischemic stroke: A cross-sectional study. J Clin Neurosci 2023; 117:125-135. [PMID: 37801877 DOI: 10.1016/j.jocn.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND To examine serum vitamin B12 concentrations in relation to the risk of ischemic stroke among hospitalized patients in the Department of Neurology. METHODS We performed a cross-sectional study involving 2,212 inpatients discharged from the Department of Neurology of the First Affiliated Hospital of Chongqing Medical University, from January 2020 to January 2022. The results of laboratory assays such as serum vitamin B12, homocysteine, and folate levels were measured. Logistic regression analysis was used to investigate the association between serum vitamin B12 concentrations and ischemic stroke, with adjustment for a number of relevant demographic and lifestyle factors and comorbidities. RESULTS A total of 961 (43.4%) patients had an ischemic stroke. In the fully adjusted model, logistic regression analysis suggested a positive association between serum vitamin B12 levels<150 pg/mL (aOR: 1.42; 95% CI 1.02-1.97; p = 0.035), serum vitamin B12 150-300 pg/mL (aOR: 1.37; 95% CI 1.11-1.68; p = 0.003) and the prevalence of ischemic stroke. Furthermore, an inverse association was observed between serum vitamin B12 levels ≥ 900 pg/mL (aOR: 0.38; 95% CI: 0.19-0.77; p =0.007) and the prevalence of ischemic stroke. Moreover, the cut-off value of vitamin B12 concentration was 316.4 pg/mL and the discrimination power of the score evaluated by AUC-ROC was 0.71 (95%CI 0.68-0.73, p<0.001) in the vitamin B12 and ischemic stroke. CONCLUSION Findings suggest that low vitamin B12 levels may predict the risk of ischemic stroke, early and timely supplementation of vitamin B12 can improve the short-term prognosis of ischemic stroke patients.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiani Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengxia Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjun Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youlin Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Chongzhou People's Hospital, Sichuan, China
| | - Xiaosong Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Xia Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The Seventh People's Hospital of Chongqing, Chongqing, China
| | - Taocui Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Kaur B, Sharma PK, Chatterjee B, Bissa B, Nattarayan V, Ramasamy S, Bhat A, Lal M, Samaddar S, Banerjee S, Roy SS. Defective quality control autophagy in Hyperhomocysteinemia promotes ER stress and consequent neuronal apoptosis through proteotoxicity. Cell Commun Signal 2023; 21:258. [PMID: 37749555 PMCID: PMC10518934 DOI: 10.1186/s12964-023-01288-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/19/2023] [Indexed: 09/27/2023] Open
Abstract
Homocysteine (Hcy), produced physiologically in all cells, is an intermediate metabolite of methionine and cysteine metabolism. Hyperhomocysteinemia (HHcy) resulting from an in-born error of metabolism that leads to accumulation of high levels of Hcy, is associated with vascular damage, neurodegeneration and cognitive decline. Using a HHcy model in neuronal cells, primary cortical neurons and transgenic zebrafish, we demonstrate diminished autophagy and Hcy-induced neurotoxicity associated with mitochondrial dysfunction, fragmentation and apoptosis. We find this mitochondrial dysfunction is due to Hcy-induced proteotoxicity leading to ER stress. We show this sustained proteotoxicity originates from the perturbation of upstream autophagic pathways through an aberrant activation of mTOR and that protetoxic stress act as a feedforward cues to aggravate a sustained ER stress that culminate to mitochondrial apoptosis in HHcy model systems. Using chemical chaperones to mitigate sustained ER stress, Hcy-induced proteotoxicity and consequent neurotoxicity were rescued. We also rescue neuronal lethality by activation of autophagy and thereby reducing proteotoxicity and ER stress. Our findings pave the way to devise new strategies for the treatment of neural and cognitive pathologies reported in HHcy, by either activation of upstream autophagy or by suppression of downstream ER stress. Video Abstract.
Collapse
Affiliation(s)
- Bhavneet Kaur
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Pradeep Kumar Sharma
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Barun Chatterjee
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Bhawana Bissa
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Present address: Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Vasugi Nattarayan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
| | - Soundhar Ramasamy
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Ajay Bhat
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Megha Lal
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | | | | | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India.
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Goyal H, Sharma R, Lamba D, Kaur J. Folic acid depletion along with inhibition of the PERK arm of endoplasmic reticulum stress pathway promotes a less aggressive phenotype of hepatocellular carcinoma cells. Mol Cell Biochem 2023; 478:2057-2068. [PMID: 36609634 DOI: 10.1007/s11010-022-04651-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Folate is a vital vitamin involved in one-carbon metabolism and any changes in folate status may lead to epigenetic alterations. It is already known that stages and liver cancer progression are negatively correlated with folate levels. Nevertheless, mechanisms involved in folate deficiency in HCC (Hepatocellular carcinoma) are still not completely understood. So, this study tests the hypothesis that due to the increased demand for ER (endoplasmic reticulum) proteins, folate deficiency might lead to the induction of UPR (unfolded protein response), which is further correlated with HCC outcomes. HCC cells were cultured in both folate normal (FN) and folate deficient (FD) conditions and the expression of genes of ER stress pathway was investigated. The results demonstrated activation of UPR via induction of PERK, ATF4, and LAMP3. Besides this, FD reduced the migratory capacity and the invasiveness of HCC cells along with the reduction in mesenchymal markers like vimentin but increased apoptosis. Treatment with GSK2606414 (PERK inhibitor) decreased the FD induced expression of PERK, ATF4, and LAMP3 in FD cells. Also, GSK2606414 was found to increase apoptotic cell death and to further reduce the cancer hallmarks selectively in FD cells but not in FN cells. Altogether, our data suggest that targeting the ER stress pathway along with folate deficiency may provide a more promising elimination of the metastatic potential of HCC cells contributing to more effective therapeutic agents.
Collapse
Affiliation(s)
- Himanshi Goyal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Renuka Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dikshit Lamba
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
16
|
Abu-Elfotuh K, Tolba AMA, Hussein FH, Hamdan AME, Rabeh MA, Alshahri SA, Ali AA, Mosaad SM, Mahmoud NA, Elsaeed MY, Abdelglil RM, El-Awady RR, Galal ERM, Kamal MM, Elsisi AMM, Darwish A, Gowifel AMH, Mahran YF. Anti-Alzheimer Activity of Combinations of Cocoa with Vinpocetine or Other Nutraceuticals in Rat Model: Modulation of Wnt3/β-Catenin/GSK-3β/Nrf2/HO-1 and PERK/CHOP/Bcl-2 Pathways. Pharmaceutics 2023; 15:2063. [PMID: 37631278 PMCID: PMC10457980 DOI: 10.3390/pharmaceutics15082063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating illness with limited therapeutic interventions. The aim of this study is to investigate the pathophysiological mechanisms underlying AD and explore the potential neuroprotective effects of cocoa, either alone or in combination with other nutraceuticals, in an animal model of aluminum-induced AD. Rats were divided into nine groups: control, aluminum chloride (AlCl3) alone, AlCl3 with cocoa alone, AlCl3 with vinpocetine (VIN), AlCl3 with epigallocatechin-3-gallate (EGCG), AlCl3 with coenzyme Q10 (CoQ10), AlCl3 with wheatgrass (WG), AlCl3 with vitamin (Vit) B complex, and AlCl3 with a combination of Vit C, Vit E, and selenium (Se). The animals were treated for five weeks, and we assessed behavioral, histopathological, and biochemical changes, focusing on oxidative stress, inflammation, Wnt/GSK-3β/β-catenin signaling, ER stress, autophagy, and apoptosis. AlCl3 administration induced oxidative stress, as evidenced by elevated levels of malondialdehyde (MDA) and downregulation of cellular antioxidants (Nrf2, HO-1, SOD, and TAC). AlCl3 also upregulated inflammatory biomarkers (TNF-α and IL-1β) and GSK-3β, leading to increased tau phosphorylation, decreased brain-derived neurotrophic factor (BDNF) expression, and downregulation of the Wnt/β-catenin pathway. Furthermore, AlCl3 intensified C/EBP, p-PERK, GRP-78, and CHOP, indicating sustained ER stress, and decreased Beclin-1 and anti-apoptotic B-cell lymphoma 2 (Bcl-2) expressions. These alterations contributed to the observed behavioral and histological changes in the AlCl3-induced AD model. Administration of cocoa, either alone or in combination with other nutraceuticals, particularly VIN or EGCG, demonstrated remarkable amelioration of all assessed parameters. The combination of cocoa with nutraceuticals attenuated the AD-mediated deterioration by modulating interrelated pathophysiological pathways, including inflammation, antioxidant responses, GSK-3β-Wnt/β-catenin signaling, ER stress, and apoptosis. These findings provide insights into the intricate pathogenesis of AD and highlight the neuroprotective effects of nutraceuticals through multiple signaling pathways.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Amina M. A. Tolba
- Anatomy Department, Faculty of Medicine, Girls Branch, Al-Azhar University, Cairo 11651, Egypt;
| | | | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed A. Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Saad A. Alshahri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Azza A. Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (A.A.A.); (M.M.K.)
| | - Sarah M. Mosaad
- Research Unit, Egypt Healthcare Authority, Ismailia Branch, Ismailia 41522, Egypt;
| | - Nihal A. Mahmoud
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Magdy Y. Elsaeed
- Physiology Department, Faculty of Medicine (Boys), Al-Azhar University, Demietta 34517, Egypt;
| | - Ranya M. Abdelglil
- Department of Anatomy and Embryology, Faculty of Medicine (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Rehab R. El-Awady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (R.R.E.-A.); (E.R.M.G.)
| | - Eman Reda M. Galal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (R.R.E.-A.); (E.R.M.G.)
| | - Mona M. Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (A.A.A.); (M.M.K.)
| | - Ahmed M. M. Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt;
- Biochemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62521, Egypt
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Yasmen F. Mahran
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
17
|
Xu C, Zhang Q, Huang G, Huang J, Fu X, Liu M, Sun Y, Zhang H. Vitamin B ameliorates PM 2.5-induced kidney damage by reducing endoplasmic reticulum stress and oxidative stress in pregnant mice and HK-2. Toxicology 2023:153568. [PMID: 37263574 DOI: 10.1016/j.tox.2023.153568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
As an air pollutant, particulate matters 2.5 (PM2.5) poses a severe risk to kidney and the mechanism involves oxidative stress and endoplasmic reticulum (ER) stress. As an essential nutrient for human health, Vitamin B performs anti-inflammatory and antioxidant functions. In order to study the effect of Vitamin B on PM2.5-induced kidney damage during pregnancy, the pregnant mice were divided into the four experimental groups randomly: control group, model group, treatment group and VB group. PM2.5 was sprayed on the trachea of pregnant mice once each three days for six times from pregnancy until delivery. The model group was given 30μL PM2.5 suspension of 3.456μg/μL and 10mL/(kg·d) PBS. The treatment group was given 30μL PM2.5 suspension of 3.456μg/μL and 10mL/(kg·d) Vitamin B. The VB group was given 10mL/(kg·d) Vitamin B and the control group was given the same dose of PBS. Vitamin B was composed of Vitamin B6, Vitamin B12 and folic acid, with final concentrations are 1.14, 0.02 and 0.06mg/mL, respectively. The results showed Vitamin B ameliorated PM2.5-induced kidney damage such as improving histopathological change, decreasing expressions of Bip and Chop, increasing expressions of Nrf2, HO-1 and Nqo1. In addition, HK-2 cells were used for cell experiments and were divided into the four groups, in which the dosage of PM2.5 was 75μg/mL for 24h and Vitamin B was 5μL/100μL. The results showed Vitamin B ameliorated PM2.5-induced HK-2 damage, such as decreasing expressions of Bip, Chop, P47phox and ROS, increasing expressions of Nrf2, HO-1, Nqo1 and NO. Our findings showed Vitamin B ameliorated PM2.5-induced kidney damage by reducing ER stress and oxidative stress in pregnant mice and in HK-2.
Collapse
Affiliation(s)
- Chunming Xu
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China; Neurological Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.
| | - Qian Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China; Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| | - Guochen Huang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China; Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| | - Jia Huang
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China; Neurological Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoyan Fu
- Department of Immunology, Weifang Medical University, Weifang, Shandong, China; Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| | - Meifang Liu
- Department of Immunology, Weifang Medical University, Weifang, Shandong, China; Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| | - Yonghong Sun
- Department of Pathology, The affiliated hospital of Weifang Medical University, Weifang, Shandong, China.
| | - Hongxia Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China; Neurological Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China; Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
18
|
Zhou L, Song X, Wang J, Tan Y, Yang Q. Effects of vitamin B 12 deficiency on risk and outcome of ischemic stroke. Clin Biochem 2023; 118:110591. [PMID: 37247800 DOI: 10.1016/j.clinbiochem.2023.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Ischemic stroke is the most prevalent form of stroke and has a high incidence in older adults, characterized by high morbidity, mortality, disability, and recurrence rate. Vitamin B12 deficiency is prevalent in the elderly and has been reported to be associated with ischemic stroke. The mechanisms maybe include the disorder of methylation metabolism, accumulation of toxic metabolites, immune dysfunction, affecting gut microbial composition and gut-brain immune homeostasis, and toxic stress responses to the brain. Vitamin B12 deficiency may lead to cerebral artery atherosclerosis, change myelination, influence the metabolism and transmission between nerve tissue, and ultimately causes the occurrence and development of ischemic stroke. This paper reviews the correlation between vitamin B12 deficiency and ischemic stroke, looking forward to improving clinicians' understanding and providing new therapeutic directions for ischemic stroke.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaosong Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Jiani Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongjun Tan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2023; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| |
Collapse
|
20
|
Wang L, Zhou C, Yu H, Hao L, Ju M, Feng W, Guo Z, Sun X, Fan Q, Xiao R. Vitamin D, Folic Acid and Vitamin B 12 Can Reverse Vitamin D Deficiency-Induced Learning and Memory Impairment by Altering 27-Hydroxycholesterol and S-Adenosylmethionine. Nutrients 2022; 15:nu15010132. [PMID: 36615790 PMCID: PMC9824694 DOI: 10.3390/nu15010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The cholesterol-oxidized metabolite 27-hydroxycholesterol (27-OHC) is synthesized by CYP27A1, which is a key factor in vitamin D and oxysterol metabolism. Both vitamin D and 27-OHC are considered to play important roles in Alzheimer’s disease (AD). The study aims to research the effects of co-supplementation of vitamin D, folic acid, and vitamin B12 on learning and memory ability in vitamin D-deficient mice, and to explore the underlying mechanism. In this study, C57BL/6J mice were fed a vitamin D-deficient diet for 13 weeks to establish a vitamin D-deficient mice model. The vitamin D-deficient mice were then orally gavaged with vitamin D (VD), folic acid (FA), and vitamin B12 (VB12) alone or together for eight weeks. Following the gavage, the learning and memory ability of the mice were evaluated by Morris Water Maze and Novel object recognition test. The CYP27A1-related gene and protein expressions in the liver and brain were determined by qRT-PCR. The serum level of 27-OHC was detected by HPLC-MS. Serum levels of 25(OH)D, homocysteine (Hcy), and S-Adenosylmethionine (SAM) were measured by ELISA. After feeding with the vitamin D-deficient diet, the mice performed longer latency to a platform (p < 0.001), lower average speed (p = 0.026) in the Morris Water Maze, a lower time discrimination index (p = 0.009) in Novel object recognition, and performances were reversed after vitamin D, folic acid and vitamin B12 supplementation alone or together (p < 0.05). The gene expressions of CYP27A1 in the liver and brain were upregulated in the vitamin D-deficiency (VDD) group compared with the control (CON) group (p = 0.015), while it was downregulated in VDD + VD and VDD + VD-FA/VB12 groups compared with the VDD group (p < 0.05), with a similar trend in the protein expression of CYP27A1. The serum levels of 27-OHC were higher in the VDD group, compared with CON, VDD + VD, and VDD + VD-FA/VB12 group (p < 0.05), and a similar trend was found in the brain. The serum 25(OH)D levels were significantly decreased in the vitamin D-deficiency group (p = 0.008), and increased in the vitamin D-supplemented group (p < 0.001). The serum levels of SAM were higher in the B vitamins-supplemented group, compared with CON and VDD groups (p < 0.05). This study suggests that CYP27A1 expression may be involved in the mechanism of learning and memory impairment induced by vitamin D deficiency. Co-supplementation with vitamin D, folic acid, and vitamin B12 significantly reverses this effect by affecting the expression of CYP27A1, which in turn regulates the metabolism of 27-OHC, 25(OH)D, and SAM.
Collapse
Affiliation(s)
- Lijing Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huiyan Yu
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ling Hao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Mengwei Ju
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenjing Feng
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhiting Guo
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xuejing Sun
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qiushi Fan
- Medical Nutrition, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: ; Tel.: +86-010-83911512; Fax: +86-010-83911512
| |
Collapse
|
21
|
Yu D, Li J, Wang Y, Guo D, Zhang X, Chen M, Zhou Z. Oridonin ameliorates acetaminophen-induced acute liver injury through ATF4/PGC-1α pathway. Drug Dev Res 2022; 84:211-225. [PMID: 36567664 DOI: 10.1002/ddr.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/27/2022]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (ALI) causes hepatocyte cell death, oxidative stress, and inflammation. Oridonin (Ori), a covalent NLRP3-inflammasome inhibitor, ameliorates APAP-induced ALI through an unclear molecular mechanism. This study found that Ori decreased hepatic cytochrome P450 2E1 level and increased glutathione content to prevent APAP metabolism, and then reduced the necrotic area, improved liver function, and inhibited APAP-induced proinflammatory cytokines and oxidative stress. Ori also decreased activating transcription factor 4 (ATF4) protein levels and increased peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) to reduce APAP-induced endoplasmic reticulum stress activation and mitochondrial dysfunction. Furthermore, western blot and luciferase assay found that ATF4 inhibited transcription in the PGC-1α promoter -507 to -495 region to reduce PGC-1α levels, while ATF4 knockdown neutralized the hepatoprotective effect of Ori. Molecular docking showed that Ori bound to ATF4's amino acid residue glutamate 302 through 6, 7, and 18 hydroxyl bands. Our findings demonstrated that Ori prevented metabolic activation of APAP and further inhibited the ATF4/PGC-1α pathway to alleviate APAP overdose-induced hepatic toxicity, which illuminated its potential therapeutic effects on ALI.
Collapse
Affiliation(s)
- Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiye Li
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Yu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Guo
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Xiaodan Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Mingming Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Tang Y, Xie J, Chen X, Sun L, Xu L, Chen X. A novel link between silent information regulator 1 and autophagy in cerebral ischemia-reperfusion. Front Neurosci 2022; 16:1040182. [PMID: 36507335 PMCID: PMC9726917 DOI: 10.3389/fnins.2022.1040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. Although revascularization via reperfusion combined with advanced anticoagulant therapy is currently a gold standard treatment for patients, the reperfusion itself also results in a serious dysfunction termed cerebral ischemia-reperfusion (I/R) injury. Silent information regulator 1 (sirtuin 1, SIRT1), is a classic NAD+-dependent deacetylase, which has been proposed as an important mediator in the alleviation of cerebral ischemia through modulating multiple physiological processes, including apoptosis, inflammation, DNA repair, oxidative stress, and autophagy. Recent growing evidence suggests that SIRT1-mediated autophagy plays a key role in the pathophysiological process of cerebral I/R injury. SIRT1 could both activate and inhibit the autophagy process by mediating different autophagy pathways, such as the SIRT1-FOXOs pathway, SIRT1-AMPK pathway, and SIRT1-p53 pathway. However, the autophagic roles of SIRT1 in cerebral I/R injury have not been systematically summarized. Here, in this review, we will first introduce the molecular mechanisms and effects of SIRT1 in cerebral ischemia and I/R injury. Next, we will discuss the involvement of autophagy in the pathogenesis of cerebral I/R injury. Finally, we will summarize the latest advances in the interaction between SIRT1 and autophagy in cerebral I/R injury. A good understanding of these relationships would serve to consolidate a framework of mechanisms underlying SIRT1's neuroprotective effects and provides evidence for the development of drugs targeting SIRT1.
Collapse
|
23
|
Zhang HY, Tian Y, Shi HY, Cai Y, Xu Y. The critical role of the endolysosomal system in cerebral ischemia. Neural Regen Res 2022; 18:983-990. [PMID: 36254978 PMCID: PMC9827782 DOI: 10.4103/1673-5374.355745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cerebral ischemia is a serious disease that triggers sequential pathological mechanisms, leading to significant morbidity and mortality. Although most studies to date have typically focused on the lysosome, a single organelle, current evidence supports that the function of lysosomes cannot be separated from that of the endolysosomal system as a whole. The associated membrane fusion functions of this system play a crucial role in the biodegradation of cerebral ischemia-related products. Here, we review the regulation of and the changes that occur in the endolysosomal system after cerebral ischemia, focusing on the latest research progress on membrane fusion function. Numerous proteins, including N-ethylmaleimide-sensitive factor and lysosomal potassium channel transmembrane protein 175, regulate the function of this system. However, these proteins are abnormally expressed after cerebral ischemic injury, which disrupts the normal fusion function of membranes within the endolysosomal system and that between autophagosomes and lysosomes. This results in impaired "maturation" of the endolysosomal system and the collapse of energy metabolism balance and protein homeostasis maintained by the autophagy-lysosomal pathway. Autophagy is the final step in the endolysosomal pathway and contributes to maintaining the dynamic balance of the system. The process of autophagosome-lysosome fusion is a necessary part of autophagy and plays a crucial role in maintaining energy homeostasis and clearing aging proteins. We believe that, in cerebral ischemic injury, the endolysosomal system should be considered as a whole rather than focusing on the lysosome. Understanding how this dynamic system is regulated will provide new ideas for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hui-Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Han-Yan Shi
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ya Cai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Ying Xu, .
| |
Collapse
|
24
|
Vijayakumar KA, Cho GW, Maharajan N, Jang CH. A Review on Peripheral Tinnitus, Causes, and Treatments from the Perspective of Autophagy. Exp Neurobiol 2022; 31:232-242. [PMID: 36050223 PMCID: PMC9471415 DOI: 10.5607/en22002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
Tinnitus is the perception of phantom noise without any external auditory sources. The degeneration of the function or activity of the peripheral or central auditory nervous systems is one of the causes of tinnitus. This damage has numerous causes, such as loud noise, aging, and ototoxicity. All these sources excite the cells of the auditory pathway, producing reactive oxygen species that leads to the death of sensory neural hair cells. This causes involuntary movement of the tectorial membrane, resulting in the buzzing noise characteristic of tinnitus. Autophagy is an evolutionarily conserved catabolic scavenging activity inside a cell that has evolved as a cell survival mechanism. Numerous studies have demonstrated the effect of autophagy against oxidative stress, which is one of the reasons for cell excitation. This review compiles several studies that highlight the role of autophagy in protecting sensory neural hair cells against oxidative stress-induced damage. This could facilitate the development of strategies to treat tinnitus by activating autophagy.
Collapse
Affiliation(s)
- Karthikeyan A Vijayakumar
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea.,BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea.,BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Nagarajan Maharajan
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea.,BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
25
|
Nakano H, Inoue S, Minegishi Y, Igarashi A, Tokairin Y, Yamauchi K, Kimura T, Nishiwaki M, Nemoto T, Otaki Y, Sato M, Sato K, Machida H, Yang S, Murano H, Watanabe M, Shibata Y. Effect of hyperhomocysteinemia on a murine model of smoke-induced pulmonary emphysema. Sci Rep 2022; 12:12968. [PMID: 35902671 PMCID: PMC9334265 DOI: 10.1038/s41598-022-16767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperhomocysteinemia was reported to enhance endoplasmic reticulum (ER) stress and subsequent apoptosis in several cells. However, the precise mechanisms of smoking susceptibility associated with hyperhomocysteinemia has not been fully elucidated. This study included 7- to 9-week-old C57BL6 male mice induced with hyperhomocysteinemia and were exposed to cigarette smoke (CS). A549 cells (human alveolar epithelial cell line) were cultured with homocysteine and were exposed to cigarette smoke extract (CSE) to observe cell viability and expression of proteins related to the ER stress. After 6 months of CS exposure, pulmonary emphysema was more severely induced in the group under the condition of hyperhomocysteinemia compared to that in the control group. The apoptotic A549 cells increased as homocysteine concentration increased and that was enhanced by CSE. Protein expression levels of ER stress markers were significantly increased after simultaneous stimulation. Notably, vitamin B12 and folate supplementation improved ER stress after simultaneous stimulation of A549 cells. In this study, we showed that hyperhomocysteinemia exacerbates CS exposure-induced emphysema in mice, suggesting that hyperhomocysteinemia and CS stimulation enhance ER stress and subsequent induced apoptosis in alveolar epithelial cells. It was suggested that there is a synergistic effect between homocysteine and CS.
Collapse
Affiliation(s)
- Hiroshi Nakano
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| | - Yukihiro Minegishi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yoshikane Tokairin
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Tomomi Kimura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Michiko Nishiwaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Hiroyoshi Machida
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sujeong Yang
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Hiroaki Murano
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
26
|
Wang L, Liu Y, Zhang X, Ye Y, Xiong X, Zhang S, Gu L, Jian Z, Wang H. Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cerebral Ischemia/Reperfusion Injury. Front Cell Neurosci 2022; 16:864426. [PMID: 35602556 PMCID: PMC9114642 DOI: 10.3389/fncel.2022.864426] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by sudden interruption of blood flow in a certain part of the brain, leading to serious disability and death. At present, treatment methods for ischemic stroke are limited to thrombolysis or thrombus removal, but the treatment window is very narrow. However, recovery of cerebral blood circulation further causes cerebral ischemia/reperfusion injury (CIRI). The endoplasmic reticulum (ER) plays an important role in protein secretion, membrane protein folding, transportation, and maintenance of intracellular calcium homeostasis. Endoplasmic reticulum stress (ERS) plays a crucial role in cerebral ischemia pathophysiology. Mild ERS helps improve cell tolerance and restore cell homeostasis; however, excessive or long-term ERS causes apoptotic pathway activation. Specifically, the protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways are significantly activated following initiation of the unfolded protein response (UPR). CIRI-induced apoptosis leads to nerve cell death, which ultimately aggravates neurological deficits in patients. Therefore, it is necessary and important to comprehensively explore the mechanism of ERS in CIRI to identify methods for preserving brain cells and neuronal function after ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Zhihong Jian,
| | - Hongfa Wang
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Hongfa Wang,
| |
Collapse
|
27
|
Su S, Zhang D, Liu J, Zhao H, Tang X, Che H, Wang Q, Ren W, Zhen D. Folate ameliorates homocysteine-induced osteoblast dysfunction by reducing endoplasmic reticulum stress-activated PERK/ATF-4/CHOP pathway in MC3T3-E1 cells. J Bone Miner Metab 2022; 40:422-433. [PMID: 35190897 DOI: 10.1007/s00774-022-01313-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/14/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Homocysteine (Hcy) is considered a newly identified risk factor for osteoporosis. Nevertheless, the underlying mechanism of folate (FA), a key factor in the metabolism of Hcy, in protection against osteoblast dysfunction remains unclear. The purpose of this study was to investigate the mechanism by which FA attenuates Hcy-induced osteoblast damage. MATERIALS AND METHODS The Hcy-induced MC3T3-E1 cells were treated with different concentrations of FA. Cell morphology, cell density, cell proliferation ability, alkaline phosphatase (ALP) activity and mineralization capacity were observed and determined; the gene expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX) and ERS-associated factors, including glucose-regulated protein 78 (GRP-78), activating transcription factor 4 (ATF-4) and growth arrest and DNA damage inducible gene 153 (CHOP/GADD153), were assessed by RT-PCR; and protein levels of GRP-78 and ATF-4 were analyzed by western blotting. RESULTS Hcy suppressed the proliferation, differentiation and mineralization ability of MC3T3-E1 cells in a concentration-dependent manner and activated the ERS signaling pathway. After intervention with different concentrations of FA, the cell viability and density, ALP activity, number of mineralized nodules, calcium content and Bcl-2 gene expression were all significantly increased, whereas the gene expression of GRP-78, CHOP/GADD153, ATF-4 and Bax was markedly downregulated, and protein levels of GRP-78 and ATF-4 were also markedly decreased. CONCLUSION The adverse effects of Hcy on osteoblast differentiation are dose dependent. FA not only protects against osteoblasts apoptosis but also has a direct osteogenic effect on Hcy-induced osteoblasts, which could be partially mediated by inhibition of the PERK-activated ERS pathway.
Collapse
Affiliation(s)
- Shan Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Di Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Haiyan Zhao
- Department of Paediatrics, Gansu Province People's Hospital, Lanzhou, 730000, Gansu Province, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Hongxia Che
- Department of Endocrinology, The Third People's Hospital, Lanzhou, 730000, Gansu Province, China
| | - Qiangmei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Wanna Ren
- Department of Opthalmology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
28
|
Li T, Dong G, Kang Y, Zhang M, Sheng X, Wang Z, Liu Y, Kong N, Sun H. Increased homocysteine regulated by androgen activates autophagy by suppressing the mammalian target of rapamycin pathway in the granulosa cells of polycystic ovary syndrome mice. Bioengineered 2022; 13:10875-10888. [PMID: 35485387 PMCID: PMC9208444 DOI: 10.1080/21655979.2022.2066608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to explore the potential molecular mechanisms of excess homocysteine in relation to autophagic activity in the ovarian tissue of polycystic ovarian syndrome (PCOS) with hyperandrogenism.A PCOS model was constructed using ICR mice. ELISA was used to detect the Hcy levels in the serum and ovarian tissues of PCOS model. The expression level of key enzymes (Methionine synthase and Betaine-homocysteine methyltransferase, MTR and BHMT) in homocysteine metabolism and autophagy-related proteins were detected in ovarian tissues and mouse granulosa cells (mGCs) that were treated with homocysteine, androgen, autophagy inhibitors or BHMT-expressing plasmid by western blot and immunohistochemistry. Electron microscope experiments were used to evaluate autophagosomes in Hcy-treated mGCs. The prenatally androgenized (PNA) PCOS mouse model showed hyperhomocysteinemia and hyperandrogenism. Homocysteine levels displayed a significant increase, while its metabolic enzymes levels were significantly decreased in ovarian tissues of PCOS mice and dihydrotestosterone (DHT)-stimulated mGCs. The LC3II and Beclin1 expression levels were increased and the P62 and p-mTOR levels were decreased in vivo in ovarian tissue from the PCOS mice. The in vitro data were similarly with the in vivo by stimulation of mGCs with DHT or homocysteine. These effects could be diminished by the autophagy inhibitor (MHY1485), androgen receptor antagonists (ARN509) or BHMT-expressing plasmid. Androgen increases homocysteine concentration by downregulating the key enzymes in homocysteine metabolism. And then Hcy promotes GCs autophagy via the mTOR signal pathway.
Collapse
Affiliation(s)
- Ting Li
- Center for Reproductive Medicine, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Obstetrics and Gynecology, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, Shanxi, China
| | - Guogang Dong
- Department of Radiology, The General Hospital of Eastern Theater Command of the Chinese People’s Liberation Army (PLA), Nanjing, Jiangsu, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhilong Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Na Kong
- Center for Reproductive Medicine, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixiang Sun
- Center for Reproductive Medicine, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Zhang Q, Cao S, Qiu F, Kang N. Incomplete autophagy: Trouble is a friend. Med Res Rev 2022; 42:1545-1587. [PMID: 35275411 DOI: 10.1002/med.21884] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Incomplete autophagy is an impaired self-eating process of intracellular macromolecules and organelles in which accumulated autophagosomes do not fuse with lysosomes for degradation, resulting in the blockage of autophagic flux. In this review, we summarized the literature over the past decade describing incomplete autophagy, and found that different from the double-edged sword effect of general autophagy on promoting cell survival or death, incomplete autophagy plays a crucial role in disrupting cellular homeostasis, and promotes only cell death. What matters is that incomplete autophagy is closely relevant to the pathogenesis and progression of various human diseases, which, meanwhile, intimately linking to the pharmacologic and toxicologic effects of several compounds. Here, we comprehensively reviewed the latest progress of incomplete autophagy on molecular mechanisms and signaling pathways. Moreover, implications of incomplete autophagy for pharmacotherapy are also discussed, which has great relevance for our understanding of the distinctive role of incomplete autophagy in cellular physiology and disease. Consequently, targeting incomplete autophagy may contribute to the development of novel generation therapeutic agents for diverse human diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Department of Medicinal Chemistry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
30
|
Kalra P, Khan H, Kaur A, Singh TG. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 2022; 47:825-843. [PMID: 34993703 DOI: 10.1007/s11064-021-03500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
31
|
Dietary folic acid supplementation improves semen quality and spermatogenesis through altering autophagy and histone methylation in the testis of aged broiler breeder roosters. Theriogenology 2021; 181:8-15. [PMID: 34998023 DOI: 10.1016/j.theriogenology.2021.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
The aging phenomenon often exerts a significant reduction in the reproduction performance of aged animals. The objective of this project was to investigate the effects of dietary Folic acid (FA) supplementation on the reproductive performance of aged broiler breeder roosters. A total of 16 aged ROSS 308 broiler breeder roosters (50-week-old) were randomly divided into two groups. The treatments were basal diet (CON), a basal diet supplemented with 10 mg/kg Folic acid (FAS) for four weeks. At the end of the experiment, semen quality, histopathological studies, serum concentrations of testosterone and relative mRNA and protein expressions of testes were evaluated. The results showed that dietary FA supplementation dramatically improved semen quality of aged roosters, manifested by increasing semen volume, sperm concentration, sperm motility, and sperm membrane functional integrity. Furthermore, seminiferous tubule epithelial height (SEH) and testis scores were increased by dietary supplementation with FA. Dietary FA also remarkably augmented the transcription level of spermatogenesis-related gene (CREM, PCK2, DDX4, and GDNF). No significant differences were observed in serum concentrations of testosterone between FAS and CON groups. We noted significant upregulation Beclin-1 and ATG5 protein expressions, and the ratio of LC3-Ⅱ/Ⅰ, as well as significant downregulation of p-mTOR protein expressions in testicular tissue of aged roosters with FA supplementation. In addition, dietary FA supplementation significantly increased the protein expression of H3K9me2 and reduced the protein expression of H3K27me2. In summary, dietary FA supplementation improved the testicular autophagy through the mTOR-signaling pathway, and altered histone methylation in the testis. Dietary supplementation with FA can ameliorate semen quality and spermatogenesis of aged roosters.
Collapse
|
32
|
Li Y, Meng L, Li B, Huang D, Huang X, Lin C, Li D, Qiu S, Wu Y, Wei Z, Li X. Isoginkgetin attenuates endoplasmic reticulum stress-induced autophagy of brain after ischemic reperfusion injury. Bioengineered 2021; 13:14889-14902. [PMID: 34787074 PMCID: PMC10156416 DOI: 10.1080/21655979.2021.1997564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Isoginkgetin is characterized by properties of potent anticancer and anti-inflammation. To explore its effect on ischemic stroke, a rat model of ischemia/reperfusion (I/R) injury was established and induced by transient middle cerebral artery occlusion/reperfusion (MCAO/R). Different doses of isoginkgetin were intraperitoneally injected into each rat. Expressions of ER stress activation-related makers including phosphorylated inositol-requiring enzyme 1 (IRE1), phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), activating transcription factor-6 (ATF6), and two autophagy markers (ratio of LC3II/I and Beclin-1) were detected by western blot. Infarct volume, neurological deficits, and brain water content were detected. The results showed that ER stress and autophagy were activated by cerebral (I/R) injury, which could be effectively attenuated following pre-ischemia isoginkgetin administration. Moreover, autophagy induced by ER stress was triggered by the activation of PERK and IRE1 pathways. ER stress inhibitor (4-PBA) and ER related signaling inhibitors including PERK, GSK, IRE1, and DBSA markedly inhibited ER stress and autophagy induced by I/R. In addition, isoginkgetin markedly mitigated cerebral infarction, edema, neuronal apoptosis as well as neurological impairment induced by I/R injury, while tunicamycin (ER stress activator TM) and rapamycin (autophagy activator RAPA) could eliminate these lesions. This research identified a novel therapeutic agent isoginkgetin, which could effectively attenuate I/R injury by blocking autophagy induced by ER stress.
Collapse
Affiliation(s)
- Yueyong Li
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China.,Department of Interventional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong Province, 510630, PR. China
| | - Lingzhang Meng
- Center for Systemic Inflammation Research, School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Baosheng Li
- Department of radiology Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Deyou Huang
- Department of radiology Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Xiaohua Huang
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China.,Department of Interventional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong Province, 510630, PR. China
| | - Cheng Lin
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Dong Li
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Shaocai Qiu
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Yingning Wu
- Department of radiology Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Zhongheng Wei
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Xuebin Li
- Center for Clinical Research, School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| |
Collapse
|
33
|
Raj SD, Fann DY, Wong E, Kennedy BK. Natural products as geroprotectors: An autophagy perspective. Med Res Rev 2021; 41:3118-3155. [PMID: 33973253 DOI: 10.1002/med.21815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past decade, significant attention has been given to repurposing Food and Drug Administration approved drugs to treat age-related diseases. In contrast, less consideration has been given to natural bioactive compounds. Consequently, there have been limited attempts to translate these compounds. Autophagy is a fundamental biological pathway linked to aging, and numerous strategies to enhance autophagy have been shown to extend lifespan. Interestingly, there are a number of natural products that are reported to modulate autophagy, and here we describe a number of them that activate autophagy through diverse molecular and cellular mechanisms. Among these, Urolithin A, Spermidine, Resveratrol, Fatty Acids and Phospholipids, Trehalose and Lithium are featured in detail. Finally, we outline possible strategies to optimise and increase the translatability of natural products, with the overall aim of delaying the ageing process and improving human healthspan.
Collapse
Affiliation(s)
- Stephen D Raj
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - David Y Fann
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore
| |
Collapse
|
34
|
Wyse ATS, Bobermin LD, Dos Santos TM, Quincozes-Santos A. Homocysteine and Gliotoxicity. Neurotox Res 2021; 39:966-974. [PMID: 33786757 DOI: 10.1007/s12640-021-00359-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Homocysteine is a sulfur amino acid that does not occur in the diet, but it is an essential intermediate in normal mammalian metabolism of methionine. Hyperhomocysteinemia results from dietary intakes of Met, folate, and vitamin B12 and lifestyle or from the deficiency of specific enzymes, leading to tissue accumulation of this amino acid and/or its metabolites. Severe hyperhomocysteinemic patients can present neurological symptoms and structural brain abnormalities, of which the pathogenesis is poorly understood. Moreover, a possible link between homocysteine (mild hyperhomocysteinemia) and neurodegenerative/neuropsychiatric disorders has been suggested. In recent years, increasing evidence has emerged suggesting that astrocyte dysfunction is involved in the neurotoxicity of homocysteine and possibly associated with the physiopathology of hyperhomocysteinemia. This review addresses some of the findings obtained from in vivo and in vitro experimental models, indicating high homocysteine levels as an important neurotoxin determinant of the neuropathophysiology of brain damage. Recent data show that this amino acid impairs glutamate uptake, redox/mitochondrial homeostasis, inflammatory response, and cell signaling pathways. Therefore, the discussion of this review focuses on homocysteine-induced gliotoxicity, and its impacts in the brain functions. Through understanding the Hcy-induced gliotoxicity, novel preventive/therapeutic strategies might emerge for these diseases.
Collapse
Affiliation(s)
- Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
35
|
Tabatabaei Mirakabad FS, Khoramgah MS, Abdollahifar MA, Tehrani AS, Rezaei-Tavirani M, Niknazar S, Tahmasebinia F, Mahmoudiasl GR, Khoshsirat S, Abbaszadeh HA. NUPR1- CHOP experssion, autophagosome formation and apoptosis in the postmortem striatum of chronic methamphetamine user. J Chem Neuroanat 2021; 114:101942. [PMID: 33675952 DOI: 10.1016/j.jchemneu.2021.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/28/2022]
Abstract
Methamphetamine (Meth) is a neuro-stimulator substrate which might lead to neural cell death and the activation of several interconnected cellular pathways as well. However, the precise molecular mechanisms underlying Meth-induced neural cell death remained unclear yet. The current study aimed to assess the specific relationship between long-term Meth exposure and several endoplasmic reticulum stress, autophagy, and apoptosis associated markers including C/EBP homologous protein (CHOP), Tribbles homolog 3(Trib3), Nuclear protein 1(NUPR1), and Beclin-1 expression in postmortem human striatum. Therefore, the effects of long-term Meth exposure on autophagy and apoptosis in the striatum of postmortem users were evaluated and molecular, immunehistochemical, and histological examinations were performed on 10 control and 10 Meth-addicted brains. The level of CHOP, Trib3, NUPR1, and Beclin-1, Microtubule-associated proteins 1A/1B light chain 3B(LC3), Caspase 3, and Autophagy protein 5 (ATG5) were measured by using qPCR and immunohistochemistry. Stereological neural cell counting, Hematoxylin and Eosin, Nissl and Tunel staining were also performed. Based on our findings, the expression level of CHOP, Trib3, NUPR1, and Beclin-1 in the striatum of Meth group were significantly higher than the control group. Besides, the neuronal cell death was substantially increased in the striatum based on data obtained from the Tunel assay and the stereological analysis. Long-term presence of Meth in the brain can induce ER stress and overexpression of NUPR1 which is associated with the upregulation of CHOP, a pro-apoptotic transcription factor. Moreover, an increase in Trib3 expression is implicated in CHOP-dependent autophagic cell death during Meth-induced ER stress accompanied by an increase in neuronal cell death in the striatum of the postmortem human brains. Beclin 1 expression was also upregulated which may due to the activation of autophagic mechanisms upon prolonged Meth exposure.
Collapse
Affiliation(s)
- Fatemeh Sadat Tabatabaei Mirakabad
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Khoramgah
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciencese, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Shirazi Tehrani
- Department of Biology and Anatomical Sciencese, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Para Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciencese, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Rehman K, Haider K, Jabeen K, Akash MSH. Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes. Rev Endocr Metab Disord 2020; 21:631-643. [PMID: 32125563 DOI: 10.1007/s11154-020-09549-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Insulin resistance (IR) and type 2 diabetes mellitus (T2DM) is a leading cause of deaths due to metabolic disorders in recent years. Molecular mechanisms involved in the initiation and development of IR and T2DM are multiples. The major factors include mitochondrial dysfunction which may cause incomplete fatty acid oxidation (FAO). Oleic acid upregulates the expression of genes causing FAO by deacetylation of PGC1α by PKA-dependent activation of SIRT1-PGC1α complex. Another potent factor for the development of IR and T2DM is endothelial dysfunction as damaged endothelium causes increased release of inflammatory mediators such as TNF-α, IL-6, IL-1β, sVCAM, sICAM, E-selectin and other proinflammatory cytokines. While, on the other hand, oleic acid has the ability to regulate E-selectin, and sICAM expression. Rest of the risk factors may include inflammation, β-cell dysfunction, oxidative stress, hormonal imbalance, apoptosis, and enzyme dysregulation. Here, we have highlighted how oleic acid regulates underlying causatives factors and hence, keeps surpassing effect in prevention and treatment of IR and T2DM. However, the percentage contribution of these factors in combating IR and ultimately averting T2DM is still debatable. Thus, because of its exceptional protective effect, it can be considered as an improved therapeutic agent in prophylaxis and/or treatment of IR and T2DM.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Kamran Haider
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Komal Jabeen
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
37
|
Li JR, Ou YC, Wu CC, Wang JD, Lin SY, Wang YY, Chen WY, Liao SL, Chen CJ. Endoplasmic reticulum stress and autophagy contributed to cadmium nephrotoxicity in HK-2 cells and Sprague-Dawley rats. Food Chem Toxicol 2020; 146:111828. [PMID: 33127495 DOI: 10.1016/j.fct.2020.111828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Excessive accumulation of cadmium is known to cause nephrotoxicity by targeting renal proximal tubular epithelial cells. Studies showed an essential role of autophagy in cadmium-induced nephrotoxicity; however, its underlying mechanisms accompanied by autophagy are incompletely understood. Using an HK-2 human renal proximal tubular epithelial cell line as a study model, sustained exposure of cadmium chloride (CdCl2) was shown to cause cell viability loss, which was alleviated by inhibitors of autophagy but not apoptosis. Data from molecular and biochemical studies revealed an induction of autophagy proteins, intracellular acidic vesicles, and autophagic flux in CdCl2-treated cells. However, there was little sign of apoptosis-related changes. Pharmacological and genetic studies indicated an elevation of Endoplasmic Reticulum (ER) stress, Forkhead Box Class O (FoxO3a), Bcl-2 Interacting Protein 3 (Bnip3), and Beclin1, as well as their involvement in cadmium-induced autophagy and autophagic cell death. Renal injury, histological changes, and molecular marker of ER stress, FoxO3a, Bnip3, and autophagy were observed in the kidney cortex of CdCl2-exposed Sprague-Dawley rats. These observations indicate that ER stress, FoxO3a, Bnip3, and autophagy signaling were actively involved in cadmium-induced nephrotoxicity. Additionally, FoxO3a may act as a linking molecule to convey ER stress signals to Bnip3 and autophagy machinery upon cadmium exposure.
Collapse
Affiliation(s)
- Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Nursing, HungKuang University, Taichung, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Financial Engineering, Providence University, Taichung, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung, Taiwan
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
38
|
Samie KA, Tabandeh MR, Afrough M. Betaine ameliorates impaired steroidogenesis and apoptosis in mice granulosa cells induced by high glucose concentration. Syst Biol Reprod Med 2020; 66:400-409. [PMID: 32981384 DOI: 10.1080/19396368.2020.1811423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Betaine is a bioactive peptide whose beneficial effects on diabetes complications have been considered, previously. The present study aimed to investigate the possible protective effects of betaine against hyperglycemia-induced steroidogenesis impairment and apoptosis in mice granulosa cells. Ovarian granulosa cells were isolated from C57/BL6 mice and cultured in steroidogenesis medium (SM) containing 30 ng/ml FSH and 0.5 µM testosterone. The cells were cultured in SM containing low (5 mM) or high (30 mM) glucose concentrations for 24 h in the presence or absence of betaine (5 mM). At the end of the experiment, estradiol and progesterone were measured by ELISA in the culture medium. Expression of apoptosis and steroidogenesis associated genes and caspase-3 activity were determined by qRT-PCR and colorimetric assays, respectively. Exposure of mice granulosa cells to high glucose concentration inhibited the steroidogenesis by decreasing estradiol and progesterone secretion and downregulation of steroidogenesis-related genes including 3βHSD, Cyp11a1, Cyp19a1, and StAR. Betaine treatment could ameliorate the steroidogenesis impairment at molecular and biochemical levels. High glucose concentration also enhanced apoptosis in mice granulosa cells that were characterized by elevation of caspase-3 activity, upregulation of bax gene and downregulation of bcl2 gene. Betaine treatment could attenuate the apoptotic-related changes induced by high glucose concentration in granulosa cells. According to the results of the present study, betaine could ameliorate the adverse effects of hyperglycemia on the physiological function of ovarian granulosa cells. The results highlight the potential role of betaine for the intervention of ovarian dysfunction in diabetic patients. Abbreviations: AABA: Betaine-α-aminobutyric acid; AGEs: Advanced glycation end products; bax: bcl2 Associated X; bcl2: B-cell lymphoma 2; AMPK: AMP-activated protein kinase; BHMT: Betaine homocysteine methyltransferase; C/EBP: CCAAT-enhancer-binding proteins; Cyp11a1: Cholesterol side-chain cleavage cytochrome P450; Cyp19a1: Cytochrome P450 aromatase; DM: Diabetes mellitus; E2: Estradiol; ERS: Endoplasmic reticulum stress; GCs: Granulosa cells; GLUT: Glucose transporter; FSH: Follicle-stimulating hormone; 3βHSD: 3β-hydroxysteroid dehydrogenase; IL-1β: interleukin-1ß; LH: Luteinizing hormone; MDCK: Madin-Darby Canine Kidney cell; MT: Methionine synthase, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NLRP3: NLR Family Pyrin Domain Containing 3; NF-κB: Nuclear factor κB; P4: Progesterone; ROS: Reactive oxygen species; SGLT: Sodium dependent glucose transporter; SLC7A6: Solute Carrier Family 7 Member 6; StAR: Steroidogenic acute regulatory protein; STZ: Streptozotocin; Tumor necrosis factor α: TNF-α; TXNIP: Thioredoxin interacting protein.
Collapse
Affiliation(s)
- Kosar Abbasi Samie
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz , Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz , Ahvaz, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz , Ahvaz, Iran
| | - Mahsa Afrough
- Reproductive Biology Research Group, Infertility Research and Treatment Center of Khuzestan, ACECR , Ahvaz, Iran
| |
Collapse
|
39
|
Bagheri Hamidi A, Namazi N, Mohammad Amoli M, Amani M, Gholami M, Youssefian L, Vahidnezhad H, Abdollahimajd F, Uitto J. Association of MTHFR C677T polymorphism with elevated homocysteine level and disease development in vitiligo. Int J Immunogenet 2020; 47:342-350. [PMID: 32064757 DOI: 10.1111/iji.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Increasing evidence on the association of MTHFR gene polymorphism and serum homocysteine levels with autoimmune diseases such as vitiligo has made the MTHFR gene a very interesting candidate to be evaluated in different ethnicities and populations. We aimed to evaluate the levels of serum homocysteine and vitamin B12 and their associations with MTHFR C677T polymorphism in the Iranian population. This case-control study included 104 patients with vitiligo and 100 age- and sex-matched healthy control subjects. Serum vitamin B12 and homocysteine levels were measured by a chemiluminescence assay. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was used for genotyping the polymorphism. The mean serum homocysteine levels were significantly higher in cases than controls and associated with disease activity (p < .001). Furthermore, the homozygous MTHFR C677T variant genotype was associated with vitiligo development (adjusted OR: 3.52, 95% CI: 1.09-11.32, p = .02) and elevated homocysteine level (p < .001). There was no association between serum vitamin B12 levels and the MTHFR C677T genotype. The homozygous variant MTHFR C677T may be considered as a risk factor for both elevated homocysteine levels and the development of vitiligo in the Iranian population. Although these results are not conclusive, they could elucidate the contribution of genetic and immune-mediated inflammatory factors to the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Arash Bagheri Hamidi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Namazi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammad Amoli
- Endocrinology and Metabolism Research Institute (EMRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Amani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Gholami
- Endocrinology and Metabolism Research Institute (EMRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Youssefian
- Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fahimeh Abdollahimajd
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Research Development Unit, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
40
|
The Role of Ubiquitin-Proteasome Pathway and Autophagy-Lysosome Pathway in Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5457049. [PMID: 32089771 PMCID: PMC7016479 DOI: 10.1155/2020/5457049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.
Collapse
|
41
|
Li W, Ma Y, Li Z, Lv X, Wang X, Zhou D, Luo S, Wilson JX, Huang G. Folic Acid Decreases Astrocyte Apoptosis by Preventing Oxidative Stress-Induced Telomere Attrition. Int J Mol Sci 2019; 21:ijms21010062. [PMID: 31861819 PMCID: PMC6981374 DOI: 10.3390/ijms21010062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are the most widely distributed cells in the brain, and astrocyte apoptosis may play an important role in the pathogenesis of neurodegenerative diseases. Folate is required for the normal development of the nervous system, but its effect on astrocyte apoptosis is unclear. In this study, we hypothesized that folic acid (the therapeutic form of folate) decreases astrocyte apoptosis by preventing oxidative stress-induced telomere attrition. Primary cultures of astrocytes were incubated for 12 days with various concentrations of folic acid (0-40 μmol/L), then cell proliferation, apoptosis, intracellular folate concentration, intracellular homocysteine (Hcy) concentration, intracellular reactive oxygen species (ROS) levels, telomeric DNA oxidative damage, and telomere length were determined. The results showed that folic acid deficiency decreased intracellular folate, cell proliferation, and telomere length, whereas it increased Hcy concentration, ROS levels, telomeric DNA oxidative damage, and apoptosis. In contrast, folic acid dose-dependently increased intracellular folate, cell proliferation, and telomere length but it decreased Hcy concentration, ROS levels, telomeric DNA oxidative damage, and apoptosis. In conclusion, folic acid inhibited apoptosis in astrocytes. The underlying mechanism for this protective effect may be that folic acid decreased oxidative stress and thereby prevented telomeric DNA oxidative damage and telomere attrition.
Collapse
Affiliation(s)
- Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (W.L.); (Y.M.); (Z.L.); (X.L.); (X.W.); (D.Z.); (S.L.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Yue Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (W.L.); (Y.M.); (Z.L.); (X.L.); (X.W.); (D.Z.); (S.L.)
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (W.L.); (Y.M.); (Z.L.); (X.L.); (X.W.); (D.Z.); (S.L.)
| | - Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (W.L.); (Y.M.); (Z.L.); (X.L.); (X.W.); (D.Z.); (S.L.)
| | - Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (W.L.); (Y.M.); (Z.L.); (X.L.); (X.W.); (D.Z.); (S.L.)
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (W.L.); (Y.M.); (Z.L.); (X.L.); (X.W.); (D.Z.); (S.L.)
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (W.L.); (Y.M.); (Z.L.); (X.L.); (X.W.); (D.Z.); (S.L.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - John X. Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214-8028, USA;
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (W.L.); (Y.M.); (Z.L.); (X.L.); (X.W.); (D.Z.); (S.L.)
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
- Correspondence: ; Tel.: +86-22-8333-6603; Fax: +86-22-8333-6603
| |
Collapse
|
42
|
Wang T, Zhang T, Sun L, Li W, Zhang C, Yu L, Guan Y. Gestational B-vitamin supplementation alleviates PM 2.5-induced autism-like behavior and hippocampal neurodevelopmental impairment in mice offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109686. [PMID: 31546205 DOI: 10.1016/j.ecoenv.2019.109686] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Gestational exposure to PM2.5 is a worldwide environmental issue associated with long-lasting behavior abnormalities and neurodevelopmental impairments in the hippocampus of offspring. PM2.5 may induce hippocampus injury and lead to autism-like behavior such as social communication deficits and stereotyped repetitive behavior in children through neuroinflammation and neurodegeneration. Here, we investigated the preventive effect of B-vitamin on PM2.5-induced deleterious effects by focusing on anti-inflammation, antioxidant, synaptic remodeling and neurodevelopment. Pregnant mice were randomly divided into three groups including control group (mice subject to PBS only), model group (mice subject to both 30 μL PM2.5 of 3.456 μg/μL and 10 mL/(kg·d) PBS), and intervention group (mice subject to both 30 μL PM2.5 of 3.456 μg/μL and 10 mL/(kg·d) B-vitamin supplementation (folic acid, vitamin B6 and vitamin B12 with concentrations at 0.06, 1.14 and 0.02 mg/mL, respectively)). In the current study B-vitamin significantly alleviated neurobehavioral impairment reflected in reduced social communication disorders, stereotyped repetitive behavior, along with learning and spatial memory impairment in PM2.5-stimulated mice offspring. Next, B-vitamin corrected synaptic loss and reduced mitochondrial damage in hippocampus of mice offspring, demonstrated by normalized synapse quantity, synaptic cleft, postsynaptic density (PSD) thickness and length of synaptic active area. Furthermore, significantly down-regulated expression of pro-inflammatory cytokines including NF-κB, TNF-α and IL-1β, and lipid peroxidation were found. We observed elevated levels of oxidant-related genes (SOD, GSH and GSH-Px). Moreover, decreased cleaved caspase-3 and TUNEL-positive cells suggested inhibited PM2.5-induced apoptosis by B-vitamin. Furthermore, B-vitamin increased neurogenesis by increasing EdU-positive cells in the subgranular zone (SGZ) of offspring. Collectively, our results suggest that B-vitamin supplementation exerts preventive effect on autism-like behavior and neurodevelopmental impairment in hippocampus of mice offspring gestationally exposed to PM2.5, to which alleviated mitochondrial damage, increased anti-inflammatory and antioxidant capacity and synaptic efficiency, reduced neuronal apoptosis and improved hippocampal neurogenesis may contribute.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tianliang Zhang
- Experimental Center for Medical Research, Weifang Medical University, Weifang, China
| | - Lijuan Sun
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Wanwei Li
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Li Yu
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| | - Yingjun Guan
- Department of Histology and Embryology, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| |
Collapse
|
43
|
Chaouad B, Moudilou EN, Ghoul A, Zerrouk F, Moulahoum A, Othmani-Mecif K, Cherifi MEH, Exbrayat JM, Benazzoug Y. Hyperhomocysteinemia and myocardial remodeling in the sand rat, Psammomys obesus. Acta Histochem 2019; 121:823-832. [PMID: 31377002 DOI: 10.1016/j.acthis.2019.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Numerous studies have shown that a methionine-rich diet induces hyperhomocysteinemia (Hhcy), a risk factor for cardiovascular diseases. The objective of the present study was to determine the involvement of Hhcy in cardiac remodeling in the sand rat Psammomys obesus. MATERIALS AND METHODS An experimental Hhcy was induced, in the sand rat Psammomys obesus, by intraperitoneal injection of 300 mg/kg of body weight/day of methionine for 1 month. The impact of Hhcy on the cellular and matricial structures of the myocardium was analyzed with histological techniques (Masson trichrome and Sirius red staining). Immunohistochemistry allowed us to analyze several factors involved in myocardial remodeling, such as fibrillar collagen I and III, metalloproteases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2), TGF-β1 and activated caspase 3. RESULTS Our results show that Hhcy induced by an excess of methionine causes, in the myocardium of Psammomys obesus, a significant accumulation of fibrillar collagens I and III at the interstitial and perivascular scales, indicating the appearance of fibrosis, which is associated with an immuno-expression increase of TGF-β1, MMP-9 and TIMP-2 and an immuno-expression decrease of MMP-2 and TIMP-1. Also, Hhcy induces apoptosis of some cardiomyocytes and cardiac fibroblasts by increasing of activated caspase 3 expression. These results highlight a remodeling of cardiac tissue in hyperhomocysteinemic Psammomys obesus.
Collapse
Affiliation(s)
- Billel Chaouad
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria; University Djilali Bounaama of Khemis Miliana, Faculty of Natural and Life Sciences and Earth Sciences, Theniet El Had Road, 44225, Khemis Miliana, Algeria
| | - Elara N Moudilou
- UMRS 449, General Biology - Reproduction and Comparative Development, Lyon Catholic University, UDL, EPHE, PSL, 10, Place des Archives, 69288, Lyon Cedex 02, France
| | - Adel Ghoul
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria
| | - Fouzia Zerrouk
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria
| | - Anissa Moulahoum
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria
| | - Khira Othmani-Mecif
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria
| | | | - Jean-Marie Exbrayat
- UMRS 449, General Biology - Reproduction and Comparative Development, Lyon Catholic University, UDL, EPHE, PSL, 10, Place des Archives, 69288, Lyon Cedex 02, France
| | - Yasmina Benazzoug
- Biochemistry and Remodeling of the Extracellular Matrix, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, Houari Boumediene University of Science and Technology (USTHB), Bab Ezzouar, El Alia, 16111, Algiers, Algeria.
| |
Collapse
|
44
|
Reddy VS, Trinath J, Reddy GB. Implication of homocysteine in protein quality control processes. Biochimie 2019; 165:19-31. [PMID: 31269461 DOI: 10.1016/j.biochi.2019.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022]
Abstract
Homocysteine (Hcy) is a key metabolite generated during methionine metabolism. The elevated levels of Hcy in the blood are reffered to as hyperhomocystenimeia (HHcy). The HHcy is caused by impaired metabolism/deficiency of either folate or B12 or defects in Hcy metabolism. Accumulating evidence suggests that HHcy is associated with cardiovascular and brain diseases including atherosclerosis, endothelial injury, and stroke etc. Vitamin B12 (cobalamin; B12) is a water-soluble vitamin essential for two metabolic reactions. It acts as a co-factor for methionine synthase and L-methylmalonyl-CoA mutase. Besides, it is also vital for DNA synthesis and maturation of RBC. Deficiency of B12 is associated with haematological and neurological disorders. Hyperhomocysteinemia (HHcy)-induced toxicity is thought to be mediated by the accumulation of Hcy and its metabolites, homocysteinylated proteins. Cellular protein quality control (PQC) is essential for the maintenance of proteome integrity, and cell viability and its failure contributes to the development of multiple diseases. Chaperones, unfolded protein response (UPR), ubiquitin-proteasome system (UPS), and autophagy are analogous strategies of PQC that maintain cellular proteome integrity. Recently, multiple studies reported that HHcy responsible for perturbation of PQC by reducing chaperone levels, activating UPR, and impairing autophagy. Besides, HHcy also induce cytotoxicity, inflammation, protein aggregation and apoptosis. It has been shown that some of the factors including altered SIRT1-HSF1 axis and irreversible homocysteinylation of proteins are responsible for folate and/or B12 deficiency or HHcy-induced impairment of PQC. Therefore, this review highlights the current understanding of HHcy in the context of cellular PQC and their pathophysiological and clinical consequences, epigenomic changes, therapeutic implications of B12, and chemical chaperones based on cell culture and experimental animal models.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India.
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | | |
Collapse
|
45
|
Lu Y, Li C, Chen Q, Liu P, Guo Q, Zhang Y, Chen X, Zhang Y, Zhou W, Liang D, Zhang Y, Sun T, Lu W, Jiang C. Microthrombus-Targeting Micelles for Neurovascular Remodeling and Enhanced Microcirculatory Perfusion in Acute Ischemic Stroke. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808361. [PMID: 30957932 DOI: 10.1002/adma.201808361] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Reperfusion injury exists as the major obstacle to full recovery of neuron functions after ischemic stroke onset and clinical thrombolytic therapies. Complex cellular cascades including oxidative stress, neuroinflammation, and brain vascular impairment occur within neurovascular units, leading to microthrombus formation and ultimate neuron death. In this work, a multitarget micelle system is developed to simultaneously modulate various cell types involved in these events. Briefly, rapamycin is encapsulated in self-assembled micelles that are consisted of reactive oxygen species (ROS)-responsive and fibrin-binding polymers to achieve micelle retention and controlled drug release within the ischemic lesion. Neuron survival is reinforced by the combination of micelle facilitated ROS elimination and antistress signaling pathway interference under ischemia conditions. In vivo results demonstrate an overall remodeling of neurovascular unit through micelle polarized M2 microglia repair and blood-brain barrier preservation, leading to enhanced neuroprotection and blood perfusion. This strategy gives a proof of concept that neurovascular units can serve as an integrated target for ischemic stroke treatment with nanomedicines.
Collapse
Affiliation(s)
- Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
- National Pharmaceutical Engineering and Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Peixin Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Donghui Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weigen Lu
- National Pharmaceutical Engineering and Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
46
|
Ni T, Gao F, Zhang J, Lin H, Luo H, Chi J, Guo H. Impaired autophagy mediates hyperhomocysteinemia-induced HA-VSMC phenotypic switching. J Mol Histol 2019; 50:305-314. [PMID: 31028566 DOI: 10.1007/s10735-019-09827-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/22/2019] [Indexed: 01/07/2023]
Abstract
Hyperhomocysteinemia (HHcy) is a highly-related risk factor in vascular smooth muscle cell (VSMC) phenotypic modulation and atherosclerosis. Growing evidence indicated that autophagy is involved in pathological arterial changes. However, the risk mechanisms by which homocysteine and VSMC autophagy interact with cardiovascular disease are poorly understood. This study verified the homocysteine-responsive endoplasmic reticulum protein promotion of VSMC phenotypic switching, and the formation of atherosclerotic plaque in vitro. We found that impaired autophagy, as evidenced by decreased levels of MAP1LC3B II/MAP1LC3B I, has a vital role in HHcy-induced human aortic (HA)-VSMC phenotypic switching, with a decrease in contractile proteins (SM α-actin and calponin) and an increase in osteopontin. Knockdown of the essential autophagy gene Atg7 by small interfering RNA promoted HA-VSMC phenotypic switching, indicating that impaired autophagy induces phenotypic switching in these cells. HHcy co-treatment with rapamycin triggered autophagy, which alleviated HA-VSMC phenotypic switching. Finally, we found that Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor for maintaining genomic stability by resisting oxidative stress and restoring autophagy, is closely involved in this process. HHcy clearly decreased KLF4 expression. KLF4-specific siRNA aggravated defective autophagy and phenotypic switching. Mechanistically, KLF4 regulated the HHcy-induced decrease in HA-VSMC autophagy via the m-TOR signaling pathway. In conclusion, these results demonstrated that the KLF4-dependent rapamycin signaling pathway is a novel mechanism underlying HA-VSMC phenotypic switching and is crucial for HHcy-induced HA-VSMCs with defective autophagy to accelerate early atherosclerosis.
Collapse
Affiliation(s)
- Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou, 310012, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hui Lin
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
47
|
Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Battino M. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:577-634. [PMID: 29943652 DOI: 10.1089/ars.2017.7234] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE In eukaryotes, autophagy represents a highly evolutionary conserved process, through which macromolecules and cytoplasmic material are degraded into lysosomes and recycled for biosynthetic or energetic purposes. Dysfunction of the autophagic process has been associated with the onset and development of many human chronic pathologies, such as cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. Recent Advances: Currently, comprehensive research is being carried out to discover new therapeutic agents that are able to modulate the autophagic process in vivo. Recent evidence has shown that a large number of natural bioactive compounds are involved in the regulation of autophagy by modulating several transcriptional factors and signaling pathways. CRITICAL ISSUES Critical issues that deserve particular attention are the inadequate understanding of the complex role of autophagy in disease pathogenesis, the limited availability of therapeutic drugs, and the lack of clinical trials. In this context, the effects that natural bioactive compounds exert on autophagic modulation should be clearly highlighted, since they depend on the type and stage of the pathological conditions of diseases. FUTURE DIRECTIONS Research efforts should now focus on understanding the survival-supporting and death-promoting roles of autophagy, how natural compounds interact exactly with the autophagic targets so as to induce or inhibit autophagy and on the evaluation of their pharmacological effects in a more in-depth and mechanistic way. In addition, clinical studies on autophagy-inducing natural products are strongly encouraged, also to highlight some fundamental aspects, such as the dose, the duration, and the possible synergistic action of these compounds with conventional therapy.
Collapse
Affiliation(s)
- Francesca Giampieri
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Sadia Afrin
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,2 Area de Nutricion y Salud, Universidad Internacional Iberoamericana , Campeche, Mexico
| | - Massimiliano Gasparrini
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Danila Cianciosi
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Patricia Reboredo-Rodriguez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,3 Departamento de Quimica Analıtica y Alimentaria, Grupo de Nutricion y Bromatologıa, Universidade Vigo , Ourense, Spain
| | - Alfonso Varela-Lopez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Jose L Quiles
- 4 Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Centre, University of Granada , Granada, Spain
| | - Maurizio Battino
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,5 Centre for Nutrition and Health, Universidad Europea del Atlantico (UEA) , Santander, Spain
| |
Collapse
|
48
|
Dong B, Song W, Lu Y, Kong X, Mehmood AH, Lin W. An ultrasensitive ratiometric fluorescent probe based on the ICT-PET-FRET mechanism for the quantitative measurement of pH values in the endoplasmic reticulum (ER). Chem Commun (Camb) 2019; 55:10776-10779. [DOI: 10.1039/c9cc03114f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-site ratiometric probe based on the ICT-PET-FRET mechanism for quantitatively measuring the pH values of the ER was developed.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Wenhui Song
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yaru Lu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Abdul Hadi Mehmood
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
49
|
Serum homocysteine, folate, and vitamin B 12 levels in patients with vitiligo and their potential roles as disease activity biomarkers: A systematic review and meta-analysis. J Am Acad Dermatol 2018; 80:646-654.e5. [PMID: 30165163 DOI: 10.1016/j.jaad.2018.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hyperhomocysteinemia and folate and vitamin B12 deficiencies have been reported in patients with vitiligo. Investigating the role of these conditions might shed light on the pathogenesis of vitiligo. OBJECTIVE To perform a systematic review and meta-analysis of studies assessing serum homocysteine, folate, and vitamin B12 levels in vitiligo patients. METHODS Online databases were searched on May 15, 2018, to identify studies comparing serum homocysteine, folate, and vitamin B12 levels between patients with vitiligo and controls. A random effects model was used. RESULTS Twenty-two studies involving a total of 1448 patients with vitiligo were included. Patients with vitiligo had significantly higher serum homocysteine levels (standardized mean difference [SMD] 0.550, 95% confidence interval [CI] 0.262-0.838; I2 87.3%) and lower vitamin B12 levels (SMD -0.430, 95% CI -0.738 to -0.121; I2 85.3%) than controls. Serum folate levels were not significantly different between the 2 groups (SMD -0.240, 95% CI -0.592 to 0.111; I2 85.5%). A subgroup analysis revealed that these findings correlated with disease activity. LIMITATIONS The included studies were heterogeneous. Serum homocysteine levels could be influenced by various factors. CONCLUSION Patients with vitiligo have higher serum homocysteine levels and lower vitamin B12 levels than individuals without vitiligo.
Collapse
|
50
|
Wang X, Zhou Y, Zhang M, Wang Y, Qin B. The methylenetetrahydrofolate reductase genotype 677CT and non-alcoholic fatty liver disease have a synergistic effect on the increasing homocysteine levels in subjects from Chongqing, China. Genes Dis 2018; 6:88-95. [PMID: 30906837 PMCID: PMC6411628 DOI: 10.1016/j.gendis.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/17/2018] [Indexed: 01/13/2023] Open
Abstract
The methylenetetrahydrofolate reductase (MTHFR) genotypes 677CT and 677TT are associated with elevated serum homocysteine (Hcy) levels by means of lowering the activity of MTHFR, and the increase in serum Hcy may be linked to increased susceptibility to non-alcoholic fatty liver disease (NAFLD). However, there are contradictory reports of the relationship among the MTHFR 677CT gene polymorphism, Hcy, and NAFLD. Therefore, the aim of this study was to identify potential associations and interactions of either Hcy levels or the MTHFR 677CT gene polymorphism with the susceptibility to NAFLD in a Chinese population. The association between the MTHFR 677 CT gene polymorphism and Hcy levels was determined in 243 subjects with NAFLD and 388 healthy subjects without NAFLD using polymerase chain reaction-restriction fragment length polymorphism analysis and high-performance liquid chromatography. In subjects with NAFLD, there was no statistical difference in the genotypic and allelic frequencies of the MTHFR 677 CT gene polymorphism, while serum Hcy levels were significantly higher in subjects with NAFLD. Furthermore, these results strongly suggest that the MTHFR 677CT gene polymorphism and NAFLD have a potential synergistic effect on Hcy elevation, although the MTHFR 677CT gene polymorphism was not correlated with NAFLD in a Chinese population.
Collapse
Affiliation(s)
- Xiaolin Wang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongli Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjun Zhang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yonghong Wang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|