1
|
Moustafa YM, Mageed SSA, El-Dakroury WA, Moustafa HAM, Sallam AAM, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Nomier Y, Elesawy AE, Abdel-Reheim MA, Zaki MB, Rizk NI, Ayed A, Ibrahim RA, Doghish AS. Exploring the molecular pathways of miRNAs in testicular cancer: from diagnosis to therapeutic innovations. Funct Integr Genomics 2025; 25:88. [PMID: 40229500 DOI: 10.1007/s10142-025-01599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Cancer diagnostics highlight the critical requirement for sensitive and accurate tools with functional biomarkers for early tumor detection, diagnosis, and treatment. With a high burden of morbidity and mortality among young men worldwide and an increasing prevalence, Testicular cancer (TC) is a significant death-related cancer. Along with patient history, imaging, clinical presentation, and laboratory data, histological analysis of the testicular tissue following orchiectomy is crucial. Although some patients in advanced stages who belong to a poor risk group die from cancer, surgical treatments and chemotherapeutic treatment offer a high possibility of cure in the early stages. Testicular tumors lack useful indicators despite their traditional pathological classification, which highlights the need to find and use blood tumor markers in therapy. Regretfully, the sensitivity and specificity of the currently available biomarkers are restricted. Novel non-coding RNA molecules, microRNAs (miRNAs), have recently been discovered, offering a potential breakthrough as viable biomarkers and diagnostic tools. They act as fundamental gene regulators at the post-transcriptional level, controlling cell proliferation, differentiation, and apoptosis. This article aims to comprehensively explore the role of miRNAs in the pathophysiology, diagnosis, and treatment of TC, with a focus on their regulatory mechanisms within key signaling pathways such as TGF-β, PTEN/AKT/mTOR, EGFR, JAK/STAT, and WNT/β-catenin. By investigating the potential of miRNAs as diagnostic and prognostic biomarkers and therapeutic targets, this study seeks to address challenges such as treatment resistance and evaluate the clinical importance of miRNAs in improving patient outcomes. Additionally, the work aims to explore innovative approaches, including nanoparticle-based delivery systems, to enhance the efficacy of miRNA-based therapies. Ultimately, this research aims to provide insights into future directions for precision medicine in TC, bridging the gap between molecular discoveries and clinical applications.
Collapse
Affiliation(s)
- Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, P.O Box 551, 61922, Bisha, Saudi Arabia
| | - Randa A Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Zhan Z, Luo X, Shi J, Chen L, Ye M, Jin X. Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors and potential therapeutic agents (Review). Exp Ther Med 2025; 29:82. [PMID: 40084198 PMCID: PMC11904865 DOI: 10.3892/etm.2025.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/31/2024] [Indexed: 03/16/2025] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in men aged 20-40 years and are primarily treated with cisplatin-based drugs. Although TGCTs are highly sensitive to DNA damage induced by cisplatin and show a hypersensitive apoptotic response, cisplatin resistance still exists. Emerging evidence shows that cisplatin resistance in TGCTs is mainly related to the inhibition of apoptotic pathways such as MDM2/p53, OCT4/NOXA, PDGFR/PI3K/AKT, inhibition of cell cycle checkpoints, increased methylation or neddylation and DNA repair balance. In this review, recent advances regarding the mechanisms of TGCTs' sensitivity and resistance to cisplatin were summarized and potential therapeutic agents for cisplatin-resistant TGCTs were presented, providing a new therapeutic strategy for drug-resistant TGCTs.
Collapse
Affiliation(s)
- Ziqing Zhan
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Litao Chen
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
3
|
Smith MA, Chiacchia S, Boehme J, Datar SA, Morell E, Keller RL, Romer A, Colglazier E, Parker C, Becerra J, Fineman JR. MicroRNA in pediatric pulmonary hypertension microRNA profiling to inform disease classification, severity, and treatment response in pediatric pulmonary hypertension. Am J Physiol Heart Circ Physiol 2025; 328:H47-H57. [PMID: 39589759 PMCID: PMC12077658 DOI: 10.1152/ajpheart.00622.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Pediatric pulmonary hypertension is a heterogeneous disease associated with significant morbidity and mortality. MicroRNAs have been implicated as both pathologic drivers of disease and potential therapeutic targets in pediatric pulmonary hypertension. We sought to characterize the circulating microRNA profiles of a diverse array of pediatric patients with pulmonary hypertension using high-throughput sequencing technology. Peripheral blood samples were drawn from patients recruited at the time of a clinically indicated cardiac catheterization, and microRNA sequencing followed by differential expression and target/pathway enrichment analyses were performed. Among 63 pediatric patients with pulmonary hypertension, we identified specific microRNA signatures that uniquely classified patients by disease subtype, correlated with indicators of disease severity including invasive hemodynamic metrics, and changed over the course of treatment for pulmonary hypertension. These microRNA profiles include a number of specific microRNA molecules known to function in signaling pathways critical to pulmonary vascular biology and disease, including transforming growth factor-β (TGF-β), VEGF, PI3K/Akt, cGMP-PKG, and HIF-1 signaling. Circulating levels of miR-122-5p, miR-124-3p, miR-204-5p, and miR-9-5p decreased over the course of treatment in a subset of patients who had multiple samples drawn during the study period. Our findings support the further investigation of specific microRNAs as mechanistic mediators, biomarkers, and therapeutic targets in pulmonary hypertension.NEW & NOTEWORTHY We present novel insight into the circulating microRNA profiles of pediatric patients with pulmonary hypertension. Our findings support the utility of microRNAs as both useful biomarkers of disease severity and potential therapeutic targets in pediatric pulmonary hypertension.
Collapse
Affiliation(s)
- Michael A Smith
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Sam Chiacchia
- Department of Emergency Medicine, Stanford University, Palo Alto, California, United States
| | - Jason Boehme
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Sanjeev A Datar
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Emily Morell
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Roberta L Keller
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Amy Romer
- Division of Pediatric Critical Care, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, United States
| | - Elizabeth Colglazier
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Claire Parker
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Jasmine Becerra
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| | - Jeffrey R Fineman
- Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, California, United States
- Division of Pediatric Pulmonary Hypertension, Department of Pediatrics, University of California, San Francisco, California, United States
| |
Collapse
|
4
|
Li Y, Yang H, Li A, Chen B, Wang Y, Song Z, Tan H, Li H, Feng Q, Zhou Y, Li S, Zeng L, Lan T. CypA/TAF15/STAT5A/miR-514a-3p feedback loop drives ovarian cancer metastasis. Oncogene 2024; 43:3570-3585. [PMID: 39402372 DOI: 10.1038/s41388-024-03188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024]
Abstract
Cyclophilin A (CypA) is a peptidyl-prolyl isomerase that participates in multiple cancer events, but the molecular mechanisms of abnormal expression and regulation of CypA in ovarian cancer (OC) have never been considered. This study identifies CypA as a key driver of epithelial-mesenchymal transition (EMT) in ovarian cancer and explores the mechanisms that underly this process. We show that CypA is upregulated in tissues and serum of ovarian cancer patients and that CypA overexpression correlates with poor prognosis. CypA facilitates tumor growth and metastasis in vivo in subcutaneous tumor xenograft and abdominal metastatic models, and in vitro studies suggest a mechanism, showing that CypA accelerates ovarian cancer cell epithelial-mesenchymal transition by activating a PI3K/AKT signaling pathway. Mechanistic studies showed that STAT5A binds pri-miR-514a-3p and inhibits its activity, whereas miR-514a-3p directly binds to the 3'-UTR of CypA to suppress its expression, resulting in STAT5A promoting the expression of CypA, forming the STAT5A/miR-514a-3p/CypA axis. Furthermore, immunoprecipitates and mass spectrometry analysis identifies a CypA interaction with TAF15 that stabilizes TAF15 by suppressing its proteasome degradation and promotes its entry into the nucleus. While STAT5A is positively regulated by TAF15. Our findings identify a novel feedback loop for CypA that drives EMT and ovarian tumor growth and metastasis via a TAF15/STAT5A/miR-514a-3p pathway in ovarian cancer and facilitates the release of CypA into the extracellular, which provides a promising therapeutic target for OC treatment and a diagnostic biomarker.
Collapse
Affiliation(s)
- Ying Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Huiwen Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - An Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Buze Chen
- Department of Gynecology, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- Huaihai Academy of Chinese Medicine, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Yue Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Ziwei Song
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Haozhou Tan
- School of Anesthesiology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Hui Li
- School of Life Sciences, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Qian Feng
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Shibao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
| | - Lingyu Zeng
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
| | - Ting Lan
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
- Huaihai Academy of Chinese Medicine, Xuzhou Medical University, Xuzhou City, Jiangsu Province, China.
| |
Collapse
|
5
|
Dou C, Zhu H, Xie X, Huang C, Tan H, Cao C. Exosomal circ_0032704 confers sorafenib resistance to hepatocellular carcinoma and contributes to cancer malignant progression by modulating the miR-514a-3p/PD-L1 pathway. Ann Gastroenterol Surg 2024; 8:507-520. [PMID: 38707229 PMCID: PMC11066485 DOI: 10.1002/ags3.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 05/07/2024] Open
Abstract
Purpose This study aims to explore the role of circ_0032704 in sorafenib-resistant hepatocellular carcinoma (HCC). Methods The expression of circ_0032704, miR-514a-3p, and programmed death-ligand 1 (PD-L1) mRNA was detected by quantitative real-time PCR (qPCR). The expression of multidrug resistant-related proteins, migration/invasion-related proteins, exosome-related proteins, and PD-L1 protein was detected by western blot. Cell viability was detected by CCK-8 assay. Cell proliferation, migration, and invasion were assessed by EdU assay, wound healing assay, and transwell assay. The binding between miR-514a-3p and circ_0032704 or PD-L1 was verified by RIP assay, pull-down assay, and dual-luciferase reporter assay. Cell- or serum-derived exosomes were isolated and identified by TEM and NTA. Xenograft models were established to determine the effect of circ_0032704 on drug resistance in vivo. Results Circ_0032704 was overexpressed in sorafenib-resistant HCC tissues and cells. Circ_0032704 knockdown reduced sorafenib resistance in HCC cells and inhibited cell proliferation, migration, and invasion of sorafenib-resistant HCC cells, while these effects were reversed by PD-L1 overexpression. We found that circ_0032704 positively regulated PD-L1 expression via targeting miR-514a-3p. Exosomes with circ_0032704 inhibition reduced sorafenib resistance in HCC cells and inhibited cell proliferation, migration, and invasion of sorafenib-resistant HCC cells. Exosomes with circ_0032704 inhibition also inhibited tumor growth in vivo. The expression of circ_0032704 in exosomes was stable and possessed diagnostic value. Conclusion Circ_0032704 enhanced sorafenib resistance in HCC and promoted the malignant development of sorafenib-resistant HCC. Circ_0032704 could be transported by exosomes, and exosomal circ_0032704 had diagnostic value.
Collapse
Affiliation(s)
- Chengyun Dou
- Department of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Hongbo Zhu
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Xia Xie
- Department of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Cuiqin Huang
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Hui Tan
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Chuangjie Cao
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| |
Collapse
|
6
|
Westemeier-Rice ES, Winters MT, Rawson TW, Martinez I. More than the SRY: The Non-Coding Landscape of the Y Chromosome and Its Importance in Human Disease. Noncoding RNA 2024; 10:21. [PMID: 38668379 PMCID: PMC11054740 DOI: 10.3390/ncrna10020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Historically, the Y chromosome has presented challenges to classical methodology and philosophy of understanding the differences between males and females. A genetic unsolved puzzle, the Y chromosome was the last chromosome to be fully sequenced. With the advent of the Human Genome Project came a realization that the human genome is more than just genes encoding proteins, and an entire universe of RNA was discovered. This dark matter of biology and the black box surrounding the Y chromosome have collided over the last few years, as increasing numbers of non-coding RNAs have been identified across the length of the Y chromosome, many of which have played significant roles in disease. In this review, we will uncover what is known about the connections between the Y chromosome and the non-coding RNA universe that originates from it, particularly as it relates to long non-coding RNAs, microRNAs and circular RNAs.
Collapse
Affiliation(s)
- Emily S. Westemeier-Rice
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Michael T. Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| | - Travis W. Rawson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| | - Ivan Martinez
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| |
Collapse
|
7
|
Wei X, Li Y, Jiang T, Luo P, Dai Y, Wang Q, Xu M, Yan J, Li Y, Gao J, Liu L, Zhang C, Liu Y. Terazosin attenuates abdominal aortic aneurysm formation by downregulating Peg3 expression to inhibit vascular smooth muscle cell apoptosis and senescence. Eur J Pharmacol 2024; 968:176397. [PMID: 38331337 DOI: 10.1016/j.ejphar.2024.176397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Abdominal aortic aneurysm (AAA), a vascular degenerative disease, is a potentially life-threatening condition characterised by the loss of vascular smooth muscle cells (VSMCs), degradation of extracellular matrix (ECM), inflammation, and oxidative stress. Despite the severity of AAA, effective drugs for treatment are scarce. At low doses, terazosin (TZ) exerts antiapoptotic and anti-inflammatory effects in several diseases, but its potential to protect against AAA remains unexplored. Herein, we investigated the effects of TZ in two AAA animal models: Angiotensin II (Ang II) infusion in Apoe-/- mice and calcium chloride application in C57BL/6J mice. Mice were orally administered with TZ (100 or 1000 μg/kg/day). The in vivo results indicated that low-dose TZ alleviated AAA formation in both models. Low-dose TZ significantly reduced aortic pulse wave velocity without exerting an apparent antihypertensive effect in the Ang II-induced AAA model. Paternally expressed gene 3 (Peg3) was identified via RNA sequencing as a novel TZ target. PEG3 expression was significantly elevated in both mouse and human AAA tissues. TZ suppressed PEG3 expression and reduced the abundance of matrix metalloproteinases (MMP2/MMP9) in the tunica media. Functional experiments and molecular analyses revealed that TZ (10 nM) treatment and Peg3 knockdown effectively prevented Ang II-induced VSMC senescence and apoptosis in vitro. Thus, Peg3, a novel target of TZ, mediates inflammation-induced VSMC apoptosis and senescence. Low-dose TZ downregulates Peg3 expression to attenuate AAA formation and ECM degradation, suggesting a promising therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mulin Xu
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
| | - Jingwen Gao
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Elesawy AE, Abulsoud AI, Moustafa HAM, Elballal MS, Sallam AAM, Elazazy O, El-Dakroury WA, Abdel Mageed SS, Abdelmaksoud NM, Midan HM, Shahin RK, Elrebehy MA, Nassar YA, Elazab IM, Elballal AS, Elballal MS, Doghish AS. miRNAs orchestration of testicular germ cell tumors - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154612. [PMID: 37327566 DOI: 10.1016/j.prp.2023.154612] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Testicular cancer (TC) is one of the most frequently incident solid tumors in males. A growing prevalence has been documented in developed countries. Although recent advances have made TC an exceedingly treatable cancer, numerous zones in TC care still have divisive treatment decisions. In addition to physical examination and imaging techniques, conventional serum tumor markers have been traditionally used for the diagnosis of testicular germ cell tumors (TGCT). Unlike other genital and urinary tract tumors, recent research methods have not been broadly used in TGCTs. Even though several challenges in TC care must be addressed, a dedicated group of biomarkers could be particularly beneficial to help classify patient risk, detect relapse early, guide surgery decisions, and tailor follow-up. Existing tumor markers (Alpha-fetoprotein, human chorionic gonadotrophin, and lactate dehydrogenase) have limited accuracy and sensitivity when used as diagnostic, prognostic, or predictive markers. At present, microRNAs (miRNA or miR) play a crucial role in the process of several malignancies. The miRNAs exhibit pronounced potential as novel biomarkers since they reveal high stability in body fluids, are easily detected, and are relatively inexpensive in quantitative assays. In this review, we aimed to shed light on the recent novelties in developing microRNAs as diagnostic and prognostic markers in TC and discuss their clinical applications in TC management.
Collapse
Affiliation(s)
- Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ibrahim M Elazab
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Ahmed S Elballal
- Department of Dentistry, Medical Administration, University of Sadat City Menoufia 32897, Egypt
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
9
|
Abbasihormozi S, Kouhkan A, Shahverdi A, Sadighi Gilani MA, Babapour V, Niasari Naslji A, Akbarinehad V, Alizadeh A. Nuclear Factor Kappa-B Protein Levels in Sperm of Obese Men with and without Diabetes; Cellular Approach in Male Infertility. CELL JOURNAL 2023; 25:17-24. [PMID: 36680480 PMCID: PMC9868436 DOI: 10.22074/cellj.2022.557547.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Although the role of obesity and diabetes mellitus (DM) in male infertility is well established, little information about the underlying cellular mechanisms in infertility is available. In this sense, nuclear factor kappa-B (NF-kB) has been recognized as an important regulator in obesity and DM; However, its function in the pathogenesis of male infertility has never been studied in obese or men who suffer from diabetes. Therefore, the main goal of current research is assessing NF-kB existence and activity in ejaculated human spermatozoa considering the obesity and diabetics condition of males. MATERIALS AND METHODS In an experimental study, the ELISA technique was applied to analyze NF-kB levels in sperm of four experimental groups: non-obese none-diabetic men (body mass index (BMI) <25 kg/m2; control group; n=30), obese non-diabetic men (BMI >30 kg/m2; OB group; n=30), non-obese diabetic men (BMI <25 kg/m2; DM group; n=30), and obese diabetic men (BMI >30 kg/m2; OB-DM group; n=30) who were presented to Royan Institute Infertility Center. In addition, protein localization was shown by Immunocytofluorescent assay. Sperm features were also evaluated using CASA. RESULTS The diabetic men were older than non-diabetic men regardless of obesity status (P=0.0002). Sperm progressive motility was affected by obesity (P=0.035) and type A sperm progressive motility was affected by DM (P=0.034). The concentration of sperm (P=0.013), motility (P=0.025) and morphology (P<0.0001) were altered by obesity × diabetes interaction effects. The NF-kB activity was negatively influenced by the main impact of diabetics (P=0.019). Obesity did not affect (P=0.248) NF-kB activity. Uniquely, NF-kB localized to the midpiece of sperm and post-acrosomal areas. CONCLUSION The current study indicated a lower concentration of NF-kB in diabetic men, no effect of obesity on NF-kB was observed yet. Additionally, we revealed the main obesity and diabetes effects, and their interaction effect adversely influenced sperm characteristics.
Collapse
Affiliation(s)
- Shima Abbasihormozi
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine,
ACECR, Tehran, Iran
| | - Azam Kouhkan
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine,
ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Vahab Babapour
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Niasari Naslji
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahid Akbarinehad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine,
ACECR, Tehran, Iran ,P.O.Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan
Institute for Reproductive BiomedicineACECRTehranIran
| |
Collapse
|
10
|
Huang Y, Liu J, Zhu X. Mutations in lysine methyltransferase 2C and PEG3 are associated with tumor mutation burden, prognosis, and antitumor immunity in pancreatic adenocarcinoma patients. Digit Health 2022; 8:20552076221133699. [PMID: 36312851 PMCID: PMC9597037 DOI: 10.1177/20552076221133699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND As a common cancer-related death worldwide, pancreatic adenocarcinoma (PAAD) has significantly increased mortality in recent years. In recent years, tumor mutation burden (TMB) has been regarded as the most popular biomarker for PAAD immunotherapy. However, it remains unclear which gene mutations affect TMB and immune response in pancreatic adenocarcinoma. METHODS The somatic mutation images of PAAD samples were downloaded from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Based on the expression data of the TCGA and IGCC cohorts, various bioinformatics algorithms are used for evaluating the prognostic value and functional annotation of some frequently somatically mutated genes. Furthermore, the correlation between gene mutation and tumor immunity was also evaluated. RESULTS The results showed that lysine methyltransferase 2C (KMT2C) and paternally expressed 3 (PEG3) are frequently mutated genes in PAAD. Patients with KMT2C and PEG3 mutations have higher TMB severity and a lousy prognosis. In addition, the mutations of KMT2C and PEG3 genes positively regulate the metabolic and protein-related pathways in PAAD. Meanwhile, significant differences in the composition of the immune cells were observed for KMT2C and PEG3 mutations PAAD patients, for providing additional guidelines for antitumor treatments in various KMT2C and PEG3 mutation states in PAAD. CONCLUSION This study reveals that KMT2C and PEG3 mutation may serve as biomarkers for predicting prognosis and guiding anti-PAAD immunotherapy for PAAD patients.
Collapse
Affiliation(s)
- Yili Huang
- The Third Clinical Medical College, Henan University of Traditional Chinese
Medicine, Zhengzhou, Henan Province, People's Republic of China,Department of Radiotherapy, Henan Cancer Hospital, Zhengzhou, Henan Province, People's Republic of China,Xiaole Zhu, Pancreas Center, Jiangsu Province Hospital, 300
Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China.
Jinsong Liu, Department of
Radiotherapy, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450003, Henan
Province, People's Republic of China.
| | - Jinsong Liu
- The Third Clinical Medical College, Henan University of Traditional Chinese
Medicine, Zhengzhou, Henan Province, People's Republic of China,Department of Radiotherapy, Henan Cancer Hospital, Zhengzhou, Henan Province, People's Republic of China
| | - Xiaole Zhu
- Pancreas Center, Jiangsu Province Hospital,
Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
11
|
García-Andrade F, Vigueras-Villaseñor RM, Chávez-Saldaña MD, Rojas-Castañeda JC, Bahena-Ocampo IU, Aréchaga-Ocampo E, Díaz-Chávez J, Landero-Huerta DA. The Role of microRNAs in the Gonocyte Theory as Target of Malignancy: Looking for Potential Diagnostic Biomarkers. Int J Mol Sci 2022; 23:ijms231810526. [PMID: 36142439 PMCID: PMC9505168 DOI: 10.3390/ijms231810526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Some pediatric patients with cryptorchidism preserve cells with gonocyte characteristics beyond their differentiation period, which could support the theory of the gonocyte as a target for malignancy in the development of testicular neoplasia. One of the key molecules in gonocyte malignancy is represented by microRNAs (miRNAs). The goal of this review is to give an overview of miRNAs, a class of small non-coding RNAs that participate in the regulation of gene expression. We also aim to review the crucial role of several miRNAs that have been further described in the regulation of gonocyte differentiation to spermatogonia, which, when transformed, could give rise to germ cell neoplasia in situ, a precursor lesion to testicular germ cell tumors. Finally, the potential use of miRNAs as diagnostic and prognostic biomarkers in testicular neoplasia is addressed, due to their specificity and sensitivity compared to conventional markers, as well as their applications in therapeutics.
Collapse
Affiliation(s)
- Fabiola García-Andrade
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09310, Mexico
| | - Rosa María Vigueras-Villaseñor
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico
- Correspondence: (R.M.V.-V.); (D.A.L.-H.); Tel.: +52-(55)-1084-0900 (ext. 1453) (R.M.V.-V. & D.A.L.-H.); Fax: +52-(55)-1084-5533 (R.M.V.-V. & D.A.L.-H.)
| | | | | | - Iván Uriel Bahena-Ocampo
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09310, Mexico
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Ciudad de México 05348, Mexico
| | - José Díaz-Chávez
- Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Daniel Adrian Landero-Huerta
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico
- Correspondence: (R.M.V.-V.); (D.A.L.-H.); Tel.: +52-(55)-1084-0900 (ext. 1453) (R.M.V.-V. & D.A.L.-H.); Fax: +52-(55)-1084-5533 (R.M.V.-V. & D.A.L.-H.)
| |
Collapse
|
12
|
Stančin P, Song MS, Alajbeg I, Mitrečić D. Human Oral Mucosa Stem Cells Increase Survival of Neurons Affected by In Vitro Anoxia and Improve Recovery of Mice Affected by Stroke Through Time-limited Secretion of miR-514A-3p. Cell Mol Neurobiol 2022:10.1007/s10571-022-01276-7. [PMID: 36083390 DOI: 10.1007/s10571-022-01276-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
The success rate of regenerative medicine largely depends on the type of stem cells applied in such procedures. Consequently, to achieve the needed level for clinical standardization, we need to investigate the viability of accessible sources with sufficient quantity of cells. Since the oral region partly originates from the neural crest, which naturally develops in niche with decreased levels of oxygen, the main goal of this work was to test if human oral mucosa stem cells (hOMSC) might be used to treat neurons damaged by anoxia. Here we show that hOMSC are more resistant to anoxia than human induced pluripotent stem cells and that they secrete BDNF, GDNF, VEGF and NGF. When hOMSC were added to human neurons damaged by anoxia, they significantly improved their survival. This regenerative capability was at least partly achieved through miR-514A-3p and SHP-2 and it decreased in hOMSC exposed to neural cells for 14 or 28 days. In addition, the beneficial effect of hOMSC were also confirmed in mice affected by stroke. Hence, in this work we have confirmed that hOMSC, in a time-limited manner, improve the survival of anoxia-damaged neurons and significantly contribute to the recovery of experimental animals following stroke.
Collapse
Affiliation(s)
- Paula Stančin
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Ivan Alajbeg
- Department of Oral Medicine, University of Zagreb School of Dental Medicine and University Hospital Centre Zagreb, Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
13
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
14
|
LncRNA OSTM1-AS1 acts as an oncogenic factor in Wilms' tumor by regulating the miR-514a-3p/MELK axis. Anticancer Drugs 2022; 33:720-730. [PMID: 35946509 DOI: 10.1097/cad.0000000000001320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wilms' tumor (WT) is the most typical basic renal tumor in children and is associated with a high recurrence rate and improper diagnosis. Long noncoding RNAs (lncRNAs) play important roles in WT development. However, the impact of the OSTM1 antisense RNA 1 (OSTM1-AS1) lncRNA on WT remains largely unexplored. Differential expression of OSTM1-AS1, miR-514a-3p and maternal embryonic leucine zipper kinase (MELK) in mice with WT cells was assessed via quantitative reverse transcription-PCR and western blotting. Changes in the proliferation, migration and apoptosis of WT cells after OSTM1-AS1, miR-514a-3p or MELK knockdown were assessed using the cell counting kit-8, Transwell and caspase-3 activity assays, respectively. Additionally, the tumorigenicity of WT cells after OSTM1-AS1 knockdown in vivo was analyzed using a xenograft tumor assay. The association among OSTM1-AS1, MELK and miR-514a-3p was confirmed using the RNA binding protein immunoprecipitation and luciferase reporter assays. OSTM1-AS1 and MELK were upregulated in WT cells, whereas miR-514a-3p was downregulated. OSTM1-AS1 was mostly observed in the cytoplasm, and its knockout suppressed WT cell migration and proliferation in vitro , triggered apoptosis and attenuated tumor development in vivo . MiR-514a-3p was sponged by OSTM1-AS1, and miR-514a-3p interference counteracted the tumoricidal effect of OSTM1-AS1 knockdown. MiR-514a-3p reduced WT progression by downregulating the expression of MELK, which is the target gene of miR-514a-3p. lncRNA OSTM1-AS1 acts as an oncogenic factor in WT by releasing MELK through sponging miR-514a-3p and could be a useful target for WT diagnosis and therapy.
Collapse
|
15
|
Fang W, Xia Y. LncRNA HLA-F-AS1 attenuates the ovarian cancer development by targeting miR-21-3p/PEG3 axis. Anticancer Drugs 2022; 33:671-681. [PMID: 35276697 DOI: 10.1097/cad.0000000000001288] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dysregulated long noncoding RNA (lncRNA) HLA-F-AS1 is depicted in numerous cancers. However, its function in ovarian cancer has yet to be clarified. LncRNA HLA-F-AS1, miR-21-3p, and PEG3 expressions in ovarian cancer tissues and cells were measured via reverse transcription quantitative PCR. Scratch and CCK8 assays were performed to evaluate the cells' migratory and proliferative abilities, respectively. To assess the expressions of the apoptosis-related proteins Bax and Bcl-2, Western blotting was conducted. Anti-AGO2 RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were executed to study lncRNA HLA-F-AS1's and PEG3 3'UTR's interactions to miR-21-3p. Finally, the tumor growth in vivo was inspected by performing a xenograft experiment. Among the ovarian cancer tissues and cells, the expressions of PEG3 and lncRNA HLA-F-AS1 were depleted while an elevated miR-21-3p expression was observed. HLA-F-AS1's overexpression attenuated ovarian cancer development in vivo and in vitro . MiR-21-3p targeted PEG3 3'UTR while HLA-F-AS1 targeted miR-21-3p. HLA-F-AS1 overexpression mitigated the enhancement brought about by miR-21-3p mimic on ovarian cancer cells' proliferation and migration. Meanwhile, PEG3 overexpression abrogated miR-21-3p mimic's function as an oncogene in the progression of ovarian cancer. Ovarian cancer development is suppressed when lncRNA HLA-F-AS1 targets the miR-21-3p/PEG3 axis. This may possibly be a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Wenhong Fang
- Department of Gynecology and Obstetrics, Wuhan No.6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | | |
Collapse
|
16
|
Nicu AT, Medar C, Chifiriuc MC, Gradisteanu Pircalabioru G, Burlibasa L. Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Front Cell Dev Biol 2022; 10:861995. [PMID: 35465311 PMCID: PMC9023878 DOI: 10.3389/fcell.2022.861995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Testicular cancer is the most common solid tumor affecting young males. Most testicular cancers are testicular germ cell tumors (TGCTs), which are divided into seminomas (SGCTs) and non-seminomatous testicular germ cell tumors (NSGCTs). During their development, primordial germ cells (PGCs) undergo epigenetic modifications and any disturbances in their pattern might lead to cancer development. The present study provides a comprehensive review of the epigenetic mechanisms–DNA methylation, histone post-translational modifications, bivalent marks, non-coding RNA–associated with TGCT susceptibility, initiation, progression and response to chemotherapy. Another important purpose of this review is to highlight the recent investigations regarding the identification and development of epigenetic biomarkers as powerful tools for the diagnostic, prognostic and especially for epigenetic-based therapy.
Collapse
Affiliation(s)
- Alina-Teodora Nicu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | | | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| |
Collapse
|
17
|
Xie R, Liu C, Liu L, Lu X, Tang G. Long non-coding RNA FEZF1-AS1 promotes rectal cancer progression by competitively binding miR-632 with FAM83A. Acta Biochim Biophys Sin (Shanghai) 2022; 54:452-462. [PMID: 35607960 PMCID: PMC9828134 DOI: 10.3724/abbs.2022022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The long non-coding RNA (lncRNA) forebrain embryonic zinc finger protein 1 antisense RNA1 (FEZF1-AS1) was recently identified as an oncogenic gene in several types of tumors. The biological function of FEZF1-AS1 in rectal cancer progression, however, remains unknown. In the present study, we discover that FEZF1-AS1 is significantly upregulated in rectal cancer tissues and cells. Knocking down of FEZF1-AS1 suppresses cell proliferation, migration, and invasion , and tumorigenesis . Furthermore, FEZF1-AS1 functions as a competing endogenous RNA (ceRNA) for miR-632, resulting in the suppression of family with sequence similarity 83, member A (FAM83A). Overall, our findings reveal that FEZF1-AS1/miR-632/FAM83A axis plays an oncogenic role in rectal cancer progression, suggesting that it may be a novel therapeutic target for rectal cancer.
Collapse
Affiliation(s)
- Rongjun Xie
- The Affiliated Nanhua HospitalDepartment of General SurgeryHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Chubao Liu
- The Affiliated Nanhua HospitalDepartment of Anus and BowelsHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Longfei Liu
- The Affiliated Nanhua HospitalDepartment of General SurgeryHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xianzhou Lu
- The Affiliated Nanhua HospitalDepartment of General SurgeryHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Guohui Tang
- The Affiliated Nanhua HospitalDepartment of Anus and BowelsHengyang Medical SchoolUniversity of South ChinaHengyang421001China,Correspondence address. Tel: +86-13807340121; E-mail:
| |
Collapse
|
18
|
Diverse Roles and Targets of miRNA in the Pathogenesis of Testicular Germ Cell Tumour. Cancers (Basel) 2022; 14:cancers14051190. [PMID: 35267498 PMCID: PMC8909779 DOI: 10.3390/cancers14051190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Testicular germ cell tumour (TGCT) is the most common cancer type among young adults in many parts of the world. Although the pathogenesis of TGCT is not well understood, the involvement of heritable components is evident, and the risk is polygenic. Genome-wide association studies have so far found 78 susceptibility loci for TGCT, and many of the loci are in non-coding regions indicating the involvement of non-coding RNAs in TGCT pathogenesis. MicroRNAs (miRNAs), a class of non-coding RNAs, have emerged as important gene regulators at the post-transcriptional level. They are crucial in controlling many cellular processes, such as proliferation, differentiation, and apoptosis, and an aberrant miRNA expression may contribute to the pathogenesis of several cancers, including TGCT. In support of this notion, several studies reported differential expression of miRNAs in TGCTs. We previously demonstrated that miRNAs were the most common group of small non-coding RNAs in TGCTs, and several functional studies of miRNAs in TGCTs suggest that they may act as either oncogene or tumour suppressors. Moreover, individual miRNA targets and downstream pathways in the context of TGCT development have been explored. In this review, we will focus on the diverse roles and targets of miRNAs in TGCT pathogenesis.
Collapse
|
19
|
Quilang RC, Lui S, Forbes K. miR-514a-3p: a novel SHP-2 regulatory miRNA that modulates human cytotrophoblast proliferation. J Mol Endocrinol 2022; 68:99-110. [PMID: 34792485 PMCID: PMC8789026 DOI: 10.1530/jme-21-0175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP-2), encoded by the PTPN11 gene, forms a central component of multiple signalling pathways and is required for insulin-like growth factor (IGF)-induced placental growth. Altered expression of SHP-2 is associated with aberrant placental and fetal growth indicating that drugs modulating SHP-2 expression may improve adverse pregnancy outcome associated with altered placental growth. We have previously demonstrated that placental PTPN11/SHP-2 expression is controlled by miRNAs. SHP-2 regulatory miRNAs may have therapeutic potential; however, the individual miRNA(s) that regulate SHP-2 expression in the placenta remain to be established. We performed in silico analysis of 3'UTR target prediction databases to identify libraries of Hela cells transfected with individual miRNA mimetics, enriched in potential SHP-2 regulatory miRNAs. Analysis of PTPN11 levels by quantitative (q) PCR revealed that miR-758-3p increased, while miR-514a-3p reduced PTPN11 expression. The expression of miR-514a-3p and miR-758-3p within the human placenta was confirmed by qPCR; miR-514a-3p (but not miR-758-3p) levels inversely correlated with PTPN11 expression. To assess the interaction between these miRNAs and PTPN11/SHP-2, specific mimetics were transfected into first-trimester human placental explants and then cultured for up to 4 days. Overexpression of miR-514a-3p, but not miR-758-3p, significantly reduced PTPN11 and SHP-2 expression. microRNA-ribonucleoprotein complex (miRNP)-associated mRNA assays confirmed that this interaction was direct. miR-514a-3p overexpression attenuated IGF-I-induced trophoblast proliferation (BrdU incorporation). miR-758-3p did not alter trophoblast proliferation. These data demonstrate that by modulating SHP-2 expression, miR-514a-3p is a novel regulator of IGF signalling and proliferation in the human placenta and may have therapeutic potential in pregnancies complicated by altered placental growth.
Collapse
Affiliation(s)
- Rachel C Quilang
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sylvia Lui
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Karen Forbes
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Zhang Y, Shao J, Li S, Liu Y, Zheng M. The Crosstalk Between Regulatory Non-Coding RNAs and Nuclear Factor Kappa B in Hepatocellular Carcinoma. Front Oncol 2021; 11:775250. [PMID: 34804980 PMCID: PMC8602059 DOI: 10.3389/fonc.2021.775250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal type of malignancies that possesses great loss of life safety to human beings worldwide. However, few effective means of curing HCC exist and its specific molecular basis is still far from being fully elucidated. Activation of nuclear factor kappa B (NF-κB), which is often observed in HCC, is considered to play a significant part in hepatocarcinogenesis and development. The emergence of regulatory non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is a defining advance in cancer biology, and related research in this branch has yielded many diagnostic and therapeutic opportunities. Recent studies have suggested that regulatory ncRNAs act as inhibitors or activators in the initiation and progression of HCC by targeting components of NF-κB signaling or regulating NF-κB activity. In this review, we attach importance to the role and function of regulatory ncRNAs in NF-κB signaling of HCC and NF-κB-associated chemoresistance in HCC, then propose future research directions and challenges of regulatory ncRNAs mediated-regulation of NF-κB pathway in HCC.
Collapse
Affiliation(s)
- Yina Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Jia L, Deng FM, Kong MX, Wu CL, Yang XJ. Common Diagnostic Challenges and Pitfalls in Genitourinary Organs, With Emphasis on Immunohistochemical and Molecular Updates. Arch Pathol Lab Med 2021; 145:1387-1404. [PMID: 34673910 DOI: 10.5858/arpa.2021-0107-ra] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Lesions in the genitourinary (GU) organs, both benign and malignant, can demonstrate overlapping morphology, and practicing surgical pathologists should be aware of these potential pitfalls and consider a broad differential diagnosis for each specific type of lesion involving the GU organs. The following summary of the contents presented at the 6th Annual Chinese American Pathologists Association (CAPA) Diagnostic Course (October 10-11, 2020), supplemented with relevant literature review, exemplifies the common diagnostic challenges and pitfalls for mass lesions of the GU system of adults, including adrenal gland, with emphasis on immunohistochemical and molecular updates when relevant. OBJECTIVE.— To describe the common mass lesions in the GU system of adults, including adrenal gland, with emphasis on the diagnostic challenges and pitfalls that may arise in the pathologic assessment, and to highlight immunohistochemical workups and emerging molecular findings when relevant. DATA SOURCES.— The contents presented at the course and literature search comprise our data sources. CONCLUSIONS.— The diagnostic challenges and pitfalls that arise in the pathologic assessment of the mass lesions in the GU system of adults, including adrenal gland, are common. We summarize the contents presented at the course, supplemented with relevant literature review, and hope to provide a diagnostic framework to evaluate these lesions in routine clinical practice.
Collapse
Affiliation(s)
- Liwei Jia
- From the Department of Pathology, University of Texas Southwestern Medical Center, Dallas (Jia)
| | - Fang-Ming Deng
- the Department of Pathology, New York University Grossman School of Medicine, New York City (Deng)
| | - Max X Kong
- Northern California Kaiser, Kaiser Sacramento Medical Center, Sacramento (Kong)
| | - Chin-Lee Wu
- the Department of Pathology and Urology, Massachusetts General Hospital, Boston (Wu)
| | - Ximing J Yang
- the Department of Pathology, Northwestern University, Chicago, Illinois (Yang)
| |
Collapse
|
22
|
Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors. Life (Basel) 2021; 11:life11080736. [PMID: 34440480 PMCID: PMC8399856 DOI: 10.3390/life11080736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of RNA metabolism can drive tumorigenesis and influence chemotherapeutic response. Notably, the expression of non-coding RNAs as well as specific splice variants is deeply deregulated in human cancers. Since these cancer-related RNA species are considered promising diagnostic, prognostic and therapeutic targets, understanding their function in cancer development is becoming a major challenge. Here, we summarize how the different expression of RNA species repertoire, including non-coding RNAs and protein-coding splicing variants, impacts on TGCTs’ onset and progression and sustains therapeutic resistance. Finally, the role of transcription-associated R-loop misregulation in the maintenance of genomic stability in TGCTs is also discussed.
Collapse
|
23
|
Zhu Y, Hu Y, Cheng X, Li Q, Niu Q. Elevated miR-129-5p attenuates hepatic fibrosis through the NF-κB signaling pathway via PEG3 in a carbon CCl 4 rat model. J Mol Histol 2021; 52:491-501. [PMID: 33743102 DOI: 10.1007/s10735-020-09949-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Hepatic fibrosis is a reversible scaring response to chronic liver injury. MicroRNA (miR)-129-5p might regulate fibrosis-related gene expression. This study is performed to decipher, potential of miR-129-5p to influence the progression of hepatic fibrosis in a carbon tetrachloride (CCl4) rat model. Rat hepatic fibrosis was successfully established by subcutaneous injection of 50% CCl4. RT-qPCR revealed that miR-129-5p was poorly expressed and PEG3 was highly expressed in hepatic fibrosis tissues. As reflected by dual-luciferase reporter gene assay, miR-129-5p targeted and reduced the expression of PEG3. Thereafter, miR-129-5p antagomir or short hairpin RNA against paternally expressed gene 3 (PEG3) was adopted for gain- and loss-of-function assay to determine the molecular regulatory mechanism of miR-129-5p. Moreover, we detected the expression of nuclear factor kappa B (NF-κB) signaling pathway-related proteins and apoptosis-related factors, and made a serological analysis of the rat serum samples. Results showed that upregulated miR-129-5p or downregulated PEG3 led to reduction of the histological changes of liver cirrhosis and lowered the apoptosis rate, via downstream effects on the NF-κB signaling pathway. Thus, the hepatic fibrosis induced by CCl4 can be rescued by upregulated miR-129-5p or downregulated PEG3 expression.
Collapse
Affiliation(s)
- Yuezhi Zhu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Yingbin Hu
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China
| | - Xianyong Cheng
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiong Li
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiong Niu
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications. Toxicology 2021; 456:152780. [PMID: 33862174 DOI: 10.1016/j.tox.2021.152780] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Male fertility rates have shown a progressive decrease in recent decades. There is a growing concern about the male reproductive dysfunction caused by environmental pollutants exposure, however the underlying molecular mechanisms are still not well understood. Epigenetic modifications play a key role in the biological responses to external stressors. Therefore, this review discusses the roles of epigenetic modifications in male reproductive toxicity induced by environmental pollutants, with a particular emphasis on DNA methylation, histone modifications and miRNAs. The available literature proposed that environmental pollutants can directly or cause oxidative stress and DNA damage to induce a variety of epigenetic changes, which lead to gene dysregulation, mitochondrial dysfunction and consequent male reproductive toxicity. However, future studies focusing on more kinds of epigenetic modifications and their crosstalk as well as epidemiological data are still required to fill in the current research gaps. In addition, the intrinsic links between pollutants-mediated epigenetic regulations and male reproduction-related physiological responses deserve to be further explored.
Collapse
|
25
|
Zhang L, Ruan Y, Qin Z, Gao X, Xu K, Shi X, Gao S, Liu S, Zhu K, Wang W, Zuo L, Zhang L, Zhang W. miR-483-3p, Mediated by KLF9, Functions as Tumor Suppressor in Testicular Seminoma via Targeting MMP9. Front Oncol 2021; 10:596574. [PMID: 33659208 PMCID: PMC7917253 DOI: 10.3389/fonc.2020.596574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022] Open
Abstract
Background Seminoma (SEM) is the most frequent testicular germ cell tumor with a high incidence in young men. The present study aims to explore the function and regulatory mechanism of miR-483-3p in SEM. Methods RT-qPCR was performed to investigate miR-483-3p levels in SEM tissues. The effect of miR-483-3p on TCam-2 cells was assessed by CCK-8, colony formation, cell migration, and invasion assays. Luciferase reporter assays were performed to investigate the interaction between miR-483-3p and MMP9, and then the recovery experiments were performed. Moreover, the potential upstream regulator of miR-483-3p was predicted based on JASPAR database. Results miR-483-3p was down-regulated in SEM tissues versus paracancerous normal tissues. The expression level of miR-483-3p was significantly associated with tumor stage by RT-qPCR. Functionally, miR-483-3p over-expression suppressed cell growth, migration, and invasion in SEM cell lines. Mechanically, miR-483-3p negatively regulated MMP9 by directly binding to its 3′-UTR. The over-expression of miR-483-3p could reverse the promoting role of MMP9 over-expression on the proliferation, migration, and invasion of TCam-2 cells. Moreover, KLF9 was identified as a potential upstream regulator of miR-483-3p and functions as a tumor suppressor. Conclusions In general, our study suggested that miR-483-3p could inhibit the cell growth, migration, and invasion of testicular SEM by targeting MMP9. Moreover, KLF9 is an upstream positive regulator of miR-483-3p and also functions as a tumor suppressor in SEM.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Graduate School of Nanjing Medical University, Nanjing, China
| | - Yashi Ruan
- Graduate School of Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical School of Nantong University, Taizhou, China
| | - Zhiqiang Qin
- Department of Urology and Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xian Gao
- Graduate School of Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Xu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lifeng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Lakpour N, Saliminejad K, Ghods R, Reza Sadeghi M, Pilatz A, Khosravi F, Madjd Z. Potential biomarkers for testicular germ cell tumour: Risk assessment, diagnostic, prognostic and monitoring of recurrence. Andrologia 2021; 53:e13998. [PMID: 33534171 DOI: 10.1111/and.13998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Testicular germ cell tumour (TGCT) is considered a relatively rare malignancy usually occurring in young men between 15 and 35 years of age, and both genetic and environmental factors contribute to its development. The majority of patients are diagnosed in an early-stage of TGCTs with an elevated 5-year survival rate after therapy. However, approximately 25% of patients show an incomplete response to chemotherapy or tumours relapse. The current therapies are accompanied by several adverse effects, including infertility. Aside from classical serum biomarker, many studies reported novel biomarkers for TGCTs, but without proper validation. Cancer cells share many similarities with embryonic stem cells (ESCs), and since ESC genes are not transcribed in most adult tissues, they could be considered ideal candidate targets for cancer-specific diagnosis and treatment. Added to this, several microRNAs (miRNA) including miRNA-371-3p can be further investigated as a molecular biomarker for diagnosis and monitoring of TGCTs. In this review, we will illustrate the findings of recent investigations in novel TGCTs biomarkers applicable for risk assessment, screening, diagnosis, prognosis, prediction and monitoring of the relapse.
Collapse
Affiliation(s)
- Niknam Lakpour
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Farhad Khosravi
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Yoshida K, Yokoi A, Sugiyama M, Oda S, Kitami K, Tamauchi S, Ikeda Y, Yoshikawa N, Nishino K, Niimi K, Suzuki S, Kikkawa F, Yokoi T, Kajiyama H. Expression of the chrXq27.3 miRNA cluster in recurrent ovarian clear cell carcinoma and its impact on cisplatin resistance. Oncogene 2021; 40:1255-1268. [PMID: 33420363 PMCID: PMC7892337 DOI: 10.1038/s41388-020-01595-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Ovarian clear cell carcinoma (OCCC) is a histological subtype of epithelial ovarian cancer and exhibits dismal prognosis due to chemoresistance. Moreover, only few effective therapeutic options exist for patients with recurrent OCCC, and an understanding of its molecular characteristics is essential for the development of novel therapeutic approaches. In the present study, we investigated unique MicroRNAs (miRNA) profiles in recurrent/metastatic OCCC and the role of miRNAs in cisplatin resistance. Comprehensive miRNA sequencing revealed that expression of several miRNAs, including miR-508-3p, miR-509-3p, miR-509-3-5p, and miR-514a-3p was remarkably less in recurrent cancer tissues when compared with that in paired primary cancer tissues. These miRNAs are located in the chrXq27.3 region on the genome. Moreover, its expression was negative in omental metastases in two patients with advanced OCCC. In vitro analyses revealed that overexpression of miR-509-3p and miR-509-3-5p reversed cisplatin resistance and yes-associated protein 1 (YAP1) was partially responsible for the resistance. Immunohistochemistry revealed that YAP1 expression was inversely correlated with the chrXq27.3 miRNA cluster expression. In conclusion, these findings suggest that alteration of the chrXq27.3 miRNA cluster could play a critical role in chemoresistance and miRNAs in the cluster and their target genes can be potential therapeutic targets.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Testicular germ cell tumours (TGCTs) exhibit, in contrast to other cancer types, a relatively low mutational burden. However, numerous epigenetic alterations have been shown to impact TGCT. In this review, we summarize the most relevant findings of the past 2 years. RECENT FINDINGS Recent studies focused on the functions of microRNAs and the impact of aberrant DNA methylation. Moreover, several epigenetic drugs with antineoplastic effects in TGCTs were identified. SUMMARY Aberrant DNA methylation and differentially expressed microRNAs have an important effect on TGCT pathogenesis. Moreover, differential DNA methylation patterns were found to be specific for different TGCT subtypes. Various microRNAs, such as miR-371a-3p, were found to be highly sensitive and specific biomarkers for TGCT. The epigenetic drugs guadecitabine, animacroxam, and JQ1 showed promising effects on TGCT in preclinical in-vivo and in-vitro studies.
Collapse
|
29
|
De Martino M, Esposito F, Chieffi P. An update on microRNAs as potential novel therapeutic targets in testicular germ cell tumors. Intractable Rare Dis Res 2020; 9:184-186. [PMID: 32844079 PMCID: PMC7441029 DOI: 10.5582/irdr.2020.03025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most frequent solid malignant tumors in men 20- 40 years of age and the most frequent cause of death from solid tumors in this age group. Recent studies have underscored the fact that miRNA deregulation is a feature of carcinogenesis, including TGCT development and progression. MiRNAs are a group of small noncoding RNAs that bind to the 3'-untranslated region (UTR) of the targeted mRNAs, thus causing mRNA degradation or the inhibition of its translation, regulating gene expression in a temporal and tissue-specific manner. However, few miRNAs have been found to play key roles in TGCTs; recently, other miRNAs have been identified, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Marco De Martino
- Dipartimento di Psicologia, Università della Campania "Luigi Vanvitelli", Caserta, Italy
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania "Luigi Vanvitelli", Caserta, Italy
- Address correspondence to:Paolo Chieffi, Dipartimento di Psicologia, Università della Campania "Luigi Vanvitelli", Caserta, 31 81100 Caserta, Italy. E-mail:
| |
Collapse
|
30
|
Guan T, Fang F, Su X, Lin K, Gao Q. Silencing PEG3 inhibits renal fibrosis in a rat model of diabetic nephropathy by suppressing the NF-κB pathway. Mol Cell Endocrinol 2020; 513:110823. [PMID: 32311421 DOI: 10.1016/j.mce.2020.110823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/17/2019] [Accepted: 04/10/2020] [Indexed: 12/22/2022]
Abstract
As paternally expressed gene 3 (PEG3), which can activate NF-κB pathway, plays an important role in the development of renal fibrosis in diabetic nephropathy (DN), the present study aimed to investigate the interaction of PEG3 and the NF-κB pathway on renal fibrosis in a DN model. Following the induction of the rat model of DN, a series of experiments were used to measure serum creatinine (Scr), blood urea nitrogen (BUN), urine protein for 24 h (UP24 h), proliferation of renal fibroblasts, positive expression of PEG3, Collagen I and Collagen II protein, the activity of NF-κB, collagen fiber expression and the FSP1+ cell ratio (fibroblast marker, reflecting renal fibrosis). Silencing of PEG3 or inhibition of the NF-κB pathway decreased the levels of Scr, BUN, and UP24 h, down-regulated Collagen I protein and up-regulated Collagen II protein. These treatments also down-regulated the expression of PEG3, NF-κB, Vimentin, α-SMA, FN, caspase-3 and FSP1 and the extents of IκBα, inhibitor of kappa B (IκB) kinase β (IKKβ), and NF-κB p65 phosphorylation while that of E-cadherin was up-regulated, and the ratio of FSP1+ cells was decreased. Taken together, these results showed that silencing of PEG3 inhibited the NF-κB pathway, thereby alleviating renal fibrosis in DN, thus presenting PEG3 as a potential therapeutic target in renal fibrosis in DN.
Collapse
Affiliation(s)
- Tianjun Guan
- Department of Nephrology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, PR China
| | - Fan Fang
- Department of Nephrology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, PR China
| | - Xiaoxuan Su
- Department of Nephrology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, PR China
| | - Kaiqiang Lin
- Department of Nephrology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, PR China
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361004, PR China.
| |
Collapse
|
31
|
Downregulated PEG3 ameliorates cardiac fibrosis and myocardial injury in mice with ischemia/reperfusion through the NF-κB signaling pathway. J Bioenerg Biomembr 2020; 52:143-154. [PMID: 32350757 DOI: 10.1007/s10863-020-09831-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
Expression of paternally-expressed gene 3 (PEG3) has been identified in new cardiac adult stem cell population, which is involved in post-myocardial infarction remodeling. The cardiac fibroblasts function in the repair and remodeling events after myocardial ischemia, while the role of PEG3 in these events has not been investigated yet. In this study, artificial knockdown of PEG3 through p-LV-GFP-sh-PEG3 injection was performed in a ischemia/reperfusion (I/R) mouse model to explore the role of PEG3 in cardiac fibrosis, myocardial injury and cardiomyocyte apoptosis. Besides, the involvement of nuclear factor kappa B (NF-κB) pathway was illuminated by transduction of inhibitor pyrrolidine dithiocarbamate (PDTC). Both shRNA-mediated silencing of PEG3 and inhibition of the NF-κB signaling pathway were shown to significantly reduce myocardial injury, infarction size, alleviated myocardium remodeling and cardiac fibrosis, along with repressed cardiomyocyte apoptosis. Additionally, we also found that the NF-κB signaling pathway activation was blocked by PEG3 silencing, which could further enhance the protective effects of PEG3 inhibition against I/R induced injury. This study highlights the importance of PEG3 silencing in preventing cardiac fibrosis and myocardial injury after I/R by inactivating the NF-κB signaling pathway.
Collapse
|
32
|
HMGA1-Regulating microRNAs Let-7a and miR-26a are Downregulated in Human Seminomas. Int J Mol Sci 2020; 21:ijms21083014. [PMID: 32344629 PMCID: PMC7215726 DOI: 10.3390/ijms21083014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Recent studies have underlined HMGA protein’s key role in the onset of testicular germ cell tumors, where HMGA1 is differently expressed with respect to the state of differentiation, suggesting its fine regulation as master regulator in testicular tumorigenesis. Several studies have highlighted that the HMGA1 transcript is strictly regulated by a set of inhibitory microRNAs. Thus, the aim of this study is to test whether HMGA1 overexpression in human seminomas may be induced by the deregulation of miR-26a and Let-7a—two HMGA1-targeting microRNAs. Methods: HMGA1 mRNA and Let-7a and miR-26a levels were measured in a seminoma dataset available in the Cancer Genome Atlas database and confirmed in a subset of seminomas by qRT-PCR and western blot. A TCam-2 seminoma cell line was then transfected with Let-7a and miR-26a and tested for proliferation and motility abilities. Results: an inverse correlation was found between the expression of miR-26a and Let-7a and HMGA1 expression levels in seminomas samples, suggesting a critical role of these microRNAs in HMGA1 levels regulation. Accordingly, functional studies showed that miR-26a and Let-7a inhibited the proliferation, migration and invasion capabilities of the human seminoma derived cell line TCam-2. Conclusions: these data strongly support that the upregulation of HMGA1 levels occurring in seminoma is—at least in part—due to the downregulation of HMGA1-targeting microRNAs.
Collapse
|
33
|
Syed SN, Brüne B. MicroRNAs as Emerging Regulators of Signaling in the Tumor Microenvironment. Cancers (Basel) 2020; 12:E911. [PMID: 32276464 PMCID: PMC7225969 DOI: 10.3390/cancers12040911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
A myriad of signaling molecules in a heuristic network of the tumor microenvironment (TME) pose a challenge and an opportunity for novel therapeutic target identification in human cancers. MicroRNAs (miRs), due to their ability to affect signaling pathways at various levels, take a prominent space in the quest of novel cancer therapeutics. The role of miRs in cancer initiation, progression, as well as in chemoresistance, is being increasingly investigated. The canonical function of miRs is to target mRNAs for post-transcriptional gene silencing, which has a great implication in first-order regulation of signaling pathways. However, several reports suggest that miRs also perform non-canonical functions, partly due to their characteristic non-coding small RNA nature. Examples emerge when they act as ligands for toll-like receptors or perform second-order functions, e.g., to regulate protein translation and interactions. This review is a compendium of recent advancements in understanding the role of miRs in cancer signaling and focuses on the role of miRs as novel regulators of the signaling pathway in the TME.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
| |
Collapse
|
34
|
M2 bone marrow-derived macrophage-derived exosomes shuffle microRNA-21 to accelerate immune escape of glioma by modulating PEG3. Cancer Cell Int 2020; 20:93. [PMID: 32231463 PMCID: PMC7099792 DOI: 10.1186/s12935-020-1163-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Background Growing studies have focused on the role of microRNA-21 (miR-21) in glioma, thus our objective was to discuss the effect of M2 bone marrow-derived macrophage (BMDM)-derived exosomes (BMDM-Exos) shuffle miR-21 on biological functions of glioma cells by regulating paternally expressed gene 3 (PEG3). Methods Seventy-one cases of human glioma tissues and 30 cases of non-tumor normal brain tissues were collected and stored in liquid nitrogen. PEG3 and miR-21 expression in glioma tissues was tested. The fasting venous blood of glioma patients and healthy control was collected and centrifuged, and then the supernatant was stored at - 80 °C refrigerator. The contents of interferon (IFN)-γ and transforming growth factor-β1 (TGF-β1) in serum were tested by ELISA. Glioma cells and normal glial cells were cultured to screen the target cells for further in vitro experiments. BMDM-Exos was obtained by ultra-high speed centrifugation and then was identified. BMDM-Exos was co-cultured with U87 cells to detect the biological functions. The fasting venous blood of glioma patients was extracted and treated with ethylene diamine tetraacetic acid-K2 anti-freezing, and then CD8+T cells were isolated. CD8+T cells were co-cultured with U87 cells to detect the CD8+T proliferation, cell cytotoxic activity, U87 cell activity, as well as IFN-γ and TGF-β1 levels. Moreover, BALB/c-nu/nu mice was taken, and the human-nude mouse glioma orthotopic transplantation model was established with U87 cells, and then mice were grouped to test the trends in tumor growth. The brain of mice (fixed by 10% formaldehyde) was sliced to detect the expression of Ki67 and proliferating cell nuclear antigen (PCNA). The spleen of mice was taken to prepare single-cell suspension, and the percentage of T lymphocytes in spleen to CD8+T cells was detected. Results PEG3 expression was decreased and miR-21 expression was increased in glioma cells and tissues. Depleting miR-21 or restoring PEG3 suppressed growth, migration and invasion as well as accelerated apoptosis of glioma cells, also raised CD8+T proliferation, cell cytotoxic activity, and IFN-γ level as well as decreased U87 cell activity and TGF-β1 level. BMDM-Exos shuttle miR-21 promoted migration, proliferation and invasion as well as suppressed apoptosis of glioma cells by reducing PEG3. Exosomes enhanced the volume of tumor, Ki67 and PCNA expression, reduced the percentage of CD8+T cells in glioma mice. Conclusion BMDM-Exos shuffle miR-21 to facilitate invasion, proliferation and migration as well as inhibit apoptosis of glioma cells via inhibiting PEG3, furthermore, promoting immune escape of glioma cells.
Collapse
|
35
|
Non-Coding microRNAs as Novel Potential Tumor Markers in Testicular Cancer. Cancers (Basel) 2020; 12:cancers12030749. [PMID: 32235691 PMCID: PMC7140096 DOI: 10.3390/cancers12030749] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Testicular cancer is an important disease with increasing incidence and a high burden of morbidity and mortality in young men worldwide. Histological examination of the testicular tissue after orchiectomy plays an important role alongside patient history, imaging, clinical presentation and laboratory parameters. Surgical procedures and chemotherapeutic treatment provide a high chance of cure in early stages, though some patients in advanced stages belonging to a poor risk group experience cancer-related death. Though conventional serum-based tumor markers, including α-fetoprotein (AFP), the β-subunit of human chorionic gonadotropin (β-hCG), and lactate dehydrogenase (LDH), are useful as prognostic and diagnostic biomarkers, unfortunately, these tumor markers only have a sensitivity of about 60%, and in pure seminoma even lower with about 20%. Therefore, the development of new tumor markers is an important and intensively ongoing issue. The analysis of epigenetic modification and non-coding RNA microRNAs (miRNAs) are carrying most promising potential as tumor markers in future. miRNAs are small RNAs secreted by testicular tumor cells and circulate and be measurable in body fluids. In recent years, miRNAs of the miR-371-373 cluster in particular have been identified as potentially superior tumor markers in testicular cancer patients. Studies showed that miR-371a-3p and miR-302/367 expression significantly differ between testicular tumors and healthy testicular tissue. Several studies including high prospective multi-center trials clearly demonstrated that these miRNAs significantly exceed the sensitivity and specificity of conventional tumor markers and may help to facilitate the diagnosis, follow-up, and early detection of recurrences in testicular cancer patients. In addition, other miRNAs such as miR-223-3p, miR-449, miR-383, miR-514a-3p, miR-199a-3p, and miR-214 will be discussed in this review. However, further studies are needed to identify the value of these novel markers in additional clinical scenarios, including the monitoring in active surveillance or after adjuvant chemotherapy, but also to show the limitations of these tumor markers. The aim of this review is to give an overview on the current knowledge regarding the relevance of non-coding miRNAs as biomarkers in testicular cancer.
Collapse
|
36
|
Chieffi P, De Martino M, Esposito F. Further insights into testicular germ cell tumor oncogenesis: potential therapeutic targets. Expert Rev Anticancer Ther 2020; 20:189-195. [PMID: 32164473 DOI: 10.1080/14737140.2020.1736566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Testicular germ cell tumors (TGCTs) are the most common neoplasia in the young male population, and the incidence has been constantly increasing in many parts of the world. These tumors are classified into seminomas and non-seminomas, and those divided, in turn, into yolk sac tumors, embryonal cell carcinomas, choriocarcinomas, and teratomas. Although therapeutic approaches have improved, approximately 25% of the patients relapse or, in a small number of cases, show platinum-resistant disease.Areas covered: We review several molecular targets that have recently emerged as powerful tools for both diagnosis and therapy of TGCTs. Moreover, we reviewed the most frequent deregulated pathways involved in TGCT tumorigenesis, reporting drugs that may emerge as novel therapeutic agents.Expert opinion: TGCT treatment is mainly based on platinum-derivative therapy with high cure rates. However, in the refractory patients, there are few alternative treatments. Thus, different pharmacological approaches have to be thoroughly investigated to shed new light on TGCT pathogenesis and treatment.
Collapse
Affiliation(s)
- Paolo Chieffi
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy
| | - Marco De Martino
- Dipartimento di Psicologia, Università della Campania, Caserta, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli 'Federico II', Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli 'Federico II', Naples, Italy
| |
Collapse
|
37
|
Kabekkodu SP, Shukla V, Varghese VK, Adiga D, Vethil Jishnu P, Chakrabarty S, Satyamoorthy K. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1563. [PMID: 31436881 DOI: 10.1002/wrna.1563] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
MiRNAs are class of noncoding RNA important for gene expression regulation in many plants, animals and viruses. MiRNA clusters contain a set of two or more miRNA encoding genes, transcribed together as polycistronic miRNAs. Currently, there are approximately 159 miRNA clusters reported in the human genome consisting of miRNAs ranging from two or more miRNA genes. A large proportion of clustered miRNAs resides in and around the fragile sites or cancer associated genomic hotspots and plays an important role in carcinogenesis. Altered expression of miRNA cluster can be pro-tumorigenic or anti-tumorigenic and can be targeted for clinical management of cancer. Over the past few years, manipulation of miRNA clusters expression is attempted for experimental purpose as well as for diagnostic, prognostic and therapeutic applications in cancer. Re-expression of miRNAs by epigenetic therapy, genome editing such as clustered regulatory interspaced short palindromic repeats (CRISPR) and miRNA mowers showed promising results in cancer therapy. In this review, we focused on the potential of miRNA clusters as a biomarker for diagnosis, prognosis, targeted therapy as well as strategies for modulating their expression in a therapeutic context. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Processing of Small RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
38
|
Wang L, Tang D, Wu T, Sun F. ELF1-mediated LUCAT1 promotes choroidal melanoma by modulating RBX1 expression. Cancer Med 2020; 9:2160-2170. [PMID: 31968402 PMCID: PMC7064025 DOI: 10.1002/cam4.2859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are essential regulators of gene expression and biological behaviors. However, the contribution of lncRNA LUCAT1 to choroidal melanoma (CM) remains unexplored. Here, we examined the expression of LUCAT1 in CM cells by qRT‐PCR and investigated its biological effects by cell counting kit‐8, EdU, TUNEL, transwell assays, and Western blot. Bioinformatics tools were applied to find RNA candidates for further study. Moreover, mechanistic experiments including RNA immunoprecipitation assay, pull‐down assay, and luciferase reporter assay confirmed the relation or interaction among the indicated molecules. Here, we reported ELF1 as the transcription activator of LUCAT1. Functionally, elevated expression of LUCAT1 positively regulated CM cell proliferation, metastasis, and epithelial‐mesenchymal transition process. In addition, we verified the competing endogenous RNA (ceRNA) hypothesis of LUCAT1 and confirmed LUCAT1 modulates CM progression by modulating miR‐514a/b‐3p/RBX1 axis. Meanwhile, miR‐514a/b‐3p was suggested to repress CM progression, whereas RBX1 was unmasked to aggravate CM development. Of note, RBX1 overexpression rescued the inhibitory effect of LUCAT1 silence on the biological processes of CM cells. Altogether, this study unveiled the modulation axis ELF1/LUCAT1/miR‐514a/b‐3p/RBX1 and evidenced LUCAT1 as a promoter in CM for the first time, providing a novel insight into future treatment of CM.
Collapse
Affiliation(s)
- Lina Wang
- Tianjin Medical University Eye Hospital, Tianjin, China.,Tianjin First Central Hospital, Tianjin, China
| | - Dongrun Tang
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Tong Wu
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fengyuan Sun
- Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
39
|
Huang M, Tailor J, Zhen Q, Gillmor AH, Miller ML, Weishaupt H, Chen J, Zheng T, Nash EK, McHenry LK, An Z, Ye F, Takashima Y, Clarke J, Ayetey H, Cavalli FMG, Luu B, Moriarity BS, Ilkhanizadeh S, Chavez L, Yu C, Kurian KM, Magnaldo T, Sevenet N, Koch P, Pollard SM, Dirks P, Snyder MP, Largaespada DA, Cho YJ, Phillips JJ, Swartling FJ, Morrissy AS, Kool M, Pfister SM, Taylor MD, Smith A, Weiss WA. Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell 2019; 25:433-446.e7. [PMID: 31204176 PMCID: PMC6731167 DOI: 10.1016/j.stem.2019.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Human neural stem cell cultures provide progenitor cells that are potential cells of origin for brain cancers. However, the extent to which genetic predisposition to tumor formation can be faithfully captured in stem cell lines is uncertain. Here, we evaluated neuroepithelial stem (NES) cells, representative of cerebellar progenitors. We transduced NES cells with MYCN, observing medulloblastoma upon orthotopic implantation in mice. Significantly, transcriptomes and patterns of DNA methylation from xenograft tumors were globally more representative of human medulloblastoma compared to a MYCN-driven genetically engineered mouse model. Orthotopic transplantation of NES cells generated from Gorlin syndrome patients, who are predisposed to medulloblastoma due to germline-mutated PTCH1, also generated medulloblastoma. We engineered candidate cooperating mutations in Gorlin NES cells, with mutation of DDX3X or loss of GSE1 both accelerating tumorigenesis. These findings demonstrate that human NES cells provide a potent experimental resource for dissecting genetic causation in medulloblastoma.
Collapse
Affiliation(s)
- Miller Huang
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jignesh Tailor
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Institute of Cancer Research, Sutton, London SM2 5NG, UK; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Qiqi Zhen
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aaron H Gillmor
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Matthew L Miller
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Justin Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tina Zheng
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Emily K Nash
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lauren K McHenry
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhenyi An
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fubaiyang Ye
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yasuhiro Takashima
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - James Clarke
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Harold Ayetey
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Florence M G Cavalli
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Betty Luu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shirin Ilkhanizadeh
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lukas Chavez
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Chunying Yu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kathreena M Kurian
- Institute of Clinical Neurosciences, Level 1, Learning and Research Building, Southmead Hospital, University of Bristol, Bristol BS10 5NB, UK
| | - Thierry Magnaldo
- Institute for Research on Cancer and Aging, Nice UMR CNRS 7284 INSERM U1081 UNS/UCA, Nice, France
| | - Nicolas Sevenet
- Institut Bergonie & INSERM U1218, Universite de Bordeaux, 229 cours de l'Argonne, 33076 Bordeaux Cedex, France
| | - Philipp Koch
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim and Hector Institut for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Peter Dirks
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoon Jae Cho
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA; Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joanna J Phillips
- Departments of Neurological Surgery and Pathology, University of California, San Francisco, CA 94158, USA
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - A Sorana Morrissy
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marcel Kool
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Austin Smith
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - William A Weiss
- Department of Neurology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
40
|
Zhou T, Lin W, Zhu Q, Renaud H, Liu X, Li R, Tang C, Ma C, Rao T, Tan Z, Guo Y. The role of PEG3 in the occurrence and prognosis of colon cancer. Onco Targets Ther 2019; 12:6001-6012. [PMID: 31413595 PMCID: PMC6662866 DOI: 10.2147/ott.s208060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Imprinted genes are often identified as key players in the etiology and prognosis of many tumors; however, the role they play in colon cancer remains unclear. Along with the development of big data analysis came the discovery of a wealth of genetic prognostic factors, like microsatellite instability for colon cancer, which need to be taken into consideration when evaluating new biomarkers for the disease. Methods We systematically mined public databases to find recurrence free survival (RFS)-related imprinted genes for colon cancer patients on the mRNA level by univariate and multivariate survival analyses. We then investigated the association of methylation status and microRNA expression of the targeted imprinted genes with survival rate of colon cancer patients. Lastly, in a clinical study we used qRT-PCR and immunohistochemistry to quantify mRNA and protein expression of the imprinted genes that related to RFS in our bioinformatics screening, respectively, in 20 tumor tissues compared to paired adjacent tissues. Results The results show that paternally expressed gene 3 (PEG3) is the only imprinted gene related to colon cancer patient prognosis on the mRNA level in our datasets, and high mRNA expression of PEG3 is associated with a poor prognosis. Furthermore, the methylation beta value of cg13960339, as well as the expression of 4 microRNAs, negatively correlated with PEG3 mRNA level and were correlated with the prognosis of colon cancer patients. Moreover, the expression of PEG3 mRNA in colon cancer is significantly lower, but PEG3 protein expression is significantly higher compared to that in normal tissues. Conclusion PEG3 is likely associated with the progression and prognosis of colon cancer.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Qiongni Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Helen Renaud
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Ruidong Li
- Graduate Program in Genetics, Genomics & Bioinformatics, University of California, Riverside, CA 92507, USA
| | - Cui Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Chong Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China.,Human Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
41
|
Zhang K, Han Y, Wang Z, Zhao Y, Fu Y, Peng X. gga-miR-146c Activates TLR6/MyD88/NF-κB Pathway through Targeting MMP16 to Prevent Mycoplasma Gallisepticum (HS Strain) Infection in Chickens. Cells 2019; 8:cells8050501. [PMID: 31137698 PMCID: PMC6562429 DOI: 10.3390/cells8050501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma gallisepticum (MG), a pathogen that infects chickens and some other birds, triggers chronic respiratory disease (CRD) in chickens, which is characterized by inflammation. The investigation of microbial pathogenesis would contribute to the deep understanding of infection control. Since microribonucleic acids (miRNAs) play a key role in this process, gga-mir-146c, an upregulated miRNA upon MG infection, was selected according to our previous RNA-sequencing data. In this paper, we predicted and validated that MMP16 is one of gga-miR-146c target genes. Results show that MMP16 is the target of gga-miR-146c and gga-miR-146c can downregulate MMP16 expression within limits. gga-miR-146c upregulation significantly increased the expression of TLR6, NF-κB p65, MyD88, and TNF-α, whereas the gga-miR-146c inhibitor led to an opposite result. gga-miR-146c upregulation effectively decreased apoptosis and stimulated DF-1 cells proliferation upon MG infection. On the contrary, gga-miR-146c inhibitor promoted apoptosis and repressed the proliferation. Collectively, our results suggest that gga-miR-146c upregulation upon MG infection represses MMP16 expression, activating TLR6/MyD88/NF-κB pathway, promoting cell proliferation by inhibiting cell apoptosis, and, finally, enhancing cell cycle progression to defend against host MG infection.
Collapse
Affiliation(s)
- Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yun Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zaiwei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yali Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
42
|
Batool A, Karimi N, Wu XN, Chen SR, Liu YX. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci 2019; 76:1713-1727. [PMID: 30671589 PMCID: PMC11105513 DOI: 10.1007/s00018-019-03022-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Nan Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
43
|
Chieffi P, De Martino M, Esposito F. New Anti-Cancer Strategies in Testicular Germ Cell Tumors. Recent Pat Anticancer Drug Discov 2019; 14:53-59. [DOI: 10.2174/1574892814666190111120023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022]
Abstract
Background: The most common solid malignancy of young men aged 20 to 34 years is testicular germ cell tumor. In addition, the incidence of these tumors has significantly increased throughout the last years. Testicular germ cell tumors are classified into seminoma and nonseminoma germ cell tumors, which take in yolk sac tumor, embryonal cell carcinoma, choriocarcinoma, and teratoma. There are noteworthy differences about therapy and prognosis of seminomas and nonseminoma germ cell tumors, even though both share characteristics of the primordial germ cells. </P><P> Objectives: The study is focused on different molecular mechanisms strongly involved in testicular germ cell line tumors underlying new strategies to treat this human neoplasia.Methods:Bibliographic data from peer-reviewed research, patent and clinical trial literature, and around eighty papers and patents have been included in this review.Results:Our study reveals that several biomarkers are usefully utilized to discriminate among different histotypes. Moreover, we found new patents regarding testicular germ cell tumor treatments such as the expression of claudin 6, monoclonal antibody (Brentuximab Vedotin), immune checkpoint blockade (ICB) with the FDA-approved drugs pembrolizumab and nivolumab or the oncolytic virus Pelareorep, the combination of selective inhibitors of Aurora kinase.Conclusion:Finally, the pathogenesis of testicular germ cell tumor needs to be deeply understood so that it will improve data on stem cells, tumorigenesis and disease tumor management by more selective treatment.
Collapse
Affiliation(s)
- Paolo Chieffi
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Marco De Martino
- Department of Psychology, University of Campania, 81100 Caserta, Italy
| | - Francesco Esposito
- Institute of Endocrinology and Experimental Oncology of the CNR c / o Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery of Naples, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
44
|
Batool A, Chen SR, Liu YX. Distinct Metabolic Features of Seminoma and Embryonal Carcinoma Revealed by Combined Transcriptome and Metabolome Analyses. J Proteome Res 2019; 18:1819-1826. [PMID: 30835130 DOI: 10.1021/acs.jproteome.9b00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Seminoma and embryonal carcinoma (EC), two typical types of testicular germ cell tumors (TGCTs), present significant differences in growth behavior, expression characteristics, differentiation potential, clinical features, therapy, and prognosis. The purpose of this study was to compare the distinctive or preference metabolic pathways between seminoma and EC. The Cancer Genome Atlas revealed that many genes encoding metabolic enzymes could distinguish between seminoma and EC. Using well-characterized cell line models for seminoma (Tcam-2 cells) and EC (NT2 cells), we characterized their metabolite profiles using ultraperformance liquid chromatography coupled to Q-TOF mass spectrometry (UPLC/Q-TOF MS). In general, the integrated results from transcriptome and metabolite profiling revealed that seminoma and EC exhibited distinctive characteristics in the metabolisms of amino acids, glucose, fatty acids, sphingolipids, nucleotides, and drugs. Notably, an attenuation of citric acid cycle/mitochondrial oxidative phosphorylation and sphingolipid biosynthesis as well as an increase in arachidonic acid metabolism and (very) long-chain fatty acid abundance occurred in seminoma as compared with EC. Our study suggests histologic subtype-dependent metabolic reprogramming in TGCTs and will lead to a better understanding of the metabolic signatures and biology of TGCT subtypes.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
45
|
Ren LL, Yan TT, Shen CQ, Tang JY, Kong X, Wang YC, Chen J, Liu Q, He J, Zhong M, Chen HY, Hong J, Fang JY. The distinct role of strand-specific miR-514b-3p and miR-514b-5p in colorectal cancer metastasis. Cell Death Dis 2018; 9:687. [PMID: 29880874 PMCID: PMC5992212 DOI: 10.1038/s41419-018-0732-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
The abnormal expression of microRNAs (miRNAs) in colorectal cancer (CRC) progression has been widely investigated. It was reported that the same hairpin RNA structure could generate mature products from each strand, termed 5p and 3p, which binds different target mRNAs. Here, we explored the expression, functions, and mechanisms of miR-514b-3p and miR-514b-5p in CRC cells and tissues. We found that miR-514b-3p was significantly down-regulated in CRC samples, and the ratio of miR-514b-3p/miR-514b-5p increased from advanced CRC, early CRC to matched normal colorectal tissues. Follow-up functional experiments illustrated that miR-514b-3p and miR-514b-5p had distinct effects through interacting with different target genes: MiR-514b-3p reduced CRC cell migration, invasion and drug resistance through increasing epithelial marker and decreasing mesenchymal marker expressions, conversely, miR-514b-5p exerted its pro-metastatic properties in CRC by promoting EMT progression. MiR-514b-3p overexpressing CRC cells developed tumors more slowly in mice compared with control cells, however, miR-514b-5p accelerated tumor metastasis. Overall, our data indicated that though miR-514b-3p and miR-514b-5p were transcribed from the same RNA hairpin, each microRNA has distinct effect on CRC metastasis.
Collapse
Affiliation(s)
- Lin-Lin Ren
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong Sheng, China
| | - Ting-Ting Yan
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Chao-Qin Shen
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Jia-Yin Tang
- Department of Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xuan Kong
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Chao Wang
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Jinxian Chen
- Department of Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jie He
- Department of Gastroenterology & Guangzhou Key Laboratory of Digestive Disease, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming Zhong
- Department of Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Hao-Yan Chen
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
46
|
Wu J, Ding J, Yang J, Guo X, Zheng Y. MicroRNA Roles in the Nuclear Factor Kappa B Signaling Pathway in Cancer. Front Immunol 2018; 9:546. [PMID: 29616037 PMCID: PMC5868594 DOI: 10.3389/fimmu.2018.00546] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) is a pluripotent and crucial dimer transcription factor that orchestrates various physiological and pathological processes, especially cell proliferation, inflammation, and cancer development and progression. NF-κB expression is transient and tightly regulated in normal cells, but it is activated in cancer cells. Recently, numerous studies have demonstrated microRNAs (miRNAs) play a vital role in the NF-κB signaling pathway and NF-κB-associated immune responses, radioresistance and drug resistance of cancer, some acting as inhibitors and the others as activators. Although it is still in infancy, targeting NF-κB or the NF-κB signaling pathway by miRNAs is becoming a promising strategy of cancer treatment.
Collapse
Affiliation(s)
- Jin’en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute (CAAS), Lanzhou, China
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute (CAAS), Lanzhou, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute (CAAS), Lanzhou, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute (CAAS), Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Chang RK, Li X, Mu N, Hrydziuszko O, Garcia-Majano B, Larsson C, Lui WO. MicroRNA expression profiles in non‑epithelial ovarian tumors. Int J Oncol 2018; 52:55-66. [PMID: 29138809 PMCID: PMC5743337 DOI: 10.3892/ijo.2017.4200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Ovarian germ cell tumors (OGCTs) and sex cord stromal tumors (SCSTs) are rare gynecologic tumors that are derived from germ and stromal cells, respectively. Unlike their epithelial counterparts, molecular pathogenesis of these tumor types is still poorly understood. Here, we characterized microRNA (miRNA) expression profiles of 9 OGCTs (2 malignant and 7 benign) and 3 SCSTs using small RNA sequencing. We observed significant miRNA expression variations among the three tumor groups. To further demonstrate the biological relevance of our findings, we selected 12 miRNAs for validation in an extended cohort of 16 OGCTs (9 benign and 7 malignant) and 7 SCSTs by reverse transcription-quantitative polymerase chain reaction. Higher expression of miR‑373‑3p, miR‑372‑3p and miR‑302c‑3p and lower expression of miR‑199a‑5p, miR‑214‑5p and miR‑202‑3p were reproducibly observed in malignant OGCTs as compared to benign OGCTs or SCSTs. Comparing with benign OGCTs, miR‑202c‑3p and miR‑513c‑5p were more abundant in SCSTs. Additionally, we examined Beclin 1 (BECN1), a target of miR‑199a‑5p, in the clinical samples using western blot analysis. Our results show that BECN1 expression was higher in malignant OGCTs than benign OGCTs, which is concordant with their lower miR‑199a‑5p expression. This study suggests that these miRNAs may have potential value as tumor markers and implications for further understanding the molecular basis of these tumor types.
Collapse
Affiliation(s)
- Roger K. Chang
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Xidan Li
- Department of Medicine, Karolinska Institutet, SE-141 86 Huddinge
| | - Ninni Mu
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Olga Hrydziuszko
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, SE-751 24 Uppsala, Sweden
| | - Beatriz Garcia-Majano
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm
| |
Collapse
|
48
|
Ke X, Zeng X, Wei X, Shen Y, Gan J, Tang H, Hu Z. MiR-514a-3p inhibits cell proliferation and epithelial-mesenchymal transition by targeting EGFR in clear cell renal cell carcinoma. Am J Transl Res 2017; 9:5332-5346. [PMID: 29312487 PMCID: PMC5752885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Dysregulation of miR-514a-3p has been reported in multiple human malignancies. However, its biological function and molecular mechanisms in renal cell cancer (RCC) remain unclear. The aims of this study were to explore the role of miR-514a-3p and its potential mechanism in human RCC. METHODS The expression level of miR-514a-3p was quantified by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 20 cases of paired ccRCC and adjacent normal tissues and RCC cell lines. The role of miR-514a-3p in RCC cells was further evaluated by functional analyses. Western blot was applied to probe into the biological mechanism of miR-514a-3p in RCC cells. RESULTS The qRT-PCR results confirmed that miR-514a-3p was dramatically down-regulated in ccRCC specimens. Restoration of miR-514a-3p expression might distinctively suppress cell proliferation, viability, migration and invasion in comparison with negative control in RCC cells and negatively regulate the proteins related to epithelial-mesenchymal transition (EMT), such as E-Cadherin, N-Cadherin and Vimentin. Results of luciferase reporter assay and Western blot analysis identified that miR-514a-3p might inversely regulate the expression of epidermal growth factor receptor (EGFR) directly by binding to its 3'-untranslated region (3'-UTR) at the translational level. Further studies showed that the phenotypic changes of RCC cells caused by miR-514a-3p occurred through EGFR/MAPK/ERK pathway rather than PI3K/AKT signaling. Moreover, the inhibitory effect of miR-514a-3p was also confirmed in vivo study. CONCLUSIONS MiR-514a-3p is a novel tumor suppressor in ccRCC and potentially functions through EGFR/MAPK/ERK pathway.
Collapse
Affiliation(s)
- Xinwen Ke
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Yuanqing Shen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Jiahua Gan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Huake Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| |
Collapse
|
49
|
MicroRNA-218 acts by repressing TNFR1-mediated activation of NF-κB, which is involved in MUC5AC hyper-production and inflammation in smoking-induced bronchiolitis of COPD. Toxicol Lett 2017; 280:171-180. [PMID: 28864214 DOI: 10.1016/j.toxlet.2017.08.079] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
Dysregulation of microRNAs (miRNAs) has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), which is largely attributable to cigarette smoke (CS). However, little is known about the effect of miRNAs on CS-induced mucus hypersecretion and the inflammatory response in the airway epithelium, which are pathological characteristics of COPD-related chronic bronchiolitis. As determined in the present investigation, population-based data indicate that smokers with COPD had serious airflow obstruction and inflammation, whereas smokers without COPD had mild airflow obstruction and inflammation. Moreover, levels of serum miR-218 positively correlated with FEV1/FVC% and negatively correlated with levels of serum IL-6 and IL-8. In human bronchial epithelial (HBE) cells, cigarette smoke extract (CSE) decreased miR-218 levels and increased levels of MUC5AC, interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor receptor 1 (TNFR1), and p-p65. Enhancement of miR-218 levels by an miR-218 mimic blocked these CSE-induced changes. Moreover, luciferase reporter assays confirmed that miR-218 bound to the 3'UTR region of TNFR1 mRNA. Down-regulation of TNFR1 blocked the CSE-induced increases of MUC5AC, IL-6, and IL-8 and the activation of NF-κB. Furthermore, over-expression of miR-218 attenuated the CSE-induced overproduction of MUC5AC, IL-6, and IL-8, effects that were reversed by elevated expression of TNFR1. In sum, our findings provide a mechanism by which miR-218 regulates CSE-induced MUC5AC hyper-production and inflammation by targeting TNFR1-mediated activation of NF-κB, indicating that overexpression of miR-218 may be a strategy against cigarette smoking-induced bronchiolitis in COPD.
Collapse
|
50
|
Liu J, Shi H, Li X, Chen G, Larsson C, Lui WO. miR‑223‑3p regulates cell growth and apoptosis via FBXW7 suggesting an oncogenic role in human testicular germ cell tumors. Int J Oncol 2016; 50:356-364. [PMID: 28000896 PMCID: PMC5238776 DOI: 10.3892/ijo.2016.3807] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/25/2016] [Indexed: 12/19/2022] Open
Abstract
miR-223-3p is deregulated in several tumor types and plays an important role in tumorigenesis and progression. However, its role in the pathogenesis of testicular germ cell tumor (TGCT) remains uncharacterized. We previously demonstrated that miR-223-3p expression was increased in TGCTs compared with normal testes (NT), suggesting that miR-223-3p may have an oncogenic role in TGCT. Using published dataset and The Cancer Genome Atlas database, we validated higher miR-223-3p expression in TGCTs than NT, and found a negative correlation between miR-223-3p and FBXW7 mRNA expression levels. Using both gain- and loss-of-function experiments, we show that miR-223-3p regulates FBXW7 protein expression, cell growth and apoptosis in TGCT cell lines. Additionally, we demonstrate that ectopic expression of the full-length coding sequence of FBXW7 could rescue the cell growth and apoptotic effects mediated by miR-223-3p. Our findings suggest an oncogenic role for miR-223-3p in TGCT, which promotes cell growth and inhibits apoptosis through repression of FBXW7.
Collapse
Affiliation(s)
- Jikai Liu
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE‑171 76 Stockholm, Sweden
| | - Hao Shi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE‑171 76 Stockholm, Sweden
| | - Xidan Li
- Department of Medicine-Huddinge, Karolinska University Hospital-Huddinge, SE-141 86 Stockholm, Sweden
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE‑171 76 Stockholm, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, SE‑171 76 Stockholm, Sweden
| |
Collapse
|