1
|
de Sousa VM, Duarte SS, Ferreira RC, de Sousa NF, Scotti MT, Scotti L, da Silva MS, Tavares JF, de Moura RO, Gonçalves JCR, Sobral MV. AMTAC-19, a Spiro-Acridine Compound, Induces In Vitro Antitumor Effect via the ROS-ERK/JNK Signaling Pathway. Molecules 2024; 29:5344. [PMID: 39598733 PMCID: PMC11596224 DOI: 10.3390/molecules29225344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Colorectal cancer remains a significant cause of mortality worldwide. A spiro-acridine derivative, (E)-1'-((4-bromobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-19), showed significant cytotoxicity in HCT-116 colorectal carcinoma cells (half maximal inhibitory concentration, IC50 = 10.35 ± 1.66 µM) and antioxidant effects after 48 h of treatment. In this study, Molegro Virtual Docker v.6.0.1 software was used to investigate the interactions between AMTAC-19 and the Extracellular Signal-Regulated Kinase 1 (ERK1), c-Jun N-terminal Kinase 1 (JNK1), and p38 Mitogen-Activated Protein Kinase α (p38α MAPK). In vitro assays were conducted in HCT-116 cells to evaluate the effect of AMTAC-19 on the modulation of these proteins' activities using flow cytometry. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence or absence of ERK1/2, JNK, and p38 MAPK inhibitors was used to evaluate the involvement of these enzymes in AMTAC-19 cytotoxicity. ROS production was assessed using the 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) assay at various incubation times (30 min, 1 h, 6 h, 12 h, and 24 h), and the MTT assay using N-acetyl-L-cysteine (NAC) was performed. In silico results indicated that AMTAC-19 interacts with ERK1, JNK1, and p38α MAPK. Additionally, AMTAC-19 activated ERK1/2 and JNK1 in HCT-116 cells, and its cytotoxicity was significantly reduced in the presence of ERK1/2 and JNK inhibitors. AMTAC-19 also induced a significant increase in ROS production (30 min and 1 h), while NAC pretreatment reduced its cytotoxicity. These findings support AMTAC-19's in vitro antitumor effect through ROS-dependent activation of ERK and JNK pathways.
Collapse
Affiliation(s)
- Valgrícia Matias de Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Sâmia Sousa Duarte
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Natália Ferreira de Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Ricardo Olímpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa 58070-450, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
2
|
Kaya B, Smith H, Chen Y, Azad MG, Russell TM, Richardson V, Dharmasivam M, Richardson DR. Innovative N-Acridine Thiosemicarbazones and Their Zn(II) Complexes Transmetallate with Cu(II): Redox Activity and Suppression of Detrimental Oxy-Myoglobin Oxidation. Inorg Chem 2024; 63:20840-20858. [PMID: 39404641 DOI: 10.1021/acs.inorgchem.4c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The coordination chemistry and electrochemistry of novel N-acridine thiosemicarbazones (NATs) were investigated along with their redox activity, antiproliferative efficacy, transmetalation, and dissociation properties. The ability of NAT Fe(III) complexes to inhibit detrimental oxy-myoglobin (oxy-Mb) oxidation was also examined. The NATs act as tridentate ligands with a 2:1 L/Zn(II) complex crystal structure, revealing a distorted octahedral geometry, where both ligands bind Zn(II) in a meridional conformation. The NAT Fe(III) complexes exhibited fully reversible one-electron FeIII/II couples with more positive potentials than the Fe(III) complexes of a related clinically trialed thiosemicarbazone (e.g., [Fe(DpC)2]+) due to the electron-donating capacity of acridine. Surprisingly, the NAT-Zn(II) complexes showed generally greater or similar antiproliferative activity than their ligands, Cu(II), or Fe(III) complexes. This may be explained by (1) formation of a highly lipophilic Zn(II) complex that acts as a chaperone to promote cellular uptake and (2) the capacity of the Zn(II) complex to dissociate or undergo transmetalation to the redox-active Cu(II) complex. Of the NAT-Fe(III) complexes, [Fe(AOBP)2]+ demonstrated a significant (p < 0.0001) improvement in preventing oxy-Mb oxidation than the Fe(III) complex of the clinically trialed thiosemicarbazone, DpC. This article advances our understanding of NAT coordination chemistry, electrochemistry, and the intriguing biological activity of their complexes.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Henry Smith
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Yanbing Chen
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tiffany M Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan 4111, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
3
|
Kaya B, Smith H, Chen Y, Azad MG, M Russell T, Richardson V, Bernhardt PV, Dharmasivam M, Richardson DR. Targeting lysosomes by design: novel N-acridine thiosemicarbazones that enable direct detection of intracellular drug localization and overcome P-glycoprotein (Pgp)-mediated resistance. Chem Sci 2024:d4sc04339a. [PMID: 39165729 PMCID: PMC11331336 DOI: 10.1039/d4sc04339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Innovative N-acridine thiosemicarbazones (NATs) were designed along with their iron(iii), copper(ii), and zinc(ii) complexes. Lysosomal targeting was promoted by specifically incorporating the lysosomotropic Pgp substrate, acridine, into the thiosemicarbazone scaffold to maintain the tridentate N, N, S-donor system. The acridine moiety enables a significant advance in thiosemicarbazone design, since: (1) it enables tracking of the drugs by confocal microscopy using its inherent fluorescence; (2) it is lysosomotropic enabling lysosomal targeting; and (3) as acridine is a P-glycoprotein (Pgp) substrate, it facilitates lysosomal targeting, resulting in the drug overcoming Pgp-mediated resistance. These new N-acridine analogues are novel, and this is the first time that acridine has been specifically added to the thiosemicarbazone framework to achieve the three important properties above. These new agents displayed markedly greater anti-proliferative activity against resistant Pgp-expressing cells than very low Pgp-expressing cells. The anti-proliferative activity of NATs against multiple Pgp-positive cancer cell-types (colon, lung, and cervical carcinoma) was abrogated by the third generation Pgp inhibitor, Elacridar, and also Pgp siRNA that down-regulated Pgp. Confocal microscopy demonstrated that low Pgp in KB31 (-Pgp) cells resulted in acridine's proclivity for DNA intercalation promoting NAT nuclear-targeting. In contrast, high Pgp in KBV1 (+Pgp) cells led to NAT lysosomal sequestration, preventing its nuclear localisation. High Pgp expression in KBV1 (+Pgp) cells resulted in co-localization of NATs with the lysosomal marker, LysoTracker™, that was significantly (p < 0.001) greater than the positive control, the di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) Zn(ii) complex, [Zn(DpC)2]. Incorporation of acridine into the thiosemicarbazone scaffold led to Pgp-mediated transport into lysosomes to overcome Pgp-resistance.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Henry Smith
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Yanbing Chen
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Tiffany M Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University Nathan Brisbane 4111 Queensland Australia
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, University of Sydney Sydney New South Wales Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine Nagoya 466-8550 Japan
| |
Collapse
|
4
|
Ingels A, Scott R, Hooper AR, van der Westhuyzen AE, Wagh SB, de Meester J, Maddau L, Marko D, Aichinger G, Berger W, Vermeersch M, Pérez-Morga D, Maslivetc VA, Evidente A, van Otterlo WAL, Kornienko A, Mathieu V. New hemisynthetic derivatives of sphaeropsidin phytotoxins triggering severe endoplasmic reticulum swelling in cancer cells. Sci Rep 2024; 14:14674. [PMID: 38918539 PMCID: PMC11199504 DOI: 10.1038/s41598-024-65335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Sphaeropsidins are iso-pimarane diterpenes produced by phytopathogenic fungi that display promising anticancer activities. Sphaeropsidin A, in particular, has been shown to counteract regulatory volume increase, a process used by cancer cells to avoid apoptosis. This study reports the hemi-synthesis of new lipophilic derivatives obtained by modifications of the C15,C16-alkene moiety. Several of these compounds triggered severe ER swelling associated with strong proteasomal inhibition and consequently cell death, a feature that was not observed with respect to mode of action of the natural product. Significantly, an analysis from the National Cancer Institute sixty cell line testing did not reveal any correlations between the most potent derivative and any other compound in the database, except at high concentrations (LC50). This study led to the discovery of a new set of sphaeropsidin derivatives that may be exploited as potential anti-cancer agents, notably due to their maintained activity towards multidrug resistant models.
Collapse
Affiliation(s)
- Aude Ingels
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Scott
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Annie R Hooper
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Aletta E van der Westhuyzen
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Sachin B Wagh
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Joséphine de Meester
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Lucia Maddau
- Department of Agriculture, Section of Plant Pathology and Entomology, University of Sassari, Sassari, Italy
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Walter Berger
- Medical University of Vienna Center for Cancer Research, Vienna, Austria
| | - Marjorie Vermeersch
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Pérez-Morga
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Vladimir A Maslivetc
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
5
|
de Sousa VM, Duarte SS, Silva DKF, Ferreira RC, de Moura RO, Segundo MASP, Farias D, Vieira L, Gonçalves JCR, Sobral MV. Cytotoxicity of a new spiro-acridine derivative: modulation of cellular antioxidant state and induction of cell cycle arrest and apoptosis in HCT-116 colorectal carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1901-1913. [PMID: 37676494 DOI: 10.1007/s00210-023-02686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Valgrícia Matias de Sousa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Sâmia Sousa Duarte
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daiana Karla Frade Silva
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rafael Carlos Ferreira
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Ricardo Olímpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Leonardo Vieira
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa , Paraíba, Brazil
| | - Marianna Vieira Sobral
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa , Paraíba, Brazil.
| |
Collapse
|
6
|
Liang JW, Gao ZC, Yang LL, Zhang W, Chen MZ, Meng FH. Development of Acridone Derivatives: Targeting c-MYC Transcription in Triple-Negative Breast Cancer with Inhibitory Potential. Antioxidants (Basel) 2023; 13:11. [PMID: 38275631 PMCID: PMC10812579 DOI: 10.3390/antiox13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Breast cancer, especially the aggressive triple-negative subtype, poses a serious health threat to women. Unfortunately, effective targets are lacking, leading to a grim prognosis. Research highlights the crucial role of c-MYC overexpression in this form of cancer. Current inhibitors targeting c-MYC focus on stabilizing its G-quadruplex (G4) structure in the promoter region. They can inhibit the expression of c-MYC, which is highly expressed in triple-negative breast cancer (TNBC), and then regulate the apoptosis of breast cancer cells induced by intracellular ROS. However, the clinical prospects for the application of such inhibitors are not promising. In this research, we designed and synthesized 29 acridone derivatives. These compounds were assessed for their impact on intracellular ROS levels and cell activity, followed by comprehensive QSAR analysis and molecular docking. Compound N8 stood out, significantly increasing ROS levels and demonstrating potent anti-tumor activity in the TNBC cell line, with excellent selectivity shown in the docking results. This study suggests that acridone derivatives could stabilize the c-MYC G4 structure. Among these compounds, the small molecule N8 shows promising effects and deserves further investigation.
Collapse
Affiliation(s)
- Jing-Wei Liang
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
- School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Zhi-Chao Gao
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang 110044, China
| | - Lu-Lu Yang
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| | - Wei Zhang
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| | - Ming-Zhe Chen
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang 110000, China; (J.-W.L.); (Z.-C.G.); (L.-L.Y.); (W.Z.)
| |
Collapse
|
7
|
Lee YC, Chiou JT, Wang LJ, Chen YJ, Chang LS. Amsacrine downregulates BCL2L1 expression and triggers apoptosis in human chronic myeloid leukemia cells through the SIDT2/NOX4/ERK/HuR pathway. Toxicol Appl Pharmacol 2023; 474:116625. [PMID: 37451322 DOI: 10.1016/j.taap.2023.116625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Accumulating evidence indicates that the anticancer activity of acridine derivatives is mediated through the regulation of anti-apoptotic and pro-apoptotic BCL2 protein expression. Therefore, we investigated whether the cytotoxicity of amsacrine with an acridine structural scaffold in human chronic myeloid leukemia (CML) K562 cells was mediated by BCL2 family proteins. Amsacrine induced apoptosis, mitochondrial depolarization, and BCL2L1 (also known as BCL-XL) downregulation in K562 cells. BCL2L1 overexpression inhibited amsacrine-induced cell death and mitochondrial depolarization. Amsacrine treatment triggered SIDT2-mediated miR-25 downregulation, leading to increased NOX4-mediated ROS production. ROS-mediated inactivation of ERK triggered miR-22 expression, leading to increased HuR mRNA decay. As HuR is involved in stabilizing BCL2L1 mRNA, downregulation of BCL2L1 was noted in K562 cells after amsacrine treatment. In contrast, amsacrine-induced BCL2L1 downregulation was alleviated by restoring ERK phosphorylation and HuR expression. Altogether, the results of this study suggest that amsacrine triggers apoptosis in K562 cells by inhibiting BCL2L1 expression through the SIDT2/NOX4/ERK-mediated downregulation of HuR. Furthermore, a similar pathway also explains the cytotoxicity of amsacrine in CML MEG-01 and KU812 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
8
|
Finnegan RM, Elshazly AM, Patel NH, Tyutyunyk-Massey L, Tran TH, Kumarasamy V, Knudsen ES, Gewirtz DA. The BET inhibitor/degrader ARV-825 prolongs the growth arrest response to Fulvestrant + Palbociclib and suppresses proliferative recovery in ER-positive breast cancer. Front Oncol 2023; 12:966441. [PMID: 36741704 PMCID: PMC9890056 DOI: 10.3389/fonc.2022.966441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Anti-estrogens or aromatase inhibitors in combination with cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are the current standard of care for estrogen receptor-positive (ER+) Her-2 negative metastatic breast cancer. Although these combination therapies prolong progression-free survival compared to endocrine therapy alone, the growth-arrested state of residual tumor cells is clearly transient. Tumor cells that escape what might be considered a dormant or quiescent state and regain proliferative capacity often acquire resistance to further therapies. Our studies are based upon the observation that breast tumor cells arrested by Fulvestrant + Palbociclib enter into states of both autophagy and senescence from which a subpopulation ultimately escapes, potentially contributing to recurrent disease. Autophagy inhibition utilizing pharmacologic or genetic approaches only moderately enhanced the response to Fulvestrant + Palbociclib in ER+ MCF-7 breast tumor cells, slightly delaying proliferative recovery. In contrast, the BET inhibitor/degrader, ARV-825, prolonged the growth arrested state in both p53 wild type MCF-7 cells and p53 mutant T-47D cells and significantly delayed proliferative recovery. In addition, ARV-825 added after the Fulvestrant + Palbociclib combination promoted apoptosis and demonstrated efficacy in resistant RB deficient cell lines. These studies indicate that administration of BET inhibitors/degraders, which are currently being investigated in multiple clinical trials, may potentially improve standard of care therapy in metastatic ER+ breast cancer patients and may further prolong progression-free survival.
Collapse
Affiliation(s)
- Ryan M. Finnegan
- Departments of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, United States,Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Ahmed M. Elshazly
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nipa H. Patel
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Liliya Tyutyunyk-Massey
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Tammy H. Tran
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Erik S. Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - David A. Gewirtz
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: David A. Gewirtz,
| |
Collapse
|
9
|
Lee MJ, Park JS, Jo SB, Joe YA. Enhancing Anti-Cancer Therapy with Selective Autophagy Inhibitors by Targeting Protective Autophagy. Biomol Ther (Seoul) 2023; 31:1-15. [PMID: 36579459 PMCID: PMC9810440 DOI: 10.4062/biomolther.2022.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeostasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemotherapeutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autophagy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will open new possibilities for overcoming drug resistance and improving clinical outcomes.
Collapse
Affiliation(s)
- Min Ju Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seong Bin Jo
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Ae Joe
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-3147-8406, Fax: +82-2-593-2522
| |
Collapse
|
10
|
Varakumar P, Rajagopal K, Aparna B, Raman K, Byran G, Gonçalves Lima CM, Rashid S, Nafady MH, Emran TB, Wybraniec S. Acridine as an Anti-Tumour Agent: A Critical Review. Molecules 2022; 28:193. [PMID: 36615391 PMCID: PMC9822522 DOI: 10.3390/molecules28010193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
This review summarized the current breakthroughs in the chemistry of acridines as anti-cancer agents, including new structural and biologically active acridine attributes. Acridine derivatives are a class of compounds that are being extensively researched as potential anti-cancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is restricted or even excluded as a result of side effects. The photocytotoxicity of propyl acridine acts against leukaemia cell lines, with C1748 being a promising anti-tumour drug against UDP-UGT's. CK0403 is reported in breast cancer treatment and is more potent than CK0402 against estrogen receptor-negative HER2. Acridine platinum (Pt) complexes have shown specificity on the evaluated DNA sequences; 9-anilinoacridine core, which intercalates DNA, and a methyl triazene DNA-methylating moiety were also studied. Acridine thiourea gold and acridinone derivatives act against cell lines such as MDA-MB-231, SK-BR-3, and MCF-7. Benzimidazole acridine compounds demonstrated cytotoxic activity against Dual Topo and PARP-1. Quinacrine, thiazacridine, and azacridine are reported as anti-cancer agents, which have been reported in the previous decade and were addressed in this review article.
Collapse
Affiliation(s)
- Potlapati Varakumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Baliwada Aparna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kannan Raman
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | | | - Salma Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| |
Collapse
|
11
|
Mangueira VM, de Sousa TKG, Batista TM, de Abrantes RA, Moura APG, Ferreira RC, de Almeida RN, Braga RM, Leite FC, Medeiros KCDP, Cavalcanti MAT, Moura RO, Silvestre GFG, Batista LM, Sobral MV. A 9-aminoacridine derivative induces growth inhibition of Ehrlich ascites carcinoma cells and antinociceptive effect in mice. Front Pharmacol 2022; 13:963736. [PMID: 36324671 PMCID: PMC9618857 DOI: 10.3389/fphar.2022.963736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Acridine derivatives have been found with anticancer and antinociceptive activities. Herein, we aimed to evaluate the toxicological, antitumor, and antinociceptive actions of N’-(6-chloro-2-methoxyacridin-9-yl)-2-cyanoacetohydrazide (ACS-AZ), a 9-aminoacridine derivative with antimalarial activity. The toxicity was assessed by acute toxicity and micronucleus tests in mice. The in vivo antitumor effect of ACS-AZ (12.5, 25, or 50 mg/kg, intraperitoneally, i.p.) was determined using the Ehrlich tumor model, and toxicity. The antinociceptive efficacy of the compound (50 mg/kg, i.p.) was investigated using formalin and hot plate assays in mice. The role of the opioid system was also investigated. In the acute toxicity test, the LD50 (lethal dose 50%) value was 500 mg/kg (i.p.), and no detectable genotoxic effect was observed. After a 7-day treatment, ACS-AZ significantly (p < 0.05) reduced tumor cell viability and peritumoral microvessels density, suggesting antiangiogenic action. In addition, ACS-AZ reduced (p < 0.05) IL-1β and CCL-2 levels, which may be related to the antiangiogenic effect, while increasing (p < 0.05) TNF-α and IL-4 levels, which are related to its direct cytotoxicity. ACS-AZ also decreased (p < 0.05) oxidative stress and nitric oxide (NO) levels, both of which are crucial mediators in cancer known for their angiogenic action. Moreover, weak toxicological effects were recorded after a 7-day treatment (biochemical, hematological, and histological parameters). Concerning antinociceptive activity, ACS-AZ was effective on hotplate and formalin (early and late phases) tests (p < 0.05), characteristic of analgesic agents with central action. Through pretreatment with the non-selective (naloxone) and μ1-selective (naloxonazine) opioid antagonists, we observed that the antinociceptive effect of ACS-AZ is mediated mainly by μ1-opioid receptors (p < 0.05). In conclusion, ACS-AZ has low toxicity and antitumoral activity related to cytotoxic and antiangiogenic actions that involve the modulation of reactive oxygen species, NO, and cytokine levels, in addition to antinociceptive properties involving the opioid system.
Collapse
Affiliation(s)
- Vivianne M. Mangueira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatyanna K. G. de Sousa
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatianne M. Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Renata A. de Abrantes
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Ana Paula G. Moura
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Rafael C. Ferreira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Reinaldo N. de Almeida
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Renan M. Braga
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Fagner Carvalho Leite
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Misael Azevedo T. Cavalcanti
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Brazil
| | - Ricardo O. Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Brazil
| | - Geovana F. G. Silvestre
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Leônia M. Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Marianna V. Sobral
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
- *Correspondence: Marianna V. Sobral,
| |
Collapse
|
12
|
Li Z, Si W, Jin W, Yuan Z, Chen Y, Fu L. Targeting autophagy in colorectal cancer: An update on pharmacological small-molecule compounds. Drug Discov Today 2022; 27:2373-2385. [PMID: 35589015 DOI: 10.1016/j.drudis.2022.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023]
Abstract
Autophagy, an evolutionarily highly conserved cellular degradation process, plays the Janus role (either cytoprotective or death-promoting) in colorectal cancer, so the targeting of several key autophagic pathways with small-molecule compounds may be a new therapeutic strategy. In this review, we discuss autophagy-associated cell death pathways and key cytoprotective autophagy pathways in colorectal cancer. Moreover, we summarize a series of small-molecule compounds that have the potential to modulate autophagy-associated cell death or cytoprotective autophagy for therapeutic purposes. Taken together, these findings demonstrate the Janus role of autophagy in colorectal cancer, and shed new light on the exploitation of a growing number of small-molecule compounds to target autophagy in future cancer drug discovery.
Collapse
Affiliation(s)
- Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wen Si
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences Limited, Hong Kong Special Administrative Region; Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhaoxin Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
13
|
Duarte SS, Silva DKF, Lisboa TMH, Gouveia RG, de Andrade CCN, de Sousa VM, Ferreira RC, de Moura RO, Gomes JNS, da Silva PM, de Lourdes Assunção Araújo de Azevedo F, Keesen TSL, Gonçalves JCR, Batista LM, Sobral MV. Apoptotic and antioxidant effects in HCT-116 colorectal carcinoma cells by a spiro-acridine compound, AMTAC-06. Pharmacol Rep 2022; 74:545-554. [PMID: 35297003 DOI: 10.1007/s43440-022-00357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Acridine compounds have been described as promising anticancer agents. Previous studies showed that (E)-1'-((4-chlorobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-06), a spiro-acridine compound, has antitumor activity on Ehrlich tumor and low toxicity. Herein, we investigated its antitumor effect against human cells in vitro. METHODS MTT assay was used to assess cytotoxicity of AMTAC-06 (3.125-200 µM) against tumor and non-tumor cells, and the half-maximal inhibitory concentration (IC50) and the selectivity index (SI) were calculated. The effects on the cell cycle (propidium iodide-PI-staining), apoptosis (Annexin V-FITC/PI double staining by flow cytometry), and production of reactive oxygen species, ROS (DCFH assay) were also evaluated. Statistical analysis was achieved using ANOVA followed by Tukey's post-test. RESULTS AMTAC-06 showed higher cytotoxicity against colorectal carcinoma HCT-116 cells (IC50: 12.62 µM). The SI showed that AMTAC-06 was more selective for HCT-116 cells (HaCaT SI: 1.41; PBMC SI: 0.62) than doxorubicin (HaCaT SI: 0.10; PBMC SI: 0.01). AMTAC-06 (15 and 30 µM) induced an increase in the sub-G1 peak (p < 0.000001) and cell cycle arrest in S phase (p = 0.003547). Moreover, treatment with this compound (15 and 30 µM) resulted in increased early (p < 0.000001) and late apoptotic cells (p < 0.000001). In addition, there was a reduction on ROS production (p < 0.000001). CONCLUSIONS AMTAC-06 presents anticancer activity against HCT-116 cells by regulating the cell cycle, inducing apoptosis and an antioxidant action.
Collapse
Affiliation(s)
- Sâmia Sousa Duarte
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daiana Karla Frade Silva
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thaís Mangeon Honorato Lisboa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rawny Galdino Gouveia
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Valgrícia Matias de Sousa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rafael Carlos Ferreira
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Ricardo Olimpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Joilly Nilce Santana Gomes
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Biotechnology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Leônia Maria Batista
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marianna Vieira Sobral
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil. .,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil. .,Laboratório de Oncofarmacologia (Oncofar), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM). Cidade Universitária, Campus I, João Pessoa, Paraíba, 58051-900, Brazil.
| |
Collapse
|
14
|
Jin PR, Ta YNN, Chen IT, Yu YN, Hsieh HT, Nguyen VAT, Hsieh SY, Hsia T, Liu H, Hsu CW, Han JL, Chen Y. Cinchona Alkaloid-Inspired Urea-Containing Autophagy Inhibitor Shows Single-Agent Anticancer Efficacy. J Med Chem 2021; 64:14513-14525. [PMID: 34558909 DOI: 10.1021/acs.jmedchem.1c01036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autophagy is upregulated in response to metabolic stress, a hypoxic tumor microenvironment, and therapeutic stress in various cancers and mediates tumor progression and resistance to cancer therapy. Herein, we identified a cinchona alkaloid derivative containing urea (C1), which exhibited potential cytotoxicity and inhibited autophagy in hepatocellular carcinoma (HCC) cells. We showed that C1 not only induced apoptosis but also blocked autophagy in HCC cells, as indicated by the increased expression of LC3-II and p62, inhibition of autophagosome-lysosome fusion, and suppression of the Akt/mTOR/S6k pathway in the HCC cells. Finally, to improve its solubility and efficacy, we encapsulated C1 into PEGylated lipid-poly(lactic-co-glycolic acid) (PLGA) nanoscale drug carriers. Systemic administration of nanoscale C1 significantly suppressed primary tumor growth and prevented distant metastasis while maintaining a desirable safety profile. Our findings demonstrate that C1 combines autophagy modulation and apoptosis induction in a single molecule, making it a promising therapeutic option for HCC.
Collapse
Affiliation(s)
- Pei-Ru Jin
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Ting Chen
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City 40227, Taiwan
| | - Yan-Ning Yu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin Tzu Hsieh
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Van-Anh Thi Nguyen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shang-Ying Hsieh
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tiffaney Hsia
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hao Liu
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Chan-Wei Hsu
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City 40227, Taiwan.,Department of Chemistry, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
15
|
Lee HS, Park BS, Kang HM, Kim JH, Shin SH, Kim IR. Role of Luteolin-Induced Apoptosis and Autophagy in Human Glioblastoma Cell Lines. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:879. [PMID: 34577802 PMCID: PMC8470580 DOI: 10.3390/medicina57090879] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/07/2023]
Abstract
Background and Objectives: Malignant glioblastoma (GBM) is caused by abnormal proliferation of glial cells, which are found in the brain. The therapeutic effects of surgical treatment, radiation therapy, and chemo-therapy against GBM are relatively poor compared with their effects against other tumors. Luteolin is abundant in peanut shells and is also found in herbs and other plants, such as thyme, green pepper, and celery. Luteolin is known to be effective against obesity and metabolic syndrome. The anti-inflammatory, and anti-cancer activities of luteolin have been investigated. Most studies have focused on the antioxidant and anti-inflammatory effects of luteolin, which is a natural flavonoid. However, the association between the induction of apoptosis by luteolin in GBM and autophagy has not yet been investigated. This study thus aimed to confirm the occurrence of luteolin-induced apoptosis and autophagy in GBM cells and to assess their relationship. Materials and Methods: A172 and U-373MG glioblastoma cell lines were used for this experiment. We confirmed the apoptosis effect of Luteolin on GBM cells using methods such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunofluorescence, Flow cytometry (FACS) western blot, and real-time quantitative PCR (qPCR). Results: In the luteolin-treated A172 and U-373MG cells, cell viability decreased in a concentration- and time-dependent manner. In addition, in A172 and U-373MG cells treated with luteolin at concentrations greater than 100 μM, nuclear fragmentation, which is a typical morphological change characterizing apoptosis, as well as fragmentation of caspase-3 and Poly (ADP-ribose) polymerase (PARP), which are apoptosis-related factors, were observed. Autophagy was induced after treatment with at least 50 μM luteolin. Inhibition of autophagy using 3MA allowed for a low concentration of luteolin to more effectively induce apoptosis in A172 and U-373MG cells. Conclusions: Results showed that luteolin induces apoptosis and autophagy and that the luteolin-induced autophagy promotes cell survival. Therefore, an appropriate combination therapy involving luteolin and an autophagy inhibitor is expected to improve the prognosis of GBM treatment.
Collapse
Affiliation(s)
- Hye-Sung Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea; (H.-S.L.); (S.-H.S.)
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea
| | - Hae-Mi Kang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (B.-S.P.); (H.-M.K.)
| | - Jung-Han Kim
- Medical Center, Department of Oral and Maxillofacial Surgery, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan 49201, Korea;
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea; (H.-S.L.); (S.-H.S.)
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea
| |
Collapse
|
16
|
Xiao M, Benoit A, Hasmim M, Duhem C, Vogin G, Berchem G, Noman MZ, Janji B. Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Front Oncol 2021; 11:626309. [PMID: 33718194 PMCID: PMC7951055 DOI: 10.3389/fonc.2021.626309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a highly regulated multi-step process that occurs at the basal level in almost all cells. Although the deregulation of the autophagy process has been described in several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is currently well established and supported by experimental and clinical evidence. Our understanding of the molecular mechanism of the autophagy process has largely contributed to defining how we can harness this process to improve the benefit of cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is extensively documented, emerging data point toward autophagy as a mechanism of cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore, manipulating autophagy has emerged as a promising strategy to overcome tumor resistance to various anti-cancer therapies, and autophagy modulators are currently evaluated in combination therapies in several clinical trials. In this review, we will summarize our current knowledge of the impact of genetically and pharmacologically modulating autophagy genes and proteins, involved in the different steps of the autophagy process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss the challenges and limitations to developing potent and selective autophagy inhibitors that could be used in ongoing clinical trials.
Collapse
Affiliation(s)
- Malina Xiao
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Meriem Hasmim
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Caroline Duhem
- Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Guillaume Vogin
- Université de Lorraine - UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandoeuvre-lès-Nancy, France.,Centre François Baclesse, Esch-sur-Alzette, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg.,Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| |
Collapse
|
17
|
Liu H, Qian C, Yang T, Wang Y, Luo J, Zhang C, Wang X, Wang X, Guo Z. Small molecule-mediated co-assembly of amyloid-β oligomers reduces neurotoxicity through promoting non-fibrillar aggregation. Chem Sci 2020; 11:7158-7169. [PMID: 34123000 PMCID: PMC8159368 DOI: 10.1039/d0sc00392a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Amyloid-β (Aβ) oligomers, particularly low molecular weight (LMW) oligomers, rather than fibrils, contribute very significantly to the onset and progression of Alzheimer's Disease (AD). However, due to the inherent heterogeneity and metastability of oligomers, most of the conventional anti-oligomer therapies have indirectly modulated oligomers' toxicity through manipulating Aβ self-assembly to reduce oligomer levels, which are prone to suffering from the risk of regenerating toxic oligomers from the products of modulation. To circumvent this disadvantage, we demonstrate, for the first time, rational design of rigid pincer-like scaffold-based small molecules with blood–brain barrier permeability that specifically co-assemble with LMW Aβ oligomers through directly binding to the exposed hydrophobic regions of oligomers to form non-fibrillar, degradable, non-toxic co-aggregates. As a proof of concept, treatment with a europium complex (EC) in such a structural mode can rescue Aβ-mediated dysfunction in C. elegans models of AD in vivo. This small molecule-mediated oligomer co-assembly strategy offers an efficient approach for AD treatment. A rational design of pincer-like scaffold-based small molecule with blood-brain barrier permeability that can specifically co-assemble with low molecular weight Aβ oligomers to form non-fibrillar, degradable, non-toxic co-aggregates.![]()
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Chengyuan Qian
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Tao Yang
- Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng 224007 P. R. China
| | - Jian Luo
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang College Nanjing 211171 P. R. China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China .,State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210093 P. R. China
| | - Xiaoyong Wang
- Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
18
|
Toxicity and Antitumor Activity of a Thiophene-Acridine Hybrid. Molecules 2019; 25:molecules25010064. [PMID: 31878135 PMCID: PMC6983054 DOI: 10.3390/molecules25010064] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
The antitumor effects of thiophene and acridine compounds have been described; however, the clinical usefulness of these compounds is limited due to the risk of high toxicity and drug resistance. The strategy of molecular hybridization presents the opportunity to develop new drugs which may display better target affinity and less serious side effects. Herein, 2-((6-Chloro-2-methoxy-acridin-9-yl)amino)-5,6,7,8-tetrahydro-4H-cyclohepta[b]-thiophene-3-carbonitrile (ACS03), a hybrid thiophene–acridine compound with antileishmanial activity, was tested for toxicity and antitumor activity. The toxicity was evaluated in vitro (on HaCat and peripheral blood mononuclear cells) and in vivo (zebrafish embryos and acute toxicity in mice). Antitumor activity was also assessed in vitro in HCT-116 (human colon carcinoma cell line), K562 (chronic myeloid leukemic cell line), HL-60 (human promyelocytic leukemia cell line), HeLa (human cervical cancer cell line), and MCF-7 (breast cancer cell line) and in vivo (Ehrlich ascites carcinoma model). ACS03 exhibited selectivity toward HCT-116 cells (Half maximal inhibitory concentration, IC50 = 23.11 ± 1.03 µM). In zebrafish embryos, ACS03 induced an increase in lactate dehydrogenase, glutathione S-transferase, and acetylcholinesterase activities. The LD50 (lethal dose 50%) value in mice was estimated to be higher than 5000 mg/kg (intraperitoneally). In vivo, ACS03 (12.5 mg/kg) induced a significant reduction in tumor volume and cell viability. In vivo antitumor activity was associated with the nitric oxide cytotoxic effect. In conclusion, significant antitumor activity and weak toxicity were recorded for this hybrid compound, characterizing it as a potential anticancer compound.
Collapse
|
19
|
He Y, Su J, Lan B, Gao Y, Zhao J. Targeting off-target effects: endoplasmic reticulum stress and autophagy as effective strategies to enhance temozolomide treatment. Onco Targets Ther 2019; 12:1857-1865. [PMID: 30881038 PMCID: PMC6413742 DOI: 10.2147/ott.s194770] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive adult primary central nervous system tumor. Unfortunately, GBM is resistant to the classic chemotherapy drug, temozolomide (TMZ). As well as its classic DNA-targeting effects, the off-target effects of TMZ can have pro-survival or pro-death roles and regulate GBM chemoradiation sensitivity. Endoplasmic reticulum (ER) stress is one of the most common off-target effects. ER stress and its downstream induction of autophagy, apoptosis, and other events have important roles in regulating TMZ sensitivity. Autophagy is an evolutionarily conserved cellular homeostasis mechanism that is closely associated with ER stress-induced apoptosis. Under ER stress, autophagy cannot only remove misfolded/unfolded proteins and damaged organelles and degrade and inhibit apoptosis-related caspase activation to reduce cell damage, but may also promote apoptosis dependent on ER stress intensity. Although some protein interactions between autophagy and apoptosis and common upstream signaling pathways have been found, the underlying regulatory mechanisms are still not fully understood. This review summarizes the possible mechanisms underlying the current known off-target roles of ER stress and downstream autophagy in the regulation of cell fate and evaluates their role in TMZ treatment and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,
| | - Jing Su
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,
| | - Jingxia Zhao
- Experimental Teaching Center, School of Nursing, Jilin University, Changchun, Jilin, China,
| |
Collapse
|
20
|
Brun S, Bassissi F, Serdjebi C, Novello M, Tracz J, Autelitano F, Guillemot M, Fabre P, Courcambeck J, Ansaldi C, Raymond E, Halfon P. GNS561, a new lysosomotropic small molecule, for the treatment of intrahepatic cholangiocarcinoma. Invest New Drugs 2019; 37:1135-1145. [DOI: 10.1007/s10637-019-00741-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
|
21
|
Parlar S, Erzurumlu Y, Ilhan R, Ballar Kırmızıbayrak P, Alptüzün V, Erciyas E. Synthesis and evaluation of pyridinium-hydrazone derivatives as potential antitumoral agents. Chem Biol Drug Des 2018; 92:1198-1205. [DOI: 10.1111/cbdd.13177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/17/2017] [Accepted: 01/20/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sülünay Parlar
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Yalçın Erzurumlu
- Department of Biochemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Recep Ilhan
- Department of Biochemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | | | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Ercin Erciyas
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| |
Collapse
|