1
|
You H, Zhang X, Chen H, Liu C, Teng D, Han J, Chen M, Pang Y, Zhang J, Cai M, Zhao Y, Dong Q, Wang S, Xu Y, Hu Y, Dong P, He W. γδ T-cell autoresponses to ectopic membrane proteins: a new type of pattern recognition. Cell Mol Immunol 2025; 22:356-370. [PMID: 39939816 PMCID: PMC11955531 DOI: 10.1038/s41423-025-01258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/12/2025] [Indexed: 02/14/2025] Open
Abstract
T-cell receptor (TCR) γδ-expressing cells are conserved lymphocytes of innate immunity involved in first-line defense and immune surveillance. TCRγδ recognizes protein/nonprotein ligands without the help of the major histocompatibility complex (MHC), especially via direct binding to protein ligands, which is dependent primarily on the δ chain complementary determining region 3 (CDR3δ). However, the mechanism of protein‒antigen recognition by human γδ TCRs remains poorly defined. We hypothesize that γδ TCRs recognize self-proteins expressed ectopically on the cell membrane that are derived from intracellular components under stress. Here, we mapped 16 intercellular self-proteins among 21,000 proteins with a huProteinChip as putative ligands for Vδ1/Vδ2 TCRs, 13 for Vδ1 TCRs and 3 for Vδ2 TCRs. Functional tests confirmed that ectopic nucleolin (NCL) is a ligand for the Vδ1 TCR, whereas protein-glutamine γ-glutamyltransferase K (TGM1) is a ligand for the Vδ2 TCR. In the context of radiation exposure, the ectopic expression of intracellular proteins on the tumor cell surface is related to the increased antitumor cytotoxicity of γδ T cells both in vitro and in vivo. In conclusion, the recognition of intracellular proteins that are ectopically expressed on somatic cells by human γδ TCRs is a basic interaction mechanism that enables new types of immune pattern recognition and a novel γδ TCR-ligand-based strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongqin You
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Xiangjin Zhang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
- Beijing Jiadehe Cell Therapy Technology Co., Ltd, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu, 213000, China
| | - Chang Liu
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
- Beijing Jiadehe Cell Therapy Technology Co., Ltd, Beijing, China
| | - Da Teng
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Jiajia Han
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Ming Chen
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Yongsheng Pang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
- Beijing Jiadehe Cell Therapy Technology Co., Ltd, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu, 213000, China
| | - Menghua Cai
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Yueqi Zhao
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Qingqing Dong
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Shuli Wang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Yi Xu
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
- Beijing Jiadehe Cell Therapy Technology Co., Ltd, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu, 213000, China
| | - Yu Hu
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
- Beijing Jiadehe Cell Therapy Technology Co., Ltd, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu, 213000, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu, 213000, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China.
| |
Collapse
|
2
|
Pan L, Zhou Y, Kuang Y, Wang C, Wang W, Hu X, Chen X. Progress of research on γδ T cells in colorectal cancer (Review). Oncol Rep 2024; 52:160. [PMID: 39364743 PMCID: PMC11478060 DOI: 10.3892/or.2024.8819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy and second leading cause of cancer‑related fatalities worldwide. Immunotherapy alone or in combination with chemotherapy has a favorable survival benefit for patients with CRC. Unlike αβ T cells, which are prone to drug resistance, γδ T cells do not exhibit major histocompatibility complex restriction and can target tumor cells through diverse mechanisms. Recent research has demonstrated the widespread involvement of Vδ1T, Vδ2T, and γδ T17 cells in tumorigenesis and progression. In the present review, the influence of different factors, including immune checkpoint molecules, the tumor microenvironment and microorganisms, was summarized on the antitumor/protumor effects of these cells, aiming to provide insights for the development of more efficient and less toxic immunotherapy‑based anticancer drugs.
Collapse
Affiliation(s)
- Lijuan Pan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Yiru Zhou
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Weimin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| |
Collapse
|
3
|
Lin P, Yan Y, Zhang Z, Dong Q, Yi J, Li Q, Zhang A, Kong X. The γδ T cells dual function and crosstalk with intestinal flora in treating colorectal cancer is a promising area of study. Int Immunopharmacol 2023; 123:110733. [PMID: 37579540 DOI: 10.1016/j.intimp.2023.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
The occurrence of colorectal cancer (CRC) is highly prevalent and severely affects human health, with the third-greatest occurrence and the second-greatest rate of death globally. Current CRC treatments, including surgery, radiotherapy, and chemotherapy, do not significantly improve CRC patients' survival rate and quality of life, so it is essential to develop new treatment strategies. Adoptive cell therapy and other immunotherapy came into being. Currently, there has been an especially significant emphasis on γδ T cells as being the primary recipient of adoptive cell therapy. The present investigation found that γδ T cells possess the capability to trigger cytotoxicity in CRC cells, secrete cytokines, recruit immune cells for the purpose of destroying cancer cells, and inhibit the progress of CRC indirectly. Nevertheless, It is possible for γδ T cells to initiate a storm of inflammatory factors and inhibit the immune response to promote the advancement of CRC. This review demonstrates a close association between the γδ T cell initiation pathway and their close association with the intestinal flora. It has been observed that the intestinal flora performs a vital function in facilitating the stimulation and functioning of γδ T cells. The tumor-fighting effect is mainly regulated by desulphurizing Vibrio and lactic acid bacteria. In contrast, the regulation of tumor-promoting impact is closely related to Clostridia and ETBF. This review systematically combs γδ T cell dual function and their relationship to intestinal flora, which offers a conceptual framework for the γδ T cell application for CRC therapies.
Collapse
Affiliation(s)
- Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ze Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiutong Dong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Dong R, Zhang Y, Xiao H, Zeng X. Engineering γδ T Cells: Recognizing and Activating on Their Own Way. Front Immunol 2022; 13:889051. [PMID: 35603176 PMCID: PMC9120431 DOI: 10.3389/fimmu.2022.889051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy for the treatment of malignant tumors. Among them, there is great interest in engineered γδ T cells for ACT. With both adaptive and innate immune characteristics, γδ T cells can be activated by γδ TCRs to recognize antigens in a MHC-independent manner, or by NK receptors to recognize stress-induced molecules. The dual recognition system enables γδ T cells with unique activation and cytotoxicity profiles, which should be considered for the design of engineered γδ T cells. However, the current designs of engineered γδ T cells mostly follow the strategies that used in αβ T cells, but not making good use of the specific characteristics of γδ T cells. Therefore, it is no surprising that current engineered γδ T cells in preclinical or clinical trials have limited efficacy. In this review, we summarized the patterns of antigen recognition of γδ T cells and the features of signaling pathways for the functions of γδ T cells. This review will additionally discuss current progress in engineered γδ T cells and provide insights in the design of engineered γδ T cells based on their specific characteristics.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Lo Presti E, Dieli F, Fourniè JJ, Meraviglia S. Deciphering human γδ T cell response in cancer: Lessons from tumor-infiltrating γδ T cells. Immunol Rev 2020; 298:153-164. [PMID: 32691450 DOI: 10.1111/imr.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023]
Abstract
The finding that γδ T cells are present among tumor-infiltrating lymphocytes in humans suggests they participate in tumor immune surveillance, but their relevance is unclear because the relative abundance of tumor-infiltrating γδ T cells correlates with positive or negative, or even do not correlate with prognosis. This likely depends on the fact that tumor-infiltrating γδ T cells may play substantially different effector or regulatory functions, and correlation with patient's prognosis relies on distinct γδ T cell subsets in the context of the tumor. There is interest to exploit γδ T cells in tumor immunotherapy, but to make this approach successful there is urgent need to fully understand the biological functions of γδ T cells and of how they can be manipulated in vivo and ex vivo to safely provide benefit to the host. This review focuses on our previous and ongoing studies of tumor-infiltrating γδ T lymphocytes in different types of human cancer. Moreover, we discuss the interaction of tumor-infiltrating γδ T cells with other cells and molecules present in the tumor microenvironment, and their clinical relevance on the ground, that deep knowledge in this field can be used further for better immunotherapeutic intervention in cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Jean Jacques Fourniè
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Toulouse University, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France.,Laboratoire d'Excellence 'TOUCAN', Toulouse, France
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Lo Presti E, Corsale AM, Dieli F, Meraviglia S. γδ cell-based immunotherapy for cancer. Expert Opin Biol Ther 2019; 19:887-895. [PMID: 31220420 DOI: 10.1080/14712598.2019.1634050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Cancer immunotherapy relies on the development of an efficient and long-lasting anti-tumor response, generally mediated by cytotoxic T cells. γδ T cells possess distinctive features that justify their use in cancer immunotherapy. Areas covered: Here we will review our current knowledge on the functions of human γδ T cells that may be relevant in tumor immunity and the most recent advances in our understanding of how these functions are regulated in the tumor microenvironment. We will also discuss the major achievements and limitations of γδ T cell-based immunotherapy of cancer. Expert opinion: Several small-scale clinical trials have been conducted in cancer patients using either in vivo activation of γδ T cells or adoptive transfer of ex vivo-expanded γδ T cells. Both strategies are safe and give some clinical benefit to patients, thus providing a proof of principle for their utilization in addition to conventional therapies. However, low objective response rates have been obtained in both settings and therefore larger and well-controlled trials are needed. Discovering the factors which influence the success of γδ T cell-based immunotherapy will lead to a better understanding of their mechanism of action and to harness these cells for effective and durable anti-tumor responses.
Collapse
Affiliation(s)
- Elena Lo Presti
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| | - Anna Maria Corsale
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| | - Francesco Dieli
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| | - Serena Meraviglia
- a Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy.,b Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo , Palermo , Italy
| |
Collapse
|
8
|
Wang X, Mou W, Han W, Xi Y, Chen X, Zhang H, Qin H, Wang H, Ma X, Gui J. Diminished cytolytic activity of γδ T cells with reduced DNAM-1 expression in neuroblastoma patients. Clin Immunol 2019; 203:63-71. [PMID: 30999035 DOI: 10.1016/j.clim.2019.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/28/2022]
Abstract
Neuroblastoma is one of the children's malignant tumors with poor prognosis, as well as high recurrence and metastasis rates after surgical removal and chemotherapy. γδ T-cell based immunotherapy receives increasing attention thanks to the strong cytolytic activity to tumor cells. Our previous data revealed a significant increase in circulating γδ T-cell frequency in NB patients. In the present study, we found that beside a reduction of IFN-γ in serum of NB patients, DNAM-1 expression decreased in both circulating and PAM-expanded NB γδ T cells. Upon PAM stimulation, NB γδ T cells showed a reduced level of cell proliferation. In addition, the cytolytic activity of NB γδ T cells to NB cell lines was proved to be attenuated in a co-culture system. The fact that DNAM-1 neutralizing antibody abolished the tumor cell killing accentuates the indispensable role of DNAM-1 molecule in γδ T-cell cytolytic function.
Collapse
Affiliation(s)
- Xiaolin Wang
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wenjun Mou
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Han
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yue Xi
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xi Chen
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Hui Zhang
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Hong Qin
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaoli Ma
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jingang Gui
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
9
|
Yue C, Yang K, Dong W, Hu F, Zhao S, Liu S. γδ T Cells in Peripheral Blood of Glioma Patients. Med Sci Monit 2018; 24:1784-1792. [PMID: 29582851 PMCID: PMC5884064 DOI: 10.12659/msm.905932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Glioma is a common brain malignancy, but the effects of the γδ T cells and their subsets in peripheral blood in patients with glioma have not been reported. Material/Methods Flow cytometry was used to analyze the functions and expressions of δ T cells and their subsets in peripheral blood in healthy controls and patients with glioma. The Vδ2 T cells and the activation of killing function-related signaling pathway were analyzed by Western blot assay; the immunosuppressive functions of Vδ1 T cells were detected by CFSE proliferation assay; and the Vδ2 T cell killing functions were detected by killing assay. Results Compared with the healthy controls, the ratio of Vδ1 T cells was significantly increased and the ratio of Vδ2 T cells was significantly decreased. After in vitro culture and anti-TCR γδ antibody stimulation and in the presence of IL-2, in the patients with glioma, the Vδ1 T cells dominated and Vδ2 T cells were scarce. Flow cytometry staining showed that expression of immunosuppression-related molecules on the Vδ1 T cell surface was significantly increased, while the expression of killing function-related molecules and the activation of killing function-related signaling pathway in the Vδ2 T cells were significantly decreased. Functional test results showed that the immunosuppressive function of Vδ1T cells was enhanced and the killing function of Vδ1T cells was reduced. Conclusions The ratio and function changes of Vδ1 T cells and Vδ2 T cells are possibly associated with the pathogenesis of glioma.
Collapse
Affiliation(s)
- Changbo Yue
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Kai Yang
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Wanqing Dong
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Fengxia Hu
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Shoumei Zhao
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Shiqin Liu
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| |
Collapse
|
10
|
Watanabe D, Koyanagi‐Aoi M, Taniguchi‐Ikeda M, Yoshida Y, Azuma T, Aoi T. The Generation of Human γδT Cell-Derived Induced Pluripotent Stem Cells from Whole Peripheral Blood Mononuclear Cell Culture. Stem Cells Transl Med 2018; 7:34-44. [PMID: 29164800 PMCID: PMC5746152 DOI: 10.1002/sctm.17-0021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
γδT cells constitute a small proportion of lymphocytes in peripheral blood. Unlike αβT cells, the anti-tumor activities are exerted through several different pathways in a MHC-unrestricted manner. Thus, immunotherapy using γδT cells is considered to be effective for various types of cancer. Occasionally, however, ex vivo expanded cells are not as effective as expected due to cell exhaustion. To overcome the issue of T-cell exhaustion, researchers have generated induced pluripotent stem cells (iPSCs) that harbor the same T-cell receptor (TCR) genes as their original T-cells, which provide nearly limitless sources for antigen-specific cytotoxic T lymphocytes (CTLs). However, these technologies have focused on αβT cells and require a population of antigen-specific CTLs, which are purified by cell sorting with HLA-peptide multimer, as the origin of iPS cells. In the present study, we aimed to develop an efficient and convenient system for generating iPSCs that harbor rearrangements of the TCRG and TCRD gene regions (γδT-iPSCs) without cell-sorting. We stimulated human whole peripheral blood mononuclear cell (PBMC) culture using Interleukin-2 and Zoledronate to activate γδT cells. Gene transfer into those cells with the Sendai virus vector resulted in γδT cell-dominant expression of exogenous genes. The introduction of reprogramming factors into the stimulated PBMC culture allowed us to establish iPSC lines. Around 70% of the established lines carried rearrangements at the TCRG and TCRD gene locus. The γδT-iPSCs could differentiate into hematopoietic progenitors. Our technology will pave the way for new avenues toward novel immunotherapy that can be applied for various types of cancer. Stem Cells Translational Medicine 2018;7:34-44.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Division of Advanced Medical Science, Graduate School of Science, Technology and InnovationKobe UniversityKobeJapan
- Department of iPS cell Applications, Kobe UniversityKobeJapan
- Division of Gastroenterology, Department of Internal Medicine, Kobe UniversityKobeJapan
| | - Michiyo Koyanagi‐Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and InnovationKobe UniversityKobeJapan
- Department of iPS cell Applications, Kobe UniversityKobeJapan
- Center for Human Resource Development for Regenerative Medicine, Kobe University HospitalKobeJapan
| | | | - Yukiko Yoshida
- Division of Advanced Medical Science, Graduate School of Science, Technology and InnovationKobe UniversityKobeJapan
- Department of iPS cell Applications, Kobe UniversityKobeJapan
- Division of Gastroenterology, Department of Internal Medicine, Kobe UniversityKobeJapan
| | - Takeshi Azuma
- Division of Gastroenterology, Department of Internal Medicine, Kobe UniversityKobeJapan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and InnovationKobe UniversityKobeJapan
- Department of iPS cell Applications, Kobe UniversityKobeJapan
- Center for Human Resource Development for Regenerative Medicine, Kobe University HospitalKobeJapan
| |
Collapse
|
11
|
Lo Presti E, Pizzolato G, Gulotta E, Cocorullo G, Gulotta G, Dieli F, Meraviglia S. Current Advances in γδ T Cell-Based Tumor Immunotherapy. Front Immunol 2017; 8:1401. [PMID: 29163482 PMCID: PMC5663908 DOI: 10.3389/fimmu.2017.01401] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/10/2017] [Indexed: 01/12/2023] Open
Abstract
γδ T cells are a minor population (~5%) of CD3 T cells in the peripheral blood, but abound in other anatomic sites such as the intestine or the skin. There are two major subsets of γδ T cells: those that express Vδ1 gene, paired with different Vγ elements, abound in the intestine and the skin, and recognize the major histocompatibility complex (MHC) class I-related molecules such as MHC class I-related molecule A, MHC class I-related molecule B, and UL16-binding protein expressed on many stressed and tumor cells. Conversely, γδ T cells expressing the Vδ2 gene paired with the Vγ9 chain are the predominant (50-90%) γδ T cell population in the peripheral blood and recognize phosphoantigens (PAgs) derived from the mevalonate pathway of mammalian cells, which is highly active upon infection or tumor transformation. Aminobisphosphonates (n-BPs), which inhibit farnesyl pyrophosphate synthase, a downstream enzyme of the mevalonate pathway, cause accumulation of upstream PAgs and therefore promote γδ T cell activation. γδ T cells have distinctive features that justify their utilization in antitumor immunotherapy: they do not require MHC restriction and are less dependent that αβ T cells on co-stimulatory signals, produce cytokines with known antitumor effects as interferon-γ and tumor necrosis factor-α and display cytotoxic and antitumor activities in vitro and in mouse models in vivo. Thus, there is interest in the potential application of γδ T cells in tumor immunotherapy, and several small-sized clinical trials have been conducted of γδ T cell-based immunotherapy in different types of cancer after the application of PAgs or n-BPs plus interleukin-2 in vivo or after adoptive transfer of ex vivo-expanded γδ T cells, particularly the Vγ9Vδ2 subset. Results from clinical trials testing the efficacy of any of these two strategies have shown that γδ T cell-based therapy is safe, but long-term clinical results to date are inconsistent. In this review, we will discuss the major achievements and pitfalls of the γδ T cell-based immunotherapy of cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Gabriele Pizzolato
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Humanitas University, Rozzano-Milano, Italy
| | - Eliana Gulotta
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Gianfranco Cocorullo
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Gaspare Gulotta
- Dipartimento di Discipline Chirurgiche ed Oncologiche, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo, Palermo, Italy.,Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Chen H, You H, Wang L, Zhang X, Zhang J, He W. Chaperonin-containing T-complex Protein 1 Subunit ζ Serves as an Autoantigen Recognized by Human Vδ2 γδ T Cells in Autoimmune Diseases. J Biol Chem 2016; 291:19985-93. [PMID: 27489109 DOI: 10.1074/jbc.m115.700070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/20/2023] Open
Abstract
Human γδ T cells recognize conserved endogenous and stress-induced antigens typically associated with autoimmune diseases. However, the role of γδ T cells in autoimmune diseases is not clear. Few autoimmune disease-related antigens recognized by T cell receptor (TCR) γδ have been defined. In this study, we compared Vδ2 TCR complementarity-determining region 3 (CDR3) between systemic lupus erythematosus (SLE) patients and healthy donors. Results show that CDR3 length distribution differed significantly and displayed oligoclonal characteristics in SLE patients when compared with healthy donors. We found no difference in the frequency of Jδ gene fragment usage between these two groups. According to the dominant CDR3δ sequences in SLE patients, synthesized SL2 peptides specifically bound to human renal proximal tubular epithelial cell line HK-2; SL2-Vm, a mutant V sequence of SL2, did not bind. We identified the putative protein ligand chaperonin-containing T-complex protein 1 subunit ζ (CCT6A) using SL2 as a probe in HK-2 cell protein extracts by affinity chromatography and liquid chromatography-electrospray ionization-tandem mass spectrometry analysis. We found CCT6A expression on the surface of HK-2 cells. Cytotoxicity of only Vδ2 γδ T cells to HK-2 cells was blocked by anti-CCT6A antibody. Finally, we note that CCT6A concentration was significantly increased in plasma of SLE and rheumatoid arthritis patients. These data suggest that CCT6A is a novel autoantigen recognized by Vδ2 γδ T cells, which deepens our understanding of mechanisms in autoimmune diseases.
Collapse
Affiliation(s)
- Hui Chen
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| | - Hongqin You
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| | - Lifang Wang
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| | - Xuan Zhang
- the Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Jianmin Zhang
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| | - Wei He
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| |
Collapse
|
13
|
He K, You H, Li Y, Cui L, Zhang J, He W. TCRγ4δ1-engineered αβT cells exhibit effective antitumor activity. Mol Med 2016; 22:519-529. [PMID: 27463149 DOI: 10.2119/molmed.2016.00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
T cell engineering with T cell receptors (TCRs) specific for tumors plays an important role in adoptive T-cell transfer (ATC) therapy for cancer. Here, we present a novel strategy to redirect peripheral blood-derived αβT cells against tumors via TCRγ4δ1 gene transduction. The broad-spectrum anti-tumor activity of TCRδ1 cells in innate immunity is dependent on CDR3δ1. TCRγ4δ1-engineered αβT cells were prepared by lentiviral transduction and characterized by analyzing in vitro and in vivo cytotoxicity to tumors, ability of proliferation and cytokine production, and their potential role in autoimmunity. Results show TCRγ4δ1 genes were transduced to approximately 36% of polyclonal αβT cells. TCRγ4δ1-engineered αβT cells exhibited an effective in-vitro TCRγδ-dependent cytotoxicity against various tumor cells via the perforin-granzyme pathway. They also showed a strong proliferative capacity and robust cytokine production. TCRγ4δ1-engineered αβT cells neither expressed mixed TCR dimers nor bound/killed normal cells in vitro. More importantly, adoptive transfer of TCRγ4δ1-engineered αβT cells into nude mice bearing a human HepG2 cell line significantly suppressed tumor growth. Our results demonstrate a novel role for TCRγ4δ1 in gene therapy and ATC for cancer.
Collapse
Affiliation(s)
- Kangxia He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hongqin You
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yuxia Li
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Lianxian Cui
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
14
|
Rong L, Li K, Li R, Liu HM, Sun R, Liu XY. Analysis of tumor-infiltrating gamma delta T cells in rectal cancer. World J Gastroenterol 2016; 22:3573-3580. [PMID: 27053849 PMCID: PMC4814643 DOI: 10.3748/wjg.v22.i13.3573] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the regulatory effect of Vδ1 T cells and the antitumor activity of Vδ2 T cells in rectal cancer.
METHODS: Peripheral blood, tumor tissues and para-carcinoma tissues from 20 rectal cancer patients were collected. Naïve CD4 T cells from the peripheral blood of rectal cancer patients were purified by negative selection using a Naive CD4+ T Cell Isolation Kit II (Miltenyi Biotec). Tumor tissues and para-carcinoma tissues were minced into small pieces and digested in a triple enzyme mixture containing collagenase type IV, hyaluronidase, and deoxyribonuclease for 2 h at room temperature. After digestion, the cells were washed twice in RPMI1640 and cultured in RPMI1640 containing 10% human serum supplemented with L-glutamine and 2-mercaptoethanol and 1000 U/mL of IL-2 for the generation of T cells. Vδ1 T cells and Vδ2 T cells from tumor tissues and para-carcinoma tissues were expanded by anti-TCR γδ antibodies. The inhibitory effects of Vδ1 T cells on naïve CD4 T cells were analyzed using the CFSE method. The cytotoxicity of Vδ2 T cells on rectal cancer lines was determined by the LDH method.
RESULTS: The percentage of Vδ1 T cells in rectal tumor tissues from rectal cancer patients was significantly increased, and positively correlated with the T stage. The percentage of Vδ2 T cells in rectal tumor tissues from rectal cancer patients was significantly decreased, and negatively correlated with the T stage. After culture for 14 d with 1 μg/mL anti-TCR γδ antibodies, the percentage of Vδ1 T cells from para-carcinoma tissues was 21.45% ± 4.64%, and the percentage of Vδ2 T cells was 38.64% ± 8.05%. After culture for 14 d, the percentage of Vδ1 T cells from rectal cancer tissues was 67.45% ± 11.75% and the percentage of Vδ2 T cells was 8.94% ± 2.85%. Tumor-infiltrating Vδ1 T cells had strong inhibitory effects, and tumor-infiltrating Vδ2 T cells showed strong cytolytic activity. The inhibitory effects of Vδ1 T cells from para-carcinoma tissues and from rectal cancer tissue were not significantly different. In addition, the cytolytic activities of Vδ2 T cells from para-carcinoma tissues and from rectal cancer tissues were not significantly different.
CONCLUSION: A percentage imbalance in Vδ1 and Vδ2 T cells in rectal cancer patients may contribute to the development of rectal cancer.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Cell Separation
- Cells, Cultured
- Coculture Techniques
- Cytotoxicity, Immunologic
- Humans
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasm Staging
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Rectal Neoplasms/immunology
- Rectal Neoplasms/metabolism
- Rectal Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
Collapse
|
15
|
Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol 2015; 12:656-68. [PMID: 25864915 PMCID: PMC4716630 DOI: 10.1038/cmi.2015.28] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
γδ T cells form an important part of adaptive immune responses against infections and malignant transformation. The molecular targets of human γδ T cell receptors (TCRs) remain largely unknown, but recent studies have confirmed the recognition of phosphorylated prenyl metabolites, lipids in complex with CD1 molecules and markers of cellular stress. All of these molecules are upregulated on various cancer types, highlighting the potential importance of the γδ T cell compartment in cancer immunosurveillance and paving the way for the use of γδ TCRs in cancer therapy. Ligand recognition by the γδ TCR often requires accessory/co-stimulatory stress molecules on both T cells and target cells; this cellular stress context therefore provides a failsafe against harmful self-reactivity. Unlike αβ T cells, γδ T cells recognise their targets irrespective of HLA haplotype and therefore offer exciting possibilities for off-the-shelf, pan-population cancer immunotherapies. Here, we present a review of known ligands of human γδ T cells and discuss the promise of harnessing these cells for cancer treatment.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Gene Expression Regulation, Neoplastic/immunology
- Hemiterpenes/immunology
- Humans
- Immunotherapy/methods
- Ligands
- Models, Molecular
- Monitoring, Immunologic
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Organophosphorus Compounds/immunology
- Phosphorylation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Mateusz Legut
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
16
|
Hyperactivation and in situ recruitment of inflammatory Vδ2 T cells contributes to disease pathogenesis in systemic lupus erythematosus. Sci Rep 2015; 5:14432. [PMID: 26395317 PMCID: PMC4585774 DOI: 10.1038/srep14432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/28/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, we measured the proportion of peripheral Vδ2 T cells as well as the status and chemokine receptor expression profiles in SLE patients and healthy control (HC). In addition, Vδ2 T cell infiltration in the kidneys of patients with lupus nephritis was examined. The results showed that the percentage of peripheral Vδ2 T cells in new-onset SLE was decreased, and negatively correlated with the SLE Disease Activity Index score and the severity of proteinuria. These cells had a decreased apoptosis but an increased proliferation, and they showed increased accumulation in SLE kidneys. Moreover, IL-21 production and CD40L, CCR4, CCR7, CCR8, CXCR1 and CX3CR1 expression in Vδ2 T cells from SLE patients was significantly higher than from HC (p < 0.05), and these factors were downregulated in association with the repopulation of peripheral Vδ2 T cells in patients who were in remission (p < 0.05). In addition, anti-TCR Vδ2 antibodies activation significantly upregulated these chemokine receptors on Vδ2 T cells from HC, and this effect was blocked by inhibitors of PLC-γ1, MAPK/Erk, and PI3K signaling pathways. Our findings demonstrate that the distribution and function status of Vδ2 T cells from SLE patients are abnormal, and these aberrations may contribute to disease pathogenesis.
Collapse
|
17
|
Li K, Zhang Q, Zhang Y, Yang J, Zheng J. T-cell-associated cellular immunotherapy for lung cancer. J Cancer Res Clin Oncol 2015; 141:1249-58. [PMID: 25381064 DOI: 10.1007/s00432-014-1867-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of the present study was to discuss recent findings on the role of T cells in lung cancer to provide information on their potential application, especially in cellular immunotherapy. METHODS Data on the different types of T cells that are currently used for the treatment of lung cancer were obtained by searching the PUBMED database. RESULTS Cytotoxic T lymphocytes, natural killer T cells, γδ T cells, lymphokine-activated killer cells, tumor-infiltrating lymphocytes, cytokine-induced killer cells and gene-modified T cells were analyzed to determine the benefits and drawbacks of their application in the treatment of lung cancer. Advances in the study of their antitumor mechanisms and directions for future research were discussed. CONCLUSIONS T cells are critical for tumorigenesis and therefore important targets for the treatment of lung cancer. T-cell-associated cellular immunotherapy opens up a window of opportunity for the development of complementary methods to traditional lung cancer treatments, which warrants further investigation to improve the clinical outcomes of lung cancer patients.
Collapse
MESH Headings
- Cytokine-Induced Killer Cells/immunology
- Cytokine-Induced Killer Cells/transplantation
- Cytotoxicity, Immunologic/physiology
- Humans
- Immunotherapy, Adoptive/methods
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Lymphokine-Activated/transplantation
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/transplantation
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
Collapse
Affiliation(s)
- Ke Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, West Huaihai Road 84#, Xuzhou, 221002, Jiangsu, China
| | | | | | | | | |
Collapse
|
18
|
Zheng J, Guo Y, Ji X, Cui L, He W. A novel antibody-like TCRγδ-Ig fusion protein exhibits antitumor activity against human ovarian carcinoma. Cancer Lett 2013; 341:150-8. [PMID: 23920126 DOI: 10.1016/j.canlet.2013.07.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/09/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
TCRγ9δ2(OT3) is a tumor-specific TCR with an unique complementarity-determining region 3 (CDR3) sequence, referred to as OT3, in its δ2 chain. This region was identified in tumor-infiltrating lymphocytes (TILs) from human ovarian epithelial carcinoma. We demonstrated that TCRγ9δ2(OT3)-Fc, a fusion protein composed of the complete extracellular domains of the γ9 and δ2 chains linked to the Fc domains of human IgG1, exhibited successful binding to multiple human carcinoma cell lines. In vitro, TCRγ9δ2(OT3)-Fc mediated cell killing via antibody-dependent cellular cytotoxicity (ADCC) in a dose-dependent manner. In vivo, TCRγ9δ2(OT3)-Fc significantly inhibited tumor growth and enhanced survival in human ovarian carcinoma xenograft models. Our findings suggest that the TCRγ9δ2(OT3)-Fc fusion protein possesses both the antigen-recognition properties of TCR γδ and the Fc-mediated effector functions of the antibody.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, National Key Laboratory of Medical Molecular Biology, Beijing, China.
| | | | | | | | | |
Collapse
|
19
|
Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238. [PMID: 23762803 PMCID: PMC3667909 DOI: 10.4161/onci.24238] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell transfer (ACT) represents a prominent form of immunotherapy against malignant diseases. ACT is conceptually distinct from dendritic cell-based approaches (which de facto constitute cellular vaccines) and allogeneic transplantation (which can be employed for the therapy of hematopoietic tumors) as it involves the isolation of autologous lymphocytes exhibiting antitumor activity, their expansion/activation ex vivo and their reintroduction into the patient. Re-infusion is most often performed in the context of lymphodepleting regimens (to minimize immunosuppression by host cells) and combined with immunostimulatory interventions, such as the administration of Toll-like receptor agonists. Autologous cells that are suitable for ACT protocols can be isolated from tumor-infiltrating lymphocytes or generated by engineering their circulating counterparts for the expression of transgenic tumor-specific T-cell receptors. Importantly, lymphocytes can be genetically modified prior to re-infusion for increasing their persistence in vivo, boosting antitumor responses and minimizing side effects. Moreover, recent data indicate that exhausted antitumor T lymphocytes may be rejuvenated in vitro by exposing them to specific cytokine cocktails, a strategy that might considerably improve the clinical success of ACT. Following up the Trial Watch that we published on this topic in the third issue of OncoImmunology (May 2012), here we summarize the latest developments in ACT-related research, covering both high-impact studies that have been published during the last 13 months and clinical trials that have been initiated in the same period to assess the antineoplastic profile of this form of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris France
- INSERM, U848; Villejuif, France
| | | | - Wolf Hervé Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 13; Centre de Recherche des Cordeliers; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
| | - Jérôme Galon
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 15; Centre de Recherche des Cordeliers; Paris, France
- INSERM; U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Eric Tartour
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- INSERM; U970; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris France
- INSERM; U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11; Labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Metabolomics Platform; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Institut Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11; Labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
20
|
Vγ9Vδ2-T lymphocytes have impaired antiviral function in small-for-gestational-age and preterm neonates. Cell Mol Immunol 2013; 10:253-60. [PMID: 23524656 DOI: 10.1038/cmi.2012.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Preterm and small-for-gestational-age (SGA) neonates are vulnerable groups that are susceptible to various microbial infections. Vγ9Vδ2-T cells are critical components of the host immune system and have been demonstrated to play an important role in the defense against viral infection in adults. However, the characteristics of Vγ9Vδ2-T cells in children, especially the preterm and SGA populations, are poorly understood. Here, we examined the frequency and antiviral function of Vγ9Vδ2-T cells in neonates, including preterm, SGA and full-term babies. When compared to adults, neonates had a significantly lower percentage of Vγ9Vδ2-T cells in the blood. Upon influenza virus stimulation, neonatal Vγ9Vδ2-T cells, especially from preterm and SGA babies, showed markedly decreased and delayed antiviral cytokine responses than those of adults. In addition, the antiviral responses of neonatal Vγ9Vδ2-T cells were positively correlated with gestational age and birth weight. Finally, a weaker expansion of Vγ9Vδ2-T cells by isopentenyl pyrophosphate (IPP) was shown in neonates than the expansion in adults. Our data suggest that the depressed antiviral activity and decreased frequency of Vγ9Vδ2-T cells may likely account for the high susceptibility to microbial infection in neonates, particularly in preterm and SGA babies. Improving Vγ9Vδ2-T-cell function of neonates may provide a new way to defend against virus infection.
Collapse
|
21
|
Li H, Xiang Z, Feng T, Li J, Liu Y, Fan Y, Lu Q, Yin Z, Yu M, Shen C, Tu W. Human Vγ9Vδ2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells. Cell Mol Immunol 2013; 10:159-64. [PMID: 23353835 DOI: 10.1038/cmi.2012.70] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
γδ-T cells play an indispensable role in host defense against different viruses, including influenza A virus. However, whether these cells have cytotoxic activity against influenza virus-infected lung alveolar epithelial cells and subsequently contribute to virus clearance remains unknown. Using influenza virus-infected A549 cells, human lung alveolar epithelial cells, we investigated the cytotoxic activity of aminobisphosphonate pamidronate (PAM)-expanded human Vγ9Vδ2-T cells and their underlying mechanisms. We found that PAM could selectively activate and expand human Vγ9Vδ2-T cells. PAM-expanded human Vγ9Vδ2-T cells efficiently killed influenza virus-infected lung alveolar epithelial cells and inhibited virus replication. The cytotoxic activity of PAM-expanded Vγ9Vδ2-T cells was dependent on cell-to-cell contact and required NKG2D activation. Perforin-granzyme B, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-Fas ligand (FasL) pathways were involved in their cytotoxicity. Our study suggests that targeting γδ-T cells by PAM can potentially offer an alternative option for the treatment of influenza virus.
Collapse
Affiliation(s)
- Hong Li
- Joint Research Center of West China Second University Hospital of Sichuan University and Department of Paediatrics and Adolescent Medicine of University of Hong Kong, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|