1
|
Xing C, Cui H, Li G, Liu X, Liu K, Wen Q, Huang X, Wang R, Song L. Hspa13 Deficiency Impaired Marginal Zone B Cells Regulatory Function and Contributed to Lupus Pathogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413144. [PMID: 39737854 PMCID: PMC11848637 DOI: 10.1002/advs.202413144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Indexed: 01/01/2025]
Abstract
Dysregulated IL-10 producing regulatory B cells (Bregs) are associated with the progression of systemic lupus erythematosus. An immunomodulatory role of heat shock proteins (HSPs) is implicated in autoimmune diseases. However, the molecular basis underlying the role of Hspa13 in regulating Bregs function and lupus pathogenesis remains unclear. In this study, Bregs display higher Hspa13 expression than IL-10- B cells. Induction of IL-10 production is weakened in B cells with Hspa13 knockdown or knockout. Hspa13 binds to the IL-10 promoter via the TATA or CAAT box and activates IL-10 transcription in the nucleus. Furthermore, Hspa13 positive cells are enriched in marginal zone (MZ) B cells to regulate IL-10 production. Stimulated B220+ B or MZ B cells from CD19creHspa13fl/fl mice for Breg induction show an impaired capacity to promote CD4+Foxp3+ regulatory T cells (Treg) differentiation. In lupus MRL/lpr mice, a decline in Treg differentiation is accompanied by decreased Hspa13 expression in both Bregs and MZ B cells. Moreover, adoptive transfusion of Bregs and MZ B cells from CD19creHspa13fl/fl mice fails to increase the frequency of Tregs, attenuate renal pathology, or decrease anti-dsDNA antibody levels. These results explain the unique role of Hspa13 in determining MZ regulatory function and affecting lupus pathogenesis.
Collapse
MESH Headings
- Animals
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/pathology
- Mice
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/metabolism
- Interleukin-10/metabolism
- Interleukin-10/genetics
- Mice, Inbred MRL lpr
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- HSP70 Heat-Shock Proteins/deficiency
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Mice, Knockout
- Female
- Disease Models, Animal
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Chen Xing
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Haoran Cui
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Ge Li
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Xiaoling Liu
- Department of DermatologyFirst Medical Centre of ChinesePLA General HospitalBeijing100853China
| | - Kun Liu
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Qing Wen
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Xin Huang
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and TechnologyCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
| | - Lun Song
- Beijing Institute of Basic Medical SciencesBeijing100850China
| |
Collapse
|
2
|
Chen M, Zhang Y, Zhao Y, Cao K, Niu R, Guo D, Sun Z. Complex immunotoxic effects of T-2 Toxin on the murine spleen and thymus: Oxidative damage, inflammasomes, apoptosis, and immunosuppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117476. [PMID: 39644562 DOI: 10.1016/j.ecoenv.2024.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
T-2 toxin (T-2), a highly stable and toxic mycotoxin, poses a significant public health risk as an inevitable environmental pollutant. However, the mechanisms behind its immunotoxic and immunosuppressive effects are not fully understood. For this study, sixty healthy 4-week-old male C57BL/6 N mice were divided randomly into four groups and treated for 28 days with T-2 concentrations of 0, 0.5, 1.0, and 2.0 mg/kg. Our findings revealed significant damage to the thymus and spleen that was proportional to the dose administered, as evidenced by changes in organ indices and histopathological abnormalities. We observed mitochondrial swelling, chromatin condensation, and nuclear structure disruptions in these organs. Even at low doses (0.5 mg/kg), T-2 administration resulted in significant immunosuppression, as evidenced by disturbed blood parameters and altered CD4 + /CD8 + ratios. Elevated ROS and MDA levels indicate oxidative damage, whereas SOD, T-AOC, CAT, and GSH levels are reduced in both the thymus and spleen. Furthermore, the levels of NLRP3, ASC, caspase-1, and IL-1β proteins were significantly elevated, indicating the activation of the NLRP3 inflammasome pathway. Additionally, activation of the apoptosis pathway was demonstrated by an increased Bax/Bcl-2 ratio and heightened activation of caspase-3 and -9. Transcriptomic analysis elucidated the pivotal role of mitochondrial pathways in T-2-induced immunotoxicity. This study elucidates the significant immunotoxic effects of T-2 on the murine spleen and thymus, detailing the underlying mechanisms of T-2-induced immunosuppression. The key mechanisms identified include oxidative stress, activation of the NLRP3 inflammasome, apoptosis, and mitochondrial dysfunction. These findings reveal critical pathways through which T-2 impairs immune system functionality and provide a basis for developing targeted therapeutic strategies to mitigate its immunotoxic effects.
Collapse
Affiliation(s)
- Mingyan Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Yanfang Zhang
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453000, China
| | - Yangbo Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Kewei Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Dongguang Guo
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453000, China.
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China.
| |
Collapse
|
3
|
Wang W, Zhai S, Yang W, Gao H, Chang N, Zhang M, Hou Y, Bai G. Acacetin alleviates rheumatoid arthritis by targeting HSP90 ATPase domain to promote COX-2 degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156171. [PMID: 39489991 DOI: 10.1016/j.phymed.2024.156171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Inflammation plays a significant role in initiating and sustaining rheumatoid arthritis (RA). Acacetin, a natural flavonoid compound, exhibits excellent anti-inflammatory effects specifically for RA. However, its relevant targets and molecular mechanisms remain to be elucidated. PURPOSE This study aims to investigate the mechanism of acacetin in the therapeutic efficacy of acacetin in RA and search for new therapeutic options for RA treatment. METHODS A collagen-induced RA mouse model was established to evaluate the therapeutic effect of acacetin. Acacetin functional probes were synthesized to capture potential target proteins in RAW264.7 cells. Various small molecule-protein interaction methods were conducted to verify the binding of acacetin to target protein. Molecular docking and site directed mutagenesis tests were performed to analyze the specific binding sites. Co-immunoprecipitation, immunofluorescence assay and western blot were engineered to explore the effect of acacetin on COX-2 degradation by targeting HSP90. RESULTS Acacetin specifically binds to the ATP domain of HSP90, to facilitate the dissociation between HSP90 and COX-2, inducing the ubiquitin-degradation of COX-2 in macrophages. Acacetin suppressed the production of pro-inflammatory cytokines, as well as inflammatory related pathways, exerting excellent anti-inflammatory effects in RA. CONCLUSIONS This research proved that acacetin, a novel HSP90 ATPase inhibitor, inhibits the functional folding of the client protein COX-2, promoting its ubiquitin degradation for anti-inflammation. Targeting HSP90 is a viable strategy to inhibit inflammation, affording a distinct way to managing joint inflammation and pains associated with RA.
Collapse
Affiliation(s)
- Wenshuang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Shanshan Zhai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - He Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| |
Collapse
|
4
|
Yang G, Li M, Zhang Y, Li X, Xin T, Hao J. Mechanisms of Rehmannioside A Against Systemic Lupus Erythematosus Based on Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation. Cell Biochem Biophys 2024; 82:3489-3498. [PMID: 39033091 DOI: 10.1007/s12013-024-01435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The effect of rehmannioside A (ReA) on systemic lupus erythematosus (SLE) is not clear and needs further study. In this study, SLE-related targets were obtained from the DisGeNet and GeneCards databases, while ReA-related targets were obtained from the SwissTarget and SuperPred databases. A protein-protein interaction network of intersected targets was constructed using the STRING platform. After selecting the intersected targets, GO and KEGG enrichment analyses were performed via the R package "clusterProfiler". The relationships between ReA and various core targets were assessed via molecular docking, and molecular dynamics simulation was conducted for optimal core protein-compound complexes obtained by molecular docking. The top five targets in the ranking of degree value were HSP90AA1, HIF1A, PIK3CA, MTOR, and TLR4. Significant biological processes mainly included response to oxidative stress and response to reactive oxygen species. The potential pathways of ReA in the treatment of SLE mainly focused on the PI3K-Akt signaling pathway, neutrophil extracellular trap formation, and Apoptosis. Molecular docking showed that ReA had the highest binding affinity for mTOR, suggesting that mTOR is a key target of ReA against SLE. Molecular dynamics simulations revealed good binding abilities between ReA and mTOR. In conclusion, ReA exerts its effects on SLE through multiple targets and pathways, with mTOR being a key target of ReA against SLE.
Collapse
Affiliation(s)
- Guofei Yang
- Department of Dermatology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medica1 University, Guangzhou, China
| | - Mingfang Li
- Department of Dermatology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medica1 University, Guangzhou, China
| | - Ying Zhang
- Department of Dermatology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medica1 University, Guangzhou, China
| | - Xiaohui Li
- Department of Dermatology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medica1 University, Guangzhou, China
| | - Tiantian Xin
- Department of Dermatology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medica1 University, Guangzhou, China
| | - Jin Hao
- Department of Dermatology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medica1 University, Guangzhou, China.
| |
Collapse
|
5
|
Cruz KP, Petersen ALOA, Amorim MF, Pinho AGSF, Palma LC, Dantas DAS, Silveira MRG, Silva CSA, Cordeiro ALJ, Oliveira IG, Pita GB, Souza BCA, Bomfim GC, Brodskyn CI, Fraga DBM, Lima IS, de_Santana MBR, Teixeira HMP, de_Menezes JPB, Santos WLC, Veras PST. Intraperitoneal Administration of 17-DMAG as an Effective Treatment against Leishmania braziliensis Infection in BALB/c Mice: A Preclinical Study. Pathogens 2024; 13:630. [PMID: 39204231 PMCID: PMC11357173 DOI: 10.3390/pathogens13080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Leishmaniasis is a significant global public health issue that is caused by parasites from Leishmania genus. With limited treatment options and rising drug resistance, there is a pressing need for new therapeutic approaches. Molecular chaperones, particularly Hsp90, play a crucial role in parasite biology and are emerging as promising targets for drug development. OBJECTIVE This study evaluates the efficacy of 17-DMAG in treating BALB/c mice from cutaneous leishmaniasis through in vitro and in vivo approaches. MATERIALS AND METHODS We assessed 17-DMAG's cytotoxic effect on bone marrow-derived macrophages (BMMΦ) and its effects against L. braziliensis promastigotes and intracellular amastigotes. Additionally, we tested the compound's efficacy in BALB/c mice infected with L. braziliensis via intraperitoneal administration to evaluate the reduction in lesion size and the decrease in parasite load in the ears and lymph nodes of infected animals. RESULTS 17-DMAG showed selective toxicity [selective index = 432) towards Leishmania amastigotes, causing minimal damage to host cells. The treatment significantly reduced lesion sizes in mice and resulted in parasite clearance from ears and lymph nodes. It also diminished inflammatory responses and reduced the release of pro-inflammatory cytokines (IL-6, IFN-γ, TNF) and the regulatory cytokine IL-10, underscoring its dual leishmanicidal and anti-inflammatory properties. CONCLUSIONS Our findings confirm the potential of 17-DMAG as a viable treatment for cutaneous leishmaniasis and support further research into its mechanisms and potential applications against other infectious diseases.
Collapse
Affiliation(s)
- Kercia P. Cruz
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Antonio L. O. A. Petersen
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- Baiano Federal Institute of Education, Science and Technology—Santa Inês Campus, BR 420, Santa Inês Road, Rural Zone, Ubaíra 45320-000, Bahia, Brazil
| | - Marina F. Amorim
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Alan G. S. F. Pinho
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Luana C. Palma
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Diana A. S. Dantas
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Mariana R. G. Silveira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Carine S. A. Silva
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Ana Luiza J. Cordeiro
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Izabella G. Oliveira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Gabriella B. Pita
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Bianca C. A. Souza
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
| | - Gilberto C. Bomfim
- Laboratory of Population Genetics and Molecular Evolution, Biology Institute, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil;
| | - Cláudia I. Brodskyn
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Deborah B. M. Fraga
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| | - Isadora S. Lima
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
| | - Maria B. R. de_Santana
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Helena M. P. Teixeira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Juliana P. B. de_Menezes
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
| | - Washington L. C. Santos
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.C.A.S.); (I.S.L.); (W.L.C.S.)
- Department of Pathology and Forensic Medicine, Bahia Medical School, Federal University of Bahia, Salvador 40110-906, Bahia, Brazil
| | - Patrícia S. T. Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (K.P.C.); (A.L.O.A.P.); (M.F.A.); (A.G.S.F.P.); (L.C.P.); (D.A.S.D.); (M.R.G.S.); (C.S.A.S.); (A.L.J.C.); (I.G.O.); (G.B.P.); (C.I.B.); (D.B.M.F.); (M.B.R.d.); (H.M.P.T.); (J.P.B.d.)
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| |
Collapse
|
6
|
Wang Q, Kong X, Guo W, Liu L, Tian Y, Tao X, Lin N, Su X. HSP90 Exacerbates Bone Destruction in Rheumatoid Arthritis by Activating TRAF6/NFATc1 Signaling. Inflammation 2024; 47:363-375. [PMID: 37902841 DOI: 10.1007/s10753-023-01914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by a notably high disability rate, primarily attributed to cartilage and bone degradation. The involvement of heat shock protein 90 (HSP90) as a molecular chaperone in the inflammatory response of RA has been established, but its role in bone destruction remains uncertain. In the present study, the expression of HSP90 was augmented in osteoclasts induced by the receptor activator of nuclear factor-κB ligand. Additionaly, it was observed that the outcomes revealed a noteworthy inhibition of osteoclast formation and differentation when triptolide was utilized to hinder the expression of HSP90. Furthermore, the positive influence of HSP90 in osteoclast differentiation was substantiated by overexpressing HSP90 in osteoclast precursor cells. Mechanically, HSP90 significantly activated the TNF receptor-associated factor 6 (TRAF6)/Nuclear factor of activated T cells 1 (NFATc1) signaling axis, accompanied by markedly promoting osteoclast differentiation. This effect was consistently observed in the destructive joint of rats with collagen-induced arthritis, where HSP90 effectively activated osteoclasts and contributed to arthritic bone destruction by activating the TRAF6/NFATc1 signaling. Overall, the findings of this study provide compelling evidence that HSP90 exacerbates bone destruction in RA by promoting osteoclast differentiation through the activation of TRAF6/NFATc1 signaling, and interference with HSP90 may be a promising strategy for the discovery of anti-arthritic bone destruction agents.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Wanyi Guo
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Liling Liu
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Yage Tian
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Xueying Tao
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China.
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China.
| |
Collapse
|
7
|
Ben Abdallah H, Bregnhøj A, Ghatnekar G, Iversen L, Johansen C. Heat shock protein 90 inhibition attenuates inflammation in models of atopic dermatitis: a novel mechanism of action. Front Immunol 2024; 14:1289788. [PMID: 38274815 PMCID: PMC10808526 DOI: 10.3389/fimmu.2023.1289788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Background Heat shock protein 90 (HSP90) is an important chaperone supporting the function of many proinflammatory client proteins. Recent studies indicate HSP90 inhibition may be a novel mechanism of action for inflammatory skin diseases; however, this has not been explored in atopic dermatitis (AD). Objectives Our study aimed to investigate HSP90 as a novel target to treat AD. Methods Experimental models of AD were used including primary human keratinocytes stimulated with cytokines (TNF/IFNγ or TNF/IL-4) and a mouse model established by MC903 applications. Results In primary human keratinocytes using RT-qPCR, the HSP90 inhibitor RGRN-305 strongly suppressed the gene expression of Th1- (TNF, IL1B, IL6) and Th2-associated (CCL17, CCL22, TSLP) cytokines and chemokines related to AD. We next demonstrated that topical and oral RGRN-305 robustly suppressed MC903-induced AD-like inflammation in mice by reducing clinical signs of dermatitis (oedema and erythema) and immune cell infiltration into the skin (T cells, neutrophils, mast cells). Interestingly, topical RGRN-305 exhibited similar or slightly inferior efficacy but less weight loss compared with topical dexamethasone. Furthermore, RNA sequencing of skin biopsies revealed that RGRN-305 attenuated MC903-induced transcriptome alterations, suppressing genes implicated in inflammation including AD-associated cytokines (Il1b, Il4, Il6, Il13), which was confirmed by RT-qPCR. Lastly, we discovered using Western blot that RGRN-305 disrupted JAK-STAT signaling by suppressing the activity of STAT3 and STAT6 in primary human keratinocytes, which was consistent with enrichment analyses from the mouse model. Conclusion HSP90 inhibition by RGRN-305 robustly suppressed inflammation in experimental models mimicking AD, proving that HSP90 inhibition may be a novel mechanism of action in treating AD.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Ben Abdallah H, Bregnhøj A, Emmanuel T, Ghatnekar G, Johansen C, Iversen L. Efficacy and Safety of the Heat Shock Protein 90 Inhibitor RGRN-305 in Hidradenitis Suppurativa: A Parallel-Design Double-Blind Trial. JAMA Dermatol 2024; 160:63-70. [PMID: 38055242 PMCID: PMC10701664 DOI: 10.1001/jamadermatol.2023.4800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/05/2023] [Indexed: 12/07/2023]
Abstract
Importance Hidradenitis suppurativa is a painful immune-mediated disorder with limited treatment options; hence, a need exists for new treatments. Objective To evaluate the feasibility of heat shock protein 90 inhibition by RGRN-305 as a novel mechanism of action in treating moderate to severe hidradenitis suppurativa. Design, Setting, and Participants This was a parallel-design, double-blind, proof-of-concept, placebo-controlled randomized clinical trial conducted between September 22, 2021, and August 29, 2022, at the Department of Dermatology, Aarhus University Hospital in Denmark. The study included a 1- to 30-day screening period, a 16-week treatment period, and a 4-week follow-up period. Eligibility criteria included age 18 years or older and moderate to severe hidradenitis suppurativa with 6 or more inflammatory nodules or abscesses in at least 2 distinct anatomic regions. Of 19 patients screened, 15 patients were enrolled in the study. Intention-to-treat analysis was performed. Interventions Patients were randomly assigned (2:1) to receive oral RGRN-305, 250-mg tablet, or matching placebo once daily for 16 weeks. Main Outcomes and Measures The primary efficacy end point was the percentage of patients achieving Hidradenitis Suppurativa Clinical Response 50 (HiSCR-50) at week 16. Secondary efficacy end points included HiSCR-75 or HiSCR-90, Hidradenitis Suppurativa Physician's Global Assessment, Dermatology Life Quality Index scores, and a pain numeric rating scale. Safety was assessed by adverse events, physical examinations, clinical laboratory measurements, and electrocardiograms. Results A total of 15 patients were enrolled, completed the study, and were included in all analyses (10 [67%] female; median age, 29 [IQR, 23-41] years). The primary end point HiSCR-50 at week 16 was achieved by a higher percentage in the RGRN-305 group (60% [6 of 10]) than in the placebo group (20% [1 of 5]). Improvements were also observed across all secondary end points at week 16, including higher rates of the harder-to-reach HiSCR levels; 50% (5 of 10) achieved HiSCR-75 and 30% (3 of 10) achieved HiSCR-90, whereas none of the placebo-treated patients achieved HiSCR-75 or HiSCR-90. RGRN-305 was well tolerated, with no deaths or serious adverse events, and treatment-emergent adverse events were similarly frequent between the RGRN-305 and placebo groups. Conclusions and Relevance The findings of this trial suggest that heat shock protein 90 inhibition by RGRN-305 offers a novel mechanism of action in treating hidradenitis suppurativa, warranting further evaluation in larger trials. Trial Registration ClinicalTrials.gov Identifier: NCT05286567.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Emmanuel
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Nikolakis D, Garantziotis P, Sentis G, Fanouriakis A, Bertsias G, Frangou E, Nikolopoulos D, Banos A, Boumpas DT. Restoration of aberrant gene expression of monocytes in systemic lupus erythematosus via a combined transcriptome-reversal and network-based drug repurposing strategy. BMC Genomics 2023; 24:207. [PMID: 37072752 PMCID: PMC10114456 DOI: 10.1186/s12864-023-09275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Monocytes -key regulators of the innate immune response- are actively involved in the pathogenesis of systemic lupus erythematosus (SLE). We sought to identify novel compounds that might serve as monocyte-directed targeted therapies in SLE. RESULTS We performed mRNA sequencing in monocytes from 15 patients with active SLE and 10 healthy individuals. Disease activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K). Leveraging the drug repurposing platforms iLINCS, CLUE and L1000CDS2, we identified perturbagens capable of reversing the SLE monocyte signature. We identified transcription factors and microRNAs (miRNAs) that regulate the transcriptome of SLE monocytes, using the TRRUST and miRWalk databases, respectively. A gene regulatory network, integrating implicated transcription factors and miRNAs was constructed, and drugs targeting central components of the network were retrieved from the DGIDb database. Inhibitors of the NF-κB pathway, compounds targeting the heat shock protein 90 (HSP90), as well as a small molecule disrupting the Pim-1/NFATc1/NLRP3 signaling axis were predicted to efficiently counteract the aberrant monocyte gene signature in SLE. An additional analysis was conducted, to enhance the specificity of our drug repurposing approach on monocytes, using the iLINCS, CLUE and L1000CDS2 platforms on publicly available datasets from circulating B-lymphocytes, CD4+ and CD8+ T-cells, derived from SLE patients. Through this approach we identified, small molecule compounds, that could potentially affect more selectively the transcriptome of SLE monocytes, such as, certain NF-κB pathway inhibitors, Pim-1 and SYK kinase inhibitors. Furthermore, according to our network-based drug repurposing approach, an IL-12/23 inhibitor and an EGFR inhibitor may represent potential drug candidates in SLE. CONCLUSIONS Application of two independent - a transcriptome-reversal and a network-based -drug repurposing strategies uncovered novel agents that might remedy transcriptional disturbances of monocytes in SLE.
Collapse
Affiliation(s)
- Dimitrios Nikolakis
- Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Department of Gastroenterology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Onassis Foundation, Athens, Greece
| | - Panagiotis Garantziotis
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - George Sentis
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antonis Fanouriakis
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Attikon University Hospital, Athens, 4th, Greece
- Department of Propaedeutic Internal Medicine, "Laiko" General Hospital, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, Medical School, University Hospital of Heraklion, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology-FORTH, Heraklion, Greece
| | - Eleni Frangou
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Dionysis Nikolopoulos
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Attikon University Hospital, Athens, 4th, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Attikon University Hospital, Athens, 4th, Greece.
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
10
|
Chung CF, Papillon J, Navarro-Betancourt JR, Guillemette J, Bhope A, Emad A, Cybulsky AV. Analysis of gene expression and use of connectivity mapping to identify drugs for treatment of human glomerulopathies. Front Med (Lausanne) 2023; 10:1122328. [PMID: 36993805 PMCID: PMC10042326 DOI: 10.3389/fmed.2023.1122328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Background Human glomerulonephritis (GN)-membranous nephropathy (MN), focal segmental glomerulosclerosis (FSGS) and IgA nephropathy (IgAN), as well as diabetic nephropathy (DN) are leading causes of chronic kidney disease. In these glomerulopathies, distinct stimuli disrupt metabolic pathways in glomerular cells. Other pathways, including the endoplasmic reticulum (ER) unfolded protein response (UPR) and autophagy, are activated in parallel to attenuate cell injury or promote repair. Methods We used publicly available datasets to examine gene transcriptional pathways in glomeruli of human GN and DN and to identify drugs. Results We demonstrate that there are many common genes upregulated in MN, FSGS, IgAN, and DN. Furthermore, these glomerulopathies were associated with increased expression of ER/UPR and autophagy genes, a significant number of which were shared. Several candidate drugs for treatment of glomerulopathies were identified by relating gene expression signatures of distinct drugs in cell culture with the ER/UPR and autophagy genes upregulated in the glomerulopathies ("connectivity mapping"). Using a glomerular cell culture assay that correlates with glomerular damage in vivo, we showed that one candidate drug - neratinib (an epidermal growth factor receptor inhibitor) is cytoprotective. Conclusion The UPR and autophagy are activated in multiple types of glomerular injury. Connectivity mapping identified candidate drugs that shared common signatures with ER/UPR and autophagy genes upregulated in glomerulopathies, and one of these drugs attenuated injury of glomerular cells. The present study opens the possibility for modulating the UPR or autophagy pharmacologically as therapy for GN.
Collapse
Affiliation(s)
- Chen-Fang Chung
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | | | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Ameya Bhope
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
11
|
Ben Abdallah H, Seeler S, Bregnhøj A, Ghatnekar G, Kristensen LS, Iversen L, Johansen C. Heat shock protein 90 inhibitor RGRN-305 potently attenuates skin inflammation. Front Immunol 2023; 14:1128897. [PMID: 36825010 PMCID: PMC9941631 DOI: 10.3389/fimmu.2023.1128897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Chronic inflammatory skin diseases may have a profound negative impact on the quality of life. Current treatment options may be inadequate, offering an unsatisfactory response or side effects. Therefore, ongoing efforts exist to identify novel effective and safe treatments. Heat shock protein (HSP) 90 is a chaperone that promotes the activity of a wide range of client proteins including key proinflammatory molecules involved in aberrant inflammation. Recently, a proof-of-concept clinical trial of 13 patients suggested that RGRN-305 (an HSP90 inhibitor) may be an oral treatment for psoriasis. However, HSP90 inhibition may be a novel therapeutic approach extending beyond psoriasis to include multiple immune-mediated inflammatory skin diseases. Methods This study aimed to investigate (i) the anti-inflammatory effects and mechanisms of HSP90 inhibition and (ii) the feasibility of topical RGRN-305 administration (new route of administration) in models of inflammation elicited by 12-O-tetradecanoylphorbol-13-acetate (TPA) in primary human keratinocytes and mice (irritative dermatitis murine model). Results/Discussion In primary human keratinocytes stimulated with TPA, a Nanostring® nCounter gene expression assay demonstrated that HSP90 inhibition with RGRN-305 suppressed many proinflammatory genes. Furthermore, when measured by quantitative real-time polymerase chain reaction (RT-qPCR), RGRN-305 significantly reduced the gene expression of TNF, IL1B, IL6 and CXCL8. We next demonstrated that topical RGRN-305 application significantly ameliorated TPA-induced skin inflammation in mice. The increase in ear thickness (a marker of inflammation) was significantly reduced (up to 89% inhibition). In accordance, RT-qPCR of the ear tissue demonstrated that RGRN-305 robustly reduced the gene expression of proinflammatory markers (Tnf, Il1b, Il6, Il17A and Defb4). Moreover, RNA sequencing revealed that RGRN-305 mitigated TPA-induced alterations in gene expression and suppressed genes implicated in inflammation. Lastly, we discovered that the anti-inflammatory effects were mediated, at least partly, by suppressing the activity of NF-κB, ERK1/2, p38 MAPK and c-Jun signaling pathways, which are consistent with previous findings in other experimental models beyond skin inflammation. In summary, HSP90 inhibition robustly suppressed TPA-induced inflammation by targeting key proinflammatory cytokines and signaling pathways. Our findings suggest that HSP90 inhibition may be a novel mechanism of action for treating immune-mediated skin disease beyond psoriasis, and it may be a topical treatment option.
Collapse
Affiliation(s)
- Hakim Ben Abdallah
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark,*Correspondence: Hakim Ben Abdallah,
| | - Sabine Seeler
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lars Iversen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology and Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
13
|
Xu Y, Li P, Li K, Li N, Liu H, Zhang X, Liu W, Liu Y. Pathological mechanisms and crosstalk among different forms of cell death in systemic lupus erythematosus. J Autoimmun 2022; 132:102890. [PMID: 35963809 DOI: 10.1016/j.jaut.2022.102890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by a profound immune dysregulation and the presence of a variety of autoantibodies. Aberrant activation of programmed cell death (PCD) signaling and accelerated cell death is critical in the immunopathogenesis of SLE. Accumulating cellular components from the dead cells and ineffective clearance of the dead cell debris, in particular the nucleic acids and nucleic acids-protein complexes, provide a stable source of self-antigens, which potently activate auto-reactive B cells and promote IFN-I responses in SLE. Different cell types display distinct susceptibility and characteristics to a certain type of cell death, while different PCDs in various cells have mutual and intricate connections to promote immune dysregulation and contribute to the development of SLE. In this review, we discuss the role of various cell death pathways and their interactions in the pathogenesis of SLE. An in depth understanding of the interconnections among various forms cell death in SLE will lead to a better understanding of disease pathogenesis, shedding light on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Ketian Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Li
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huazhen Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yudong Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
14
|
Maehana T, Tanaka T, Hashimoto K, Kobayashi K, Kitamura H, Masumori N. Heat shock protein 90 is a new potential target of anti-rejection therapy in allotransplantation. Cell Stress Chaperones 2022; 27:337-351. [PMID: 35397061 PMCID: PMC9346020 DOI: 10.1007/s12192-022-01272-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/03/2023] Open
Abstract
The critical roles of heat shock protein 90 (HSP90) in immune reactions associated with viral infection and autoimmune disease are well known. To date, however, its roles in the alloimmune response and the immunosuppressive effect of HSP90 inhibitors in allotransplantation have remained unknown. The purpose of this study was to examine the therapeutic efficacy of the HSP90 inhibitor 17-DMAG in allotransplantation models. C57BL/6 (H-2b) and BALB/c (H-2d) mice were used as donors for and recipients of skin and heart transplantation, respectively. Treatment with 17-DMAG (daily i.p.) or a vehicle was initiated 3 days before transplantation. Immunological outcomes were assessed by histopathological examinations, flow cytometric analysis, quantitative RT-PCR, ELISA, ELISPOT assay, and MLR. 17-DMAG treatment significantly prolonged the survival of both skin and heart allografts. In 17-DMAG-treated mice, donor-reactive splenocytes producing IFN-γ were significantly reduced along with the intragraft mRNA expression level and serum concentration of IFN-γ. Intragraft mRNA expression of cytokines and chemokines associated with both innate and adaptive immunity was suppressed in 17-DMAG-treated group. MLR showed suppression of the donor-specific proliferation of CD4 + T and CD19 + B cells in the spleens of 17-DMAG-treated mice. 17-DMAG treatment also reduced the number of activated NK cells. Furthermore, the treatment lowered the titers of donor-specific antibodies in the serum and prolonged a second skin allograft in mice sensitized by previous skin transplantation. HSP90 inhibition by 17-DMAG can affect various immune responses, including innate immunity, adaptive immunity, and humoral immunity, suggesting its therapeutic potential against acute rejection in allotransplantation.
Collapse
Affiliation(s)
- Takeshi Maehana
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshiaki Tanaka
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Kohei Hashimoto
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Ko Kobayashi
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Hiroshi Kitamura
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, 930-1094, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
15
|
Khunsriraksakul C, McGuire D, Sauteraud R, Chen F, Yang L, Wang L, Hughey J, Eckert S, Dylan Weissenkampen J, Shenoy G, Marx O, Carrel L, Jiang B, Liu DJ. Integrating 3D genomic and epigenomic data to enhance target gene discovery and drug repurposing in transcriptome-wide association studies. Nat Commun 2022; 13:3258. [PMID: 35672318 PMCID: PMC9171100 DOI: 10.1038/s41467-022-30956-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/25/2022] [Indexed: 02/08/2023] Open
Abstract
Transcriptome-wide association studies (TWAS) are popular approaches to test for association between imputed gene expression levels and traits of interest. Here, we propose an integrative method PUMICE (Prediction Using Models Informed by Chromatin conformations and Epigenomics) to integrate 3D genomic and epigenomic data with expression quantitative trait loci (eQTL) to more accurately predict gene expressions. PUMICE helps define and prioritize regions that harbor cis-regulatory variants, which outperforms competing methods. We further describe an extension to our method PUMICE +, which jointly combines TWAS results from single- and multi-tissue models. Across 79 traits, PUMICE + identifies 22% more independent novel genes and increases median chi-square statistics values at known loci by 35% compared to the second-best method, as well as achieves the narrowest credible interval size. Lastly, we perform computational drug repurposing and confirm that PUMICE + outperforms other TWAS methods.
Collapse
Affiliation(s)
- Chachrit Khunsriraksakul
- grid.29857.310000 0001 2097 4281Bioinformatics and Genomics Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Daniel McGuire
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Renan Sauteraud
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Fang Chen
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Lina Yang
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Lida Wang
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Jordan Hughey
- grid.29857.310000 0001 2097 4281Bioinformatics and Genomics Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Scott Eckert
- grid.29857.310000 0001 2097 4281Bioinformatics and Genomics Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - J. Dylan Weissenkampen
- grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Ganesh Shenoy
- grid.29857.310000 0001 2097 4281Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Olivia Marx
- grid.29857.310000 0001 2097 4281Biomedical Science Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Laura Carrel
- grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Bibo Jiang
- grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Dajiang J. Liu
- grid.29857.310000 0001 2097 4281Bioinformatics and Genomics Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
16
|
Garantziotis P, Nikolakis D, Doumas S, Frangou E, Sentis G, Filia A, Fanouriakis A, Bertsias G, Boumpas DT. Molecular Taxonomy of Systemic Lupus Erythematosus Through Data-Driven Patient Stratification: Molecular Endotypes and Cluster-Tailored Drugs. Front Immunol 2022; 13:860726. [PMID: 35615355 PMCID: PMC9125979 DOI: 10.3389/fimmu.2022.860726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Treatment of Systemic Lupus Erythematosus (SLE) is characterized by a largely empirical approach and relative paucity of novel compound development. We sought to stratify SLE patients based on their molecular phenotype and identify putative therapeutic compounds for each molecular fingerprint. Methods By the use of whole blood RNA-seq data from 120 SLE patients, and in a data-driven, clinically unbiased manner, we established modules of commonly regulated genes (molecular endotypes) and re-stratified patients through hierarchical clustering. Disease activity and severity were assessed using SLEDAI-2K and Lupus Severity Index, respectively. Through an in silico drug prediction pipeline, we investigated drugs currently in use, tested in lupus clinical trials, and listed in the iLINCS prediction databases, for their ability to reverse the gene expression signatures in each molecular endotype. Drug repurposing analysis was also performed to identify perturbagens that counteract group-specific SLE signatures. Results Molecular taxonomy identified five lupus endotypes, each characterized by a unique gene module enrichment pattern. Neutrophilic signature group consisted primarily of patients with active lupus nephritis, while the B-cell expression group included patients with constitutional features. Patients with moderate severity and serologic activity exhibited a signature enriched for metabolic processes. Mild disease was distributed in two groups, exhibiting enhanced basic cellular functions, myelopoiesis, and autophagy. Bortezomib was predicted to reverse disturbances in the "neutrophilic" cluster, azathioprine and ixazomib in the "B-cell" cluster, and fostamatinib in the "metabolic" patient subgroup. Conclusion The clinical spectrum of SLE encompasses distinct molecular endotypes, each defined by unique pathophysiologic aberrancies potentially reversible by distinct compounds.
Collapse
Affiliation(s)
- Panagiotis Garantziotis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Dimitrios Nikolakis
- Department of Gastroenterology, Academic Medical Center, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Rheumatology and Clinical Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Stavros Doumas
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Eleni Frangou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - George Sentis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasia Filia
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antonis Fanouriakis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Rheumatology Unit, First Department of Propaedeutic and Internal Medicine, National Kapodistrian University of Athens Medical School, Athens, Greece.,4th Department of Internal Medicine, "Attikon" University Hospital, Athens, Greece.,Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Bertsias
- Department of Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,4th Department of Internal Medicine, "Attikon" University Hospital, Athens, Greece.,Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Bregnhøj A, Thuesen KKH, Emmanuel T, Litman T, Grek CL, Ghatnekar GS, Johansen C, Iversen L. HSP90 inhibitor RGRN-305 for oral treatment of plaque type psoriasis: efficacy, safety and biomarker results in an open-label proof-of-concept study. Br J Dermatol 2021; 186:861-874. [PMID: 34748646 DOI: 10.1111/bjd.20880] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND HSP90 is a downstream regulator of tumor necrosis factor α (TNFα) and interleukin (IL)-17A signaling and may therefore serve as a novel target in the treatment of psoriasis. OBJECTIVE This phase 1b proof-of-concept study was undertaken to evaluate the safety and efficacy of a novel HSP90 inhibitor (RGRN-305) in the treatment of plaque psoriasis. METHODS An open-label, single-arm, dose-selection, single-center proof-of-concept study. Patients with plaque psoriasis were treated with 250 mg or 500 mg RGRN-305 daily for 12 weeks. Efficacy was evaluated clinically using Psoriasis Area and Severity Index (PASI), body surface area (BSA), and Physician Global Assessment (PGA) scores and by Dermatology Life Quality Index (DLQI). Skin biopsies collected at baseline and at 4, 8, and 12 weeks after treatment start were used for immunohistochemical staining and for gene expression analysis. Safety was monitored via laboratory tests, vital signs, ECG, and physical examinations. RESULTS Six of the eleven patients completing the study responded to RGRN-305 with a PASI improvement between 71% and 94%, whereas five patients were considered nonresponders with a PASI response < 50%. No severe adverse events were reported. Four of seven patients treated with 500 mg RGRN-305 daily experienced a mild to moderate exanthematous drug induced eruption due to study treatment. Two patients chose to discontinue the study due to this exanthematous eruption. RGRN-305 treatment resulted in pronounced inhibition of the IL-23, TNFα, and IL-17A signaling pathways and normalization of both histological changes and psoriatic lesion gene expression profiles in patients responding to treatment. CONCLUSION Treatment with RGRN-305 showed an acceptable safety, especially in the low-dose group, and was associated with clinically meaningful improvement in a subset of patients with plaque psoriasis, indicating that HSP90 may serve as a novel future target in psoriasis treatment.
Collapse
Affiliation(s)
- A Bregnhøj
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - K K H Thuesen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - T Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - T Litman
- Department of Immunology and Microbiology, University of Copenhagen, 2200, Copenhagen, Denmark
| | - C L Grek
- FirstString Research, Mount Pleasant, SC, 29464, USA
| | | | - C Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - L Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
DNA vaccine encoding heat shock protein 90 protects from murine lupus. Arthritis Res Ther 2020; 22:152. [PMID: 32571400 PMCID: PMC7310240 DOI: 10.1186/s13075-020-02246-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies to multiple self-antigens, including heat shock proteins (HSP). Because of the increased expression of HSP90 and abnormal immune responses to it in SLE, we investigated whether an HSP90 DNA vaccine could modulate the development and clinical manifestations of SLE in lupus-prone mice. METHODS (NZB x NZW)F1 (NZB/W) mice were vaccinated with DNA constructs encoding HSP90 or control plasmids or vehicle. The mice were then monitored for survival, circulating anti-dsDNA autoantibodies, and immune phenotypes. Renal disease was evaluated by immunohistochemistry and by the measurement of proteinuria. RESULTS Vaccination with HSP90 DNA reduced lupus disease manifestations and prolonged the survival of NZB/W mice. The protective effects of the HSP90 DNA vaccine associated with the induction of tolerogenic dendritic cells (DCs) and an expansion of T regulatory cells (Tregs). CONCLUSIONS The beneficial effects of DNA vaccination with HSP90 in murine SLE support the possibility of HSP90-based therapeutic modalities of intervention in SLE.
Collapse
|
19
|
Li L, Wang L, You QD, Xu XL. Heat Shock Protein 90 Inhibitors: An Update on Achievements, Challenges, and Future Directions. J Med Chem 2019; 63:1798-1822. [DOI: 10.1021/acs.jmedchem.9b00940] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
20
|
Grimstad T, Kvivik I, Kvaløy JT, Aabakken L, Omdal R. Heat shock protein 90 and inflammatory activity in newly onset Crohn's disease. Scand J Gastroenterol 2018; 53:1453-1458. [PMID: 30625276 DOI: 10.1080/00365521.2018.1533582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of the study was to investigate whether heat shock protein (HSP)90α plasma concentrations were associated with disease activity in patients with Crohn's disease. MATERIALS AND METHODS This cross-sectional study included 53 patients who were newly diagnosed with Crohn's disease. Demographic data and disease distribution were recorded, and disease activity was rated using the Simple Endoscopic Score for Crohn's Disease (SES-CD) and the Harvey Bradshaw Index (HBI). Faecal calprotectin and plasma concentrations of CRP and HSP90α were measured. RESULTS The median SES-CD was 7, and the median HSP90α level was 17.2 ng/mL. The HSP90α level was significantly correlated with SES-CD, CRP, and faecal calprotectin, but not with HBI. Linear regression analysis revealed that HSP90α was significantly associated with SES-CD (r2 = 0.27, p < .001) and with CRP (r2 = 0.18, p = .002). HSP90α concentrations were significantly higher in the 10 patients with the highest SES-CD scores compared to the 10 patients with the lowest SES-CD scores. CONCLUSIONS Objective measures of disease activity and inflammation in Crohn's disease - SES-CD and CRP - were closely associated with HSP90α concentrations in plasma, suggesting that HSP90α may be a biomarker of Crohn's disease.
Collapse
Affiliation(s)
- Tore Grimstad
- a Department of Internal Medicine , Stavanger University Hospital , Stavanger , Norway.,b Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Ingeborg Kvivik
- c Research Department , Stavanger University Hospital , Stavanger , Norway
| | - Jan Terje Kvaløy
- c Research Department , Stavanger University Hospital , Stavanger , Norway.,d Department of Mathematics and Physics , University of Stavanger , Stavanger , Norway
| | - Lars Aabakken
- e Department of Medical Gastroenterology , Rikshospitalet University Hospital , Oslo , Norway
| | - Roald Omdal
- a Department of Internal Medicine , Stavanger University Hospital , Stavanger , Norway.,b Department of Clinical Science , University of Bergen , Bergen , Norway
| |
Collapse
|
21
|
Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A, Barekati-Mowahed M, Zarghami N. Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: Overview and current state of the art. Biomed Pharmacother 2018; 102:608-617. [PMID: 29602128 DOI: 10.1016/j.biopha.2018.03.102] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 12/08/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary preserved molecular chaperone which mediates many cellular processes such as cell transformation, proliferation, and survival in normal and stress conditions. Hsp90 plays an important role in folding, maturation, stabilization and activation of Hsp90 client proteins which all contribute to the development, and proliferation of cancer as well as other inflammatory diseases. Functional inhibition of Hsp90 can have a massive effect on various oncogenic and inflammatory pathways, and will result in the degradation of their client proteins. This turns it into an interesting target in the treatment of different malignancies. 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) as a semi-synthetic derivative of geldanamycin, has several advantages over 17-Allylamino-17-demethoxygeldanamycin (17-AAG) such as higher water solubility, good bioavailability, reduced metabolism, and greater anti-tumour capability. 17-DMAG binds to the Hsp90, and inhibits its function which eventually results in the degradation of Hsp90 client proteins. Here, we reviewed the pre-clinical data and clinical trial data on 17-DMAG as a single agent, in combination with other agents and loaded on nanomaterials in various cancers and inflammatory diseases.
Collapse
Affiliation(s)
- Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arman Shahabi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Zhang N, Wei G, Ye J, Yang L, Hong Y, Liu G, Zhong H, Cai X. Effect of curcumin on acute spinal cord injury in mice via inhibition of inflammation and TAK1 pathway. Pharmacol Rep 2017; 69:1001-1006. [PMID: 28941865 DOI: 10.1016/j.pharep.2017.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 01/24/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is damage to the spinal cord that results in damaged spinal cord function. As a natural compound, curcumin has recently been shown to have anti-inflammatory and strong antioxidant activities. To investigate the effect of curcumin against acute spinal cord injury (SCI), we explored its induced effects in SCI mice. Transforming growth factor (TGF)-activated kinase 1 (TAK1) is a member of the MAPKKK family and plays an essential role in TNF, IL-1, and Toll-like receptor (TLR) signaling pathways. METHODS One hundred adult female KM mice were randomly divided into 5 groups (Control, Model, Test-L, Test-M, and Test-H). SCI was induced using the method described by Allen's. Motor function of the hindlimbs was evaluated on days 1, 7, 14, 21, and 28 after the injury using the motor rating test on the Basso mouse scale (BMS). 7 days after SCI, the levels of TNF-α, IL-1β, and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA); the level of NO was evaluated by Griess assay; and Western blot was used to verify the levels of proteins in the TAK1 pathway. Expressions of GFAP positive cells in injured spinal cord were detected by immunohistochemical staining. RESULTS The experiment showed that curcumin markedly inhibited SCI-induced production of inflammatory mediators, including TNF-α, IL-1β, IL-6 (ELISA assay) and nitrite oxide (Griess method) in a concentration-dependent manner. Curcumin decreased the phosphorylation levels of TGF-β-activated kinase 1 (TAK1) protein, leading to decreased phosphorylation levels of MKK6 and p38 MAPKs, key players in the microglia-mediated inflammatory response. Curcumin also significantly down-regulated the expression levels of the NF-κB upstream regulators IκB and IκB kinase (IKK). Additionally, behavior research showed that curcumin-treated mice showed significantly improved functional recovery compared to untreated mice (BMS assay). The expressions of GFAP increased in the injured spinal cord segments, which were decreased by Teat-M and Teat-H at 7d after SCI. CONCLUSIONS Curcumin restores mice hind-limb function that has been reduced by SCI. This occurs by inhibition of TAK1/MKK6/p38MAPK via the TAK1 and NFκB pathways and inflammation. These results suggest the therapeutic potential for curcumin in the treatment of SCI.
Collapse
Affiliation(s)
- Nanwen Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, PR China.
| | - Guicai Wei
- The First Hospital of Nanping, Fujian Medical University (FMU), Nanping, PR China; Minbei Traumatic Orthopedics Research Institute, Nanping, Fujian, PR China
| | - Jian Ye
- The First Hospital of Nanping, Fujian Medical University (FMU), Nanping, PR China
| | - Lin Yang
- School of Clinical Medical, Fujian Medical University (FMU), Fuzhou, PR China
| | - Yunda Hong
- School of Clinical Medical, Fujian Medical University (FMU), Fuzhou, PR China
| | - Guisheng Liu
- School of Clinical Medical, Fujian Medical University (FMU), Fuzhou, PR China
| | - Huifen Zhong
- School of Clinical Medical, Fujian Medical University (FMU), Fuzhou, PR China
| | - Xinyi Cai
- School of Clinical Medical, Fujian Medical University (FMU), Fuzhou, PR China
| |
Collapse
|
23
|
Berges C, Kerkau T, Werner S, Wolf N, Winter N, Hünig T, Einsele H, Topp MS, Beyersdorf N. Hsp90 inhibition ameliorates CD4 + T cell-mediated acute Graft versus Host disease in mice. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:463-473. [PMID: 27980780 PMCID: PMC5134726 DOI: 10.1002/iid3.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 11/22/2022]
Abstract
Introduction For many patients with leukemia only allogeneic bone marrow transplantion provides a chance of cure. Co‐transplanted mature donor T cells mediate the desired Graft versus Tumor (GvT) effect required to destroy residual leukemic cells. The donor T cells very often, however, also attack healthy tissue of the patient inducing acute Graft versus Host Disease (aGvHD)—a potentially life‐threatening complication. Methods Therefore, we used the well established C57BL/6 into BALB/c mouse aGvHD model to evaluate whether pharmacological inhibition of heat shock protein 90 (Hsp90) would protect the mice from aGvHD. Results Treatment of the BALB/c recipient mice from day 0 to +2 after allogeneic CD4+ T cell transplantation with the Hsp90 inhibitor 17‐(dimethylaminoethylamino)‐17‐demethoxygeldanamycin (DMAG) partially protected the mice from aGvHD. DMAG treatment was, however, insufficient to prolong overall survival of leukemia‐bearing mice after transplantation of allogeneic CD4+ and CD8+ T cells. Ex vivo analyses and in vitro experiments revealed that DMAG primarily inhibits conventional CD4+ T cells with a relative resistance of CD4+ regulatory and CD8+ T cells toward Hsp90 inhibition. Conclusions Our data, thus, suggest that Hsp90 inhibition might constitute a novel approach to reduce aGvHD in patients without abrogating the desired GvT effect.
Collapse
Affiliation(s)
- Carsten Berges
- Department of Internal Medicine II Division of Hematology University Hospital Würzburg Würzburg Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| | - Sandra Werner
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| | - Nelli Wolf
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| | - Nadine Winter
- Department of Internal Medicine II Division of Hematology University Hospital Würzburg Würzburg Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| | - Hermann Einsele
- Department of Internal Medicine II Division of Hematology University Hospital Würzburg Würzburg Germany
| | - Max S Topp
- Department of Internal Medicine II Division of Hematology University Hospital Würzburg Würzburg Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| |
Collapse
|
24
|
Sreedharan R, Van Why SK. Heat shock proteins in the kidney. Pediatr Nephrol 2016; 31:1561-70. [PMID: 26913726 DOI: 10.1007/s00467-015-3297-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022]
Abstract
Heat shock proteins (Hsps) are essential to cell survival through their function as protein chaperones. The role they play in kidney health and disease is varied. Hsp induction may be either beneficial or detrimental to the kidney, depending on the specific Hsp, type of cell, and context. This review addresses the role of Hsps in the kidney, including during development, as osmoprotectants, and in various kidney disease models. Heat shock transcription factor, activated by a stress on renal cells, induces Hsp elaboration and separately regulates immune responses that can contribute to renal injury. Induced Hsps in the intracellular compartment are mostly beneficial in the kidney by stabilizing and restoring cell architecture and function through acting as protein chaperones. Intracellular Hsps also inhibit apoptosis and facilitate cell proliferation, preserving renal tubule viability after acute injury, but enhancing progression of cystic kidney disease and malignancy. Induced Hsps in the extracellular compartment, either circulating or located on outer cell membranes, are mainly detrimental through enhancing inflammation pathways to injury. Correctly harnessing these stress proteins promises the opportunity to alter the course of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Rajasree Sreedharan
- Pediatrics, Nephrology, Medical College of Wisconsin, 999 N. 92nd St., Suite C510, Milwaukee, WI, 53226, USA
| | - Scott K Van Why
- Pediatrics, Nephrology, Medical College of Wisconsin, 999 N. 92nd St., Suite C510, Milwaukee, WI, 53226, USA.
| |
Collapse
|
25
|
Kim BK, Park M, Kim JY, Lee KH, Woo SY. Heat shock protein 90 is involved in IL-17-mediated skin inflammation following thermal stimulation. Int J Mol Med 2016; 38:650-8. [DOI: 10.3892/ijmm.2016.2627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/30/2016] [Indexed: 11/06/2022] Open
|
26
|
Tamura Y, Yoneda A, Takei N, Sawada K. Spatiotemporal Regulation of Hsp90-Ligand Complex Leads to Immune Activation. Front Immunol 2016; 7:201. [PMID: 27252703 PMCID: PMC4877505 DOI: 10.3389/fimmu.2016.00201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
Although heat shock proteins (HSPs) primarily play a pivotal role in the maintenance of cellular homeostasis while reducing extracellular as well as intracellular stresses, their role in immunologically relevant scenarios, including activation of innate immunity as danger signals, antitumor immunity, and autoimmune diseases, is now gaining much attention. The most prominent feature of HSPs is that they function both in their own and as an HSP–ligand complex. We here show as a unique feature of extracellular HSPs that they target chaperoned molecules into a particular endosomal compartment of dendritic cells, thereby inducing innate and adaptive immune responses via spatiotemporal regulation.
Collapse
Affiliation(s)
- Yasuaki Tamura
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for Innovation and Business Promotion, Hokkaido University , Sapporo , Japan
| | - Akihiro Yoneda
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for Innovation and Business Promotion, Hokkaido University , Sapporo , Japan
| | - Norio Takei
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for Innovation and Business Promotion, Hokkaido University , Sapporo , Japan
| | - Kaori Sawada
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for Innovation and Business Promotion, Hokkaido University , Sapporo , Japan
| |
Collapse
|
27
|
Tukaj S, Węgrzyn G. Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones 2016; 21:213-8. [PMID: 26786410 PMCID: PMC4786535 DOI: 10.1007/s12192-016-0670-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 90 (Hsp90), a 90-kDa molecular chaperone, is responsible for biological activities of key signaling molecules (clients) such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors regulating various cellular processes, including growth, survival, differentiation, and apoptosis. Because Hsp90 is also involved in stabilization of oncogenic 'client' proteins, its specific chaperone activity blockers are currently being tested as anticancer agents in advanced clinical trials. Recent in vitro and in vivo studies have shown that Hsp90 is also involved in activation of innate and adaptive cells of the immune system. For these reasons, pharmacological inhibition of Hsp90 has been evaluated in murine models of autoimmune and inflammatory diseases. This mini-review summarizes current knowledge of the effects of Hsp90 inhibitors on autoimmune and inflammatory diseases' features and is based solely on preclinical studies.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
28
|
Zou YF, Xu JH, Gu YY, Pan FM, Tao JH, Wang DG, Xu SQ, Xiao H, Chen PL, Liu S, Cai J, Lian L, Liu SX, Liang CM, Tian G, Ye QL, Pan HF, Su H, Ye DQ. Single nucleotide polymorphisms of HSP90AA1 gene influence response of SLE patients to glucocorticoids treatment. SPRINGERPLUS 2016; 5:222. [PMID: 27026916 PMCID: PMC4771663 DOI: 10.1186/s40064-016-1911-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
Heat shock protein 90 (HSP90) is an important glucocorticoid receptor (GR) chaperone protein, and is supposed to be the key factor in regulating glucocorticoids (GCs) effects. The aim of the present study was to explore whether single nucleotide polymorphisms (SNPs) within HSP90AA1 gene affect the response of systemic lupus erythematosus (SLE) patients to GCs treatment. Two hundred and forty-five SLE patients were treated with GCs (prednisone) for 12 weeks. SLE disease activity index (SLEDAI) was used to assess the response of SLE patients to GCs treatment, and patients were classified into sensitive group and insensitive group. HapMap database and Haploview software were used to select tag SNPs. Tag SNPs were genotyped by using multiplex SNaPshot method. Univariate and multivariate logistic regression analyses were used to discriminate the impact of SNPs of HSP90AA1 gene on the response of SLE patients to GCs treatment. Two hundred and thirty three SLE patients finished the 12-week follow-up. Of these patients, 128 patients were included in sensitive group, and 105 patients were included in insensitive group. Seven tag SNPs were selected within HSP90AA1 gene. We detected significant associations for rs7160651 (dominant model: crude OR 0.514, 95 % CI 0.297–0.890, P = 0.018; adjusted OR 0.518, 95 % CI 0.293–0.916, P = 0.024), rs10873531 (dominant model: crude OR 0.516, 95 % CI 0.305–0.876, P = 0.014; adjusted OR 0.522, 95 % CI 0.304–0.898, P = 0.019) and rs2298877 (dominant model: crude OR 0.543, 95 % CI 0.317–0.928, P = 0.026, adjusted OR 0.558, 95 % CI 0.323–0.967, P = 0.037) polymorphisms, but not for other polymorphisms (P > 0.05). The present study demonstrates that HSP90AA1 gene SNPs may affect the response of SLE patients to GCs treatment.
Collapse
Affiliation(s)
- Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Jian-Hua Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Yuan-Yuan Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, 230001 Anhui China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China
| | - Sheng-Qian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Hui Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Pei-Ling Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Shuang Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Li Lian
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Sheng-Xiu Liu
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui China
| | - Chun-Mei Liang
- Department of Laboratory Medcine, School of Public Health, Anhui Medical University, Hefei, 230032 Anhui China
| | - Guo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Qian-Ling Ye
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 Anhui China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| |
Collapse
|
29
|
Heat shock protein 90 inhibition: A potential double- or triple-edged sword in the treatment of mucous membrane pemphigoid. Med Hypotheses 2015; 85:412-4. [DOI: 10.1016/j.mehy.2015.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/21/2015] [Indexed: 12/18/2022]
|
30
|
Lazaro I, Oguiza A, Recio C, Mallavia B, Madrigal-Matute J, Blanco J, Egido J, Martin-Ventura JL, Gomez-Guerrero C. Targeting HSP90 Ameliorates Nephropathy and Atherosclerosis Through Suppression of NF-κB and STAT Signaling Pathways in Diabetic Mice. Diabetes 2015; 64:3600-13. [PMID: 26116697 DOI: 10.2337/db14-1926] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/20/2015] [Indexed: 11/13/2022]
Abstract
Heat shock proteins (HSPs) are induced by cellular stress and function as molecular chaperones that regulate protein folding. Diabetes impairs the function/expression of many HSPs, including HSP70 and HSP90, key regulators of pathological mechanisms involved in diabetes complications. Therefore, we investigated whether pharmacological HSP90 inhibition ameliorates diabetes-associated renal damage and atheroprogression in a mouse model of combined hyperglycemia and hyperlipidemia (streptozotocin-induced diabetic apolipoprotein E-deficient mouse). Treatment of diabetic mice with 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG, 2 and 4 mg/kg, 10 weeks) improved renal function, as evidenced by dose-dependent decreases in albuminuria, renal lesions (mesangial expansion, leukocyte infiltration, and fibrosis), and expression of proinflammatory and profibrotic genes. Furthermore, DMAG significantly reduced atherosclerotic lesions and induced a more stable plaque phenotype, characterized by lower content of lipids, leukocytes, and inflammatory markers, and increased collagen and smooth muscle cell content. Mechanistically, the renoprotective and antiatherosclerotic effects of DMAG are mediated by the induction of protective HSP70 along with inactivation of nuclear factor-κB (NF-κB) and signal transducers and activators of transcription (STAT) and target gene expression, both in diabetic mice and in cultured cells under hyperglycemic and proinflammatory conditions. In conclusion, HSP90 inhibition by DMAG restrains the progression of renal and vascular damage in experimental diabetes, with potential implications for the prevention of diabetes complications.
Collapse
Affiliation(s)
- Iolanda Lazaro
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Ainhoa Oguiza
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Carlota Recio
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Beñat Mallavia
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Julio Madrigal-Matute
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY
| | - Julia Blanco
- Department of Pathology, Hospital Clinico San Carlos, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Jose-Luis Martin-Ventura
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|
31
|
Montamat-Sicotte D, Liztler LC, Abreu C, Safavi S, Zahn A, Orthwein A, Muschen M, Oppezzo P, Muñoz DP, Di Noia JM. HSP90 inhibitors decrease AID levels and activity in mice and in human cells. Eur J Immunol 2015; 45:2365-76. [PMID: 25912253 PMCID: PMC4536124 DOI: 10.1002/eji.201545462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/26/2015] [Accepted: 04/25/2015] [Indexed: 01/25/2023]
Abstract
Activation induced deaminase (AID) initiates somatic hypermutation and class switch recombination of the Ig genes in antigen-activated B cells, underpinning antibody affinity maturation and isotype switching. AID can also be pathogenic by contributing to autoimmune diseases and oncogenic mutations. Moreover, AID can exert noncanonical functions when aberrantly expressed in epithelial cells. The lack of specific inhibitors prevents therapeutic applications to modulate AID functions. Here, we have exploited our previous finding that the HSP90 molecular chaperoning pathway stabilizes AID in B cells, to test whether HSP90 inhibitors could target AID in vivo. We demonstrate that chronic administration of HSP90 inhibitors decreases AID protein levels and isotype switching in immunized mice. HSP90 inhibitors also reduce disease severity in a mouse model of acute B-cell lymphoblastic leukemia in which AID accelerates disease progression. We further show that human AID protein levels are sensitive to HSP90 inhibition in normal and leukemic B cells, and that HSP90 inhibition prevents AID-dependent epithelial to mesenchymal transition in a human breast cancer cell line in vitro. Thus, we provide proof-of-concept that HSP90 inhibitors indirectly target AID in vivo and that endogenous human AID is widely sensitive to them, which could have therapeutic applications.
Collapse
Affiliation(s)
| | - Ludivine C Liztler
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | - Cecilia Abreu
- Research Laboratory on Chronic Lymphocytic Leukemia, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Shiva Safavi
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | | | - Markus Muschen
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco,USA
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Denise P Muñoz
- UCSF Benioff Children’s Hospital and Research Institute at Oakland, Oakland, USA
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
32
|
Tukaj S, Zillikens D, Kasperkiewicz M. Heat shock protein 90: a pathophysiological factor and novel treatment target in autoimmune bullous skin diseases. Exp Dermatol 2015; 24:567-71. [DOI: 10.1111/exd.12760] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Stefan Tukaj
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | | | | |
Collapse
|
33
|
Liu Y, Ye J, Shin Ogawa L, Inoue T, Huang Q, Chu J, Bates RC, Ying W, Sonderfan AJ, Rao PE, Zhou D. The HSP90 Inhibitor Ganetespib Alleviates Disease Progression and Augments Intermittent Cyclophosphamide Therapy in the MRL/lpr Mouse Model of Systemic Lupus Erythematosus. PLoS One 2015; 10:e0127361. [PMID: 25974040 PMCID: PMC4431681 DOI: 10.1371/journal.pone.0127361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/14/2015] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, systemic autoimmune disease with a diverse range of immunological and clinical manifestations. The introduction of broad spectrum immunosuppressive therapies and better management of acute disease exacerbations have improved outcomes for lupus patients over recent years. However, these regimens are burdened by substantial toxicities and confer significantly higher risks of infection, thus there remains a significant and unmet medical need for alternative treatment options, particularly those with improved safety profiles. Heat shock protein 90 (HSP90) is a ubiquitously expressed molecular chaperone that acts as an important modulator of multiple innate and adaptive inflammatory processes. Of note, accumulating clinical and experimental evidence has implicated a role for HSP90 in the pathogenesis of SLE. Here we evaluated the potential of HSP90 as a therapeutic target for this disease using the selective small molecule inhibitor ganetespib in the well-characterized MRL/lpr autoimmune mouse model. In both the prophylactic and therapeutic dosing settings, ganetespib treatment promoted dramatic symptomatic improvements in multiple disease parameters, including suppression of autoantibody production and the preservation of renal tissue integrity and function. In addition, ganetespib exerted profound inhibitory effects on disease-related lymphadenopathy and splenomegaly, and reduced pathogenic T and B cell lineage populations in the spleen. Ganetespib monotherapy was found to be equally efficacious and tolerable when compared to an effective weekly dosing regimen of the standard-of-care immunosuppressive agent cyclophosphamide. Importantly, co-treatment of ganetespib with a sub-optimal, intermittent dosing schedule of cyclophosphamide resulted in superior therapeutic indices and maximal disease control. These findings highlight the potential of HSP90 inhibition as an alternative, and potentially complementary, strategy for therapeutic intervention in SLE. Such approaches may have important implications for disease management, particularly for limiting or preventing treatment-related toxicities, a major confounding factor in current SLE therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Josephine Ye
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Luisa Shin Ogawa
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Takayo Inoue
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Qin Huang
- Department of Pharmacology and Laboratory Medicine, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
| | - John Chu
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Richard C Bates
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Weiwen Ying
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Andrew J Sonderfan
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Patricia E Rao
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| | - Dan Zhou
- Synta Pharmaceuticals Corp., Lexington, Massachusetts, United States of America
| |
Collapse
|
34
|
Proia DA, Kaufmann GF. Targeting Heat-Shock Protein 90 (HSP90) as a Complementary Strategy to Immune Checkpoint Blockade for Cancer Therapy. Cancer Immunol Res 2015; 3:583-9. [PMID: 25948551 DOI: 10.1158/2326-6066.cir-15-0057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022]
Abstract
The demonstration that immune checkpoint blockade can meaningfully improve outcomes for cancer patients has revolutionized the field of immuno-oncology. New biologic agents targeting specific checkpoints have shown remarkable durability in terms of patient response and, importantly, exhibit clinical activity across a range of human malignancies, including many that have traditionally proven refractory to other immunotherapies. In this rapidly evolving area, a key consideration relates to the identification of novel combinatorial strategies that exploit existing or investigational cancer therapies in order to optimize patient outcomes and the proportion of individuals able to derive benefit from this approach. In this regard, heat-shock protein 90 (HSP90) represents an important emerging target for cancer therapy because its inactivation results in the simultaneous blockade of multiple signaling pathways and can sensitize tumor cells to other anticancer agents. Within the context of immunology, HSP90 plays a dual regulatory role, with its functional inhibition resulting in both immunosuppressive and immunostimulatory effects. In this Cancer Immunology at the Crossroads overview, the anticancer activity profile of targeted HSP90 inhibitors is discussed along with their paradoxical roles in immunology. Overall, we explore the rationale for combining the modalities of HSP90 inhibition and immune checkpoint blockade in order to augment the antitumor immune response in cancer.
Collapse
Affiliation(s)
- David A Proia
- Synta Pharmaceuticals Corporation, Lexington, Massachusetts.
| | | |
Collapse
|
35
|
Saito K, Kukita K, Kutomi G, Okuya K, Asanuma H, Tabeya T, Naishiro Y, Yamamoto M, Takahashi H, Torigoe T, Nakai A, Shinomura Y, Hirata K, Sato N, Tamura Y. Heat shock protein 90 associates with Toll-like receptors 7/9 and mediates self-nucleic acid recognition in SLE. Eur J Immunol 2015; 45:2028-41. [PMID: 25871979 DOI: 10.1002/eji.201445293] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 01/09/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototype systemic autoimmune disease, and disease activity is associated with serum IFN-α level. Plasmacytoid dendritic cells (pDCs) sense microbial as well as self-nucleic acids by TLRs 7 and 9 and produce a large amount of IFN-α. Here, we show that heat shock protein 90 (Hsp90) associates with and delivers TLR7/9 from the ER to early endosomes for ligand recognition. Inhibition of Hsp90 by various approaches including the use of Hsp90 inhibitor, a geldanamycin derivative, suppressed the Hsp90 association with TLR7/9, which resulted in inhibition of IFN-α production, leading to improvement of SLE symptoms in mice. Notably, we observed that serum Hsp90 is clearly increased in patients with active SLE compared with that in patients with inactive disease. Furthermore, we demonstrated that serum Hsp90 detected in SLE patients binds to self-DNA and/or anti-DNA Ab, thus leading to stimulation of pDCs to produce IFN-α. Our data demonstrate that Hsp90 plays a crucial role in the pathogenesis of SLE and that an Hsp90 inhibitor will therefore provide a new therapeutic approach to SLE and other nucleic acid-related autoimmune diseases.
Collapse
Affiliation(s)
- Keita Saito
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuharu Kukita
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Goro Kutomi
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koichi Okuya
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroko Asanuma
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuya Tabeya
- Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuka Naishiro
- Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Motohisa Yamamoto
- Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Yasuhisa Shinomura
- Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koichi Hirata
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuaki Tamura
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Molecular Therapeutics, Center for Food and Medical Innovation, Hokkaido University, Sapporo, Japan
| |
Collapse
|
36
|
Abstract
HIV-1 replication has been intensively investigated over the past 30 years. Hsp90 is one of the most abundant proteins in human cells, important in the formation and function of several protein complexes that maintain cell homeostasis. Remarkably, the impact of Hsp90 on HIV-1 infection has started to be appreciated only recently. Hsp90 has been shown to (a) promote HIV-1 gene expression in acutely infected cells, (b) localize at the viral promoter DNA, (c) mediate enhanced replication in conditions of hyperthermia and (d) activate the P-TEFb complex, which is essential for efficient HIV-1 transcription. Hsp90 has been implicated in buffering deleterious mutations of the viral core and in the regulation of innate and acquired immune responses to HIV-1 infection. Therefore, Hsp90 is an important host factor promoting several steps of the HIV-1 life cycle. Several small Hsp90 inhibitors are in Phase II clinical trials for human cancers and might potentially be used to inhibit HIV-1 infection at multiple levels.
Collapse
|
37
|
Qi J, Yang P, Yi B, Huo Y, Chen M, Zhang J, Sun J. Heat shock protein 90 inhibition by 17-DMAG attenuates abdominal aortic aneurysm formation in mice. Am J Physiol Heart Circ Physiol 2015; 308:H841-52. [PMID: 25637544 DOI: 10.1152/ajpheart.00470.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/23/2014] [Indexed: 01/12/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common degenerative vascular disease whose pathogenesis is associated with activation of multiple signaling pathways including Jun NH2-terminal kinases (JNK) and NF-κB. It is now well recognized that these pathways are chaperoned by the heat shock protein 90 (Hsp90), suggesting that inhibition of Hsp90 may be a novel strategy for inhibiting AAAs. The aim of this study is to investigate whether inhibition of Hsp90 by 17-DMAG (17-dimethyl-aminothylamino-17-demethoxy-geldanamycin) attenuates ANG II-induced AAA formation in mice, and, if so, to elucidate the mechanisms involved. Apolipoprotein E-null mice were infused with ANG II to induce AAA formation and simultaneously treated by intraperitoneal injection with either vehicle or 17-DMAG for 4 wk. ANG II infusion induced AAA formation in 80% of mice, which was accompanied by increased matrix metalloproteinase (MMP) activity, enhanced tissue inflammation, oxidative stress, and neovascularization. Importantly, these effects were inhibited by 17-DMAG treatment. Mechanistically, we showed that 17-DMAG prevented the formation and progression of AAA through its inhibitory effects on diverse biological pathways including 1) by blocking ANG II-induced phosphorylation of ERK1/2 and JNK that are critically involved in the regulation of MMPs in vascular smooth muscle cells, 2) by inhibiting IκB kinase expression and expression of MCP-1, and 3) by attenuating ANG II-stimulated angiogenic processes critical to AAA formation. Our results demonstrate that inhibition of Hsp90 by 17-DMAG effectively attenuates ANG II-induced AAA formation by simultaneously inhibiting vascular inflammation, extracellular matrix degradation, and angiogenesis, which are critical in the formation and progression of AAAs.
Collapse
Affiliation(s)
- Jia Qi
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China; and Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ping Yang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China; and
| | - Bing Yi
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yan Huo
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ming Chen
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China; and
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Tukaj S, Grüner D, Zillikens D, Kasperkiewicz M. Hsp90 blockade modulates bullous pemphigoid IgG-induced IL-8 production by keratinocytes. Cell Stress Chaperones 2014; 19:887-94. [PMID: 24796797 PMCID: PMC4389849 DOI: 10.1007/s12192-014-0513-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 12/20/2022] Open
Abstract
Bullous pemphigoid (BP) is the most common subepidermal autoimmune blistering skin disease characterized by autoantibodies against the hemidesmosomal proteins BP180 and BP230. The cell stress chaperone heat shock protein 90 (Hsp90) has been implicated in inflammatory responses, and recent evidence suggests that it represents a novel treatment target in autoimmune bullous diseases. The aim of the study was to investigate the contribution of Hsp90 to the proinflammatory cytokine production in keratinocytes induced by autoantibodies to BP180 from BP patient serum. HaCaT cells were treated with purified human BP or normal IgG in the absence or presence of the Hsp90 blocker 17-DMAG and effects on viability, interleukin 6 (IL-6) and IL-8 (cytokines critical for BP pathology), NFκB (their major transcription factor), and Hsp70 (marker of effective Hsp90 inhibition and potent negative regulator of inflammatory responses) were investigated. We found that BP IgG stimulated IL-6 and IL-8 release from HaCaT cells and that non-toxic doses of 17-DMAG inhibited this IL-8, but not IL-6 secretion in a dose- and time-dependent fashion. Inhibition of this IL-8 production was also observed at the transcriptional level. In addition, 17-DMAG treatment blunted BP IgG-mediated upregulation of NFκB activity and was associated with Hsp70 induction. This study provides important insights that Hsp90 is involved as crucial regulator in anti-BP180 IgG-induced production of keratinocyte-derived IL-8. By adding to the knowledge of the multimodal anti-inflammatory effects of Hsp90 blockade, our data further support the introduction of Hsp90 inhibitors into the clinical setting for treatment of autoimmune diseases, especially for BP.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Denise Grüner
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
39
|
Tukaj S, Tiburzy B, Manz R, de Castro Marques A, Orosz A, Ludwig RJ, Zillikens D, Kasperkiewicz M. Immunomodulatory effects of heat shock protein 90 inhibition on humoral immune responses. Exp Dermatol 2014; 23:585-90. [DOI: 10.1111/exd.12476] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan Tukaj
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | - Benjamin Tiburzy
- Institute for Systemic Inflammation Research; University of Lübeck; Lübeck Germany
| | - Rudolf Manz
- Institute for Systemic Inflammation Research; University of Lübeck; Lübeck Germany
| | | | - Antal Orosz
- Tumor Cell Biology Laboratory; Anticancer Drug Research Foundation; Budapest Hungary
| | - Ralf J. Ludwig
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | | | | |
Collapse
|
40
|
Tukaj S, Zillikens D, Kasperkiewicz M. Inhibitory effects of heat shock protein 90 blockade on proinflammatory human Th1 and Th17 cell subpopulations. JOURNAL OF INFLAMMATION-LONDON 2014; 11:10. [PMID: 24694060 PMCID: PMC3976086 DOI: 10.1186/1476-9255-11-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/24/2014] [Indexed: 01/22/2023]
Abstract
Background Heat shock protein 90 (Hsp90), a chaperone that regulates activity of many client proteins responsible for cellular growth, differentiation, and apoptosis, has been proposed as an important clinical and preclinical therapeutic target in a number of malignancies and autoimmune diseases, respectively. In this study, we evaluated the effects of pharmacological Hsp90 inhibition on human proinflammatory T cell responses. Findings Using anti-CD3 antibody-stimulated human peripheral blood mononuclear cell cultures, we observed that Hsp90 inhibition by non-toxic concentrations of the geldanamycin derivative 17-DMAG significantly blocked T cell proliferation, reduced IFN-γ and IL-17 expression on CD4+ T lymphocytes, and arrested secretion of proinflammatory IFN-γ, TNF-α, and IL-17, cytokines characteristic of Th1 and Th17 cells, respectively. These effects were associated with inhibition of NF-kB activity, upregulation of Hsp70 protein expression, and disruption of T cell-specific nonreceptor tyrosine kinase Lck activation. Conclusions Our results further support the potential use of Hsp90 inhibitors in patients with autoimmune diseases where uncontrolled Th1 or Th17 activation frequently occurs.
Collapse
Affiliation(s)
| | | | - Michael Kasperkiewicz
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
41
|
Tukaj S, Kleszczyński K, Vafia K, Groth S, Meyersburg D, Trzonkowski P, Ludwig RJ, Zillikens D, Schmidt E, Fischer TW, Kasperkiewicz M. Aberrant expression and secretion of heat shock protein 90 in patients with bullous pemphigoid. PLoS One 2013; 8:e70496. [PMID: 23936217 PMCID: PMC3728143 DOI: 10.1371/journal.pone.0070496] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/19/2013] [Indexed: 11/18/2022] Open
Abstract
The cell stress chaperone heat shock protein 90 (Hsp90) has been implicated in inflammatory responses and its inhibition has proven successful in different mouse models of autoimmune diseases, including epidermolysis bullosa acquisita. Here, we investigated expression levels and secretory responses of Hsp90 in patients with bullous pemphigoid (BP), the most common subepidermal autoimmune blistering skin disease. In comparison to healthy controls, the following observations were made: (i) Hsp90 was highly expressed in the skin of BP patients, whereas its serum levels were decreased and inversely associated with IgG autoantibody levels against the NC16A immunodominant region of the BP180 autoantigen, (ii) in contrast, neither aberrant levels of circulating Hsp90 nor any correlation of this protein with serum autoantibodies was found in a control cohort of autoimmune bullous disease patients with pemphigus vulgaris, (iii) Hsp90 was highly expressed in and restrictedly released from peripheral blood mononuclear cells of BP patients, and (iv) Hsp90 was potently induced in and restrictedly secreted from human keratinocyte (HaCaT) cells by BP serum and isolated anti-BP180 NC16A IgG autoantibodies, respectively. Our results reveal an upregulated Hsp90 expression at the site of inflammation and an autoantibody-mediated dysregulation of the intracellular and extracellular distribution of this chaperone in BP patients. These findings suggest that Hsp90 may play a pathophysiological role and represent a novel potential treatment target in BP.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Katerina Vafia
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Groth
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ralf J. Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|
42
|
Inhibiting the HSP90 chaperone slows cyst growth in a mouse model of autosomal dominant polycystic kidney disease. Proc Natl Acad Sci U S A 2013; 110:12786-91. [PMID: 23858461 DOI: 10.1073/pnas.1301904110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a progressive genetic syndrome with an incidence of 1:500 in the population, arising from inherited mutations in the genes for polycystic kidney disease 1 (PKD1) or polycystic kidney disease 2 (PKD2). Typical onset is in middle age, with gradual replacement of renal tissue with thousands of fluid-filled cysts, resulting in end-stage renal disease requiring dialysis or kidney transplantation. There currently are no approved therapies to slow or cure ADPKD. Mutations in the PKD1 and PKD2 genes abnormally activate multiple signaling proteins and pathways regulating cell proliferation, many of which we observe, through network construction, to be regulated by heat shock protein 90 (HSP90). Inhibiting HSP90 with a small molecule, STA-2842, induces the degradation of many ADPKD-relevant HSP90 client proteins in Pkd1(-/-) primary kidney cells and in vivo. Using a conditional Cre-mediated mouse model to inactivate Pkd1 in vivo, we find that weekly administration of STA-2842 over 10 wk significantly reduces initial formation of renal cysts and kidney growth and slows the progression of these phenotypes in mice with preexisting cysts. These improved disease phenotypes are accompanied by improved indicators of kidney function and reduced expression and activity of HSP90 clients and their effectors, with the degree of inhibition correlating with cystic expansion in individual animals. Pharmacokinetic analysis indicates that HSP90 is overexpressed and HSP90 inhibitors are selectively retained in cystic versus normal kidney tissue, analogous to the situation observed in solid tumors. These results provide an initial justification for evaluating HSP90 inhibitors as therapeutic agents for ADPKD.
Collapse
|
43
|
Barabutis N, Handa V, Dimitropoulou C, Rafikov R, Snead C, Kumar S, Joshi A, Thangjam G, Fulton D, Black SM, Patel V, Catravas JD. LPS induces pp60c-src-mediated tyrosine phosphorylation of Hsp90 in lung vascular endothelial cells and mouse lung. Am J Physiol Lung Cell Mol Physiol 2013; 304:L883-93. [PMID: 23585225 DOI: 10.1152/ajplung.00419.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 90 (Hsp90) inhibitors were initially developed as anticancer agents; however, it is becoming increasing clear that they also possess potent anti-inflammatory properties. Posttranslational modifications of Hsp90 have been reported in tumors and have been hypothesized to affect client protein- and inhibitor-binding activities. In the present study we investigated the posttranslational modification of Hsp90 in inflammation. LPS, a prototypical inflammatory agent, induced concentration- and time-dependent tyrosine (Y) phosphorylation of Hsp90α and Hsp90β in bovine pulmonary arterial and human lung microvascular endothelial cells (HLMVEC). Mass spectrometry identified Y309 as a major site of Y phosphorylation on Hsp90α (Y300 of Hsp90β). LPS-induced Hsp90 phosphorylation was prevented by the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin (17-AAG) in vitro as well as in lungs from LPS-treated mice, in vivo. Furthermore, 17-AAG prevented LPS-induced pp60src activation. LPS-induced Hsp90 phosphorylation was also prevented by the pp60src inhibitor PP2. Additionally, Hsp90 phosphorylation was induced by infecting cells with a constitutively active pp60src adenovirus, whereas either a dominant-negative pp60src adenovirus or reduced expression of pp60src by a specific siRNA prevented the LPS-induced Y phosphorylation of Hsp90. Transfection of HLMVEC with the nonphosphorylatable Hsp90β Y300F mutant prevented LPS-induced Hsp90β tyrosine phosphorylation but not pp60src activation. Furthermore, the Hsp90β Y300F mutant showed a reduced ability to bind the Hsp90 client proteins eNOS and pp60src and HLMVEC transfected with the mutant exhibited reduced LPS-induced barrier dysfunction. We conclude that inflammatory stimuli cause posttranslational modifications of Hsp90 that are Hsp90-inhibitor sensitive and may be important to the proinflammatory actions of Hsp90.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Heat shock proteins: pathogenic role in atherosclerosis and potential therapeutic implications. Autoimmune Dis 2012; 2012:502813. [PMID: 23304456 PMCID: PMC3530228 DOI: 10.1155/2012/502813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/15/2012] [Accepted: 09/24/2012] [Indexed: 11/17/2022] Open
Abstract
Heat shock proteins (HSPs) are a highly conserved group of proteins that are constitutively expressed and function as molecular chaperones, aiding in protein folding and preventing the accumulation of misfolded proteins. In the arterial wall, HSPs have a protective role under normal physiologic conditions. In disease states, however, HSPs expressed on the vascular endothelial cell surface can act as targets for detrimental autoimmunity due to their highly conserved sequences. Developing therapeutic strategies for atherosclerosis based on HSPs is challenged by the need to balance such physiologic and pathologic roles of these proteins. This paper summarizes the role of HSPs in normal vascular wall processes as well as in the development and progression of atherosclerosis. The potential implications of HSPs in clinical therapies for atherosclerosis are also discussed.
Collapse
|
45
|
Role of hsp90 in systemic lupus erythematosus and its clinical relevance. Autoimmune Dis 2012; 2012:728605. [PMID: 23091704 PMCID: PMC3471389 DOI: 10.1155/2012/728605] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 09/06/2012] [Indexed: 01/08/2023] Open
Abstract
Heat shock proteins (HSP) are a family of ubiquitous and phylogenically highly conserved proteins which play an essential role as molecular chaperones in protein folding and transport. Heat Shock Protein 90 (Hsp90) is not mandatory for the biogenesis of most proteins, rather it participate in structural maturation and conformational regulation of a number of signaling molecules and transcription factors. Hsp90 has been shown to play an important role in antigen presentation, activation of lymphocytes, macrophages, maturation of dendritic cells, and in the enhanceosome mediated induction of inflammation. Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease with complex immunological and clinical manifestations. Dysregulated expression of Type I interferon α, activation of B cells and production of autoantibodies are hallmarks of SLE. The enhanced levels of Hsp90 were detected in the serum of SLE patients. The elevated level of Hsp90 in SLE has also been correlated with increased levels of IL-6 and presence of autoantibodies to Hsp90. This suggests that Hsp90 may contribute to the inflammation and disease progression and that targeting of Hsp 90 expression may be a potential treatment of SLE. The pharmacologic inhibition of Hsp90 was successfully applied in mouse models of autoimmune encephalomyelitis and SLE—like autoimmune diseases. Thus targeting Hsp90 may be an effective treatment for SLE, especially if combined with other targeted therapeutic approaches.
Collapse
|