1
|
Kohlgruber AC, Dezfulian MH, Sie BM, Wang CI, Kula T, Laserson U, Larman HB, Elledge SJ. High-throughput discovery of MHC class I- and II-restricted T cell epitopes using synthetic cellular circuits. Nat Biotechnol 2025; 43:623-634. [PMID: 38956325 PMCID: PMC11994455 DOI: 10.1038/s41587-024-02248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/16/2024] [Indexed: 07/04/2024]
Abstract
Antigen discovery technologies have largely focused on major histocompatibility complex (MHC) class I-restricted human T cell receptors (TCRs), leaving methods for MHC class II-restricted and mouse TCR reactivities relatively undeveloped. Here we present TCR mapping of antigenic peptides (TCR-MAP), an antigen discovery method that uses a synthetic TCR-stimulated circuit in immortalized T cells to activate sortase-mediated tagging of engineered antigen-presenting cells (APCs) expressing processed peptides on MHCs. Live, tagged APCs can be directly purified for deconvolution by sequencing, enabling TCRs with unknown specificity to be queried against barcoded peptide libraries in a pooled screening context. TCR-MAP accurately captures self-reactivities or viral reactivities with high throughput and sensitivity for both MHC class I-restricted and class II-restricted TCRs. We elucidate problematic cross-reactivities of clinical TCRs targeting the cancer/testis melanoma-associated antigen A3 and discover targets of myocarditis-inciting autoreactive T cells in mice. TCR-MAP has the potential to accelerate T cell antigen discovery efforts in the context of cancer, infectious disease and autoimmunity.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Brandon M Sie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Charlotte I Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard University Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Visani GM, Pun MN, Minervina AA, Bradley P, Thomas P, Nourmohammad A. T-cell receptor specificity landscape revealed through de novo peptide design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640903. [PMID: 40093114 PMCID: PMC11908224 DOI: 10.1101/2025.02.28.640903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
T-cells play a key role in adaptive immunity by mounting specific responses against diverse pathogens. An effective binding between T-cell receptors (TCRs) and pathogen-derived peptides presented on Major Histocompatibility Complexes (MHCs) mediate an immune response. However, predicting these interactions remains challenging due to limited functional data on T-cell reactivities. Here, we introduce a computational approach to predict TCR interactions with peptides presented on MHC class I alleles, and to design novel immunogenic peptides for specified TCR-MHC complexes. Our method leverages HERMES, a structure-based, physics-guided machine learning model trained on the protein universe to predict amino acid preferences based on local structural environments. Despite no direct training on TCR-pMHC data, the implicit physical reasoning in HERMES enables us to make accurate predictions of both TCR-pMHC binding affinities and T-cell activities across diverse viral epitopes and cancer neoantigens, achieving up to 72% correlation with experimental data. Leveraging our TCR recognition model, we develop a computational protocol for de novo design of immunogenic peptides. Through experimental validation in three TCR-MHC systems targeting viral and cancer peptides, we demonstrate that our designs-with up to five substitutions from the native sequence-activate T-cells at success rates of up to 50%. Lastly, we use our generative framework to quantify the diversity of the peptide recognition landscape for various TCR-MHC complexes, offering key insights into T-cell specificity in both humans and mice. Our approach provides a platform for immunogenic peptide and neoantigen design, opening new computational paths for T-cell vaccine development against viruses and cancer.
Collapse
Affiliation(s)
- Gian Marco Visani
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, WA 98195, USA
| | - Michael N Pun
- Department of Physics, University of Washington, 3910 15th Avenue Northeast, Seattle, WA 98195, USA
| | | | - Philip Bradley
- Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, WA 98102, USA
| | - Paul Thomas
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Armita Nourmohammad
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, WA 98195, USA
- Department of Physics, University of Washington, 3910 15th Avenue Northeast, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, WA 98102, USA
- Department of Applied Mathematics, University of Washington, 4182 W Stevens Way NE, Seattle, WA 98105, USA
| |
Collapse
|
3
|
Karaaslan BG, Demirkale ZH, Turan I, Aydemir S, Meric Z, Taskin Z, Kilinc OC, Burtecene N, Topcu B, Yucel E, Aydogmus C, Cokugras H, Kiykim A. Evaluation of T-cell repertoire by flow cytometric analysis in primary immunodeficiencies with DNA repair defects. Scand J Immunol 2025; 101:e70003. [PMID: 39967281 PMCID: PMC11836546 DOI: 10.1111/sji.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The group of patients with DNA-repair-defects increases susceptibility to infections due to impaired repertoire diversity. In this context, we aimed to investigate the TCRvβ-repertoire by flow cytometric analysis and its correlation with clinical entities in a group of IEI patients with DNA repair defects. Peripheral lymphocyte subset and TCRvβ-repertoire analyses were performed by flow cytometric analysis. The aim was to explore the changing TCR-Vβ-repertoire that can predict some clinical entities by investigating the repertoire using flow-cytometric-analysis-based TCR-Vβ and its interaction with clinical entities in a group of IEI patients with DNA repair defects. TCR-repertoire of the patients with DNA-repair-defects and healthy controls was analysed with flow-cytometer. The potential of flow-cytometric analysis of the TCR repertoire as a practical and easily accessible clinical prediction method was investigated. Thirty-nine-IEI patients with DNA-repair-defects and 15 age-matched healthy-controls were included in this study. Peripheral lymphocyte subset and TCR-Vβ repertoire analyses were performed by flow cytometry. Compared to the control group, 9 out of 24 clones (37.5%) exhibited a statistically significant reduction, while only 3 clones showed a statistically significant increase (p < 0.05). Preferential use of vβ-genes was associated with some clinical entities. Lower TCR-vβ-9 and TCR-vβ23, higher TCR-vβ7.2 were found in the patients with pneumonia (n = 13) (p = 0.018, p = 0.044 p = 0.032). AT patients with pneumonia had lower TCR-vβ-9 clone than patients without pneumonia (p = 0.008). Skewed proliferation of most TCR-vβ clones was seen DNA-repair-defects, especially AT. In addition, this study showed that preferential use of TCR-vβ genes could be predictive for some clinical entities.
Collapse
Affiliation(s)
- Betul Gemici Karaaslan
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Hizli Demirkale
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Isilay Turan
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Sezin Aydemir
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Meric
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zuleyha Taskin
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ozgur Can Kilinc
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Nihan Burtecene
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Birol Topcu
- Department of BiostatisticsTekirdag Namik Kemal UniversityTekirdagTürkiye
| | - Esra Yucel
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Cigdem Aydogmus
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Haluk Cokugras
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ayca Kiykim
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| |
Collapse
|
4
|
Banerjee S, Le P, Yang H, Zhang L, He T. TCR-NP: a novel approach to prioritize T-cell Receptor repertoire network properties. STATISTICS INNOVATION 2024; 1:e003. [PMID: 40052086 PMCID: PMC11884733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
T-cell Receptors (TCRs) play a pivotal role in antigen recognition and binding, and their sequence similarity significantly impacts the breadth of antigen recognition. Network analysis is employed to explore TCR sequence similarity and investigate the architecture of the TCR repertoire. Network properties hence could be utilized to quantify the structure of the TCR network. However, the heterogeneous nature of TCR network properties poses challenges in performing statistical learning across subjects directly, particularly when assessing their relationship with disease states, clinical outcomes, or patient characteristics. To overcome this challenge, a powerful method is developed, TCR-NP (TCR Network properties Prioritization), that aggregates the raw heterogeneous network properties and conducts grouped feature selection using a pseudo-variables-assisted penalized group Lasso model. Unlike the traditional parameter-tuning using cross-validation, a novel tuning strategy is introduced by incorporating permutation and pseudo-variables to improve the selection performance. The effectiveness of the proposed method is demonstrated through comprehensive evaluation, including simulation studies and real data analysis. By comparing the performance of the different approaches, the advantages of the proposed methodology in capturing the underlying relationships between TCR network properties and clinical outcomes or patient characteristics are highlighted.
Collapse
Affiliation(s)
- Shilpika Banerjee
- Department of Mathematics, San Francisco State University, San Francisco, CA 94132, USA
| | - Phi Le
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143 USA
| | - Hai Yang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li Zhang
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tao He
- Department of Mathematics, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
5
|
Ma L, Sun B, Fan C, Xiao J, Geng M, Liu J, Jiang R, Jiang Y, Liu D. Characteristics of peripheral immune response induced by large-vessel occlusion in patients with acute ischemic stroke. Front Neurol 2024; 15:1512720. [PMID: 39719974 PMCID: PMC11666556 DOI: 10.3389/fneur.2024.1512720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Despite improvements in the treatment of acute ischemic stroke (AIS), some patients still suffer from functional impairments, indicating the poor understanding of pathophysiologic process of AIS. Inflammation plays an important role in the pathophysiology of AIS. The purpose of the study was to investigate the peripheral inflammation in different subtypes of AIS. Methods Here, retrospective data from AIS with large vessel occlusion (LVO) and small vessel occlusion (SVO), and healthy controls, were initially analyzed. Then, flow cytometry was performed to evaluate the levels of peripheral naïve and memory T-cells. Finally, we characterized the T cell receptors (TCR) repertoire using high-throughput sequencing. Results Elevated levels of leukocytes, neutrophils, and neutrophil-to-lymphocyte ratio (NLR), and decreased levels of lymphocytes were found in LVO group than that in SVO group, which were correlated with the severity of LVO. In addition, higher percentages of both effector memory (Tem) and central memory (Tcm) T cells, and lower percentage of naïve T cells in CD4+ and CD8+ T cells, were found in LVO group than that in SVO and healthy groups. Moreover, impaired TCR diversity, and different abundances of V-J gene combinations and amino acid sequences, were found in LVO as compared with healthy group, which would be potential biomarkers for LVO diagnosis. Discussion In conclusion, AIS with LVO can rapidly induce peripheral immune response, which provides new insight into the understanding of pathophysiology of AIS.
Collapse
Affiliation(s)
- Ling Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Bin Sun
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chenliu Fan
- Hematology Department, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Juan Xiao
- Hematology Department, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Maomao Geng
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Liu
- Department of Clinical Laboratory, Weihai Haida Hospital, Weihai, Shandong, China
| | - Runze Jiang
- Jinan Biomedical Industry Academy of Shandong First Medical University, Jinan, Shandong, China
| | - Yang Jiang
- Hematology Department, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Dianwei Liu
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
6
|
Yang M, He D, Sun Y, Guo Y, Ma Y, Feng L, Liu M. The intratumoral landscape of T cell receptor repertoire in esophageal squamous cell carcinoma. J Transl Med 2024; 22:1069. [PMID: 39605085 PMCID: PMC11600597 DOI: 10.1186/s12967-024-05825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a malignant neoplasm with detrimental implications for human health. The landscape of ESCC therapy has been revolutionized by the introduction of immunotherapy, specifically involving immune checkpoint inhibitors (ICIs). A number of studies have documented the prognostic significance of T-cell receptor (TCR) repertoire and its association with many tumors. Nevertheless, the TCR repertoire landscape and its significance in ESCC still need to be explored. METHODS In this study, we conducted RNA-Seq analysis to investigate the characteristics of the TCR repertoire in 90 patients. Moreover, high-throughput TCR sequencing was performed on tumor tissues from 41 patients who received immunotherapy. Additionally, a comprehensive analysis of the T-cell receptor repertoire landscape within ESCC tumors was carried out through immunohistochemical staining on all patient samples. RESULTS We noticed a diminished diversity of TCR repertoire within the tumor compared to its adjacent normal tissue. In terms of immunotherapy responses, non-responsive patients exhibited higher TCR repertoire diversity indices and an increased frequency of common V and J genes. Additionally, elevated TCR repertoire diversity correlated with improved overall survival rates. Lastly, immunohistochemical staining results indicated a correlation between TCR repertoire diversity and the tumor immune microenvironment (TIME). CONCLUSIONS Our study primarily describes the landscape of TCR repertoires in ESCC through three aspects: differences in tumor tissues, immune response to immunotherapy, and survival prognosis of patients. These results emphasize the importance of TCR repertoire characteristics as unique and relevant biomarkers for ESCC immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, PR China
| | - Dan He
- Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, PR China
| | - Yu Sun
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, PR China
| | - Yunquan Guo
- Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, PR China
| | - Yu Ma
- The Fourth People' Hospital of Urumqi, Xinjiang Uygur Autonomous Region, Urumqi, 830002, PR China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, PR China
| | - Meng Liu
- Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, PR China.
| |
Collapse
|
7
|
Loffredo LF, Kaiser KA, Kornberg A, Rao S, de Los Santos-Alexis K, Han A, Arpaia N. An amphiregulin reporter mouse enables transcriptional and clonal expansion analysis of reparative lung Treg cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615245. [PMID: 39386607 PMCID: PMC11463663 DOI: 10.1101/2024.09.26.615245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory T (Treg) cells are known to play critical roles in tissue repair via provision of growth factors such as amphiregulin (Areg). Areg-producing Treg cells have previously been difficult to study because of an inability to isolate live Areg-producing cells. In this report, we created a novel reporter mouse to detect Areg expression in live cells ( Areg Thy1.1 ). We employed influenza A and bleomycin models of lung damage to sort Areg-producing and -non-producing Treg cells for transcriptomic analyses. Single cell RNA-seq revealed distinct subpopulations of Treg cells and allowed transcriptomic comparisons of damage-induced populations. Single cell TCR sequencing showed that Treg cell clonal expansion is biased towards Areg-producing Treg cells, and largely occurs within damage-induced subgroups. Gene module analysis revealed functional divergence of Treg cells into immunosuppression-oriented and tissue repair-oriented groups, leading to identification of candidate receptors for induction of repair activity in Treg cells. We tested these using an ex vivo assay for Treg cell-mediated tissue repair, identifying 4-1BB agonism as a novel mechanism for reparative activity induction. Overall, we demonstrate that the Areg Thy1.1 mouse is a promising tool for investigating tissue repair activity in leukocytes.
Collapse
|
8
|
Huang AL, He YZ, Yang Y, Pang M, Zheng GP, Wang HL. Exploring the potential of the TCR repertoire as a tumor biomarker (Review). Oncol Lett 2024; 28:413. [PMID: 38988449 PMCID: PMC11234811 DOI: 10.3892/ol.2024.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.
Collapse
Affiliation(s)
- An-Li Huang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
- The First Clinical Medical College, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yan-Zhao He
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yong Yang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Min Pang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guo-Ping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Hai-Long Wang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
9
|
Yan P, Liu Y, Zhang M, Liu N, Zheng Y, Zhang H, Zhou H, Sun M. Reconstitution of peripheral blood T cell receptor β immune repertoire in immune checkpoint inhibitors associated myocarditis. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:35. [PMID: 38863010 PMCID: PMC11165862 DOI: 10.1186/s40959-024-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/15/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs)-associated myocarditis was a rare yet severe complication observed in individuals undergoing immunotherapy. This study investigated the immune status and characteristics of patients diagnosed with ICIs- associated myocarditis. METHODS A total of seven patients diagnosed with ICIs-associated myocarditis were included in the study, while five tumor patients without myocarditis were recruited as reference controls. Additionally, 30 healthy individuals were recruited as blank controls. Biochemical indices, electrocardiogram, and echocardiography measurements were obtained both prior to and following the occurrence of myocarditis. High-throughput sequencing of T cell receptor (TCR) was employed to assess the diversity and distribution characteristics of TCR CDR3 length, as well as the diversity of variable (V) and joining (J) genes of T lymphocytes in peripheral blood. RESULTS In the seven patients with ICIs-associated myocarditis, Troponin T (TNT) levels exhibited a significant increase following myocarditis, while other parameters such as brain natriuretic peptide (BNP), QTc interval, and left ventricular ejection fraction (LVEF) did not show any significant differences. Through sequencing, it was observed that the diversity and uniformity of CDR3 in the ICIs-associated myocarditis patients were significantly diminished. Additionally, the distribution of CDR3 nucleotides deviated from normality, and variations in the utilization of V and J gene segments. CONCLUSION The reconstitution of the TCR immune repertoire may play a pivotal role in the recognition of antigens in patients with ICIs-associated myocarditis.
Collapse
Affiliation(s)
- Peng Yan
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Yanan Liu
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Mingyan Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ning Liu
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Yawen Zheng
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Haiqin Zhang
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Hao Zhou
- Graduate School, Shandong First Medical University, Jinan, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China.
| |
Collapse
|
10
|
Uhlemann H, Epp K, Klesse C, Link-Rachner CS, Surendranath V, Günther UP, Schetelig J, Heidenreich F. Shape of the art: TCR-repertoire after allogeneic hematopoietic cell transplantation. Best Pract Res Clin Haematol 2024; 37:101558. [PMID: 39098804 DOI: 10.1016/j.beha.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
The human adaptive immune repertoire is characterized by specificity and diversity to provide immunity against past and future tasks. Such tasks are mainly infections but also malignant transformations of cells. With its multiple lines of defense, the human immune system contains both, rapid reaction forces and the potential to capture, disassemble and analyze strange structures in order to teach the adaptive immune system and mount a specific immune response. Prevention and mitigation of autoimmunity is of equal importance. In the context of allogeneic hematopoietic cell transplantation (HCT) specific challenges exist with the transfer of cells from the adapted donor immune system to the immunosuppressed recipient. Those challenges are immunogenetic disparity between donor and host, reconstitution of immunity early after HCT by expansion of mature immune effector cells, and impaired thymic function, if the recipient is an adult (as it is the case in most HCTs). The possibility to characterize the adaptive immune repertoire by massively parallel sequencing of T-cell receptor gene rearrangements allows for a much more detailed characterization of the T-cell repertoire. In addition, high-dimensional characterization of immune effector cells based on their immunophenotype and single cell RNA sequencing allow for much deeper insights in adaptive immune responses. We here review, existing - still incomplete - information on immune reconstitution after allogeneic HCT. Building on the technological advances much deeper insights into immune recovery after HCT and adaptive immune responses and can be expected in the coming years.
Collapse
Affiliation(s)
- Heike Uhlemann
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany.
| | - Katharina Epp
- University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | | | | | | - Johannes Schetelig
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| | - Falk Heidenreich
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| |
Collapse
|
11
|
Liu M, Gong Y, Lin M, Ma Q. Comprehensive analysis of juvenile idiopathic arthritis patients' immune characteristics based on bulk and single-cell sequencing data. Front Mol Biosci 2024; 11:1359235. [PMID: 38751447 PMCID: PMC11094213 DOI: 10.3389/fmolb.2024.1359235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
Background The pathogenesis of juvenile idiopathic arthritis (JIA) is strongly influenced by an impaired immune system. However, the molecular mechanisms underlying its development and progression have not been elucidated. In this study, the computational methods TRUST4 were used to construct a T-cell receptor (TCR) and B-cell receptor (BCR) repertoire from the peripheral blood of JIA patients via bulk RNA-seq data, after which the clonality and diversity of the immune repertoire were analyzed. Results Our findings revealed significant differences in the frequency of clonotypes between the JIA and healthy control groups in terms of the TCR and BCR repertoires. This work identified specific V genes and J genes in TCRs and BCRs that could be used to expand our understanding of JIA. After single-cell RNA analysis, the relative percentages of CD14 monocytes were significantly greater in the JIA group. Cell-cell communication analysis revealed the significant role of the MIF signaling pathway in JIA. Conclusion In conclusion, this work describes the immune features of both the TCR and BCR repertoires under JIA conditions and provides novel insight into immunotherapy for JIA.
Collapse
|
12
|
Lin J, Wu X, Liu Z, Yang H, Chen Y, Li H, Yu Y, Tu Q, Chen Y. Identification, expression and molecular polymorphism of T-cell receptors α and β from the glacial relict Hucho bleekeri. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109475. [PMID: 38447781 DOI: 10.1016/j.fsi.2024.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The T-cell receptor (TCR) is a specific molecule on the surface of all T cells that mediates cellular adaptive immune responses to antigens. Hucho bleekeri is a critically endangered species and is regarded as a glacial relict that has the lowest-latitude distribution compared with any Eurasian salmonid. In the present study, two TCR genes, namely, TCR α and β, were identified and characterized in H. bleekeri. Both TCR α and TCR β have typical TCR structures, including the IgV domain, IgC domain, connecting peptide, transmembrane and cytoplasmic domains. The two TCR genes were constitutionally expressed in various tissues, with the highest expression found in the spleen for TCR α and in the trunk kidney for TCR β. Challenge of H. bleekeri with LPS or poly(I:C) resulted in significant upregulation of both TCR α and β expression in headkidney and spleen primary cells, indicating their potential roles in the immune response. Molecular polymorphism analysis of the whole ORF regions of TCR α and β in different individuals revealed high diversity of IgV domains of these two genes, especially in complementarity-determining region (CDR) 3. The ratio of nonsynonymous substitution occurred at a significantly higher frequency than synonymous substitution in the CDR of TCR α and β, demonstrating the existence of positive selection. The results obtained in the present study enhance our understanding of TCR roles in regulating immune mechanisms and provide new information for the study of TCR lineage diversity in fish.
Collapse
Affiliation(s)
- Jue Lin
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Zhao Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Huanchao Yang
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Yanling Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Hua Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Yi Yu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Quanyu Tu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China
| | - Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China; Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, 611730, China.
| |
Collapse
|
13
|
Roy P, Suthahar SSA, Makings J, Ley K. Identification of apolipoprotein B-reactive CDR3 motifs allows tracking of atherosclerosis-related memory CD4 +T cells in multiple donors. Front Immunol 2024; 15:1302031. [PMID: 38571941 PMCID: PMC10988780 DOI: 10.3389/fimmu.2024.1302031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Atherosclerosis is a major pathological condition that underlies many cardiovascular diseases (CVDs). Its etiology involves breach of tolerance to self, leading to clonal expansion of autoreactive apolipoprotein B (APOB)-reactive CD4+T cells that correlates with clinical CVD. The T-cell receptor (TCR) sequences that mediate activation of APOB-specific CD4+T cells are unknown. Methods In a previous study, we had profiled the hypervariable complementarity determining region 3 (CDR3) of CD4+T cells that respond to six immunodominant APOB epitopes in most donors. Here, we comprehensively analyze this dataset of 149,065 APOB-reactive and 199,211 non-reactive control CDR3s from six human leukocyte antigen-typed donors. Results We identified 672 highly expanded (frequency threshold > 1.39E-03) clones that were significantly enriched in the APOB-reactive group as compared to the controls (log10 odds ratio ≥1, Fisher's test p < 0.01). Analysis of 114,755 naïve, 91,001 central memory (TCM) and 29,839 effector memory (TEM) CDR3 sequences from the same donors revealed that APOB+ clones can be traced to the complex repertoire of unenriched blood T cells. The fraction of APOB+ clones that overlapped with memory CDR3s ranged from 2.2% to 46% (average 16.4%). This was significantly higher than their overlap with the naïve pool, which ranged from 0.7% to 2% (average 1.36%). CDR3 motif analysis with the machine learning-based in-silico tool, GLIPHs (grouping of lymphocyte interactions by paratope hotspots), identified 532 APOB+ motifs. Analysis of naïve and memory CDR3 sequences with GLIPH revealed that ~40% (209 of 532) of these APOB+ motifs were enriched in the memory pool. Network analysis with Cytoscape revealed extensive sharing of the memory-affiliated APOB+ motifs across multiple donors. We identified six motifs that were present in TCM and TEM CDR3 sequences from >80% of the donors and were highly enriched in the APOB-reactive TCR repertoire. Discussion The identified APOB-reactive expanded CD4+T cell clones and conserved motifs can be used to annotate and track human atherosclerosis-related autoreactive CD4+T cells and measure their clonal expansion.
Collapse
Affiliation(s)
- Payel Roy
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| | | | - Jeffrey Makings
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
14
|
Zhang J, Wang Y, Huang Y, Tan X, Xu J, Yan Q, Tan J, Zhang Y, Zhang J, Ma Q, Zhu H, Ye J, Zhu Z, Lan W. Characterization of T cell receptor repertoire in penile cancer. Cancer Immunol Immunother 2024; 73:24. [PMID: 38280010 PMCID: PMC10822009 DOI: 10.1007/s00262-023-03615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 01/29/2024]
Abstract
Tumor-infiltrating lymphocytes (TILs) play a key role in regulating the host immune response and shaping tumor microenvironment. It has been previously shown that T cell infiltration in penile tumors was associated with clinical outcomes. However, few studies have reported the T cell receptor (TCR) repertoire in patients with penile cancer. In the present study, we evaluated the TCR repertoires in tumor and adjacent normal tissues from 22 patients with penile squamous cell carcinoma (PSCC). Analysis of the T cell receptor beta-variable (TRBV) and joining (TRBJ) genes usage and analysis of complementarity determining region 3 (CDR3) length distribution did not show significant differences between tumor and matched normal tissues. Moreover, analysis of the median Jaccard index indicated a limited overlap of TCR repertoire between these groups. Compared with normal tissues, a significantly lower diversity and higher clonality of TCR repertoire was observed in tumor samples, which was associated with clinical characteristics. Further analysis of transcriptional profiles demonstrated that tumor samples with high clonality showed increased expression of genes associated with CD8 + T cells. In addition, we analyzed the TCR repertoire of CD4 + T cells and CD8 + T cells isolated from tumor tissues. We identified that expanded clonotypes were predominantly in the CD8 + T cell compartment, which presented with an exhausted phenotype. Overall, we comprehensively compared TCR repertoire between penile tumor and normal tissues and demonstrated the presence of distinct T cell immune microenvironments in patients with PSCC.
Collapse
Affiliation(s)
- Junying Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Xintao Tan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Qian Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jiao Tan
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China
| | - Yao Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Qiang Ma
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Hailin Zhu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jin Ye
- Urinary Nephropathy Center, The Thirteenth People's Hospital of Chongqing, Chongqing, 400053, People's Republic of China.
| | - Zhaojing Zhu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China.
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
15
|
Mandel J, Gleason L, Joffe D, Bhatti S, Nikbakht N. Immunosequencing applications in cutaneous T-cell lymphoma. Front Immunol 2023; 14:1300061. [PMID: 38213330 PMCID: PMC10783977 DOI: 10.3389/fimmu.2023.1300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Immunosequencing has emerged as a newer clinical test for assessment of T-cell clonality in the blood and skin of cutaneous T-cell lymphoma (CTCL) patients. Utilization of immunosequencing, also known as high-throughput sequencing of the T-cell receptor (HTS-TCR), enables identification and quantification of the precise genetic signature of dominant T-cell clones. Although immunosequencing is more sensitive than commonly used methods such as polymerase chain reaction (PCR) paired with capillary electrophoresis or flow cytometry, it remains underutilized for CTCL management. Nonetheless, incorporation of HTS-TCR in clinical practice offers distinct advantages compared to other molecular analyses that may improve diagnostic evaluation, prognostication, and disease monitoring in CTCL. The objective of this comprehensive review is to provide a thorough explanation of the application of immunosequencing in the context of CTCL. We describe the significance of T-cell clonality and the methods used to detect it, including a detailed comparison between PCR paired with capillary electrophoresis and HTS-TCR. The utilization of immunosequencing in the blood and skin of CTCL patients is discussed in depth, specifically outlining how HTS-TCR can assist in diagnosing CTCL, predicting outcomes, and tracking disease progression. Finally, we address the potential applications of immunosequencing in clinical management and research as well as the novel challenges it presents.
Collapse
Affiliation(s)
| | | | | | | | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Mullan KA, de Vrij N, Valkiers S, Meysman P. Current annotation strategies for T cell phenotyping of single-cell RNA-seq data. Front Immunol 2023; 14:1306169. [PMID: 38187377 PMCID: PMC10768068 DOI: 10.3389/fimmu.2023.1306169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has become a popular technique for interrogating the diversity and dynamic nature of cellular gene expression and has numerous advantages in immunology. For example, scRNA-seq, in contrast to bulk RNA sequencing, can discern cellular subtypes within a population, which is important for heterogenous populations such as T cells. Moreover, recent advancements in the technology allow the parallel capturing of the highly diverse T-cell receptor (TCR) sequence with the gene expression. However, the field of single-cell RNA sequencing data analysis is still hampered by a lack of gold-standard cell phenotype annotation. This problem is particularly evident in the case of T cells due to the heterogeneity in both their gene expression and their TCR. While current cell phenotype annotation tools can differentiate major cell populations from each other, labelling T-cell subtypes remains problematic. In this review, we identify the common automated strategy for annotating T cells and their subpopulations, and also describe what crucial information is still missing from these tools.
Collapse
Affiliation(s)
- Kerry A. Mullan
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
| | - Nicky de Vrij
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
- Clinical Immunology Unit, Department of Clinical Sciences, Institute for Tropical Medicine, Antwerp, Belgium
| | - Sebastiaan Valkiers
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS) Consortium, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
17
|
Gleason L, Talasila S, Tekmen V, Nikbakht N. Reduced Skin T-Cell Receptor Diversity in Large Cell Transformed Mycosis Fungoides. J Invest Dermatol 2023; 143:2318-2322.e4. [PMID: 37127182 PMCID: PMC10592559 DOI: 10.1016/j.jid.2023.03.1683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/26/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Laura Gleason
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sahithi Talasila
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Volkan Tekmen
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Neda Nikbakht
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
18
|
Miller D, Romero R, Myers L, Xu Y, Arenas-Hernandez M, Galaz J, Soto C, Done B, Quiroz A, Awonuga AO, Bryant DR, Tarca AL, Gomez-Lopez N. Immunosequencing and Profiling of T Cells at the Maternal-Fetal Interface of Women with Preterm Labor and Chronic Chorioamnionitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1082-1098. [PMID: 37647360 PMCID: PMC10528178 DOI: 10.4049/jimmunol.2300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
T cells are implicated in the pathophysiology of preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Specifically, maternal decidual T cells infiltrate the chorioamniotic membranes in chronic chorioamnionitis (CCA), a placental lesion considered to reflect maternal anti-fetal rejection, leading to preterm labor and birth. However, the phenotype and TCR repertoire of decidual T cells in women with preterm labor and CCA have not been investigated. In this study, we used phenotyping, TCR sequencing, and functional assays to elucidate the molecular characteristics and Ag specificity of T cells infiltrating the chorioamniotic membranes in women with CCA who underwent term or preterm labor. Phenotyping indicated distinct enrichment of human decidual effector memory T cell subsets in cases of preterm labor with CCA without altered regulatory T cell proportions. TCR sequencing revealed that the T cell repertoire of CCA is characterized by increased TCR richness and decreased clonal expansion in women with preterm labor. We identified 15 clones associated with CCA and compared these against established TCR databases, reporting that infiltrating T cells may possess specificity for maternal and fetal Ags, but not common viral Ags. Functional assays demonstrated that choriodecidual T cells can respond to maternal and fetal Ags. Collectively, our findings provide, to our knowledge, novel insight into the complex processes underlying chronic placental inflammation and further support a role for effector T cells in the mechanisms of disease for preterm labor and birth. Moreover, this work further strengthens the contribution of adaptive immunity to the syndromic nature of preterm labor and birth.
Collapse
Affiliation(s)
- Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, and Bethesda, MD, 20892 USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, and Bethesda, MD, 20892 USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48201, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48201, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, and Bethesda, MD, 20892 USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, and Bethesda, MD, 20892 USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, and Bethesda, MD, 20892 USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - Cinque Soto
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bogdan Done
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, and Bethesda, MD, 20892 USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Angelica Quiroz
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi O. Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - David R. Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Adi L. Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, and Bethesda, MD, 20892 USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, and Bethesda, MD, 20892 USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
19
|
Flumens D, Gielis S, Bartholomeus E, Campillo-Davo D, van der Heijden S, Versteven M, De Reu H, Smits E, Ogunjimi B, Laukens K, Meysman P, Lion E. Training of epitope-TCR prediction models with healthy donor-derived cancer-specific T cells. Methods Cell Biol 2023; 183:143-160. [PMID: 38548410 DOI: 10.1016/bs.mcb.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Discovery of epitope-specific T-cell receptors (TCRs) for cancer therapies is a time consuming and expensive procedure that usually requires a large amount of patient cells. To maximize information from and minimize the need of precious samples in cancer research, prediction models have been developed to identify in silico epitope-specific TCRs. In this chapter, we provide a step-by-step protocol to train a prediction model using the user-friendly TCRex webtool for the nearly universal tumor-associated antigen Wilms' tumor 1 (WT1)-specific TCR repertoire. WT1 is a self-antigen overexpressed in numerous solid and hematological malignancies with a high clinical relevance. Training of computational models starts from a list of known epitope-specific TCRs which is often not available for new cancer epitopes. Therefore, we describe a workflow to assemble a training data set consisting of TCR sequences obtained from WT137-45-reactive CD8 T cell clones expanded and sorted from healthy donor peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Donovan Flumens
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sofie Gielis
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Esther Bartholomeus
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium; Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), VAXINFECTIO, University of Antwerp, Antwerp, Belgium; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sanne van der Heijden
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evelien Smits
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium; Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), VAXINFECTIO, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium; Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), VAXINFECTIO, University of Antwerp, Antwerp, Belgium; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
20
|
Nozuma S, Matsuura E, Tanaka M, Kodama D, Matsuzaki T, Yoshimura A, Sakiyama Y, Nakahata S, Morishita K, Enose-Akahata Y, Jacoboson S, Kubota R, Takashima H. Identification and tracking of HTLV-1-infected T cell clones in virus-associated neurologic disease. JCI Insight 2023; 8:167422. [PMID: 37036006 PMCID: PMC10132145 DOI: 10.1172/jci.insight.167422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Human T lymphotropic virus type 1-assoicated (HTLV-1-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory disease caused by the persistent proliferation of HTLV-1-infected T cells. Here, we performed a T cell receptor (TCR) repertoire analysis focused on HTLV-1-infected cells to identify and track the infected T cell clones that are preserved in patients with HAM/TSP and migrate to the CNS. TCRβ repertoire analysis revealed higher clonal expansion in HTLV-1-infected cells compared with noninfected cells from patients with HAM/TSP and asymptomatic carriers (ACs). TCR clonality in HTLV-1-infected cells was similar in patients with HAM/TSP and ACs. Longitudinal analysis showed that the TCR repertoire signature in HTLV-1-infected cells remained stable, and highly expanded infected clones were preserved within each patient with HAM/TSP over years. Expanded HTLV-1-infected clones revealed different distributions between cerebrospinal fluid (CSF) and peripheral blood and were enriched in the CSF of patients with HAM/TSP. Cluster analysis showed similarity in TCRβ sequences in HTLV-1-infected cells, suggesting that they proliferate after common antigen stimulation. Our results indicate that exploring TCR repertoires of HTLV-1-infected cells can elucidate individual clonal dynamics and identify potential pathogenic clones expanded in the CNS.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Daisuke Kodama
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Morishita
- Project for Advanced Medical Research and Development, Project Research Division, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Steven Jacoboson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
21
|
Clark F, Gil A, Thapa I, Aslan N, Ghersi D, Selin LK. Cross-reactivity influences changes in human influenza A virus and Epstein Barr virus specific CD8 memory T cell receptor alpha and beta repertoires between young and old. Front Immunol 2023; 13:1011935. [PMID: 36923729 PMCID: PMC10009332 DOI: 10.3389/fimmu.2022.1011935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/30/2022] [Indexed: 03/03/2023] Open
Abstract
Older people have difficulty controlling infection with common viruses such as influenza A virus (IAV), RNA virus which causes recurrent infections due to a high rate of genetic mutation, and Epstein Barr virus (EBV), DNA virus which persists in B cells for life in the 95% of people that become acutely infected. We questioned whether changes in epitope-specific memory CD8 T cell receptor (TCR) repertoires to these two common viruses could occur with increasing age and contribute to waning immunity. We compared CD8 memory TCR alpha and beta repertoires in two HLA-A2+ EBV- and IAV-immune donors, young (Y) and older (O) donors to three immunodominant epitopes known to be cross-reactive, IAV-M158-66 (IAV-M1), EBV-BMLF1280-288 (EBV-BM), and EBV-BRLF1109-117 (EBV-BR). We, therefore, also designed these studies to examine if TCR cross-reactivity could contribute to changes in repertoire with increasing age. TCR high throughput sequencing showed a significant difference in the pattern of TRBV usage between Y and O. However, there were many more differences in AV and AJ usage, between the age groups suggesting that changes in TCRα usage may play a greater role in evolution of the TCR repertoire emphasizing the importance of studying TRAV repertoires. With increasing age there was a preferential retention of TCR for all three epitopes with features in their complementarity-determining region (CDR3) that increased their ease of generation, and their cross-reactive potential. Young and older donors differed in the patterns of AV/AJ and BV/BJ pairings and usage of dominant CDR3 motifs specific to all three epitopes. Both young and older donors had cross-reactive responses between these 3 epitopes, which were unique and differed from the cognate responses having features that suggested they could interact with either ligand. There was an increased tendency for the classic IAV-M1 specific clone BV19-IRSS-JB2.7/AV27-CAGGGSQGNLIF-AJ42 to appear among the cross-reactive clones, suggesting that the dominance of this clone may relate to its cross-reactivity with EBV. These results suggest that although young and older donors retain classic TCR features for each epitope their repertoires are gradually changing with age, maintaining TCRs that are cross-reactive between these two common human viruses, one with recurrent infections and the other a persistent virus which frequently reactivates.
Collapse
Affiliation(s)
- Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
22
|
Abdulla ZA, Al-Bashir SM, Alzoubi H, Al-Salih NS, Aldamen AA, Abdulazeez AZ. The Role of Immunity in the Pathogenesis of SARS-CoV-2 Infection and in the Protection Generated by COVID-19 Vaccines in Different Age Groups. Pathogens 2023; 12:329. [PMID: 36839601 PMCID: PMC9967364 DOI: 10.3390/pathogens12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
This study aims to review the available data regarding the central role of immunity in combating SARS-CoV-2 infection and in the generation of protection by vaccination against COVID-19 in different age groups. Physiologically, the immune response and the components involved in it are variable, both functionally and quantitatively, in neonates, infants, children, adolescents, and adults. These immunological differences are mirrored during COVID-19 infection and in the post-vaccination period. The outcome of SARS-CoV-2 infection is greatly dependent on the reaction orchestrated by the immune system. This is clearly obvious in relation to the clinical status of COVID-19 infection, which can be symptomless, mild, moderate, or severe. Even the complications of the disease show a proportional pattern in relation to the immune response. On the contrary, the commonly used anti-COVID-19 vaccines generate protective humoral and cellular immunity. The magnitude of this immunity and the components involved in it are discussed in detail. Furthermore, many of the adverse effects of these vaccines can be explained on the basis of immune reactions against the different components of the vaccines. Regarding the appropriate choice of vaccine for different age groups, many factors have to be considered. This is a cornerstone, particularly in the following age groups: 1 day to 5 years, 6 to 11 years, and 12 to 17 years. Many factors are involved in deciding the route, doses, and schedule of vaccination for children. Another important issue in this dilemma is the hesitancy of families in making the decision about whether to vaccinate their children. Added to these difficulties is the choice by health authorities and governments concerning whether to make children's vaccination compulsory. In this respect, although rare and limited, adverse effects of vaccines in children have been detected, some of which, unfortunately, have been serious or even fatal. However, to achieve comprehensive control over COVID-19 in communities, both children and adults have to be vaccinated, as the former group represents a reservoir for viral transmission. The understanding of the various immunological mechanisms involved in SARS-CoV-2 infection and in the preparation and application of its vaccines has given the sciences a great opportunity to further deepen and expand immunological knowledge. This will hopefully be reflected positively on other diseases through gaining an immunological background that may aid in diagnosis and therapy. Humanity is still in continuous conflict with SARS-CoV-2 infection and will be for a while, but the future is expected to be in favor of the prevention and control of this disease.
Collapse
Affiliation(s)
| | - Sharaf M. Al-Bashir
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Noor S. Al-Salih
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Ala A. Aldamen
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | | |
Collapse
|
23
|
Clauze A, Enose-Akahata Y, Jacobson S. T cell receptor repertoire analysis in HTLV-1-associated diseases. Front Immunol 2022; 13:984274. [PMID: 36189294 PMCID: PMC9520328 DOI: 10.3389/fimmu.2022.984274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Human T lymphotropic virus 1 (HTLV-1) is a human retrovirus identified as the causative agent in adult T-cell leukemia/lymphoma (ATL) and chronic-progressive neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 is estimated to infect between 5-20 million people worldwide, although most infected individuals remain asymptomatic. HTLV-1 infected persons carry an estimated lifetime risk of approximately 5% of developing ATL, and between 0.25% and 1.8% of developing HAM/TSP. Most HTLV-1 infection is detected in CD4+ T cells in vivo which causes the aggressive malignancy in ATL. In HAM/TSP, the increase of HTLV-1 provirus induces immune dysregulation to alter inflammatory milieu, such as expansion of HTLV-1-specific CD8+ T cells, in the central nervous system of the infected subjects, which have been suggested to underlie the pathogenesis of HAM/TSP. Factors contributing to the conversion from asymptomatic carrier to disease state remain poorly understood. As such, the identification and tracking of HTLV-1-specific T cell biomarkers that may be used to monitor the progression from primary infection to immune dysfunction and disease are of great interest. T cell receptor (TCR) repertoires have been extensively investigated as a mechanism of monitoring adaptive T cell immune response to viruses and tumors. Breakthrough technologies such as single-cell RNA sequencing have increased the specificity with which T cell clones may be characterized and continue to improve our understanding of TCR signatures in viral infection, cancer, and associated treatments. In HTLV-1-associated disease, sequencing of TCR repertoires has been used to reveal repertoire patterns, diversity, and clonal expansions of HTLV-1-specific T cells capable of immune evasion and dysregulation in ATL as well as in HAM/TSP. Conserved sequence analysis has further been used to identify CDR3 motif sequences and exploit disease- or patient-specificity and commonality in HTLV-1-associated disease. In this article we review current research on TCR repertoires and HTLV-1-specific clonotypes in HTLV-1-associated diseases ATL and HAM/TSP and discuss the implications of TCR clonal expansions on HTLV-1-associated disease course and treatments.
Collapse
|
24
|
De Souza MM, Koltes DA, Beiki H, Sales MA, Tsai T, Maxwell CV, Zhao J, Koltes JE. Early-Life Exposure of Pigs to Topsoil Alters miRNA and mRNA Expression in Peripheral Blood Mononuclear Cells. Front Genet 2022; 13:886875. [PMID: 36081988 PMCID: PMC9445269 DOI: 10.3389/fgene.2022.886875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to less-hygienic conditions during early childhood has been associated with stimulation and development of the immune system. A recent study indicated that exposure of piglets to soil-borne microbes during lactation was related with modulation of gut microbiota and immune function. To identify the potential molecular mechanisms and pathways impacted by early-life topsoil exposure, we analyzed the messenger RNA (mRNA) and micro-RNA (miRNA) expression in peripheral blood mononuclear cells (PBMCs) from these piglets. Total RNA was extracted from the PBMCs of piglets exposed to topsoil only from d 4–d 21 of life (mRNA n = 6; miRNA n = 5) or unexposed control pigs (mRNA n = 6; miRNA n = 8) at 11, 20, and 56 days of age. Small RNA and mRNA were sequenced with 50-bp single-end reads using Illumina chemistry. Sequence data were quality checked with FASTQC software and aligned to the Sscrofa 11.1 genome with the STAR aligner for mRNA and mirDeep2 for miRNA. Differential expression (DE) analysis was performed using PROC Glimmix of SAS to evaluate changes in expression due to topsoil exposure over time with genes declared DE at a false discovery rate (FDR) of q < 0.10. A total of 138 mRNA and 21 miRNAs were identified as DE for the treatment by age interaction. Ontology enrichment analysis of DE mRNA revealed Gene ontology (GO) terms directly involved in the connection between T-cell and antigen-presenting cells that are associated with T-cell activation. Key regulatory genes identified include PTPRJ, ITGB3, TRBV30, CD3D, mir-143, mir-29, and mir-148a. While these results require validation, this study provides data supporting the hypothesis that less-hygienic environments during early life may contribute to the development of the immune system.
Collapse
Affiliation(s)
- M. M. De Souza
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - D. A. Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - H. Beiki
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - M. A. Sales
- Department of Animal Science, University of Arkansas-Division of Agriculture, Fayetteville, AR, United States
| | - T. Tsai
- Department of Animal Science, University of Arkansas-Division of Agriculture, Fayetteville, AR, United States
| | - C. V. Maxwell
- Department of Animal Science, University of Arkansas-Division of Agriculture, Fayetteville, AR, United States
| | - J. Zhao
- Department of Animal Science, University of Arkansas-Division of Agriculture, Fayetteville, AR, United States
| | - J. E. Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
- *Correspondence: J. E. Koltes,
| |
Collapse
|
25
|
Roy P, Sidney J, Lindestam Arlehamn CS, Phillips E, Mallal S, Suthahar SSA, Billitti M, Rubiro P, Marrama D, Drago F, Vallejo J, Suryawanshi V, Orecchioni M, Makings J, Kim PJ, McNamara CA, Peters B, Sette A, Ley K. Immunodominant MHC-II (Major Histocompatibility Complex II) Restricted Epitopes in Human Apolipoprotein B. Circ Res 2022; 131:258-276. [PMID: 35766025 PMCID: PMC9536649 DOI: 10.1161/circresaha.122.321116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CD (cluster of differentiation) 4+ T-cell responses to APOB (apolipoprotein B) are well characterized in atherosclerotic mice and detectable in humans. CD4+ T cells recognize antigenic peptides displayed on highly polymorphic HLA (human leukocyte antigen)-II. Immunogenicity of individual APOB peptides is largely unknown in humans. Only 1 HLA-II-restricted epitope was validated using the DRB1*07:01-APOB3036-3050 tetramer. We hypothesized that human APOB may contain discrete immunodominant CD4+ T-cell epitopes that trigger atherosclerosis-related autoimmune responses in donors with diverse HLA alleles. METHODS We selected 20 APOB-derived peptides (APOB20) from an in silico screen and experimentally validated binding to the most commonly occurring human HLA-II alleles. We optimized a restimulation-based workflow to evaluate antigenicity of multiple candidate peptides in HLA-typed donors. This included activation-induced marker assay, intracellular cytokine staining, IFNγ (interferon gamma) enzyme-linked immunospot and cytometric bead array. High-throughput sequencing revealed TCR (T-cell receptor) clonalities of APOB-reactive CD4+ T cells. RESULTS Using stringent positive, negative, and crossover stimulation controls, we confirmed specificity of expansion-based protocols to detect CD4+ T cytokine responses to the APOB20 pool. Ex vivo assessment of AIM+CD4+ T cells revealed a statistically significant autoimmune response to APOB20 but not to a ubiquitously expressed negative control protein, actin. Resolution of CD4+ T responses to the level of individual peptides using IFNγ enzyme-linked immunospot led to the discovery of 6 immunodominant epitopes (APOB6) that triggered robust CD4+ T activation in most donors. APOB6-specific responding CD4+ T cells were enriched in unique expanded TCR clonotypes and preferentially expressed memory markers. Cytometric bead array analysis detected APOB6-induced secretion of both proinflammatory and regulatory cytokines. In clinical samples from patients with angiographically verified coronary artery disease, APOB6 stimulation induced higher activation and memory phenotypes and augmented secretion of proinflammatory cytokines TNF (tumor necrosis factor) and IFNγ, compared with patients with low coronary artery disease. CONCLUSIONS Using 3 cohorts, each with ≈20 donors, we discovered and validated 6 immunodominant, HLA-II-restricted APOB epitopes. The immune response to these APOB epitopes correlated with coronary artery disease severity.
Collapse
Affiliation(s)
- Payel Roy
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Elizabeth Phillips
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Sujit Silas Armstrong Suthahar
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Monica Billitti
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Daniel Marrama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Fabrizio Drago
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Jenifer Vallejo
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Vasantika Suryawanshi
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Marco Orecchioni
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Jeffrey Makings
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Paul J. Kim
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Klaus Ley
- Center for Autoimmune Disease, Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
26
|
Katayama Y, Yokota R, Akiyama T, Kobayashi TJ. Machine Learning Approaches to TCR Repertoire Analysis. Front Immunol 2022; 13:858057. [PMID: 35911778 PMCID: PMC9334875 DOI: 10.3389/fimmu.2022.858057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sparked by the development of genome sequencing technology, the quantity and quality of data handled in immunological research have been changing dramatically. Various data and database platforms are now driving the rapid progress of machine learning for immunological data analysis. Of various topics in immunology, T cell receptor repertoire analysis is one of the most important targets of machine learning for assessing the state and abnormalities of immune systems. In this paper, we review recent repertoire analysis methods based on machine learning and deep learning and discuss their prospects.
Collapse
Affiliation(s)
- Yotaro Katayama
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Yokota
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tetsuya J. Kobayashi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Vyborova A, Janssen A, Gatti L, Karaiskaki F, Yonika A, van Dooremalen S, Sanders J, Beringer DX, Straetemans T, Sebestyen Z, Kuball J. γ9δ2 T-Cell Expansion and Phenotypic Profile Are Reflected in the CDR3δ Repertoire of Healthy Adults. Front Immunol 2022; 13:915366. [PMID: 35874769 PMCID: PMC9301380 DOI: 10.3389/fimmu.2022.915366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
γ9δ2T cells fill a distinct niche in human immunity due to the unique physiology of the phosphoantigen-reactive γ9δ2TCR. Here, we highlight reproducible TCRδ complementarity-determining region 3 (CDR3δ) repertoire patterns associated with γ9δ2T cell proliferation and phenotype, thus providing evidence for the role of the CDR3δ in modulating in vivo T-cell responses. Features that determine γ9δ2TCR binding affinity and reactivity to the phosphoantigen-induced ligand in vitro appear to similarly underpin in vivo clonotypic expansion and differentiation. Likewise, we identify a CDR3δ bias in the γ9δ2T cell natural killer receptor (NKR) landscape. While expression of the inhibitory receptor CD94/NKG2A is skewed toward cells bearing putative high-affinity TCRs, the activating receptor NKG2D is expressed independently of the phosphoantigen-sensing determinants, suggesting a higher net NKR activating signal in T cells with TCRs of low affinity. This study establishes consistent repertoire–phenotype associations and justifies stratification for the T-cell phenotype in future research on γ9δ2TCR repertoire dynamics.
Collapse
Affiliation(s)
- Anna Vyborova
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anke Janssen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lucrezia Gatti
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Austin Yonika
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sanne van Dooremalen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jasper Sanders
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dennis X. Beringer
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Jürgen Kuball,
| |
Collapse
|
28
|
Revealing the Immune Heterogeneity between Systemic Lupus Erythematosus and Rheumatoid Arthritis Based on Multi-Omics Data Analysis. Int J Mol Sci 2022; 23:ijms23095166. [PMID: 35563556 PMCID: PMC9101622 DOI: 10.3390/ijms23095166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are greatly influenced by different immune cells. Nowadays both T-cell receptor (TCR) and B-cell receptor (BCR) sequencing technology have emerged with the maturity of NGS technology. However, both SLE and RA peripheral blood TCR or BCR repertoire sequencing remains lacking because repertoire sequencing is an expensive assay and consumes valuable tissue samples. This study used computational methods TRUST4 to construct TCR repertoire and BCR repertoire from bulk RNA-seq data of both SLE and RA patients’ peripheral blood and analyzed the clonality and diversity of the immune repertoire between the two diseases. Although the functions of immune cells have been studied, the mechanism is still complicated. Differentially expressed genes in each immune cell type and cell–cell interactions between immune cell clusters have not been covered. In this work, we clustered eight immune cell subsets from original scRNA-seq data and disentangled the characteristic alterations of cell subset proportion under both SLE and RA conditions. The cell–cell communication analysis tool CellChat was also utilized to analyze the influence of MIF family and GALECTIN family cytokines, which were reported to regulate SLE and RA, respectively. Our findings correspond to previous findings that MIF increases in the serum of SLE patients. This work proved that the presence of LGALS9, PTPRC and CD44 in platelets could serve as a clinical indicator of rheumatoid arthritis. Our findings comprehensively illustrate dynamic alterations in immune cells during pathogenesis of SLE and RA. This work identified specific V genes and J genes in TCR and BCR that could be used to expand our understanding of SLE and RA. These findings provide a new insight inti the diagnosis and treatment of the two autoimmune diseases.
Collapse
|
29
|
Aran A, Garrigós L, Curigliano G, Cortés J, Martí M. Evaluation of the TCR Repertoire as a Predictive and Prognostic Biomarker in Cancer: Diversity or Clonality? Cancers (Basel) 2022; 14:cancers14071771. [PMID: 35406543 PMCID: PMC8996954 DOI: 10.3390/cancers14071771] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The TCR is the T cell antigen receptor, and it is responsible of the T cell activation, through the HLA-antigen complex recognition. Studying the TCR repertoire in patients with cancer can help to better understand the anti-tumoural responses and it has been suggested to have predictive and or/prognostic values, both for the disease and in response to treatments. The aim of this review is to summarize TCR repertoire studies performed in patients with cancer found in the literature, thoroughly analyse the different factors that can be involved in shaping the TCR repertoire, and draw the current conclusions in this field, especially focusing on whether the TCR diversity—or its opposite, the clonality—can be used as predictors or prognostic biomarkers of the disease. Abstract T cells play a vital role in the anti-tumoural response, and the presence of tumour-infiltrating lymphocytes has shown to be directly correlated with a good prognosis in several cancer types. Nevertheless, some patients presenting tumour-infiltrating lymphocytes do not have favourable outcomes. The TCR determines the specificities of T cells, so the analysis of the TCR repertoire has been recently considered to be a potential biomarker for patients’ progression and response to therapies with immune checkpoint inhibitors. The TCR repertoire is one of the multiple elements comprising the immune system and is conditioned by several factors, including tissue type, tumour mutational burden, and patients’ immunogenetics. Its study is crucial to understanding the anti-tumoural response, how to beneficially modulate the immune response with current or new treatments, and how to better predict the prognosis. Here, we present a critical review including essential studies on TCR repertoire conducted in patients with cancer with the aim to draw the current conclusions and try to elucidate whether it is better to encounter higher clonality with few TCRs at higher frequencies, or higher diversity with many different TCRs at lower frequencies.
Collapse
Affiliation(s)
- Andrea Aran
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain;
| | - Laia Garrigós
- International Breast Cancer Center (IBCC), 08017 Barcelona, Spain; (L.G.); (J.C.)
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milano, Italy;
- Department of Oncology and Hemato-Oncology, University of Milano, 20122 Milano, Italy
| | - Javier Cortés
- International Breast Cancer Center (IBCC), 08017 Barcelona, Spain; (L.G.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Mercè Martí
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain;
- Correspondence: ; Tel.: +34-935812409
| |
Collapse
|
30
|
Wang Z, Zhong Y, Zhang Z, Zhou K, Huang Z, Yu H, Liu L, Liu S, Yang H, Zhou J, Fan J, Wu L, Sun Y. Characteristics and Clinical Significance of T-Cell Receptor Repertoire in Hepatocellular Carcinoma. Front Immunol 2022; 13:847263. [PMID: 35371059 PMCID: PMC8965762 DOI: 10.3389/fimmu.2022.847263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Several studies have demonstrated that the T-cell receptor (TCR) repertoire is associated with prognosis and immune therapy response in several types of cancer. However, the comprehensive features of TCR repertoire in tumor-infiltrating and circulating T cells, as well as its clinical significance of diagnosis in hepatocellular carcinoma (HCC) patients, are still unknown. In this study, we perform paired tumor/peritumoral tissues and peripheral blood samples from 58 patients with HCC and sequenced them with high-throughput TCR to comprehensively analyze the characteristics of TCR and the clinical significance of peripheral TCR sequence. By exploring the abundance and diversity of TCR repertoires, we observe that there was a significantly higher TCR diversity in peripheral blood than in tumoral and peritumoral tissues, while tumoral and peritumoral tissues showed similar TCR diversity. A substantial difference in the usage frequencies of several Vβ, Jβ genes, and TCRβ VJ pairings was found among three types of tissues. Moreover, we reveal that HCC patients have a unique profile of TCR repertoire in peripheral blood in contrast to healthy individuals. We further establish an HCC diagnostic model based on TCRβ VJ pairing usage in peripheral blood, which yields a best-fit area under the curve (AUC) of 0.9746 ± 0.0481 (sensitivity = 0.9675 ± 0.0603, specificity = 0.9998 ± 0.0007, average of 100 repeats) in the test set. Our study describes the characteristics of tissue infiltration and circulating T-cell bank in patients with HCC and shows the potential of using circulating TCR sequence as a biomarker for the non-invasive diagnosis of patients with HCC.
Collapse
Affiliation(s)
- Zifei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
| | - Yu Zhong
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
| | - Zefan Zhang
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Kaiqian Zhou
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhihao Huang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Hao Yu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Longqi Liu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, China
| | - Shiping Liu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Liang Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, China
| | - Yunfan Sun
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
31
|
Tian G, Li M, Lv G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Alloresponse. Front Immunol 2022; 12:778559. [PMID: 35095851 PMCID: PMC8790170 DOI: 10.3389/fimmu.2021.778559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.
Collapse
Affiliation(s)
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Kim BJ, Ahn JH, Youn DH, Jeon JP. Profiling of T Cell Receptor β-Chain Complimentary Determining Regions 3 Repertoire in Subarachnoid Hemorrhage Patients Using High-Throughput Sequencing. J Korean Neurosurg Soc 2021; 64:505-513. [PMID: 34185982 PMCID: PMC8273768 DOI: 10.3340/jkns.2020.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/07/2020] [Indexed: 12/01/2022] Open
Abstract
Objective The adaptive immune response following subarachnoid hemorrhage (SAH) is not well understood. We evaluated and compared the T cell receptor (TCR) immune repertoire of good-grade and poor-grade SAH patients to elucidate the T cell immunology after ictus.
Methods Peripheral blood from six SAH patients was collected at two different times, admission and at the 7-day follow-up. Composition and variation of the TCR β-chain (TCRB) complimentary determining regions (CDR) 3 repertoire was examined using high-throughput sequencing; the analysis was based on sampling time and disease severity (good vs. poor-grade SAH).
Results Clonality at admission and follow-up were 0.059 (0.037–0.038) and 0.027 (0.014–0.082) (median, 25th–75th percentile). Poor-grade SAH (0.025 [0.011–0.038]) was associated with significantly lower clonality than good-grade SAH (0.095 [0.079–0.101]). Poor-grade SAH patients had higher diversity scores than good-grade SAH patients. CDR length was shorter in good-grade SAH vs. poor-grade SAH. Differences in clonotype distribution were more prominent in TCRBV gene segments than TCRBJ segments. TCRBV19-01/TCRBJ02-04 and TCRBV28-01/TCRBJ02-04 were the most increased and the most decreased V-J pairs in the 7-day follow-up compared to admission in good-grade SAH. The most increased and decreased V-J pairs in poor-grade SAH patients were TCRBV28-01/TCRBJ02-06 and TCRBV30-01/TCRBJ02-04, respectively.
Conclusion The TCRB repertoire is dynamic in nature following SAH. TCRB repertoire may facilitate our understanding of adaptive immune response according to SAH severity.
Collapse
Affiliation(s)
- Bong Jun Kim
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea.,Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea.,Genetic and Research Inc., Chuncheon, Korea
| |
Collapse
|
33
|
Pre-transplant T-cell Clonality: An Observational Study of a Biomarker for Prediction of Sepsis in Liver Transplant Recipients. Ann Surg 2021; 274:411-418. [PMID: 34132702 DOI: 10.1097/sla.0000000000004998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study investigated the ability of pre-transplant T-cell clonality to predict sepsis after liver transplant (LT). SUMMARY BACKGROUND DATA Sepsis is a leading cause of death in LT recipients. Currently, no biomarkers predict sepsis before clinical symptom manifestation. METHODS Between December 2013 and March 2018, our institution performed 478 LTs. After exclusions (eg, patients with marginal donor livers, autoimmune disorders, nonabdominal multi-organ, and liver retransplantations), 180 consecutive LT were enrolled. T-cell characterization was assessed within 48 hours before LT (immunoSEQ Assay, Adaptive Biotechnologies, Seattle, WA). Sepsis-2 and Sepsis-3 cases, defined by presence of acute infection plus ≥2 SIRS criteria, or clinical documentation of sepsis, were identified by chart review. Receiver-operating characteristic analyses determined optimal T-cell repertoire clonality for predicting post-LT sepsis. Kaplan-Meier and Cox proportional hazard modeling assessed outcome-associated prognostic variables. RESULTS Patients with baseline T-cell repertoire clonality ≥0.072 were 3.82 (1.25, 11.40; P = 0.02), and 2.40 (1.00, 5.75; P = 0.049) times more likely to develop sepsis 3 and 12 months post-LT, respectively, when compared to recipients with lower (<0.072) clonality. T-cell repertoire clonality was the only predictor of sepsis 3 months post-LT in multivariate analysis (C-Statistic, 0.75). Adequate treatment resulted in equivalent survival rates between both groups: (93.4% vs 96.2%, respectively, P = 0.41) at 12 months post-LT. CONCLUSIONS T-cell repertoire clonality is a novel biomarker predictor of sepsis before development of clinical symptoms. Early sepsis monitoring and management may reduce post-LT mortality. These findings have implications for developing sepsis-prevention protocols in transplantation and potentially other populations.
Collapse
|
34
|
Nozuma S, Enose-Akahata Y, Johnson KR, Monaco MC, Ngouth N, Elkahloun A, Ohayon J, Zhu J, Jacobson S. Immunopathogenic CSF TCR repertoire signatures in virus-associated neurologic disease. JCI Insight 2021; 6:144869. [PMID: 33616082 PMCID: PMC7934934 DOI: 10.1172/jci.insight.144869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined and characterized disease-specific TCR signatures in cerebrospinal fluid (CSF) of patients with HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP). TCR β libraries using unique molecular identifier–based methodologies were sequenced in paired peripheral blood mononuclear cells (PBMCs) and CSF cells from HAM/TSP patients and normal healthy donors (NDs). The sequence analysis demonstrated that TCR β repertoires in CSF of HAM/TSP patients were highly expanded and contained both TCR clonotypes shared with PBMCs and uniquely enriched within the CSF. In addition, we analyzed TCR β repertoires of highly expanded and potentially immunopathologic HTLV-1 Tax11-19–specific CD8+ T cells from PBMCs of HLA-A*0201+ HAM/TSP and identified a conserved motif (PGLAG) in the CDR3 region. Importantly, TCR β clonotypes of expanded clones in HTLV-1 Tax11-19–specific CD8+ T cells were also expanded and enriched in the CSF of the same patient. These results suggest that exploring TCR repertoires of CSF and antigen-specific T cells may provide a TCR repertoire signature in virus-associated neurologic disorders.
Collapse
Affiliation(s)
| | | | - Kory R Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | | | - Nyater Ngouth
- Viral Immunology Section, Neuroimmunology Branch and
| | - Abdel Elkahloun
- Comparative Genomics and Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Jun Zhu
- Mokobio Biotechnology R&D Center, Rockville, Maryland, USA
| | | |
Collapse
|
35
|
Foth S, Völkel S, Bauersachs D, Zemlin M, Skevaki C. T Cell Repertoire During Ontogeny and Characteristics in Inflammatory Disorders in Adults and Childhood. Front Immunol 2021; 11:611573. [PMID: 33633732 PMCID: PMC7899981 DOI: 10.3389/fimmu.2020.611573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first day of life, a newborn has to deal with various pathogens from the environment. While passive immune protection is provided by diaplacental maternal antibodies, the development of cellular immunity is ongoing. A mature immune system should be able not only to defend against pathogens, but should also be able to differentiate between self- and non-self-antigens. Dysregulation in the development of cellular immunity can lead to severe disorders like immunodeficiency, autoimmunity and chronic inflammation. In this review, we explain the role of T cell immunity in antigen detection and summarize the characteristics of a mature TCR repertoire as well as the current state of knowledge about the development of the TCR repertoire in ontogenesis. In addition, methods of assessments are outlined, with a focus on the advantages and disadvantages of advanced methods such as next generation sequencing. Subsequently, we provide an overview of various disorders occuring in early childhood like immunodeficiencies, autoimmunity, allergic diseases and chronic infections and outline known changes in the TCR repertoire. Finally, we summarize the latest findings and discuss current research gaps as well as potential future developments.
Collapse
Affiliation(s)
- Svenja Foth
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Sara Völkel
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Daniel Bauersachs
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Chrysanthi Skevaki
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
36
|
Chen SY, Liu CJ, Zhang Q, Guo AY. An ultra-sensitive T-cell receptor detection method for TCR-Seq and RNA-Seq data. Bioinformatics 2021; 36:4255-4262. [PMID: 32399561 DOI: 10.1093/bioinformatics/btaa432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION T-cell receptors (TCRs) function to recognize antigens and play vital roles in T-cell immunology. Surveying TCR repertoires by characterizing complementarity-determining region 3 (CDR3) is a key issue. Due to the high diversity of CDR3 and technological limitation, accurate characterization of CDR3 repertoires remains a great challenge. RESULTS We propose a computational method named CATT for ultra-sensitive and precise TCR CDR3 sequences detection. CATT can be applied on TCR sequencing, RNA-Seq and single-cell TCR(RNA)-Seq data to characterize CDR3 repertoires. CATT integrated de Bruijn graph-based micro-assembly algorithm, data-driven error correction model and Bayesian inference algorithm, to self-adaptively and ultra-sensitively characterize CDR3 repertoires with high performance. Benchmark results of datasets from in silico and experimental data demonstrated that CATT showed superior recall and precision compared with existing tools, especially for data with short read length and small size and single-cell sequencing data. Thus, CATT will be a useful tool for TCR analysis in researches of cancer and immunology. AVAILABILITY AND IMPLEMENTATION http://bioinfo.life.hust.edu.cn/CATT or https://github.com/GuoBioinfoLab/CATT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Si-Yi Chen
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chun-Jie Liu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Zhang
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,Department of Biotechnology, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Tolstykh EI, Vozilova AV, Degteva MO, Akleyev AV. Concept of T-Cell Genus as a Basis for Analysis of the Results of Cytogenetic Studies after Local Bone Marrow Exposure. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Dupic T, Bensouda Koraichi M, Minervina AA, Pogorelyy MV, Mora T, Walczak AM. Immune fingerprinting through repertoire similarity. PLoS Genet 2021; 17:e1009301. [PMID: 33395405 PMCID: PMC7808657 DOI: 10.1371/journal.pgen.1009301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/14/2021] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Immune repertoires provide a unique fingerprint reflecting the immune history of individuals, with potential applications in precision medicine. However, the question of how personal that information is and how it can be used to identify individuals has not been explored. Here, we show that individuals can be uniquely identified from repertoires of just a few thousands lymphocytes. We present "Immprint," a classifier using an information-theoretic measure of repertoire similarity to distinguish pairs of repertoire samples coming from the same versus different individuals. Using published T-cell receptor repertoires and statistical modeling, we tested its ability to identify individuals with great accuracy, including identical twins, by computing false positive and false negative rates < 10-6 from samples composed of 10,000 T-cells. We verified through longitudinal datasets that the method is robust to acute infections and that the immune fingerprint is stable for at least three years. These results emphasize the private and personal nature of repertoire data.
Collapse
Affiliation(s)
- Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Laboratoire de physique de l’École Normale Supérieure, CNRS, Sorbonne Université, Université de Paris, and École normale supérieure (PSL), Paris, France
| | - Meriem Bensouda Koraichi
- Laboratoire de physique de l’École Normale Supérieure, CNRS, Sorbonne Université, Université de Paris, and École normale supérieure (PSL), Paris, France
| | | | - Mikhail V. Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, Sorbonne Université, Université de Paris, and École normale supérieure (PSL), Paris, France
- * E-mail: (TM); (AMW)
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, Sorbonne Université, Université de Paris, and École normale supérieure (PSL), Paris, France
- * E-mail: (TM); (AMW)
| |
Collapse
|
39
|
Servaas NH, Zaaraoui-Boutahar F, Wichers CGK, Ottria A, Chouri E, Affandi AJ, Silva-Cardoso S, van der Kroef M, Carvalheiro T, van Wijk F, Radstake TRDJ, Andeweg AC, Pandit A. Longitudinal analysis of T-cell receptor repertoires reveals persistence of antigen-driven CD4 + and CD8 + T-cell clusters in systemic sclerosis. J Autoimmun 2020; 117:102574. [PMID: 33307312 DOI: 10.1016/j.jaut.2020.102574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The T-cell receptor (TCR) is a highly polymorphic surface receptor that allows T-cells to recognize antigenic peptides presented on the major histocompatibility complex (MHC). Changes in the TCR repertoire have been observed in several autoimmune conditions, and these changes are suggested to predispose autoimmunity. Multiple lines of evidence have implied an important role for T-cells in the pathogenesis of Systemic Sclerosis (SSc), a complex autoimmune disease. One of the major questions regarding the roles of T-cells is whether expansion and activation of T-cells observed in the diseases pathogenesis is antigen driven. To investigate the temporal TCR repertoire dynamics in SSc, we performed high-throughput sequencing of CD4+ and CD8+ TCRβ chains on longitudinal samples obtained from four SSc patients collected over a minimum of two years. Repertoire overlap analysis revealed that samples taken from the same individual over time shared a high number of TCRβ sequences, indicating a clear temporal persistence of the TCRβ repertoire in CD4+ as well as CD8+ T-cells. Moreover, the TCRβs that were found with a high frequency at one time point were also found with a high frequency at the other time points (even after almost four years), showing that frequencies of dominant TCRβs are largely consistent over time. We also show that TCRβ generation probability and observed TCR frequency are not related in SSc samples, showing that clonal expansion and persistence of TCRβs is caused by antigenic selection rather than convergent recombination. Moreover, we demonstrate that TCRβ diversity is lower in CD4+ and CD8+ T-cells from SSc patients compared with memory T-cells from healthy individuals, as SSc TCRβ repertoires are largely dominated by clonally expanded persistent TCRβ sequences. Lastly, using "Grouping of Lymphocyte Interactions by Paratope Hotspots" (GLIPH2), we identify clusters of TCRβ sequences with homologous sequences that potentially recognize the same antigens and contain TCRβs that are persist in SSc patients. In conclusion, our results show that CD4+ and CD8+ T-cells are highly persistent in SSc patients over time, and this persistence is likely a result from antigenic selection. Moreover, persistent TCRs form high similarity clusters with other (non-)persistent sequences that potentially recognize the same epitopes. These data provide evidence for an antigen driven expansion of CD4+/CD8+ T-cells in SSc.
Collapse
Affiliation(s)
- N H Servaas
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - F Zaaraoui-Boutahar
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - C G K Wichers
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A Ottria
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - E Chouri
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A J Affandi
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S Silva-Cardoso
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M van der Kroef
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T Carvalheiro
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - F van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T R D J Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A C Andeweg
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - A Pandit
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
40
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
41
|
Cerboni S, Gehrmann U, Preite S, Mitra S. Cytokine-regulated Th17 plasticity in human health and diseases. Immunology 2020; 163:3-18. [PMID: 33064842 DOI: 10.1111/imm.13280] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Upon activation, naïve CD4+ T helper (Th) cells differentiate into distinct Th effector cell lineages depending on the local cytokine environment. However, these polarized Th cells can also adapt their function and phenotype depending on the changing cytokine environment, demonstrating functional plasticity. Here, Th17 cells, which play a critical role in host protection from extracellular pathogens and in autoimmune disorders, are of particular interest. While being able to shift phenotype within their lineage, Th17 cells can also acquire characteristics of Th1, Th2, T follicular helper (Tfh) or regulatory T cells. Th17 cell identity is determined by a spectrum of extracellular signals, including cytokines, which are critical orchestrators of cellular immune responses. Cytokine induces changes in epigenetic, transcriptional, translational and metabolomic parameters. How these signals are integrated to determine Th17 plasticity is not well defined, yet this is a crucial point of investigation as it represents a potential target to treat autoimmune and inflammatory diseases. The goal of this review was to discuss how cytokines regulate intracellular networks, focusing on the regulation of lineage-specific transcription factors, chromatin remodelling and metabolism, to control human Th17 cell plasticity. We discuss the importance of Th17 plasticity in autoimmunity and cancer and present current strategies and challenges in targeting pathogenic Th17 cells with cytokine-based approaches, considering human genetic variants associated with altered Th17 differentiation. Finally, we discuss how modulating Th17 plasticity rather than targeting the Th17 lineage as a whole might preserve its essential immune function while purging its adverse effects.
Collapse
Affiliation(s)
- Silvia Cerboni
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Silvia Preite
- Bioscience, In vivo, Research and Early Development, Respiratory & Immunology (R&I, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suman Mitra
- CNRS, INSERM, CHU Lille, Institut pour la Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| |
Collapse
|
42
|
Lian YF, Xu Y, Gu YR, Bi YH, Liao CH, Zhao MX, Liao XL, Wang ZH, Wu HK, Huang YH. Distinct T-cell receptor profiles associated with hepatitis B e antigen seroconversion during entecavir treatment. Liver Int 2020; 40:2672-2684. [PMID: 32564486 DOI: 10.1111/liv.14566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS T-cell receptor (TCR) repertoire is ambiguously changed in chronic hepatitis B (CHB) patients during antivirus therapy. We tried to assess TCR repertoire dynamics and its clinical significance upon HBeAg seroconversion in CHB patients. METHODS Twenty CHB patients undergoing 1-year entecavir (ETV) treatment were enrolled, including 10 complete response (CR) vs 10 non-complete response (NCR) patients based on HBeAg seroconversion at week 48. The TCRβ complementarity-determining region 3 (CDR3) of peripheral CD4+ and CD8+ T cells at weeks 0, 12 and 48 was analyzed by unbiased high-throughput sequencing. The TCR repertoire profiles and their correlations with serological parameters were analyzed. RESULTS The diversity of TCRβ repertoires was decreasing in CR patients but increasing in NCR patients. The distribution pattern of TCR repertoires stratified according to clonotype frequencies changed in the opposite direction between CR and NCR patients. Narrow amounts of newly appearing clonotypes in CR patients experienced a more intensive and robust expansion and this phenomenon could occur as early as week 12 for the CD4+ subset but later at week 48 for the CD8+ subset. There existed some CR-exclusive clonotypes with a relatively low but increasing frequency at week 48. The number of unique TCRβ clonotypes was positively correlated with the ALT or HBV DNA level in CR patients but showed no or negative correlation in NCR patients. CONCLUSION Distinct TCR profiles contribute to predicting HBeAg seroconversion in CHB patients during ETV treatment and certain TCRβ CDR3 motif may be utilized for CHB immunotherapy in the future.
Collapse
Affiliation(s)
- Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Rong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Hua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chun-Hong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Miao-Xian Zhao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xia-Lin Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhan-Hui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Kai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Hou X, Chen W, Zhang X, Wang G, Chen J, Zeng P, Fu X, Zhang Q, Liu X, Diao H. Preselection TCR repertoire predicts CD4 + and CD8 + T-cell differentiation state. Immunology 2020; 161:354-363. [PMID: 32875554 DOI: 10.1111/imm.13256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
T cells must display diversity regarding both the cell state and T-cell receptor (TCR) repertoire to provide effective immunity against pathogens; however, the generation and evolution of cellular T-cell heterogeneity in the adaptive immune system remains unclear. In the present study, a combination of multiplex PCR and immune repertoire sequencing (IR-seq) was used for a standardized analysis of the TCR β-chain repertoire of CD4+ naive, CD4+ memory, CD8+ naive and CD8+ memory T cells. We showed that the T-cell subsets could be distinguished from each another with regard to the TCR β-chain (TCR-β) diversity, CDR3 length distribution and TRBV usage, which could be observed both in the preselection and in the post-selection repertoire. Moreover, the Dβ-Jβ and Vβ-Dβ combination patterns at the initial recombination step, template-independent insertion of nucleotides and inter-subset overlap were consistent between the pre- and post-selection repertoires, with a remarkably positive correlation. Taken together, these results support differentiation of the CD4+ and CD8+ T-cell subsets prior to thymic selection, and these differences survived both positive and negative selection. In conclusion, these findings provide deeper insight into the generation and evolution of TCR repertoire generation.
Collapse
Affiliation(s)
- Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangyu Wang
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyan Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Liu
- College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Attaf M, Roider J, Malik A, Rius Rafael C, Dolton G, Prendergast AJ, Leslie A, Ndung'u T, Kløverpris HN, Sewell AK, Goulder PJ. Cytomegalovirus-Mediated T Cell Receptor Repertoire Perturbation Is Present in Early Life. Front Immunol 2020; 11:1587. [PMID: 33101265 PMCID: PMC7554308 DOI: 10.3389/fimmu.2020.01587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus, particularly in sub-Saharan Africa, where it is endemic from infancy. The T cell response against CMV is important in keeping the virus in check, with CD8 T cells playing a major role in the control of CMV viraemia. Human leukocyte antigen (HLA) B*44:03-positive individuals raise a robust response against the NEGVKAAW (NW8) epitope, derived from the immediate-early-2 (IE-2) protein. We previously showed that the T cell receptor (TCR) repertoire raised against the NW8-HLA-B*44:03 complex was oligoclonal and characterised by superdominant clones, which were shared amongst unrelated individuals (i.e., "public"). Here, we address the question of how stable the CMV-specific TCR repertoire is over the course of infection, and whether substantial differences are evident in TCR repertoires in children, compared with adults. We present a longitudinal study of four HIV/CMV co-infected mother-child pairs, who in each case express HLA-B*44:03 and make responses to the NW8 epitope, and analyse their TCR repertoire over a period spanning more than 10 years. Using high-throughput sequencing, the paediatric CMV-specific repertoire was found to be highly diverse. In addition, paediatric repertoires were remarkably similar to adults, with public TCR responses being shared amongst children and adults alike. The CMV-specific repertoire in both adults and children displayed strong fluctuations in TCR clonality and repertoire architecture over time. Previously characterised superdominant clonotypes were readily identifiable in the children at high frequency, suggesting that the distortion of the CMV-specific repertoire is incurred as a direct result of CMV infection rather than a product of age-related "memory inflation." Early distortion of the TCR repertoire was particularly apparent in the case of the TCR-β chain, where oligoclonality was low in children and positively correlated with age, a feature we did not observe for TCR-α. This discrepancy between TCR-α and -β chain repertoire may reflect differential contribution to NW8 recognition. Altogether, the results of the present study provide insight into the formation of the TCR repertoire in early life and pave the way to better understanding of CD8 T cell responses to CMV at the molecular level.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Child
- Child, Preschool
- Coinfection
- Cytomegalovirus/immunology
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/metabolism
- Cytomegalovirus Infections/virology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Female
- HIV Infections/immunology
- HIV Infections/virology
- HLA Antigens/immunology
- High-Throughput Nucleotide Sequencing
- Humans
- Infant
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Peptides/chemistry
- Peptides/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Viral Load
- Young Adult
Collapse
Affiliation(s)
- Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Julia Roider
- Human Immunodeficiency Virus Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- German Centre for Infection Research, Munich, Germany
- Department of Infectious Diseases, Ludwig-Maximilians-University, Munich, Germany
| | - Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Cristina Rius Rafael
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Alasdair Leslie
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Infection and Immunity, University College London, London, United Kingdom
| | - Thumbi Ndung'u
- Human Immunodeficiency Virus Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Infection and Immunity, University College London, London, United Kingdom
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
- Virology and Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Infection and Immunity, University College London, London, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Philip J. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| |
Collapse
|
45
|
Zhang T, Duan F, Su D, Ma L, Yang J, Shi B, He X, Ma R, Sun S, Yao X. Analysis of the Heterogeneity of CD4 +CD25 + T Cell TCR β CDR3 Repertoires in Breast Tumor Tissues, Lung Metastatic Tissues, and Spleens from 4T1 Tumor-Bearing BALB/c Mice. J Immunol Res 2020; 2020:3184190. [PMID: 33029539 PMCID: PMC7532420 DOI: 10.1155/2020/3184190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/15/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023] Open
Abstract
To study the homogeneity and heterogeneity of CD4+CD25+ T cells receptor β-chain complementarity determining region 3 (TCR β CDR3) repertoires in breast tumor tissues, lung metastatic tissues, and spleens from 4T1 tumor-bearing BALB/c mice. We used high-throughput sequencing to analyze the characteristics and changes of CD4+CD25+ TCR β CDR3 repertoires among tumor tissues, lung metastatic tissues, and spleens. The diversity of the CD4+CD25+ TCR β CDR3 repertoires in breast tumor tissue was similar to that of lung metastatic tissues and less pronounced than that of spleen tissues. Breast tumor tissues and lung metastatic tissues had a greater number of high-frequency CDR3 sequences and intermediate-frequency CDR3 sequences than those of spleens. The proportion of unique productive CDR3 sequences in breast tumor tissues and lung metastatic tissues was significantly greater than that in the spleens. The diversity and frequency of the CDR3 repertoires remained homogeneous in breast tumors and lung metastatic tissues and showed great heterogeneity in the spleens, which suggested that the breast tissues and lung metastatic tissues have characteristics of CD4+CD25+ T cells that relate to the tumor microenvironment. However, the number and characteristics of overlapping CDR3 sequences suggested that there were some different CD4+CD25+ T cells in tumors and in the circulatory immune system. The study may be used to further explore the characteristics of the CDR3 repertoires and determine the source of the CD4+CD25+ T cells in the breast cancer microenvironment.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Clonal Evolution/genetics
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Disease Models, Animal
- Female
- Genetic Variation
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Mice
- Mice, Inbred BALB C
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Teng Zhang
- Department of Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China 563000
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Fangfang Duan
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Danhua Su
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Long Ma
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Jiezuan Yang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China 310003
| | - Bin Shi
- Department of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Xiaoyan He
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Rui Ma
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Suhong Sun
- Department of Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Xinsheng Yao
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| |
Collapse
|
46
|
Ultra-efficient sequencing of T Cell receptor repertoires reveals shared responses in muscle from patients with Myositis. EBioMedicine 2020; 59:102972. [PMID: 32891935 PMCID: PMC7484536 DOI: 10.1016/j.ebiom.2020.102972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Myositis, or idiopathic inflammatory myopathy (IIM), is a group disorders of unknown etiology characterized by the inflammation of skeletal muscle. The role of T cells and their antigenic targets in IIM initiation and progression is poorly understood. T cell receptor (TCR) repertoire sequencing is a powerful approach for characterizing complex T cell responses. However, current TCR sequencing methodologies are complex, expensive, or both, greatly limiting the scale of feasible studies. METHODS Here we present Framework Region 3 AmplifiKation sequencing ("FR3AK-seq"), a simplified multiplex PCR-based approach for the ultra-efficient and quantitative analysis of TCR complementarity determining region 3 (CDR3) repertoires. By using minimal primer sets targeting a conserved region immediately upstream of CDR3, undistorted amplicons are analyzed via short read, single-end sequencing. We also introduce the novel algorithm Inferring Sequences via Efficiency Projection and Primer Incorporation ("ISEPPI") for linking CDR3s to their associated variable genes. FINDINGS We find that FR3AK-seq is sensitive and quantitative, performing comparably to two different industry standards. FR3AK-seq and ISEPPI were used to efficiently and inexpensively characterize the T cell infiltrates of surgical muscle biopsies obtained from 145 patients with IIM and controls. A cluster of closely related TCRs was identified in samples from patients with sporadic inclusion body myositis (IBM). INTERPRETATION The ease and minimal cost of FR3AK-seq removes critical barriers to routine, large-scale TCR CDR3 repertoire analyses, thereby democratizing the quantitative assessment of human TCR repertoires in disease-relevant target tissues. Importantly, discovery of closely related TCRs in muscle from patients with IBM provides evidence for a shared antigen-driven T cell response in this disease of unknown pathogenesis. FUNDING This work was supported by NIH grant U24AI118633 and a Prostate Cancer Foundation Young Investigator Award.
Collapse
|
47
|
Li J, Xue H, Ma Q, He X, Ma L, Shi B, Sun S, Yao X. Heterogeneity of CD4 +CD25 +Foxp3 +Treg TCR β CDR3 Repertoire Based on the Differences of Symbiotic Microorganisms in the Gut of Mice. Front Cell Dev Biol 2020; 8:576445. [PMID: 32984355 PMCID: PMC7490519 DOI: 10.3389/fcell.2020.576445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbes play a crucial role in the occurrence and development of autoimmune diseases. The diversity of intestinal microorganisms affected by the living environment, regulate the immune function of peripheral immune organs and local tissues. In the study, the diversity of intestinal microorganisms of Germ-free (GF), Specific Pathogen-free (SPF), and Clean (CL) BALB/c mice were conducted by 16S rDNA sequencing. High-throughput sequencing technology was used to analysis the composition and characterization of TCR β chain CDR3 repertoires in Regulatory T cells (Treg) in intestine and spleen of GF, SPF, and CL mice, so as to investigate the effects of differential composition of intestinal microorganisms on the CD4+CD25+Foxp3+Treg TCR β CDR3 repertoire of intestine and spleen. We observed that GF, SPF, and CL mice have different gut microorganism composition, and the abundance and quantity of microorganisms are positively correlated with the level of feeding environment. Interestingly, incomplete structure of spleen and small intestine in GF mice was found. Moreover, a significant difference in the usage of high frequency unique CDR3 amino acid sequences was detected in the intestinal Treg TCRβ CDR3 repertoire among GF, SPF and CL mice, and there were a greater heterogeneity in the usage frequency of TRBV, TRBJ, and TRBV-TRBJ combinations gene segments. However, the effect of different feeding environment on the mice Treg TCRβ CDR3 repertoire of spleen was weak, implying that the different composition of intestinal microbiota may primarily affect the diversity of the local Treg TCRβ CDR3 repertoire and does not alter the overall properties of the circulating immune system. These results provide basic data to further analyze the mechanism of gut microbes regulating the intestinal mucosal immune system.
Collapse
Affiliation(s)
- Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Huaijuan Xue
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Laboratory Medicine, Guizhou Aerospace Hospital, Zunyi, China
| | - Xiaoyan He
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Bin Shi
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Suhong Sun
- Department of Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
48
|
Yuan Y, Brouchon J, Calvo-Calle JM, Xia J, Sun L, Zhang X, Clayton KL, Ye F, Weitz DA, Heyman JA. Droplet encapsulation improves accuracy of immune cell cytokine capture assays. LAB ON A CHIP 2020; 20:1513-1520. [PMID: 32242586 PMCID: PMC7313394 DOI: 10.1039/c9lc01261c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Quantification of cell-secreted molecules, e.g., cytokines, is fundamental to the characterization of immune responses. Cytokine capture assays that use engineered antibodies to anchor the secreted molecules to the secreting cells are widely used to characterize immune responses because they allow both sensitive identification and recovery of viable responding cells. However, if the cytokines diffuse away from the secreting cells, non-secreting cells will also be identified as responding cells. Here we encapsulate immune cells in microfluidic droplets and perform in-droplet cytokine capture assays to limit the diffusion of the secreted cytokines. We use microfluidic devices to rapidly encapsulate single natural killer NK-92 MI cells and their target K562 cells into microfluidic droplets. We perform in-droplet IFN-γ capture assays and demonstrate that NK-92 MI cells recognize target cells within droplets and become activated to secrete IFN-γ. Droplet encapsulation prevents diffusion of secreted products to neighboring cells and dramatically reduces both false positives and false negatives, relative to assays performed without droplets. In a sample containing 1% true positives, encapsulation reduces, from 94% to 2%, the number of true-positive cells appearing as negatives; in a sample containing 50% true positives, the number of non-stimulated cells appearing as positives is reduced from 98% to 1%. After cells are released from the droplets, secreted cytokine remains captured onto secreting immune cells, enabling FACS-isolation of populations highly enriched for activated effector immune cells. Droplet encapsulation can be used to reduce background and improve detection of any single-cell secretion assay.
Collapse
Affiliation(s)
- Yuan Yuan
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gil A, Kamga L, Chirravuri-Venkata R, Aslan N, Clark F, Ghersi D, Luzuriaga K, Selin LK. Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor α and β Repertoires. mBio 2020; 11:e00250-20. [PMID: 32184241 PMCID: PMC7078470 DOI: 10.1128/mbio.00250-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRβ played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRβ CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer.IMPORTANCE Several lines of evidence suggest that TCRα and TCRβ repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and β. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRβ repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection.
Collapse
Affiliation(s)
- Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Larisa Kamga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
50
|
Whalley T, Dolton G, Brown PE, Wall A, Wooldridge L, van den Berg H, Fuller A, Hopkins JR, Crowther MD, Attaf M, Knight RR, Cole DK, Peakman M, Sewell AK, Szomolay B. GPU-Accelerated Discovery of Pathogen-Derived Molecular Mimics of a T-Cell Insulin Epitope. Front Immunol 2020; 11:296. [PMID: 32184781 PMCID: PMC7058665 DOI: 10.3389/fimmu.2020.00296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
The strong links between (Human Leukocyte Antigen) HLA, infection and autoimmunity combine to implicate T-cells as primary triggers of autoimmune disease (AD). T-cell crossreactivity between microbially-derived peptides and self-peptides has been shown to break tolerance and trigger AD in experimental animal models. Detailed examination of the potential for T-cell crossreactivity to trigger human AD will require means of predicting which peptides might be recognised by autoimmune T-cell receptors (TCRs). Recent developments in high throughput sequencing and bioinformatics mean that it is now possible to link individual TCRs to specific pathologies for the first time. Deconvolution of TCR function requires knowledge of TCR specificity. Positional Scanning Combinatorial Peptide Libraries (PS-CPLs) can be used to predict HLA-restriction and define antigenic peptides derived from self and pathogen proteins. In silico search of the known terrestrial proteome with a prediction algorithm that ranks potential antigens in order of recognition likelihood requires complex, large-scale computations over several days that are infeasible on a personal computer. We decreased the time required for peptide searching to under 30 min using multiple blocks on graphics processing units (GPUs). This time-efficient, cost-effective hardware accelerator was used to screen bacterial and fungal human pathogens for peptide sequences predicted to activate a T-cell clone, InsB4, that was isolated from a patient with type 1 diabetes and recognised the insulin B-derived epitope HLVEALYLV in the context of disease-risk allele HLA A*0201. InsB4 was shown to kill HLA A*0201+ human insulin producing β-cells demonstrating that T-cells with this specificity might contribute to disease. The GPU-accelerated algorithm and multispecies pathogen proteomic databases were validated to discover pathogen-derived peptide sequences that acted as super-agonists for the InsB4 T-cell clone. Peptide-MHC tetramer binding and surface plasmon resonance were used to confirm that the InsB4 TCR bound to the highest-ranked peptide agonists derived from infectious bacteria and fungi. Adoption of GPU-accelerated prediction of T-cell agonists has the capacity to revolutionise our understanding of AD by identifying potential targets for autoimmune T-cells. This approach has further potential for dissecting T-cell responses to infectious disease and cancer.
Collapse
Affiliation(s)
- Thomas Whalley
- Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Garry Dolton
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Paul E Brown
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick Coventry, Coventry, United Kingdom
| | - Aaron Wall
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Hugo van den Berg
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Anna Fuller
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jade R Hopkins
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Meriem Attaf
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Robin R Knight
- Peter Gorer Department of Immunobiology, Guy's Hospital, London, United Kingdom
| | - David K Cole
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Mark Peakman
- Peter Gorer Department of Immunobiology, Guy's Hospital, London, United Kingdom
| | - Andrew K Sewell
- Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Barbara Szomolay
- Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|