1
|
Zhang M, Chen H, Liu H, Tang H. The impact of integrated hepatitis B virus DNA on oncogenesis and antiviral therapy. Biomark Res 2024; 12:84. [PMID: 39148134 PMCID: PMC11328401 DOI: 10.1186/s40364-024-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024] Open
Abstract
The global burden of hepatitis B virus (HBV) infection remains high, with chronic hepatitis B (CHB) patients facing a significantly increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). The ultimate objective of antiviral therapy is to achieve a sterilizing cure for HBV. This necessitates the elimination of intrahepatic covalently closed circular DNA (cccDNA) and the complete eradication of integrated HBV DNA. This review aims to summarize the oncogenetic role of HBV integration and the significance of clearing HBV integration in sterilizing cure. It specifically focuses on the molecular mechanisms through which HBV integration leads to HCC, including modulation of the expression of proto-oncogenes and tumor suppressor genes, induction of chromosomal instability, and expression of truncated mutant HBV proteins. The review also highlights the impact of antiviral therapy in reducing HBV integration and preventing HBV-related HCC. Additionally, the review offers insights into future objectives for the treatment of CHB. Current strategies for HBV DNA integration inhibition and elimination include mainly antiviral therapies, RNA interference and gene editing technologies. Overall, HBV integration deserves further investigation and can potentially serve as a biomarker for CHB and HBV-related HCC.
Collapse
Affiliation(s)
- Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Xie H, Deng H, Yang X, Gao X, Yang S, Chen W, Wang Y, Yang N, Yong L, Hou X. Mesencephalic Astrocyte-derived Neurotrophic Factor Supports Hepatitis B Virus-induced Immunotolerance. Cell Mol Gastroenterol Hepatol 2024; 18:101360. [PMID: 38759839 PMCID: PMC11255368 DOI: 10.1016/j.jcmgh.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND & AIMS The immune tolerance induced by hepatitis B virus (HBV) is a major challenge for achieving effective viral clearance, and the mechanisms involved are not well-understood. One potential factor involved in modulating immune responses is mesencephalic astrocyte-derived neurotrophic factor (MANF), which has been reported to be increased in patients with chronic hepatitis B. In this study, our objective is to examine the role of MANF in regulating immune responses to HBV. METHODS We utilized a commonly used HBV-harboring mouse model, where mice were hydrodynamically injected with the pAAV/HBV1.2 plasmid. We assessed the HBV load by measuring the levels of various markers including hepatitis B surface antigen, hepatitis B envelope antigen, hepatitis B core antigen, HBV DNA, and HBV RNA. RESULTS Our study revealed that following HBV infection, both myeloid cells and hepatocytes exhibited increased expression of MANF. Moreover, we observed that mice with myeloid-specific MANF knockout (ManfMye-/-) displayed reduced HBV load and improved HBV-specific T cell responses. The decreased HBV-induced tolerance in ManfMye-/- mice was associated with reduced accumulation of myeloid-derived suppressor cells (MDSCs) in the liver. Restoring MDSC levels in ManfMye-/- mice through MDSC adoptive transfer reinstated HBV-induced tolerance. Mechanistically, we found that MANF promoted MDSC expansion by activating the IL-6/STAT3 pathway. Importantly, our study demonstrated the effectiveness of a combination therapy involving an hepatitis B surface antigen vaccine and nanoparticle-encapsulated MANF siRNA in effectively clearing HBV in HBV-carrier mice. CONCLUSION The current study reveals that MANF plays a previously unrecognized regulatory role in liver tolerance by expanding MDSCs in the liver through IL-6/STAT3 signaling, leading to MDSC-mediated CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Huiyuan Xie
- Department of Laboratory Medicine, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Haiyan Deng
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Xiaoping Yang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shanru Yang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Weiyi Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Naibin Yang
- Department of Infection, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Liang Yong
- Laboratory of Stem Cell, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China.
| |
Collapse
|
3
|
Topchieva LV, Kurbatova IV, Dudanova OP, Vasileva AV, Zhulai GA. Immune cell balance as potential biomarker of progressing non-alcoholic fatty liver disease. GENES & CELLS 2024; 19:105-125. [DOI: 10.17816/gc610252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread chronic, slowly progressive metabolic multifactorial disease. It is represented by several clinical and morphological forms: steatosis, nonalcoholic steatohepatitis (NASH) (with or without fibrosis), and liver cirrhosis. The search for minimally invasive and cost-effective biomarkers of NAFLD is a key task in the diagnosis, staging of progression, and long-term monitoring of NAFLD. This article discusses the possibility of using immune cell balance as potential minimally invasive peripheral markers of NAFLD progression. In the progression of NASH from steatosis to fibrosis and cirrhosis, inflammation plays an important role because of the activation of Kupffer cells and increased migration of monocytes, dendritic cells, neutrophils, and activated T lymphocytes into the tissues. Macrophages originating from monocytes, with NASH progression, gradually begin to prevail over the pool of resident macrophages. The risk of NASH and fibrosis development in patients with NAFLD increases with the ratio of neutrophils/lymphocytes in the liver. An increase in the Th17 cell count and a decrease in T-regulatory cell count can contribute to increased hepatic steatosis and inflammation development in NAFLD and accelerate the transition from simple steatosis to steatohepatitis and fibrosis. Information on the participation of noncoding RNAs in the regulation of the balance of immune cells in NAFLD is presented, which also allows us to consider them as additional, along with cellular, markers of disease progression.
Collapse
|
4
|
Zhao W, Li M, Song S, Zhi Y, Huan C, Lv G. The role of natural killer T cells in liver transplantation. Front Cell Dev Biol 2024; 11:1274361. [PMID: 38250325 PMCID: PMC10796773 DOI: 10.3389/fcell.2023.1274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Natural killer T cells (NKTs) are innate-like lymphocytes that are abundant in the liver and participate in liver immunity. NKT cells express both NK cell and T cell markers, modulate innate and adaptive immune responses. Type I and Type II NKT cells are classified according to the TCR usage, while they recognize lipid antigen in a non-classical major histocompatibility (MHC) molecule CD1d-restricted manner. Once activated, NKT cells can quickly produce cytokines and chemokines to negatively or positively regulate the immune responses, depending on the different NKT subsets. In liver transplantation (LTx), the immune reactions in a series of processes determine the recipients' long-term survival, including ischemia-reperfusion injury, alloresponse, and post-transplant infection. This review provides insight into the research on NKT cells subpopulations in LTx immunity during different processes, and discusses the shortcomings of the current research on NKT cells. Additionally, the CD56-expressing T cells are recognized as a NK-like T cell population, they were also discussed during these processes.
Collapse
Affiliation(s)
- Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Landy E, Varghese J, Dang V, Szymczak-Workman A, Kane LP, Canna SW. Complementary HLH susceptibility factors converge on CD8 T-cell hyperactivation. Blood Adv 2023; 7:6949-6963. [PMID: 37738167 PMCID: PMC10690564 DOI: 10.1182/bloodadvances.2023010502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes. Familial HLH is caused by genetic impairment of granule-mediated cytotoxicity (eg, perforin deficiency). MAS is linked to excess activity of the inflammasome-activated cytokine interleukin-18 (IL-18). Though individually tolerated, mice with dual susceptibility (Prf1⁻/⁻Il18tg; DS) succumb to spontaneous, lethal hyperinflammation. We hypothesized that understanding how these susceptibility factors synergize would uncover key pathomechanisms in the activation, function, and persistence of hyperactivated CD8 T cells. In IL-18 transgenic (Il18tg) mice, IL-18 effects on CD8 T cells drove MAS after a viral (lymphocytic choriomeningitis virus), but not innate (toll like receptor 9), trigger. In vitro, CD8 T cells also required T-cell receptor (TCR) stimulation to fully respond to IL-18. IL-18 induced but perforin deficiency impaired immunoregulatory restimulation-induced cell death (RICD). Paralleling hyperinflammation, DS mice displayed massive postthymic oligoclonal CD8 T-cell hyperactivation in their spleens, livers, and bone marrow as early as 3 weeks. These cells increased proliferation and interferon gamma production, which contrasted with increased expression of receptors and transcription factors associated with exhaustion. Broad-spectrum antibiotics and antiretrovirals failed to ameliorate the disease. Attempting to genetically "fix" TCR antigen-specificity instead demonstrated the persistence of spontaneous HLH and hyperactivation, chiefly on T cells that had evaded TCR fixation. Thus, drivers of HLH may preferentially act on CD8 T cells: IL-18 amplifies activation and demand for RICD, whereas perforin supplies critical immunoregulation. Together, these factors promote a terminal CD8 T-cell activation state, combining features of exhaustion and effector function. Therefore, susceptibility to hyperinflammation may converge on a unique, unrelenting, and antigen-dependent state of CD8 T-cell hyperactivation.
Collapse
Affiliation(s)
- Emily Landy
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jemy Varghese
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Vinh Dang
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott W. Canna
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Han M, Geng J, Zhang S, Rao J, Zhu Y, Xu S, Wang F, Ma F, Zhou M, Zhou H. Invariant natural killer T cells drive hepatic homeostasis in nonalcoholic fatty liver disease via sustained IL-10 expression in CD170 + Kupffer cells. Eur J Immunol 2023; 53:e2350474. [PMID: 37489253 DOI: 10.1002/eji.202350474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Kupffer cells (KCs) are liver-resident macrophages involved in hepatic inflammatory responses, including nonalcoholic fatty liver disease (NAFLD) development. However, the contribution of KC subsets to liver inflammation remains unclear. Here, using high-dimensional single-cell RNA sequencing, we characterized murine embryo-derived KCs and identified two KC populations with different gene expression profiles: KC-1 and KC-2. KC-1 expressed CD170, exhibiting immunoreactivity and immune-regulatory abilities, while KC-2 highly expressed lipid metabolism-associated genes. In a high-fat diet-induced NAFLD model, KC-1 cells differentiated into pro-inflammatory phenotypes and initiated more frequent communications with invariant natural killer T (iNKT) cells. In KC-1, interleukin (IL)-10 expression was unaffected by the high-fat diet but impaired by iNKT cell ablation and upregulated by iNKT cell adoptive transfer in vivo. Moreover, in a cellular co-culture system, primary hepatic iNKT cells promoted IL-10 expression in RAW264.7 and primary KC-1 cells. CD206 signal blocking in KC-1 or CD206 knockdown in RAW264.7 cells significantly reduced IL-10 expression. In conclusion, we identified two embryo-derived KC subpopulations with distinct transcriptional profiles. The CD206-mediated crosstalk between iNKT and KC-1 cells maintains IL-10 expression in KC-1 cells, affecting hepatic immune balance. Therefore, KC-based therapeutic strategies must consider cellular heterogeneity and the local immune microenvironment for enhanced specificity and efficiency.
Collapse
Affiliation(s)
- Mutian Han
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Jinke Geng
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Shuangshuang Zhang
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Jia Rao
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Yansong Zhu
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| | - Shaodong Xu
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| | - Fei Wang
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Fang Ma
- Center for Scientific Research, Anhui Medical University, Anhui, China
| | - Meng Zhou
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| | - Hong Zhou
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| |
Collapse
|
7
|
Adugna A. Antigen Recognition and Immune Response to Acute and Chronic Hepatitis B Virus Infection. J Inflamm Res 2023; 16:2159-2166. [PMID: 37223107 PMCID: PMC10202203 DOI: 10.2147/jir.s411492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
The antigen recognition and immune response to acute and chronic hepatitis B virus (HBV) infections are the result of both the innate and adaptive immune response. The innate immune response comprises Dendritic Cells (DCs), which served as professional antigen-presenting cells and a bridge between innate and adaptive immunity, Kupffer cells and inflammatory monocytes for the continuous inflammation of hepatocyte, neutrophils for hepatic tissue damage due to acute inflammation, type I interferons (IFN), which induce an antiviral state on infected cells, directs natural killer (NK) cells to kill virally infected cells, reduces the population of infected cells, and promotes the effective maturation and site recruitment of adaptive immunity through the production of pro-inflammatory cytokines and chemokines. Through stimulating B cells, T-helper, and cytotoxic T cells, the adaptive immune system also protects against hepatitis B infection. During HBV infection, a network of cell types that can either play protective or harmful functions creates the anti-viral adaptive immune response. These many elements, such as Cluster of differentiation four (CD4) T cells (traditionally known as helper T cells), are potent cytokine producers and necessary for the effective maturation of effector cytotoxic cluster of differentiation eight (CD8) T cells and B cell antibody production. By cytolytic and non-cytolytic processes, CD8 T cells are able to eliminate HBV-infected hepatocytes and directly detect virus-infected cells, and circulating CD4+ CD25+ regulatory T cells for the modulation of immune system. In order to avoid reinfection, B cells can produce antibodies that destroy free viral particles. Moreover, by presenting HBV antigens to helper T cells, B cells may also influence how well these cells operate.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Microbiology, Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
8
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Zhao K, Jiang L, Si Y, Zhou S, Huang Z, Meng X. TIGIT blockade enhances tumor response to radiotherapy via a CD103 + dendritic cell-dependent mechanism. Cancer Immunol Immunother 2023; 72:193-209. [PMID: 35794399 DOI: 10.1007/s00262-022-03227-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Blockade of the T cell immunoreceptor with the immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) can enhance innate and adaptive tumor immunity and radiotherapy (RT) can enhance anti-tumor immunity. However, our data suggest that TIGIT-mediated immune suppression may be an impediment to such goals. Herein, we report on the synergistic effects of RT combined with anti-TIGIT therapy and the mechanism of their interaction. Treatment efficacy was assessed by measuring primary and secondary tumor growth, survival, and immune memory capacity. The function of CD103 + dendritic cells (DCs) under the combined treatment was assessed in wild-type and BATF3-deficient (BATF3-/-) mice. FMS-like tyrosine kinase 3 ligand (Flt3L) was used to confirm the role of CD103 + DCs in RT combined with anti-TIGIT therapy. TIGIT was upregulated in immune cells following RT in both esophageal squamous cell carcinoma patients and mouse models. Administration of the anti-TIGIT antibody enhanced the efficacy of RT through a CD8 + T cell-dependent mechanism. It was observed that RT and the anti-TIGIT antibody synergistically enhanced the accumulation of tumor-infiltrating DCs, which activated CD8 + T cells. The efficacy of the combination therapy was negated in the BATF3-/- mouse model. CD103 + DCs were required to promote the anti-tumor effects of combination therapy. Additionally, Flt3L therapy enhanced tumor response to RT combined with TIGIT blockade. Our study demonstrated TIGIT blockade can synergistically enhance anti-tumor T cell responses to RT via CD8 + T cells (dependent on CD103 + DCs), suggesting the clinical potential of targeting the TIGIT pathway and expanding CD103 + DCs in RT.
Collapse
Affiliation(s)
- Kaikai Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Liyang Jiang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Youjiao Si
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shujie Zhou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
10
|
Gu X, Chu Q, Ma X, Wang J, Chen C, Guan J, Ren Y, Wu S, Zhu H. New insights into iNKT cells and their roles in liver diseases. Front Immunol 2022; 13:1035950. [PMID: 36389715 PMCID: PMC9643775 DOI: 10.3389/fimmu.2022.1035950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Ding W, Zhang Z, Ye N, Zhuang L, Yuan Z, Xue W, Tan Y, Xu X. Identification of Key Genes in the HBV-Related HCC Immune Microenvironment Using Integrated Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2022; 2022:2797033. [PMID: 36281288 PMCID: PMC9587913 DOI: 10.1155/2022/2797033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024]
Abstract
Purpose Hepatocellular carcinoma (HCC) has poor prognosis and high mortality among gastrointestinal tumors because of its insidious onset and strong invasiveness. However, there was little understanding of their pathogenesis. The purpose of this study was to use bioinformatics analysis to identify genes associated with the immune microenvironment in HBV-related HCC and to develop new therapeutic targets to prevent and treat cancer. Methods RNA-seq data of HBV-related HCC cases were downloaded from TCGA-LIHC database. ESTIMATE and Deseq2 algorithms were used to screen out differentially expressed genes (DEGs). WGCNA was used to construct gene coexpression networks. In key modules, functional enrichment analysis was performed. Protein-protein interaction (PPI) was used to screen hub genes, and survival analysis was conducted to assess their prognostic significance. Following, we search for key genes differentially expressed between cancerous and paracancerous tissues in GSE136247 and GSE121248 datasets. Reveal the potential links between key genes in immune infiltration by using TIMER. Finally, in TCGA-LIHC database, integration of key genes with clinical data were used to further validate their correlation with prognosis. Results In the cohort of HBV-related HCC patients, immune/stromal/ESTIMATE scores were not significantly associated with patient prognosis. After bioinformatics analysis, screening out five key genes was significantly related to the prognosis of HBV-related HCC. Downregulation of SLAMF1 and TRAF3IP3 suggested poor prognosis and was related to a variety of immune cell infiltration. Furthermore, compared with adjacent nontumor tissues, TRAF3IP3 and SLAMF1 were highly expressed in tumor tissues and were linked to tumor recurrences. Conclusion In conclusion, SLAMF1 and TRAF3IP3 were identified with higher expression in tumor tissues and associated with tumor recurrence. It will be a new research direction of tumor progress and treatment.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
| | - Zheng Zhang
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Nianyuan Ye
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Ling Zhuang
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Zhiping Yuan
- Department of Gastroenterology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
| | - Wenbo Xue
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Xuezhong Xu
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| |
Collapse
|
12
|
Xie X, Lv H, Liu C, Su X, Yu Z, Song S, Bian H, Tian M, Qin C, Qi J, Zhu Q. HBeAg mediates inflammatory functions of macrophages by TLR2 contributing to hepatic fibrosis. BMC Med 2021; 19:247. [PMID: 34649530 PMCID: PMC8518250 DOI: 10.1186/s12916-021-02085-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We and others have confirmed activation of macrophages plays a critical role in liver injury and fibrogenesis during HBV infection. And we have also proved HBeAg can obviously induce the production of macrophage inflammatory cytokines compared with HBsAg and HBcAg. However, the receptor and functional domain of HBeAg in macrophage activation and its effects and mechanisms on hepatic fibrosis remain elusive. METHODS The potentially direct binding receptors of HBeAg were screened and verified by Co-IP assay. Meanwhile, the function domain and accessible peptides of HBeAg for macrophage activation were analyzed by prediction of surface accessible peptide, construction, and synthesis of truncated fragments. Furthermore, effects and mechanisms of the activation of hepatic stellate cells induced by HBeAg-treated macrophages were investigated by Transwell, CCK-8, Gel contraction assay, Phospho Explorer antibody microarray, and Luminex assay. Finally, the effect of HBeAg in hepatic inflammation and fibrosis was evaluated in both human and murine tissues by immunohistochemistry, immunofluorescence, ELISA, and detection of liver enzymes. RESULTS Herein, we verified TLR-2 was the direct binding receptor of HBeAg. Meanwhile, C-terminal peptide (122-143 aa.) of core domain in HBeAg was critical for macrophage activation. But arginine-rich domain of HBcAg hided this function, although HBcAg and HBeAg shared the same core domain. Furthermore, HBeAg promoted the proliferation, motility, and contraction of hepatic stellate cells (HSCs) in a macrophage-dependent manner, but not alone. PI3K-AKT-mTOR and p38 MAPK signaling pathway were responsible for motility phenotype of HSCs, while the Smad-dependent TGF-β signaling pathway for proliferation and contraction of them. Additionally, multiple chemokines and cytokines, such as CCL2, CCL5, CXCL10, and TNF-α, might be key mediators of HSC activation. Consistently, HBeAg induced transient inflammation response and promoted early fibrogenesis via TLR-2 in mice. Finally, clinical investigations suggested that the level of HBeAg is associated with inflammation and fibrosis degrees in patients infected with HBV. CONCLUSIONS HBeAg activated macrophages via the TLR-2/NF-κB signal pathway and further exacerbated hepatic fibrosis by facilitating motility, proliferation, and contraction of HSCs with the help of macrophages.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Huanran Lv
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Chenxi Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaonan Su
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhen Yu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shouyang Song
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China.
| | - Qiang Zhu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China. .,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong, 250021, People's Republic of China. .,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People's Republic of China.
| |
Collapse
|
13
|
Cho HJ, Cheong JY. Role of Immune Cells in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22158011. [PMID: 34360777 PMCID: PMC8348470 DOI: 10.3390/ijms22158011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) develops almost entirely in the presence of chronic inflammation. Chronic hepatitis B virus (HBV) infection with recurrent immune-mediated liver damage ultimately leads to cirrhosis and HCC. It is widely accepted that HBV infection induces the dysfunction of the innate and adaptive immune responses that engage various immune cells. Natural killer (NK) cells are associated with early antiviral and antitumor properties. On the other hand, inflammatory cells release various cytokines and chemokines that may promote HCC tumorigenesis. Moreover, immunosuppressive cells such as regulatory T cells (Treg) and myeloid-derived suppressive cells play a critical role in hepatocarcinogenesis. HBV-specific CD8+ T cells have been identified as pivotal players in antiviral responses, whilst extremely activated CD8+ T cells induce enormous inflammatory responses, and chronic inflammation can facilitate hepatocarcinogenesis. Controlling and maintaining the balance in the immune system is an important aspect in the management of HBV-related HCC. We conducted a review of the current knowledge on the immunopathogenesis of HBV-induced inflammation and the role of such immune activation in the tumorigenesis of HCC based on the recent studies on innate and adaptive immune cell dysfunction in HBV-related HCC.
Collapse
Affiliation(s)
| | - Jae-Youn Cheong
- Correspondence: ; Tel.: +82-31-219-6939; Fax: +82-31-219-5999
| |
Collapse
|
14
|
Siwicki M, Gort-Freitas NA, Messemaker M, Bill R, Gungabeesoon J, Engblom C, Zilionis R, Garris C, Gerhard GM, Kohl A, Lin Y, Zou AE, Cianciaruso C, Bolli E, Pfirschke C, Lin YJ, Piot C, Mindur JE, Talele N, Kohler RH, Iwamoto Y, Mino-Kenudson M, Pai SI, deVito C, Koessler T, Merkler D, Coukos A, Wicky A, Fraga M, Sempoux C, Jain RK, Dietrich PY, Michielin O, Weissleder R, Klein AM, Pittet MJ. Resident Kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy. Sci Immunol 2021; 6:6/61/eabi7083. [PMID: 34215680 DOI: 10.1126/sciimmunol.abi7083] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022]
Abstract
Immunotherapy is revolutionizing cancer treatment but is often restricted by toxicities. What distinguishes adverse events from concomitant antitumor reactions is poorly understood. Here, using anti-CD40 treatment in mice as a model of TH1-promoting immunotherapy, we showed that liver macrophages promoted local immune-related adverse events. Mechanistically, tissue-resident Kupffer cells mediated liver toxicity by sensing lymphocyte-derived IFN-γ and subsequently producing IL-12. Conversely, dendritic cells were dispensable for toxicity but drove tumor control. IL-12 and IFN-γ were not toxic themselves but prompted a neutrophil response that determined the severity of tissue damage. We observed activation of similar inflammatory pathways after anti-PD-1 and anti-CTLA-4 immunotherapies in mice and humans. These findings implicated macrophages and neutrophils as mediators and effectors of aberrant inflammation in TH1-promoting immunotherapy, suggesting distinct mechanisms of toxicity and antitumor immunity.
Collapse
Affiliation(s)
- Marie Siwicki
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | | | - Marius Messemaker
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Ruben Bill
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Jeremy Gungabeesoon
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Rapolas Zilionis
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Christopher Garris
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Genevieve M Gerhard
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Anna Kohl
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Yunkang Lin
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Angela E Zou
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Chiara Cianciaruso
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Evangelia Bolli
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Yi-Jang Lin
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Cecile Piot
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - John E Mindur
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Nilesh Talele
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Sara I Pai
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio deVito
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Thibaud Koessler
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Leman (SCCL), Lausanne and Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Alexander Coukos
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Alexandre Wicky
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Montserrat Fraga
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pierre-Yves Dietrich
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Leman (SCCL), Lausanne and Geneva, Switzerland
| | - Olivier Michielin
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA. .,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Leman (SCCL), Lausanne and Geneva, Switzerland
| |
Collapse
|
15
|
Lu YX, Chang YZ, Liang P, Yang CQ. Effect of Additional Clostridium butyricum on the Intestinal Flora of Chronic Hepatitis B Patients Treated with Entecavir. Infect Dis Ther 2021; 10:1519-1530. [PMID: 34132991 PMCID: PMC8322241 DOI: 10.1007/s40121-021-00463-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION To explore the influence of intestinal flora on the occurrence, development and antiviral therapy of chronic hepatitis B (CHB), 16S rDNA amplification sequencing was performed to investigate the intestinal flora in CHB patients treated with entecavir (ETV) and Clostridium butyricum (CB). METHODS CHB patients were divided into the ETV group (treatment with ETV alone) and ETV + CB group (treatment with ETV and CB). After 8-week treatment, feces samples were collected and processed for 16S rDNA amplicon sequencing; blood samples were collected for the biochemical, immunologic and virologic evaluations, which were compared between groups. RESULTS ETV treatment for 8 weeks significantly decreased the serum levels of alanine aminotransferase (ALT), interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α) and HBV DNA compared to those before treatment, but there were no marked differences between the ETV group and ETV + CB group. The intestinal flora changed significantly in the CHB patients after ETV + CB treatment: there were marked differences in 13 unique species before treatment and 4 unique species after ETV + CB treatment; at the phylum level, the top five bacteria with significant difference between patients before treatment and ETV + CB patients were Firmicutes, Actinobacteria, Cyanobacteria, Euryarchaeota and Synergistetes. There were significant differences in 25 unique species in the ETV group and 4 unique species in the ETV + CB group; at the phylum level, the top five bacteria with significant difference between ETV patients and ETV + CB patients were Actinobacteria, Fusobacteria, Proteobacteria, Saccharibacteria and Synergistetes. CONCLUSION ETV treatment improves the serum biochemical, immunologic and virologic variables, but additional CB fails to further improve these variables. Of note, additional CB affects the intestinal flora in the CHB patients treated with ETV.
Collapse
Affiliation(s)
- Yu-Xia Lu
- Department of Gastroenterology and Hepatology, Department of Infectious Diseases, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Yi-Zhong Chang
- Department of Gastroenterology and Hepatology, Department of Infectious Diseases, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Ping Liang
- Department of Laboratory Medicine, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Chang-Qing Yang
- Department of Gastroenterology and Hepatology, Department of Infectious Diseases, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China.
| |
Collapse
|
16
|
Zhou J, Zhuang T, Ma P, Shan L, Sun XD, Gong S, Tao J, Yu XM, Jiang X. MicroRNA-547-5p-mediated interleukin-33/suppressor of tumorigenicity 2 signaling underlies the genesis and maintenance of neuropathic pain and is targeted by the therapy with bone marrow stromal cells. Mol Pain 2021; 16:1744806920931737. [PMID: 32513089 PMCID: PMC7309409 DOI: 10.1177/1744806920931737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-33 (IL-33)/suppressor of tumorigenicity 2 (ST2) signaling is known to promote inflammation and the genesis and maintenance of neuropathic pain. However, it remained mostly unknown how IL-33/ST2 signaling can be enhanced by neuropathic stimulations. Here, we report that the chronic constriction nerve injury (CCI)-induced increases in the expression of IL-33 and ST2 and a decrease in microRNA (miRNA)-547-5p not only in the dorsal root ganglia (DRG) but also in spinal dorsal horn (SDH) ipsilateral to the CCI. We found that increasing endogenous miRNA-547-5p by the intrathecal (i.t.) infusion of agomir-miR-547-5p did not produce any effect in naive rats but blocked the CCI-induced increases in the IL-33 and ST2, and pain sensitivity. The reducing endogenous miRNA-547-5p by the i.t. delivering antagomir-miR-547-5p into naive rats caused significant changes in IL-33 and ST2 expressions in both the DRG and SDH, and pain sensitivity, which were similar to those induced by the CCI. Since increasing IL-33 by the i.t. infusion of recombinant IL-33 produced no change in the expression of miR-547-5p, and the CCI still reduced miR-547-5p expression in rats with the IL-33 knockdown, we conclude that the reduction of miR-547-5p can be an upstream event leading to the enhancement of IL-33/ST2 signaling induced by the CCI. The intravenous application of bone marrow stromal cells (BMSCs) reduced the depression of miR-547-5p in both the DRG and SDH, and pain hypersensitivity produced by the CCI or antagomir-miR547-5p application. However, the BMSC effect was significantly occluded by the pretreatment with miR-547-5p agomir or the IL-33 knockdown, demonstrating a novel mechanism underlying the BMSC therapy.
Collapse
Affiliation(s)
- Ju Zhou
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Ting Zhuang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Peng Ma
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Lidong Shan
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xiao-Dong Sun
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xian-Min Yu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
17
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Hassan R. Kupffer cells in hepatotoxicity. EXCLI JOURNAL 2020; 19:1156-1157. [PMID: 33088252 PMCID: PMC7573177 DOI: 10.17179/excli2020-2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Reham Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
19
|
Gao Y, Song B, Aoki S, Ito K. Role of Kupffer cells in liver injury induced by CpG oligodeoxynucleotide and flucloxacillin in mice. EXCLI JOURNAL 2020; 19:387-399. [PMID: 32327959 PMCID: PMC7174572 DOI: 10.17179/excli2020-1103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
CpG oligodeoxynucleotide (CpG-ODN) is a Toll-like receptor 9 (TLR9) agonist that can induce innate immune responses. In a previous study, flucloxacillin (FLUX; 100 mg/kg, gavage)-induced liver injury in mice was enhanced by co-administration of CpG-ODN (40 μg/mouse, intraperitoneally). In this study, the mechanism of CpG-ODN sensitization to FLUX-induced liver injury was further investigated in mice inhibited of Kupffer cells (KCs) function by gadolinium chloride (GdCl3; 10 mg/kg, intravenously). GdCl3-treated mice administrated with CpG-ODN and FLUX showed lower liver injury than wild-type (WT) mice treated with CpG-ODN and FLUX. Upregulation of Fas and FasL by CpG-ODN was also inhibited in GdCl3-treated mice and mitochondrial swelling in response to FLUX failed to occur regardless of pre-treatment with CpG-ODN. When FasL-mutant gld/gld mice were treated with CpG-ODN, mitochondrial swelling in response to FLUX was also inhibited. These results suggest that KCs play an essential role in liver injury induced by CpG-ODN and FLUX. CpG-ODN may activate KCs, resulting in induction of Fas/FasL-mediated apoptosis of hepatocytes. The Fas/FasL pathway may also be an upstream regulator of CpG-ODN- and FLUX-induced changes in mitochondrial permeability transition. These results enhance our understanding of the mechanism of the adjuvant effect of CpG-ODN in this mouse model of liver injury.
Collapse
Affiliation(s)
- Yuying Gao
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Binbin Song
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| |
Collapse
|
20
|
Miura R, Sawada SI, Mukai SA, Sasaki Y, Akiyoshi K. Synergistic anti-tumor efficacy by combination therapy of a self-assembled nanogel vaccine with an immune checkpoint anti-PD-1 antibody. RSC Adv 2020; 10:8074-8079. [PMID: 35497849 PMCID: PMC9049940 DOI: 10.1039/c9ra10066k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/12/2020] [Indexed: 12/07/2022] Open
Abstract
Therapeutic strategies for cancer involving immune checkpoint inhibitors (ICIs) have been gaining widespread attention, but their efficacy remains limited. Thus, combination of ICI therapies with other therapeutic modalities may be required to improve their outcomes. In this study, we examined the improved efficacy of a CHP nanogel-based vaccine delivery system after combination with ICI therapy. For this, we evaluated the therapeutic efficacy of combining an anti-PD-1 antibody as an ICI with an OVA antigen-complexed CHP nanogel vaccine delivery system in a mouse E.G7-OVA tumor model. Mice were subcutaneously inoculated with E.G7-OVA tumor cells on one side of the back, and subcutaneously injected with OVA or the OVA/CHP nanogel vaccine on the other side of the back. Anti-PD-1 antibody was administered at defined intervals. Tumor volume, immune responses, and tumor-infiltrating cells were evaluated. Mice treated with OVA vaccine alone showed weak tumor suppression compared with untreated control mice. Mice receiving combined OVA/CHP nanogel vaccine and anti-PD-1 antibody therapy exhibited strong tumor growth suppression and markedly improved survival, suggesting that PD-1 signaling blockade by the anti-PD-1 antibody enhanced the anti-tumor efficacy of the OVA vaccine. Furthermore, tumor-infiltrating cells and immune responses were increased in the combined therapy group. No serious side effects were observed for any of the treatments. Taken together, the immune system activation induced by the CHP nanogel vaccine was synergistically enhanced by the anti-PD-1 antibody. The present findings suggest the potential for enhanced therapeutic efficacy by combining the CHP nanogel vaccine delivery system with ICI therapy for various cancer types. Combination therapy of OVA/CHP nanogel vaccine with anti-PD-1 antibody synergistically improved anti-tumor effect and survival rate without side effects.![]()
Collapse
Affiliation(s)
- Risako Miura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Sada-Atsu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
21
|
Zhangdi HJ, Su SB, Wang F, Liang ZY, Yan YD, Qin SY, Jiang HX. Crosstalk network among multiple inflammatory mediators in liver fibrosis. World J Gastroenterol 2019; 25:4835-4849. [PMID: 31543677 PMCID: PMC6737310 DOI: 10.3748/wjg.v25.i33.4835] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is the common pathological basis of all chronic liver diseases, and is the necessary stage for the progression of chronic liver disease to cirrhosis. As one of pathogenic factors, inflammation plays a predominant role in liver fibrosis via communication and interaction between inflammatory cells, cytokines, and the related signaling pathways. Damaged hepatocytes induce an increase in pro-inflammatory factors, thereby inducing the development of inflammation. In addition, it has been reported that inflammatory response related signaling pathway is the main signal transduction pathway for the development of liver fibrosis. The crosstalk regulatory network leads to hepatic stellate cell activation and proinflammatory cytokine production, which in turn initiate the fibrotic response. Compared with the past, the research on the pathogenesis of liver fibrosis has been greatly developed. However, the liver fibrosis mechanism is complex and many pathways involved need to be further studied. This review mainly focuses on the crosstalk regulatory network among inflammatory cells, cytokines, and the related signaling pathways in the pathogenesis of chronic inflammatory liver diseases. Moreover, we also summarize the recent studies on the mechanisms underlying liver fibrosis and clinical efforts on the targeted therapies against the fibrotic response.
Collapse
Affiliation(s)
- Han-Jing Zhangdi
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Biao Su
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fei Wang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-Yu Liang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Dong Yan
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shan-Yu Qin
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Chen Y, Tian Z. HBV-Induced Immune Imbalance in the Development of HCC. Front Immunol 2019; 10:2048. [PMID: 31507621 PMCID: PMC6718466 DOI: 10.3389/fimmu.2019.02048] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the high-risk factors for human HCC. Despite the integration of virus DNA and the oncoprotein HBx, chronic necroinflammation and hepatocellular regeneration account for hepatocarcinogenesis. As a non-cytopathic virus, HBV is extensively recognized to mediate chronic liver damage through abnormal immune attack. However, the mechanisms driving HBV infection to HCC are poorly understood. During chronic HBV infection in humans, the adaptive immunity changes from immune tolerance to progressive immune activation, inactivation, reactivation and exhaustion, all of which may be the immune pathogenic factors for the development of HCC. Recently, the immunopathogenic mechanisms were described in mouse HBV-induced HCC models, which is absolutely dependent on the presence of HBV-specific T cell response and NK cell-derived IFN-γ, findings which are consistent with the observations from CHB and HCC patients. In this review, we summarize recent research progression on the HBV-specific CD8+ T cells, and also CD4+ T cells, B cells and non-specific immune cells and molecules underlying chronic HBV infection and eventual HCC development to demonstrate the pathogenesis of HBV-induced immune imbalance. Based on the progression, we discussed the potential of immune-based therapies and their challenges in the treatment of HBV-related HCC, including the checkpoint inhibition, genetically modified T cell transfer, therapeutic vaccines and metabolic modulation.
Collapse
Affiliation(s)
- Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Wang Y, Zhang C. The Roles of Liver-Resident Lymphocytes in Liver Diseases. Front Immunol 2019; 10:1582. [PMID: 31379818 PMCID: PMC6648801 DOI: 10.3389/fimmu.2019.01582] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Tissue-resident lymphocytes usually reside in barrier sites and are involved in innate and adaptive immunity. In recent years, many studies have shown that multiple types of lymphocytes are resident in the liver, including memory CD8+ T (TRM) cells; "unconventional" T cells, such as invariant natural killer T (iNKT) cells, mucosal associated invariant T (MAIT) cells, and γδT cells; innate lymphoid cells (ILCs) such as natural killer (NK) cells and other ILCs. Although diverse types of tissue-resident lymphocytes share similar phenotypes, functional properties, and transcriptional regulation, the unique microenvironment of the liver can reshape their phenotypic and functional characteristics. Liver-resident lymphocytes serve as sentinels and perform immunosurveillance in response to infection and non-infectious insults, and are involved in the maintenance of liver homeostasis. Under the pathological conditions, distinct liver-resident lymphocytes exert protective or pathological effects in the process of various liver diseases. In this review, we highlight the unique properties of liver-resident lymphocytes, and discuss their functional characteristics in different liver diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
24
|
Xu CF, Iqbal S, Shen S, Luo YL, Yang X, Wang J. Development of "CLAN" Nanomedicine for Nucleic Acid Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900055. [PMID: 30884095 DOI: 10.1002/smll.201900055] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/19/2019] [Indexed: 05/17/2023]
Abstract
Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG-b-PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG-b-PLA and its derivatives) and can be scaled-up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed.
Collapse
Affiliation(s)
- Cong-Fei Xu
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, 510006, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shoaib Iqbal
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Song Shen
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangdong, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ying-Li Luo
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, 510006, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, P. R. China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangdong, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jun Wang
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, 510006, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| |
Collapse
|
25
|
Faure-Dupuy S, Durantel D, Lucifora J. Liver macrophages: Friend or foe during hepatitis B infection? Liver Int 2018; 38:1718-1729. [PMID: 29772112 DOI: 10.1111/liv.13884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
The Hepatitis B virus chronically infects the liver of 250 million people worldwide. Over the past decades, major advances have been made in the understanding of Hepatitis B virus life cycle in hepatocytes. Beside these parenchymal cells, the liver also contains resident and infiltrating myeloid cells involved in immune responses to pathogens and much less is known about their interplay with Hepatitis B virus. In this review, we summarized and discussed the current knowledge of the role of liver macrophages (including Kupffer cells and liver monocyte-derived macrophages), in HBV infection. While it is still unclear if liver macrophages play a role in the establishment and persistence of HBV infection, several studies disclosed data suggesting that HBV would favour liver macrophage anti-inflammatory phenotypes and thereby increase liver tolerance. In addition, alternatively activated liver macrophages might also play in the long term a key role in hepatitis B-associated pathogenesis, especially through the activation of hepatic stellate cells. Therapies aiming at a transient activation of pro-inflammatory liver macrophages should therefore be considered for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Suzanne Faure-Dupuy
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France
| | - David Durantel
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France.,Laboratoire d'excellence (LabEx), DEVweCAN, Lyon, France
| | - Julie Lucifora
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,University of Lyon, University Claude-Bernard (UCBL), Lyon, France
| |
Collapse
|
26
|
Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, Sun R, Tian Z. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 2018; 19:723-732. [PMID: 29915296 DOI: 10.1038/s41590-018-0132-0] [Citation(s) in RCA: 771] [Impact Index Per Article: 110.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Checkpoint blockade enhances effector T cell function and has elicited long-term remission in a subset of patients with a broad spectrum of cancers. TIGIT is a checkpoint receptor thought to be involved in mediating T cell exhaustion in tumors; however, the relevance of TIGIT to the dysfunction of natural killer (NK) cells remains poorly understood. Here we found that TIGIT, but not the other checkpoint molecules CTLA-4 and PD-1, was associated with NK cell exhaustion in tumor-bearing mice and patients with colon cancer. Blockade of TIGIT prevented NK cell exhaustion and promoted NK cell-dependent tumor immunity in several tumor-bearing mouse models. Furthermore, blockade of TIGIT resulted in potent tumor-specific T cell immunity in an NK cell-dependent manner, enhanced therapy with antibody to the PD-1 ligand PD-L1 and sustained memory immunity in tumor re-challenge models. This work demonstrates that TIGIT constitutes a previously unappreciated checkpoint in NK cells and that targeting TIGIT alone or in combination with other checkpoint receptors is a promising anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Qing Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.,Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiacheng Bi
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Shenzhen Laboratory of Fully Humanized Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaodong Zheng
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yongyan Chen
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Hua Wang
- the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenyong Wu
- the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhengguang Wang
- the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiang Wu
- the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui Peng
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.,Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China. .,Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China. .,Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
27
|
Selvaraj S, Oh JH, Spanel R, Länger F, Han HY, Lee EH, Yoon S, Borlak J. The pathogenesis of diclofenac induced immunoallergic hepatitis in a canine model of liver injury. Oncotarget 2017; 8:107763-107824. [PMID: 29296203 PMCID: PMC5746105 DOI: 10.18632/oncotarget.21201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Hypersensitivity to non-steroidal anti-inflammatory drugs is a common adverse drug reaction and may result in serious inflammatory reactions of the liver. To investigate mechanism of immunoallergic hepatitis beagle dogs were given 1 or 3 mg/kg/day (HD) oral diclofenac for 28 days. HD diclofenac treatment caused liver function test abnormalities, reduced haematocrit and haemoglobin but induced reticulocyte, WBC, platelet, neutrophil and eosinophil counts. Histopathology evidenced hepatic steatosis and glycogen depletion, apoptosis, acute lobular hepatitis, granulomas and mastocytosis. Whole genome scans revealed 663 significantly regulated genes of which 82, 47 and 25 code for stress, immune response and inflammation. Immunopathology confirmed strong induction of IgM, the complement factors C3&B, SAA, SERPING1 and others of the classical and alternate pathway. Alike, marked expression of CD205 and CD74 in Kupffer cells and lymphocytes facilitate antigen presentation and B-cell differentiation. The highly induced HIF1A and KLF6 protein expression in mast cells and macrophages sustain inflammation. Furthermore, immunogenomics discovered 24, 17, 6 and 11 significantly regulated marker genes to hallmark M1/M2 polarized macrophages, lymphocytic and granulocytic infiltrates; note, the latter was confirmed by CAE staining. Other highly regulated genes included alpha-2-macroglobulin, CRP, hepcidin, IL1R1, S100A8 and CCL20. Diclofenac treatment caused unprecedented induction of myeloperoxidase in macrophages and oxidative stress as shown by SOD1/SOD2 immunohistochemistry. Lastly, bioinformatics defined molecular circuits of inflammation and consisted of 161 regulated genes. Altogether, the mechanism of diclofenac induced liver hypersensitivity reactions involved oxidative stress, macrophage polarization, mastocytosis, complement activation and an erroneous programming of the innate and adaptive immune system.
Collapse
Affiliation(s)
- Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.,Institute of Pathology, 41747 Viersen, Germany
| | - Florian Länger
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Eun-Hee Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, 34114 Gajeong-ro, Yuseong, Daejeon, Republic of Korea
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
28
|
He Y, Feng D, Li M, Gao Y, Ramirez T, Cao H, Kim SJ, Yang Y, Cai Y, Ju C, Wang H, Li J, Gao B. Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. Hepatology 2017; 66:220-234. [PMID: 28295449 PMCID: PMC5481471 DOI: 10.1002/hep.29153] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/08/2017] [Accepted: 03/07/2017] [Indexed: 12/24/2022]
Abstract
Acetaminophen (APAP) overdose is a leading cause of acute liver failure worldwide, in which mitochondrial DNA (mtDNA) released by damaged hepatocytes activates neutrophils through binding of Toll-like receptor 9 (TLR9), further aggravating liver injury. Here, we demonstrated that mtDNA/TLR9 also activates a negative feedback pathway through induction of microRNA-223 (miR-223) to limit neutrophil overactivation and liver injury. After injection of APAP in mice, levels of miR-223, the most abundant miRNAs in neutrophils, were highly elevated in neutrophils. Disruption of the miR-223 gene exacerbated APAP-induced hepatic neutrophil infiltration, oxidative stress, and injury and enhanced TLR9 ligand-mediated activation of proinflammatory mediators in neutrophils. An additional deletion of the intercellular adhesion molecule 1 (ICAM-1) gene ameliorated APAP-induced neutrophil infiltration and liver injury in miR-223 knockout mice. In vitro experiments revealed that miR-223-deficient neutrophils were more susceptible to TLR9 agonist-mediated induction of proinflammatory mediators and nuclear factor kappa B (NF-κB) signaling, whereas overexpression of miR-223 attenuated these effects in neutrophils. Moreover, inhibition of TLR9 signaling by either treatment with a TLR9 inhibitor or by disruption of TLR9 gene partially, but significantly, suppressed miR-223 expression in neutrophils post-APAP injection. In contrast, activation of TLR9 up-regulated miR-223 expression in neutrophils in vivo and in vitro. Mechanistically, activation of TLR9 up-regulated miR-223 by enhancing NF-κB binding on miR-223 promoter, whereas miR-223 attenuated TLR9/NF-κB-mediated inflammation by targeting IκB kinase α expression. Collectively, up-regulation of miR-223 plays a key role in terminating the acute neutrophilic response and is a therapeutic target for treatment of APAP-induced liver failure. (Hepatology 2017;66:220-234).
Collapse
Affiliation(s)
- Yong He
- School of pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Li
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanhang Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Ramirez
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang Yang
- School of pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jun Li
- School of pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China,Institute for Liver Diseases, Anhui Medical University, Hefei, Anhui, 230032, China,Corresponding authors: Bin Gao, M.D., Ph.D., Laboratory of Liver Diseases, NIAAA/NIH, Bethesda, MD 20892; Tel: 301-443-3998. ; or Jun Li, M.D., Ph.D., School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China. Tel/fax: +86 551 65161001.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding authors: Bin Gao, M.D., Ph.D., Laboratory of Liver Diseases, NIAAA/NIH, Bethesda, MD 20892; Tel: 301-443-3998. ; or Jun Li, M.D., Ph.D., School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui, China. Tel/fax: +86 551 65161001.
| |
Collapse
|
29
|
Identification of pro-inflammatory CD205 + macrophages in livers of hepatitis B virus transgenic mice and patients with chronic hepatitis B. Sci Rep 2017; 7:46765. [PMID: 28436459 PMCID: PMC5402278 DOI: 10.1038/srep46765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatic macrophages play a central role in disease pathogenesis during hepatitis B virus (HBV) infection. Our previous study found that CD205+ macrophages in the liver of hepatitis B surface antigen transgenic (HBs-Tg) mice increased significantly compared with those in wild-type mice, and these increased CD205+ macrophages were involved in CpG-oligodeoxynucleotide-induced liver injury in HBs-Tg mice. Here, we analysed the phenotype and function of CD205+ macrophages derived from the liver of HBs-Tg mice and patients with chronic hepatitis B (CHB). We found that HBs-Tg mice-derived hepatic macrophages produced larger amounts of pro-inflammatory cytokines, including IL-6, IL-12, TNF-α, and of the anti-inflammatory cytokine IL-10 after stimulation with CpG-oligodeoxynucleotides or commensal bacteria DNA than B6 mice-derived hepatic macrophages. Furthermore, hepatic CD205+ macrophages from HBs-Tg mice showed an activated phenotype and expressed higher levels of inflammatory cytokine genes, chemokine genes, and phagocytosis-related genes than hepatic CD205− macrophages. In addition, CD205+ macrophages displayed an inflammatory phenotype and were increased in the liver of patients with CHB compared with those in healthy controls. Our data suggest that hepatic CD205+ macrophages are a unique pro-inflammatory subset observed during HBV infection. Thus, development of intervention targeting these cells is warranted for immunotherapy of HBV-induced liver diseases.
Collapse
|