1
|
He X, Guan XY, Li Y. Clinical significance of the tumor microenvironment on immune tolerance in gastric cancer. Front Immunol 2025; 16:1532605. [PMID: 40028336 PMCID: PMC11868122 DOI: 10.3389/fimmu.2025.1532605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
In the realm of oncology, the tumor microenvironment (TME)-comprising extracellular matrix components, immune cells, fibroblasts, and endothelial cells-plays a pivotal role in tumorigenesis, progression, and response to therapeutic interventions. Initially, the TME exhibits tumor-suppressive properties that can inhibit malignant transformation. However, as the tumor progresses, various factors induce immune tolerance, resulting in TME behaving in a state that promotes tumor growth and metastasis in later stages. This state of immunosuppression is crucial as it enables TME to change from a role of killing tumor cells to a role of promoting tumor progression. Gastric cancer is a common malignant tumor of the gastrointestinal tract with an alarmingly high mortality rate. While chemotherapy has historically been the cornerstone of treatment, its efficacy in prolonging survival remains limited. The emergence of immunotherapy has opened new therapeutic pathways, yet the challenge of immune tolerance driven by the gastric cancer microenvironment complicates these efforts. This review aims to elucidate the intricate role of the TME in mediating immune tolerance in gastric cancer and to spotlight innovative strategies and clinical trials designed to enhance the efficacy of immunotherapeutic approaches. By providing a comprehensive theoretical framework, this review seeks to advance the understanding and application of immunotherapy in the treatment of gastric cancer, ultimately contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Xiangyang He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Oncology, The University of Hongkong, Hong Kong, Hong Kong SAR, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
2
|
Shen G, Wang Q, Li Z, Xie J, Han X, Wei Z, Zhang P, Zhao S, Wang X, Huang X, Xu M. Bridging Chronic Inflammation and Digestive Cancer: The Critical Role of Innate Lymphoid Cells in Tumor Microenvironments. Int J Biol Sci 2024; 20:4799-4818. [PMID: 39309440 PMCID: PMC11414386 DOI: 10.7150/ijbs.96338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
The incidence and mortality of digestive system-related cancers have always been high and attributed to the heterogeneity and complexity of the immune microenvironment of the digestive system. Furthermore, several studies have shown that chronic inflammation in the digestive system is responsible for cancer incidence; therefore, controlling inflammation is a potential strategy to stop the development of cancer. Innate Lymphoid Cells (ILC) represent a heterogeneous group of lymphocytes that exist in contrast to T cells. They function by interacting with cytokines and immune cells in an antigen-independent manner. In the digestive system cancer, from the inflammatory phase to the development, migration, and metastasis of tumors, ILC have been found to interact with the immune microenvironment and either control or promote these processes. The conventional treatments for digestive tumors have limited efficacy, therefore, ILC-associated immunotherapies are promising strategies. This study reviews the characterization of different ILC subpopulations, how they interact with and influence the immune microenvironment as well as chronic inflammation, and their promotional or inhibitory role in four common digestive system tumors, including pancreatic, colorectal, gastric, and hepatocellular cancers. In particular, the review emphasizes the role of ILC in associating chronic inflammation with cancer and the potential for enhanced immunotherapy with cytokine therapy and adoptive immune cell therapy.
Collapse
Affiliation(s)
- Guanliang Shen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinda Han
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Zehao Wei
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiumei Wang
- Affiliated Cancer Hospital of Inner Mongolia Medical University, 010020, Inner Mongolia, China
| | | | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
3
|
Li Y, Wu D, Xu A, Xu M, Fu B, Xiong W. Exploring the effect of NK-cell related molecules on the prognosis and tumor microenvironment of gastric cancer patients: Evidence from large sample populations. Heliyon 2024; 10:e33759. [PMID: 39071629 PMCID: PMC11276922 DOI: 10.1016/j.heliyon.2024.e33759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Background Natural killer (NK) cells play a significant role in anti-tumor immunity, and their involvement has been documented in various cancers. However, a deeper understanding of the mechanisms by which NK cells influence gastric cancer progression remains necessary. Methods We utilized the Cancer Genome Atlas (TCGA) database to acquire transcriptional profiles, clinical information, and mutation data for gastric cancer patients. R software and associated packages were employed for all analyses of this publicly available data. Results We used multiple algorithms to evaluate the tumor microenvironment in gastric cancer samples. We performed differential expression analysis to pinpoint genes related to NK cells. Utilizing this data, we developed a prognostic model featuring three crucial NK cell-related genes: MAB21L2, ARPP21, and MUCL1. This model showed strong predictive performance in the training and validation groups. Consistently, patients identified as high-risk according to our model had worse overall survival rates. To further elucidate the biological differences between high-risk and low-risk patients, we performed enrichment analyses focusing on biological pathways and immune-related factors. Additionally, we observed a correlation between higher risk scores and non-responsiveness to treatment. Interestingly, high-risk patients were found to be potentially more sensitive to axitinib. We selected MUCL1 for further investigation due to its potential role in the model. While MUCL1 mRNA levels were elevated in both gastric cancer and paired normal tissues, protein expression analysis using the Human Protein Atlas database revealed a decrease in MUCL1 protein levels within tumor tissues. Conclusions Our findings contribute to a more comprehensive understanding of the role of NK cells in gastric cancer and highlight MUCL1 as a promising therapeutic target.
Collapse
Affiliation(s)
- Yuqin Li
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New District, Shanghai, 201399, China
| | - Dejun Wu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Anjun Xu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Ming Xu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Baiqing Fu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New District, Shanghai, 201399, China
| | - Wujun Xiong
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New District, Shanghai, 201399, China
| |
Collapse
|
4
|
Zhang J, Li AM, Kansler ER, Li MO. Cancer immunity by tissue-resident type 1 innate lymphoid cells and killer innate-like T cells. Immunol Rev 2024; 323:150-163. [PMID: 38506480 PMCID: PMC11102320 DOI: 10.1111/imr.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert M. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily R. Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
5
|
Ahmadi N, Zareinejad M, Ameri M, Mahmoudi Maymand E, Nooreddin Faraji S, Ghaderi A, Ramezani A. Enhancing cancer immunotherapy with Anti-NKG2D/IL-15(N72D)/Sushi fusion protein: Targeting cytotoxic immune cells and boosting IL-15 efficacy. Cytokine 2024; 176:156505. [PMID: 38301357 DOI: 10.1016/j.cyto.2024.156505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND There are a number of distinct challenges and complexities associated with administering IL-15 for cancer immunotherapy that must be taken into consideration. OBJECTIVE The purpose of this study was to design a fusion protein for targeting cytotoxic immune cells and enhance IL-15 efficiency. METHODS A fusokine that contains IL-15(N72D), a Sushi domain, and anti-NKG2D scFv was designed. The fusion protein was in-silico modeled using the Swiss model server, followed by docking and molecular dynamics simulations. The in-vitro purified fusokine was evaluated using dot blot and Western blot. Then, flow cytometry was employed to evaluate biological properties such as proliferation, cytotoxicity, and degranulation. RESULTS Fusokine and IL-15(N72D)/Sushi, which had molecular weights of about 52 kDa and 26 kDa, respectively, were expressed in CHO-K1 cells. The fusokine binds 69.6 % of the CHO-NKG2D+ cells that express 83.1 % NKG2D. Both the fusokine and the IL-15(N72D)/Sushi significantly stimulate the proliferation of lymphocytes. After 14 days of growth, the vitality of untreated cells decreased to about 17.5 %, but 82.2 % and 56.6 % of cells were still alive when fusokine and IL-15(N72D)/Sushi were present. Furthermore, administration of fusokine was associated with the highest rates of target tumor cell cytotoxicity. Additionally, although it was not statistically significant, fusokine increased the expression of CD107a and granzyme B by 1.25 times and 2.4 times, respectively. CONCLUSION The fusokine possesses the capability to stimulate the survival and multiplication of lymphocytes, as well as their ability to eliminate tumors. These characteristics have led to its consideration as a potential treatment for immunotherapy.
Collapse
Affiliation(s)
- Nahid Ahmadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadrasul Zareinejad
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Ameri
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Mahmoudi Maymand
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Lei C, Xu Y, Zhang S, Huang C, Qin J. The role of microbiota in gastric cancer: A comprehensive review. Helicobacter 2024; 29:e13071. [PMID: 38643366 DOI: 10.1111/hel.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) continues to pose a significant global threat in terms of cancer-related fatalities. Despite notable advancements in medical research and therapies, further investigation is warranted to elucidate its underlying etiology and risk factors. Recent times have witnessed an escalated emphasis on comprehending the role of the microbiota in cancer development. METHODS This review briefly delves into recent developments in microbiome-related research pertaining to gastric cancer. RESULTS According to studies, the microbiota can influence GC growth by inciting inflammation, disrupting immunological processes, and generating harmful microbial metabolites. Furthermore, there is ongoing research into how the microbiome can impact a patient's response to chemotherapy and immunotherapy. CONCLUSION The utilization of the microbiome for detecting, preventing, and managing stomach cancer remains an active area of exploration.
Collapse
Affiliation(s)
- Changzhen Lei
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yitian Xu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaopeng Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Qin
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Wang Y, Jin S, Zhuang Q, Liu N, Chen R, Adam SA, Jin J, Sun J. Chimeric antigen receptor natural killer cells: a promising antitumor immunotherapy. MedComm (Beijing) 2023; 4:e422. [PMID: 38045827 PMCID: PMC10691297 DOI: 10.1002/mco2.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used in adoptive cell therapy for malignancies. However, some obstacles, including side effects such as graft-versus-host disease and cytokine release syndrome, therapy resistance, limited sources, as well as high cost, limited the application of CAR T cells. Recently, CAR natural killer (NK) cells have been pursued as the effector cells for adoptive immunotherapy for their attractive merits of strong intrinsic antitumor activity and relatively mild side effects. Additionally, CAR NK cells can be available from various sources and do not require strict human leukocyte antigen matching, which suggests them as promising "off-the-shelf" products for clinical application. Although the use of CAR NK cells is restrained by the limited proliferation and impaired efficiency within the immunosuppressive tumor microenvironment, further investigation in optimizing CAR structure and combination therapies will overcome these challenges. This review will summarize the advancement of CAR NK cells, CAR NK cell manufacture, the clinical outcomes of CAR NK therapy, the challenges in the field, and prospective solutions. Besides, we will discuss the emerging application of other immune cells for CAR engineering. Collectively, this comprehensive review will provide a valuable and informative summary of current progress and evaluate challenges and future opportunities of CAR NK cells in tumor treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Shengjie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Qiqi Zhuang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Na Liu
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Department of OncologyAffiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifangShandongChina
| | - Ruyi Chen
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Jie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| | - Jie Sun
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| |
Collapse
|
8
|
Xu X, Chen J, Li W, Feng C, Liu Q, Gao W, He M. Immunology and immunotherapy in gastric cancer. Clin Exp Med 2023; 23:3189-3204. [PMID: 37322134 DOI: 10.1007/s10238-023-01104-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Gastric cancer is the fifth leading cause of cancer-related deaths worldwide. As the diagnosis of early gastric cancer is difficult, most patients are at a late stage of cancer progression when diagnosed. The current therapeutic approaches based on surgical or endoscopic resection and chemotherapy indeed improve patients' outcomes. Immunotherapy based on immune checkpoint inhibitors has opened a new era for cancer treatment, and the immune system of the host is reshaped to combat tumor cells and the strategy differs according to the patient's immune system. Thus, an in-depth understanding of the roles of various immune cells in the progression of gastric cancer is beneficial to application for immunotherapy and the discovery of new therapeutic targets. This review describes the functions of different immune cells in gastric cancer development, mainly focusing on T cells, B cells, macrophages, natural killer cells, dendritic cells, neutrophils as well as chemokines or cytokines secreted by tumor cells. And this review also discusses the latest advances in immune-related therapeutic approaches such as immune checkpoint inhibitors, CAR-T or vaccine, to reveal potential and promising strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaqing Xu
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Jiaxing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenxing Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Chenlu Feng
- Department of Cancer Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, People's Republic of China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenfang Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Meng He
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China.
| |
Collapse
|
9
|
Dickerson LK, Carter JA, Kohli K, Pillarisetty VG. Emerging interleukin targets in the tumour microenvironment: implications for the treatment of gastrointestinal tumours. Gut 2023; 72:1592-1606. [PMID: 37258094 DOI: 10.1136/gutjnl-2023-329650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The effectiveness of antitumour immunity is dependent on intricate cytokine networks. Interleukins (ILs) are important mediators of complex interactions within the tumour microenvironment, including regulation of tumour-infiltrating lymphocyte proliferation, differentiation, migration and activation. Our evolving and increasingly nuanced understanding of the cell type-specific and heterogeneous effects of IL signalling has presented unique opportunities to fine-tune elaborate IL networks and engineer new targeted immunotherapeutics. In this review, we provide a primer for clinicians on the challenges and potential of IL-based treatment. We specifically detail the roles of IL-2, IL-10, IL-12 and IL-15 in shaping the tumour-immune landscape of gastrointestinal malignancies, paying particular attention to promising preclinical findings, early-stage clinical research and innovative therapeutic approaches that may properly place ILs to the forefront of immunotherapy regimens.
Collapse
Affiliation(s)
| | - Jason A Carter
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
| | - Karan Kohli
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
- Flatiron Bio, Palo Alto, California, USA
| | - Venu G Pillarisetty
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Batatinha H, Diak DM, Niemiro GM, Baker FL, Smith KA, Zúñiga TM, Mylabathula PL, Seckeler MD, Lau B, LaVoy EC, Gustafson MP, Katsanis E, Simpson RJ. Human lymphocytes mobilized with exercise have an anti-tumor transcriptomic profile and exert enhanced graft-versus-leukemia effects in xenogeneic mice. Front Immunol 2023; 14:1067369. [PMID: 37077913 PMCID: PMC10109447 DOI: 10.3389/fimmu.2023.1067369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundEvery bout of exercise mobilizes and redistributes large numbers of effector lymphocytes with a cytotoxic and tissue migration phenotype. The frequent redistribution of these cells is purported to increase immune surveillance and play a mechanistic role in reducing cancer risk and slowing tumor progression in physically active cancer survivors. Our aim was to provide the first detailed single cell transcriptomic analysis of exercise-mobilized lymphocytes and test their effectiveness as a donor lymphocyte infusion (DLI) in xenogeneic mice engrafted with human leukemia.MethodsPeripheral blood mononuclear cells (PBMCs) were collected from healthy volunteers at rest and at the end of an acute bout of cycling exercise. Flow cytometry and single-cell RNA sequencing was performed to identify phenotypic and transcriptomic differences between resting and exercise-mobilized cells using a targeted gene expression panel curated for human immunology. PBMCs were injected into the tail vein of xenogeneic NSG-IL-15 mice and subsequently challenged with a luciferase tagged chronic myelogenous leukemia cell line (K562). Tumor growth (bioluminescence) and xenogeneic graft-versus-host disease (GvHD) were monitored bi-weekly for 40-days.ResultsExercise preferentially mobilized NK-cell, CD8+ T-cell and monocyte subtypes with a differentiated and effector phenotype, without significantly mobilizing CD4+ regulatory T-cells. Mobilized effector lymphocytes, particularly effector-memory CD8+ T-cells and NK-cells, displayed differentially expressed genes and enriched gene sets associated with anti-tumor activity, including cytotoxicity, migration/chemotaxis, antigen binding, cytokine responsiveness and alloreactivity (e.g. graft-versus-host/leukemia). Mice receiving exercise-mobilized PBMCs had lower tumor burden and higher overall survival (4.14E+08 photons/s and 47%, respectively) at day 40 compared to mice receiving resting PBMCs (12.1E+08 photons/s and 22%, respectively) from the same donors (p<0.05). Human immune cell engraftment was similar for resting and exercise-mobilized DLI. However, when compared to non-tumor bearing mice, K562 increased the expansion of NK-cell and CD3+/CD4-/CD8- T-cells in mice receiving exercise-mobilized but not resting lymphocytes, 1-2 weeks after DLI. No differences in GvHD or GvHD-free survival was observed between groups either with or without K562 challenge.ConclusionExercise in humans mobilizes effector lymphocytes with an anti-tumor transcriptomic profile and their use as DLI extends survival and enhances the graft-versus-leukemia (GvL) effect without exacerbating GvHD in human leukemia bearing xenogeneic mice. Exercise may serve as an effective and economical adjuvant to increase the GvL effects of allogeneic cell therapies without intensifying GvHD.
Collapse
Affiliation(s)
- Helena Batatinha
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
| | - Douglass M. Diak
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
| | - Grace M. Niemiro
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
- Cancer Center, The University of Arizona, Tucson, AZ, United States
| | - Forrest L. Baker
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
- Cancer Center, The University of Arizona, Tucson, AZ, United States
| | - Kyle A. Smith
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Tiffany M. Zúñiga
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Preteesh L. Mylabathula
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
| | - Michael D. Seckeler
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
| | - Branden Lau
- University of Arizona Genetics Core, The University of Arizona, Tucson, AZ, United States
| | - Emily C. LaVoy
- Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Michael P. Gustafson
- Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, AZ, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
- Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | - Richard J. Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, The University of Arizona, Tucson, AZ, United States
- Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Richard J. Simpson,
| |
Collapse
|
11
|
Alizadeh Z, Omidnia P, Altalbawy FMA, Gabr GA, Obaid RF, Rostami N, Aslani S, Heidari A, Mohammadi H. Unraveling the role of natural killer cells in leishmaniasis. Int Immunopharmacol 2023; 114:109596. [PMID: 36700775 DOI: 10.1016/j.intimp.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
NK cells are known as frontline responders that are efficient in combating several maladies as well as leishmaniasis caused by Leishmania spp. As such they are being investigated to be used for adoptive transfer therapy and vaccine. In spite of the lack of antigen-specific receptors at their surface, NK cells can selectively recognize pathogens, accomplished by the activation of the receptors on the NK cell surface and also as the result of their effector functions. Activation of NK cells can occur through interaction between TLR-2 expressed on NK cells and. LPG of Leishmania parasites. In addition, NK cell activation can occur by cytokines (e.g., IFN-γ and IL-12) that also lead to producing cytokines and chemokines and lysis of target cells. This review summarizes several evidences that support NK cells activation for controlling leishmaniasis and the potentially lucrative roles of NK cells during leishmaniasis. Furthermore, we discuss strategies of Leishmania parasites in inhibiting NK cell functions. Leishmania LPG can utilizes TLR2 to evade host-immune responses. Also, Leishmania GP63 can directly binds to NK cells and modulates NK cell phenotype. Finally, this review analyzes the potentialities to harness NK cells effectiveness in therapy regimens and vaccinations.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Duba 71911, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Narges Rostami
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliehsan Heidari
- Department of Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
12
|
Liu Y, Li C, Lu Y, Liu C, Yang W. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol 2022; 13:1016817. [PMID: 36341377 PMCID: PMC9630479 DOI: 10.3389/fimmu.2022.1016817] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor microenvironment is the general term for all non-cancer components and their metabolites in tumor tissue. These components include the extracellular matrix, fibroblasts, immune cells, and endothelial cells. In the early stages of tumors, the tumor microenvironment has a tumor suppressor function. As the tumor progresses, tumor immune tolerance is induced under the action of various factors, such that the tumor suppressor microenvironment is continuously transformed into a tumor-promoting microenvironment, which promotes tumor immune escape. Eventually, tumor cells manifest the characteristics of malignant proliferation, invasion, metastasis, and drug resistance. In recent years, stress effects of the extracellular matrix, metabolic and phenotypic changes of innate immune cells (such as neutrophils, mast cells), and adaptive immune cells in the tumor microenvironment have been revealed to mediate the emerging mechanisms of immune tolerance, providing us with a large number of emerging therapeutic targets to relieve tumor immune tolerance. Gastric cancer is one of the most common digestive tract malignancies worldwide, whose mortality rate remains high. According to latest guidelines, the first-line chemotherapy of advanced gastric cancer is the traditional platinum and fluorouracil therapy, while immunotherapy for gastric cancer is extremely limited, including only Human epidermal growth factor receptor 2 (HER-2) and programmed death ligand 1 (PD-L1) targeted drugs, whose benefits are limited. Clinical experiments confirmed that cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), vascular endothelial growth factor receptor (VEGFR) and other targeted drugs alone or in combination with other drugs have limited efficacy in patients with advanced gastric cancer, far less than in lung cancer, colon cancer, and other tumors. The failure of immunotherapy is mainly related to the induction of immune tolerance in the tumor microenvironment of gastric cancer. Therefore, solving the immune tolerance of tumors is key to the success of gastric cancer immunotherapy. In this study, we summarize the latest mechanisms of various components of the tumor microenvironment in gastric cancer for inducing immune tolerance and promoting the formation of the malignant phenotype of gastric cancer, as well as the research progress of targeting the tumor microenvironment to overcome immune tolerance in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Li, ; Wei Yang,
| | - Yaoping Lu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Changfeng Li, ; Wei Yang,
| |
Collapse
|
13
|
Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol 2022; 43:833-847. [PMID: 36058806 PMCID: PMC9612852 DOI: 10.1016/j.it.2022.08.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
14
|
Helmin-Basa A, Gackowska L, Balcerowska S, Ornawka M, Naruszewicz N, Wiese-Szadkowska M. The application of the natural killer cells, macrophages and dendritic cells in treating various types of cancer. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2019-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Innate immune cells such as natural killer (NK) cells, macrophages and dendritic cells (DCs) are involved in the surveillance and clearance of tumor. Intensive research has exposed the mechanisms of recognition and elimination of tumor cells by these immune cells as well as how cancers evade immune response. Hence, harnessing the immune cells has proven to be an effective therapy in treating a variety of cancers. Strategies aimed to harness and augment effector function of these cells for cancer therapy have been the subject of intense researches over the decades. Different immunotherapeutic possibilities are currently being investigated for anti-tumor activity. Pharmacological agents known to influence immune cell migration and function include therapeutic antibodies, modified antibody molecules, toll-like receptor agonists, nucleic acids, chemokine inhibitors, fusion proteins, immunomodulatory drugs, vaccines, adoptive cell transfer and oncolytic virus–based therapy. In this review, we will focus on the preclinical and clinical applications of NK cell, macrophage and DC immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Anna Helmin-Basa
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Lidia Gackowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Sara Balcerowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Marcelina Ornawka
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Natalia Naruszewicz
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| |
Collapse
|
15
|
Majewski M, Mertowska P, Mertowski S, Smolak K, Grywalska E, Torres K. Microbiota and the Immune System-Actors in the Gastric Cancer Story. Cancers (Basel) 2022; 14:cancers14153832. [PMID: 35954495 PMCID: PMC9367521 DOI: 10.3390/cancers14153832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Stomach cancer is one of the most commonly diagnosed cancers in the world. Although the number of new cases is decreasing year by year, the death rate for this type of cancer is still high. The heterogeneous course and the lack of symptoms in the early stages of the disease mean that the diagnosis is made late, which translates into a worse prognosis for such patients. That is why it is so important to analyze potential risk factors that may increase the risk of developing gastric cancer and to search for new effective methods of treatment. These requirements are met by the analysis of the composition of the gastric microbiota and its relationship with the immune system, which is a key element in the human anti-cancer fight. This publication was created to systematize the current knowledge on the impact of dysbiosis of human microbiota on the development and progression of gastric cancer. Particular emphasis was placed on taking into account the role of the immune system in this process. Abstract Gastric cancer remains one of the most commonly diagnosed cancers in the world, with a relatively high mortality rate. Due to the heterogeneous course of the disease, its diagnosis and treatment are limited and difficult, and it is associated with a reduced prognosis for patients. That is why it is so important to understand the mechanisms underlying the development and progression of this cancer, with particular emphasis on the role of risk factors. According to the literature data, risk factors include: changes in the composition of the stomach and intestinal microbiota (microbiological dysbiosis and the participation of Helicobacter pylori), improper diet, environmental and genetic factors, and disorders of the body’s immune homeostasis. Therefore, the aim of this review is to systematize the knowledge on the influence of human microbiota dysbiosis on the development and progression of gastric cancer, with particular emphasis on the role of the immune system in this process.
Collapse
Affiliation(s)
- Marek Majewski
- 2nd Department of General, Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, 20-081 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Kamil Torres
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Lin Z, Xie X, Gu M, Chen Q, Lu G, Jia X, Xiao W, Zhang J, Yu D, Gong W. microRNA-144/451 decreases dendritic cell bioactivity via targeting interferon-regulatory factor 5 to limit DSS-induced colitis. Front Immunol 2022; 13:928593. [PMID: 35967345 PMCID: PMC9372465 DOI: 10.3389/fimmu.2022.928593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
The microRNAs miR-144/451 are highly conserved miRNA that is strongly induced during erythropoiesis. Despite the biological functions of miR-144/451 have been extensively studied in erythropoiesis and tumorigenesis, few studies have been conducted in immune responses. In this study, we showed that miR-144/451-/- DCs exhibit increased activation. Mechanistically, the miR-144 directly targets the 3`-UTR of IRF5 and represses the expression of IRF5 in DCs. Ectopic expression of miR-144/451 by lentiviruses downregulates the levels of IRF5 and suppresses DCs function. In addition, knockdown of IRF5 by shRNA significantly inhibits activities of the miR-144/451-/- DCs. Expression of miR144/451 was decreased in DCs from both patients with IBD and mice with DSS-colitis compared with controls. Human PBMC derived DCs were downregulated expression of miR144/451 after LPS stimulation. In the DSS-induced colitis mice model, we showed that ablation of the miR-144/451 gene causes severe colitis, and their DCs from both periphery and MLN expressed higher co-stimulatory molecules and pro-inflammatory cytokines than wild-type mice. In addition, DCs isolated from miR-144/451-/- mice transfusion exacerbates mice colitis. In the bone marrow transplanted chimeric mice model, we show that miR-144/451-/- bone marrow transplantation deteriorated DSS-induced colitis. At last, we treat the mice with miR-144/451 delivered by chitosan nanoparticles revealing protective effects in DSS-induced colitis mice. Thus, our results reveal a novel miR144/451-IRF5 pathway in DCs that protects experimental colitis. The manipulation of miR-144/451 expression and DCs activation in IBD patients may be a novel therapeutic approach for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhijie Lin
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Xiaoyan Xie
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Min Gu
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Qian Chen
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoqin Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jun Zhang
- Department of Blood Transfusion, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- *Correspondence: Weijuan Gong, ; Duonan Yu,
| | - Weijuan Gong
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Weijuan Gong, ; Duonan Yu,
| |
Collapse
|
17
|
Mylod E, Lysaght J, Conroy MJ. Natural killer cell therapy: A new frontier for obesity-associated cancer. Cancer Lett 2022; 535:215620. [PMID: 35283210 DOI: 10.1016/j.canlet.2022.215620] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 02/09/2023]
Abstract
Natural killer (NK) cell infiltration of solid tumours is associated with better outcomes, placing augmentation of NK cell abundance in tumours as an attractive immunotherapeutic approach. The unique ability of NK cells to target cancer cells without antigen specificity increases their versatility and applicability as an immunotherapeutic tool. However, successful utilisation of NK cell-based therapies in solid tumours is still at an early stage. Obesity has become a global health epidemic, and the prevalence of obesity-associated cancers has significantly increased. Obesity-associated malignancies provide a unique challenge for the successful application of cell-based immunotherapies including NK cell-based therapies because significant numbers of NK and T cells are recruited to the visceral adipose tissue at the expense of successful tumour infiltration and eradication. As such, immunotherapy efficacy has been disappointing for obesity-associated malignancies such as oesophageal and gastric adenocarcinoma. Therefore, immunotherapies for obesity-associated cancers warrant our further attention. Indeed, it is becoming ever more obvious that more innovative approaches are needed to re-invigorate anti-tumour immunity and overcome immune exclusion in such tumours. In this review, we briefly summarise the dysfunctionality of NK cells in obesity-associated cancer. We outline the NK cell-based immunotherapeutic approaches which hold promise as effective treatments in this disease space, including CAR-NK cells. Furthermore, we suggest future avenues which possess the potential to transform immunotherapy and specifically NK cell therapy efficacy for obesity-associated cancer.
Collapse
Affiliation(s)
- Eimear Mylod
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, 8, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, 8, Ireland
| | - Melissa J Conroy
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, 8, Ireland; Cancer Immunology Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, 2, Ireland.
| |
Collapse
|
18
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
19
|
Hu Y, Liu D, Cui P, Zhang W, Chen H, Piao C, Lu Y, Liu X, Wang Y, Liu J, Lu X. IL-15-induced lymphocytes as adjuvant cellular immunotherapy for gastric cancer. Invest New Drugs 2021; 39:1538-1548. [PMID: 34387808 DOI: 10.1007/s10637-021-01160-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Objectives To test the antitumor potential of lymphocytes transferred via adoptive cell therapy (ACT) in a mouse model of human gastric cancer (GC), and to evaluate the clinical efficacy and safety of combining lymphocytes as adjuvant therapy with first-line chemotherapy in patients with GC. Methods We constructed a human GC xenograft model in sublethally irradiated 6-8-week-old male NCG mice. MKN-45 cells (1 × 106 cells/mouse) were subcutaneously injected into mice's flanks. After tumors had become palpable, we randomized the mice into control, ACTIL-2, and ACTIL-15 groups. Human lymphocytes were then injected into mouse tail veins. In addition, 63 human patients with histologically or cytologically confirmed stage III-IV GC randomly received S-1 + oxaliplatin + ACTIL-15 (combination therapy group) or S-1 + oxaliplatin (chemotherapy group). Results In the mouse study, treatment with ACTIL-15 cells inhibited tumor growth on adoptive transfer, and mice that received ACTIL-15 cells had significantly longer survival rates (p < 0.05, ACTIL-15 vs. ACTIL-2). In the human study, the median survival rate of patients in the combination therapy group was 472 days (95% confidence interval [CI], 276-668 days), whereas that of patients in the chemotherapy group was 266 days (95% CI, 200-332 days; p < 0.05). Eleven percent (7/63) of patients had adverse reactions, but these reactions did not interfere with treatment. Conclusion Adoptive transfer of ACTIL-15 cells in a mouse model of GC and in patients with advanced GC treated with S1 + oxaliplatin improved survival rates in both, with an acceptable safety profile.
Collapse
Affiliation(s)
- Yuefeng Hu
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Liu
- Department of Radiology, The First Hospital of Tsinghua University, Beijing, China
| | - Peilin Cui
- Department of Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Bejing, China
| | - Wen Zhang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Chen
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chunmei Piao
- Department of Oncology, Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, China
| | - Yongcheng Lu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Xuesong Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co, Ltd, Beijing, China
| | - Yue Wang
- Department of Oncology, Beijing Biohealthcare Biotechnology Co, Ltd, Beijing, China
| | - Jingwei Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co, Ltd, Beijing, China.
| | - Xu Lu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co, Ltd, Beijing, China
| |
Collapse
|
20
|
Xie MZ, Tang YP, Hu BL, Li KZ, Li JL, Liang XQ. Percentage of Natural Killer (NK) Cells in Peripheral Blood Is Associated with Prognosis in Patients with Gastric Cancer: A Retrospective Study from a Single Center. Med Sci Monit 2021; 27:e927464. [PMID: 33500378 PMCID: PMC7849206 DOI: 10.12659/msm.927464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Natural killer (NK) cells are important for the prognosis of multiple cancers, but their prognostic value remains to be evaluated in patients with gastric cancer. Thus, this retrospective study was conducted at a single center to investigate the association between percentage of NK cells in the peripheral blood and prognosis in patients with gastric cancer. Material/Methods The data of 180 gastric cancer patients were collected. Univariate and multivariate Cox regression models were applied to screen candidate prognostic factors. A time-dependent receiver operating characteristic curve was employed to evaluate the ability of NK cells as a prognostic marker. Furthermore, we determined the correlation between the NK cells percentage and other parameters and their clinical significance. Results Patients with a higher percentage of NK cells survived longer than those with a lower percentage of NK cells. Cox analysis revealed that NK cells could be used as an independent indicator for patients with gastric cancer. The percentage of NK cells was positively correlated with lymphocyte count and albumin, but was negatively correlated with CA125 and neutrophil-lymphocyte ratio. The area under the curve for NK cells in predicting the 5-year survival rate for gastric cancer was 0.792. This increased to 0.830 upon combining NK cells with neutrophil-lymphocyte ratio. Patients at early T, N, and clinical stages possessed a significantly higher percentage of NK cells compared to those at advanced T, N, and clinical stages of gastric cancer. Conclusions Our results suggest that a higher percentage of NK cells predicts is associated with longer survival of gastric cancer patients and could serve as an independent prognostic biomarker.
Collapse
Affiliation(s)
- Ming-Zhi Xie
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Yan-Ping Tang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Ji-Lin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Xin-Qiang Liang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| |
Collapse
|
21
|
Cai L, Hu H, Duan H, Li Y, Zou Z, Luo K, Zhang Z, Yang J, Jin J, Chen Y, Ke Z, Fang Z, Liu Q, Hong X, Hu S, Liu B. The construction of a new oncolytic herpes simplex virus expressing murine interleukin-15 with gene-editing technology. J Med Virol 2020; 92:3617-3627. [PMID: 31994741 DOI: 10.1002/jmv.25691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
The treatment of tumors with oncolytic viruses is an important cancer immunotherapy strategy. Interleukin-15 (IL-15) can enhance the antitumor effect of natural killer cells and T cells. An oncolytic herpes simplex type II virus (oHSV2-mIL-15CherryFP) expressing mouse IL-15 was constructed using the CRISPR/Cas9 system, and its antitumor activity in vitro and in vivo was evaluated. In vitro, the mouse interleukin-15 (mIL-15) present in the culture supernatant expressed by oHSV2-mIL-15CherryFP was able to enhance the killing of CT26-GFP tumor cells by T cells. In addition, the intratumoral injection of oHSV2-mIL-15CherryFP inhibited tumor growth in the CT26-iRFP and BGC823-iRFP model. These results indicate that the use of oncolytic herpes simplex virus expressing IL-15 may be a potential therapeutic strategy in tumor immunotherapy.
Collapse
Affiliation(s)
- Linkang Cai
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Han Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Haixiao Duan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yuying Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Zongxing Zou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Kailun Luo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ziyi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Junhan Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Jing Jin
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ying Chen
- Wuhan Binhui Biotechnology Co. Ltd., Wuhan, China
| | - Zonghuang Ke
- Hubei University of Science and Technology Xianning, Hubei, China
| | - Zongyao Fang
- Hubei University of Science and Technology Xianning, Hubei, China
| | - Qiong Liu
- Wuhan Binhui Biotechnology Co. Ltd., Wuhan, China
| | | | - Sheng Hu
- Hubei Cancer Hospital, Hubei, China
- Huazhong Agricultural University (HZAU), Wuhan, China
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
22
|
Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, Song R, Xu F. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct Target Ther 2020; 5:250. [PMID: 33122640 PMCID: PMC7596531 DOI: 10.1038/s41392-020-00348-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK's potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.
Collapse
Affiliation(s)
- Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xiaoyu Wang
- College of Life and Health Science, Northeastern University, 110819, Shenyang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Crystal Widarma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|
23
|
Bachiller M, Battram AM, Perez-Amill L, Martín-Antonio B. Natural Killer Cells in Immunotherapy: Are We Nearly There? Cancers (Basel) 2020; 12:E3139. [PMID: 33120910 PMCID: PMC7694052 DOI: 10.3390/cancers12113139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.
Collapse
Affiliation(s)
| | | | | | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (A.M.B.); (L.P.-A.)
| |
Collapse
|
24
|
The impaired anti-tumoral effect of immune surveillance cells in the immune microenvironment of gastric cancer. Clin Immunol 2020; 219:108551. [DOI: 10.1016/j.clim.2020.108551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
|
25
|
Baj J, Brzozowska K, Forma A, Maani A, Sitarz E, Portincasa P. Immunological Aspects of the Tumor Microenvironment and Epithelial-Mesenchymal Transition in Gastric Carcinogenesis. Int J Mol Sci 2020; 21:2544. [PMID: 32268527 PMCID: PMC7177728 DOI: 10.3390/ijms21072544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Infection with Helicobacter pylori, a Gram-negative, microaerophilic pathogen often results in gastric cancer in a subset of affected individuals. This explains why H. pylori is the only bacterium classified as a class I carcinogen by the World Health Organization. Several studies have pinpointed mechanisms by which H. pylori alters signaling pathways in the host cell to cause diseases. In this article, the authors have reviewed 234 studies conducted over a span of 18 years (2002-2020). The studies investigated the various mechanisms associated with gastric cancer induction. For the past 1.5 years, researchers have discovered new mechanisms contributing to gastric cancer linked to H. pylori etiology. Alongside alteration of the host signaling pathways using oncogenic CagA pathways, H. pylori induce DNA damage in the host and alter the methylation of DNA as a means of perturbing downstream signaling. Also, with H. pylori, several pathways in the host cell are activated, resulting in epithelial-to-mesenchymal transition (EMT), together with the induction of cell proliferation and survival. Studies have shown that H. pylori enhances gastric carcinogenesis via a multifactorial approach. What is intriguing is that most of the targeted mechanisms and pathways appear common with various forms of cancer.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Karolina Brzozowska
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Amr Maani
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
26
|
Cristiani CM, Garofalo C, Passacatini LC, Carbone E. New avenues for melanoma immunotherapy: Natural Killer cells? Scand J Immunol 2020; 91:e12861. [PMID: 31879979 DOI: 10.1111/sji.12861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2023]
Abstract
Human solid malignant tumours may be particularly resistant to conventional therapies. Among solid tumours, immunological features of cutaneous melanoma have been well characterized in the past and today melanoma patients are routinely treated with the anti-immune checkpoints immunotherapy that has completely changed metastatic melanoma treatment and prognosis. Two cytotoxic cell populations may lead to the physical elimination of tumour cell targets: cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Tumour recognition by CTLs depends on major histocompatibility complex (MHC) class I molecules, while NK cells recognize tumours expressing low or null levels of MHC class I molecules. Despite this well-established complementarity, NK cells are still left behind in the optimization of innovative immunotherapy approaches. NK cells are members of innate lymphoid cells (ILCs) that play a critical role in early host defence against invading pathogens and transformed cells. Recent findings suggest that NK cell frequencies directly correlate with the overall survival of ipilimumab-treated melanoma patients. Furthermore, in vitro and in vivo evidences indicate that NK cells can selectively kill cancer stem cells, reducing tumour size and delaying metastatic progression. The aim of this review is to provide a survey of the evidences indicating NK cells as an excellent candidate to complement the newest solid tumour immunotherapy approaches.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Lucia Carmela Passacatini
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
27
|
Zhang C, Hu Y, Shi C. Targeting Natural Killer Cells for Tumor Immunotherapy. Front Immunol 2020; 11:60. [PMID: 32140153 PMCID: PMC7042203 DOI: 10.3389/fimmu.2020.00060] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are important innate cytotoxic lymphocytes with a rapid and efficient capacity to recognize and kill tumor cells. In recent years, adoptive transfer of autologous- or allogeneic-activated NK cells has become a promising cellular therapy for cancer. However, the therapeutic efficiency is encouraging in hematopoietic malignancies, but disappointing in solid tumors, for which the use of NK-cell-based therapies presents considerable challenges. It is difficult for NK cells to traffic to, and infiltrate into, tumor sites. NK cell function, phenotype, activation, and persistence are impaired by the tumor microenvironment, even leading to NK cell dysfunction or exhaustion. Many strategies focusing on improving NK cells' durable persistence, activation, and cytolytic activity, including activation with cytokines or analogs, have been attempted. Modifying them with chimeric antigen receptors further increases the targeting specificity of NK cells. Checkpoint blockades can relieve the exhausted state of NK cells. In this review, we discuss how the cytolytic and effector functions of NK cells are affected by the tumor microenvironment and summarize the various immunotherapeutic strategies based on NK cells. In particular, we discuss recent advances in overcoming the suppressive effect of the tumor microenvironment with the aim of enhancing the clinical outcome in solid tumors treated with NK-cell-based immunotherapy.
Collapse
Affiliation(s)
- Cai Zhang
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chongdeng Shi
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
28
|
Sun H, Sun C. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy. Front Immunol 2019; 10:2354. [PMID: 31681269 PMCID: PMC6812684 DOI: 10.3389/fimmu.2019.02354] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Haoyu Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Haoyu Sun
| | - Cheng Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Cheng Sun
| |
Collapse
|
29
|
Potential of the NKG2D/NKG2DL Axis in NK Cell-Mediated Clearance of the HIV-1 Reservoir. Int J Mol Sci 2019; 20:ijms20184490. [PMID: 31514330 PMCID: PMC6770208 DOI: 10.3390/ijms20184490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Viral persistency in latently infected CD4+ T cells despite antiretroviral therapy (ART) represents a major drawback in the fight against HIV-1. Efforts to purge latent HIV-1 have been attempted using latency reversing agents (LRAs) that activate expression of the quiescent virus. However, initial trials have shown that immune responses of ART-treated patients are ineffective at clearing LRA-reactivated HIV-1 reservoirs, suggesting that an adjuvant immunotherapy is needed. Here we overview multiple lines of evidence indicating that natural killer (NK) cells have the potential to induce anti-HIV-1 responses relevant for virus eradication. In particular, we focus on the role of the NKG2D activating receptor that crucially enables NK cell-mediated killing of HIV-1-infected cells. We describe recent data indicating that LRAs can synergize with HIV-1 at upregulating ligands for NKG2D (NKG2DLs), hence sensitizing T cells that exit from viral latency for recognition and lysis by NK cells; in addition, we report in vivo and ex vivo data showing the potential benefits and drawbacks that LRAs may have on NKG2D expression and, more in general, on the cytotoxicity of NK cells. Finally, we discuss how the NKG2D/NKG2DLs axis can be exploited for the development of effective HIV-1 eradication strategies combining LRA-induced virus reactivation with recently optimized NK cell-based immunotherapies.
Collapse
|
30
|
Bi J, Tian Z. NK Cell Dysfunction and Checkpoint Immunotherapy. Front Immunol 2019; 10:1999. [PMID: 31552017 PMCID: PMC6736636 DOI: 10.3389/fimmu.2019.01999] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
NK cells play important roles in the innate immune responses against tumors. The effector function of NK cells relies on the integration of activating and inhibitory signals. Emerging checkpoint receptors and molecules are being revealed to mediate NK cell dysfunction in the tumor microenvironment. Inhibition of some NK cell surface checkpoint receptors has displayed the potential to reverse NK cell dysfunction in tumors, and to boost anti-tumor immunity, both in clinical trials (anti-KIR and anti-NKG2A), and in preclinical studies (e.g., anti-TIGIT, and anti-CD96). To fully exploit the potential of NK-based checkpoint immunotherapy, more understanding of the regional features of NK cells in the tumor microenvironment is required. This will provide valuable information regarding the dynamic nature of NK cell immune response against tumors, as well as novel checkpoints or pathways to be targeted. In this Review, we discuss recent advances in the understanding of NK cell dysfunction in tumors, as well as emerging strategies of NK-based checkpoint immunotherapy for tumors.
Collapse
Affiliation(s)
- Jiacheng Bi
- Shenzhen Laboratory of Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
Sun H, Liu L, Huang Q, Liu H, Huang M, Wang J, Wen H, Lin R, Qu K, Li K, Wei H, Xiao W, Sun R, Tian Z, Sun C. Accumulation of Tumor-Infiltrating CD49a + NK Cells Correlates with Poor Prognosis for Human Hepatocellular Carcinoma. Cancer Immunol Res 2019; 7:1535-1546. [PMID: 31311791 DOI: 10.1158/2326-6066.cir-18-0757] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
The discovery of CD49a+ liver-resident natural killer (NK) cells in mice alters our view of NK cells and provides another opportunity to study NK cells. Although evidence has suggested roles for NK cells in liver diseases, whether and how CD49a+ NK cells contribute to liver diseases remain unclear. In this study, we observed that accumulation of CD49a+ tissue-resident NK cells in human hepatocellular carcinoma (HCC) was higher than in peritumoral tissues. We studied the exhausted and regulatory phenotypes of CD49a+ tissue-resident NK cells by analysis of protein and mRNA. The proportion of CD49a+ NK cells was positively correlated to the proportion of NK cells expressing inhibitory receptors. In addition, CD49a+ NK cells expressed more of checkpoint molecules PD-1, CD96, and TIGIT. Transcriptomic analysis implicated CD49a+ tissue-resident NK cells in the negative regulation of immune responses. Comparison of murine and human CD49a+ NK cells revealed their distinct characteristics and functions. Finally, accumulation of tissue-resident CD49a+ NK cells in liver tumor was correlated to deteriorating disease condition and poor prognosis. Our findings show that CD49a+ NK cells accumulate in liver tumor and suggest a role for CD49a+ NK cells in the negative regulation of immune responses and the development of HCC.
Collapse
Affiliation(s)
- Haoyu Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Lianxin Liu
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Qiang Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Huan Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Jiabei Wang
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Hao Wen
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kun Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Kun Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Weihua Xiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Cheng Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Organ Transplant Center and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Quantitation of low concentrations of polysorbates 80 in protein formulations by Coomassie brilliant blue. Anal Biochem 2019; 573:67-72. [PMID: 30853377 DOI: 10.1016/j.ab.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/15/2018] [Accepted: 03/01/2019] [Indexed: 11/22/2022]
Abstract
Polysorbate 80, as pharmaceutical excipient and virus inactivating agent, is commonly used in the protein pharmaceutical industry. In this study, a method has been developed for the determination of low concentration of Polysorbate 80 in the presence of high concentration proteins (≤100 mg/ml) and excipients. This colorimetric method is based on the interaction of Polysorbate 80 and Coomassie brilliant blue, and suitable for quantitation of Polysorbate 80 in the range of 10-100 μg/ml. Dozens or hundreds of samples can be quantified simultaneously by using microplate. Besides Polysorbate 80, this method can also be used to determine other types of surfactants in protein solutions, such as Polysorbate 20, Triton X-100, NP40, SDS, Benzalkonium chloride/bromide and PEG4000.
Collapse
|
33
|
Du Y, Wei Y. Therapeutic Potential of Natural Killer Cells in Gastric Cancer. Front Immunol 2019; 9:3095. [PMID: 30719024 PMCID: PMC6348255 DOI: 10.3389/fimmu.2018.03095] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers, with a high incidence of cancer death. Despite various therapeutic approaches, the cures and prognosis of advanced GC remain poor. Natural killer (NK) cells, which are known as important lymphocytes in innate immunity, play vital roles in suppressing GC initiation, progression, and metastases. A wide range of clinical settings shows that increasing the number of NK cells or improving NK cell antitumor activity is promising in GC patients. NK cell adoptive therapy (especially expanded NK cells) is a safe and well-tolerated method, which can enhance NK cell cytotoxicity against GC. Meanwhile, cytokines, immunomodulatory drugs, immune checkpoint blockades, antibodies, vaccines, and gene therapy have been found to directly or indirectly activate NK cells to improve their killing activity toward GC. In this review, we summarize recent advancements in the relationship between NK cells and GC and point out all the innovative strategies that can enhance NK cells' function to inhibit the growth of GC.
Collapse
Affiliation(s)
- Yu Du
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Schmiedel D, Mandelboim O. NKG2D Ligands-Critical Targets for Cancer Immune Escape and Therapy. Front Immunol 2018; 9:2040. [PMID: 30254634 PMCID: PMC6141707 DOI: 10.3389/fimmu.2018.02040] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
DNA damage, oncogene activation and excessive proliferation, chromatin modulations or oxidative stress are all important hallmarks of cancer. Interestingly, all of these abnormalities also induce a cellular stress response. By upregulating “stress-induced ligands,” damaged or transformed cells can be recognized by immune cells and cleared. The human genome encodes eight functional “stress-induced ligands”: MICA, MICB, and ULBP1-6. All of them are recognized by a single receptor, NKG2D, which is expressed on natural killer (NK) cells, cytotoxic T cells and other T cell subsets. The NKG2D ligand/NKG2D-axis is well-recognized as an important mediator of anti-tumor activity; however, patient data about the role of NKG2D ligands in immune surveillance and escape appears conflicting. As these ligands are often actively transcribed, tumor cells are urged to manipulate the expression of these ligands on post-transcriptional or post-translational level. Although our knowledge on the regulation of NKG2D ligand expression remains fragmentary, research of the past years revealed multiple cellular mechanisms that are adopted by tumor cells to reduce the expression of “stress-induced ligands” and therefore escape immune recognition. Here, we review the post-transcriptional and post-translational mechanisms by which NKG2D ligands are modulated in cancer cells and their impact on patient prognosis.We discuss controversies and approaches to apply our understanding of the NKG2D ligand/NKG2D-axis for cancer therapy.
Collapse
Affiliation(s)
- Dominik Schmiedel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
35
|
Natural Killer Cells in Liver Disease and Hepatocellular Carcinoma and the NK Cell-Based Immunotherapy. J Immunol Res 2018; 2018:1206737. [PMID: 30255103 PMCID: PMC6142725 DOI: 10.1155/2018/1206737] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
Nature killer (NK) cells play a critical role in host innate and adaptive immune defense against viral infections and tumors. NK cells are enriched in liver hematopoietic cells with unique NK repertories and functions to safeguard liver cells against hepatitis virus infection or malignancy transformation. However, accumulating evidences were found that the NK cells were modulated by liver diseases and liver cancers including hepatocellular carcinoma (HCC) and showed impaired functions failing to activate the elimination of the viral-infected cells or tumor cells and were further involved in the pathogenesis of liver injury and inflammation. The full characterization of circulation and intrahepatic NK cell phenotype and function in liver disease and liver cancer has not only provided new insight into the disease pathogenesis but has also discovered new targets for developing new NK cell-based therapeutic strategies. This review will discuss and summarize the NK cell phenotypic and functional changes in liver disease and HCC, and the NK cell-based immunotherapy approaches and progresses for cancers including HCC will also be reviewed.
Collapse
|
36
|
Jia X, Hu X, Han S, Miao X, Liu H, Li X, Lin Z, Wang Z, Gong W. Increased M1 macrophages in young miR-15a/16−/−
mice with tumour grafts or dextran sulphate sodium-induced colitis. Scand J Immunol 2018; 88:e12703. [DOI: 10.1111/sji.12703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoqin Jia
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Xiangyu Hu
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Sen Han
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Xin Miao
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Hao Liu
- Department of General Surgery; Subei People's Hospital of Jiangsu Province; Yangzhou University; Yangzhou China
| | - Xiaomin Li
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
| | - Zhijie Lin
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Zoonosis; Yangzhou University; Yangzhou China
| | - Zhengbing Wang
- Department of General Surgery; Subei People's Hospital of Jiangsu Province; Yangzhou University; Yangzhou China
| | - Weijuan Gong
- Department of Pathology; Institute of Translational Medicine; Medical College; Yangzhou University; Yangzhou China
- Department of General Surgery; Subei People's Hospital of Jiangsu Province; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases; Yangzhou University; Yangzhou China
- Jiangsu Key Laboratory of Zoonosis; Yangzhou University; Yangzhou China
| |
Collapse
|
37
|
Lin Z, Han S, Qian X, Hu C, Xiao W, Qian L, Zhang Y, Ding Y, Jia X, Zhu G, Gong W. Regulatory NK1.1 -CD4 +NKG2D + subset induced by NKG2DL + cells promotes tumor evasion in mice. Cancer Immunol Immunother 2018; 67:1159-1173. [PMID: 29802426 PMCID: PMC11028319 DOI: 10.1007/s00262-018-2172-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/12/2018] [Indexed: 12/24/2022]
Abstract
Regulatory T cells play critical roles in self-tolerance and tumor evasion. CD4+NKG2D+ cells with regulatory activity are present in patients with NKG2DL+ tumors and juvenile systemic lupus erythematosus. We previously showed that TGF-β-producing CD4+NKG2D+ T cells are present in pCD86-Rae-1ε transgenic mice. Here, we performed both ex vivo and in vivo studies on pCD86-Rae-1ε transgenic mice and an MC38 tumor-bearing mouse model and show that NK1.1-CD4+NKG2D+ T cells have regulatory activity in pCD86-Rae-1ε transgenic mice. Furthermore, this T-cell subset was induced in mice transplanted with NKG2DL+ tumor cells and produced TGF-β and FasL, and secreted low amounts of IFN-γ. This T-cell subset downregulated the function of effector T cells and dendritic cells, which were abolished by anti-TGF-β antibody. In vivo, adoptive transfer of NK1.1-CD4+NKG2D+ T cells promoted TGF-β-dependent tumor growth in mice. We further found that ex vivo induction of NK1.1-CD4+NKG2D+ T cells was dependent on both anti-CD3 and NKG2DL stimulation. Furthermore, regulatory NK1.1-CD4+NKG2D+ T cells did not express Foxp3 or CD25 and expressed intermediate levels of T-bet. Western-blotting showed that STAT3 signaling was activated in NK1.1-CD4+NKG2D+ T cells of MC38 tumor-bearing and pCD86-Rae-1ε transgenic mice. In conclusion, we describe a regulatory NK1.1-CD4+NKG2D+ T-cell population, different from other regulatory T cells and abnormally elevated in pCD86-Rae-1ε transgenic and MC38 tumor-bearing mice.
Collapse
Affiliation(s)
- Zhijie Lin
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 E. Wenhui Road, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Sen Han
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
| | - Xingxing Qian
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
| | - Chunxia Hu
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, People's Republic of China
| | - Li Qian
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China
| | - Yu Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 E. Wenhui Road, Yangzhou, 225009, People's Republic of China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, People's Republic of China
| | - Xiaoqin Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
| | - Guoqiang Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 E. Wenhui Road, Yangzhou, 225009, People's Republic of China.
| | - Weijuan Gong
- Department of Immunology, Institute of Translational Medicine, Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, People's Republic of China.
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, People's Republic of China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 E. Wenhui Road, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China.
| |
Collapse
|
38
|
Ding H, Yang X, Wei Y. Fusion Proteins of NKG2D/NKG2DL in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19010177. [PMID: 29316666 PMCID: PMC5796126 DOI: 10.3390/ijms19010177] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/25/2023] Open
Abstract
NKG2D (natural killer group 2, member D) is an important activating receptor in natural killer (NK) cells and some T cells. NKG2D ligands (NKG2DLs) are specifically expressed on most tumor cells. The engagement of these ligands on tumor cells to NKG2D on NK cells will induce cell-mediated cytotoxicity and have target cells destroyed. This gives NKG2D/NKG2DLs great potential in cancer therapeutic application. The creation of NKG2D/NKG2DL-based multi-functional fusion proteins is becoming one of the most promising strategies in immunotherapy for cancer. Antibodies, cytokines, and death receptors have been fused with NKG2D or its ligands to produce many powerful fusion proteins, including NKG2D-based chimeric antigen receptors (CARs). In this article, we review the recent developments of the fusion proteins with NKG2D/NKG2DL ligands in cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Ding
- Department of Biological Sciences, Clemson University, 190 Collings Street, Clemson, SC 29634, USA.
| | - Xi Yang
- Department of Biological Sciences, Clemson University, 190 Collings Street, Clemson, SC 29634, USA.
| | - Yanzhang Wei
- Department of Biological Sciences, Clemson University, 190 Collings Street, Clemson, SC 29634, USA.
| |
Collapse
|
39
|
Abstract
A group of impressive immunotherapies for cancer treatment, including immune checkpoint-blocking antibodies, gene therapy and immune cell adoptive cellular immunotherapy, have been established, providing new weapons to fight cancer. Natural killer (NK) cells are a component of the first line of defense against tumors and virus infections. Studies have shown dysfunctional NK cells in patients with cancer. Thus, restoring NK cell antitumor functionality could be a promising therapeutic strategy. NK cells that are activated and expanded ex vivo can supplement malfunctional NK cells in tumor patients. Therapeutic antibodies, chimeric antigen receptor (CAR), or bispecific proteins can all retarget NK cells precisely to tumor cells. Therapeutic antibody blockade of the immune checkpoints of NK cells has been suggested to overcome the immunosuppressive signals delivered to NK cells. Oncolytic virotherapy provokes antitumor activity of NK cells by triggering antiviral immune responses. Herein, we review the current immunotherapeutic approaches employed to restore NK cell antitumor functionality for the treatment of cancer.
Collapse
Affiliation(s)
- Yangxi Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
40
|
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that recognize tumor cells or stressed cells through 'missing-self' signals, such as altered or absent expression of MHC class I molecules. The function of NK cells is regulated by the activation or inhibition of receptors present on their surface. The activation of NK cells results in cytotoxic activity on target cells through release of toxic granules and inflammatory cytokines. However, NK cells infiltrating tumors have been frequently shown to exhibit a skewed phenotype that includes decreased antitumor activity and enhanced protumor activities, such as angiogenesis and metastasis. In fact, many studies have reported that tumor microenvironments induce a protumor phenotype in NK cells. Here, we review the biological properties of NK cells in the context of tumorigenesis and tumor progression, with a specific focus on the interactions between NK cells and critical tumor microenvironments, such as epithelial-to-mesenchymal transition, matrix metalloproteinases, and tumor-associated chronic inflammation in tumor metastasis.
Collapse
|
41
|
Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C, Peng J, Gao L, Liang X, Ma C. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. Oncogene 2017; 36:6143-6153. [PMID: 28692048 PMCID: PMC5671935 DOI: 10.1038/onc.2017.209] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022]
Abstract
Abnormal expression of activating/inhibitory receptors leads to natural killer (NK) cells dysfunction in tumor. Here we show that programmed cell death protein 1 (PD-1), a well-known immune checkpoint of T cells, is highly expressed on peripheral and tumor-infiltrating NK cells from patients with digestive cancers including esophageal, liver, colorectal, gastric and biliary cancer. The increased PD-1 expression on NK cells indicates poorer survival in esophageal and liver cancers. Blocking PD-1/PD-L1 signaling markedly enhances cytokines production and degranulation and suppresses apoptosis of NK cells in vitro. PD-1/PD-L1 exerts inhibitory effect through repressing the activation of PI3K/AKT signaling in NK cells. More importantly, a PD-1 blocking antibody was found to significantly suppress the growth of xenografts in nude mice, and this inhibition of tumor growth was completely abrogated by NK depletion. These findings strongly suggested that PD-1 is an inhibitory regulator of NK cells in digestive cancers. PD-1 blockade might be an efficient strategy in NK cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Y Liu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Y Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Y Xu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Z Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| | - X Du
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| | - C Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| | - J Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - L Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| | - X Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| | - C Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
42
|
Abstract
Natural killer cells are important effector lymphocytes of the innate immune system, playing critical roles in antitumor and anti-infection host defense. Tumor progression or chronic infections, however, usually leads to exhaustion of NK cells, thus limiting the antitumor/infection potential of NK cells. In many tumors or chronic infections, multiple mechanisms might contribute to the exhaustion of NK cells, such as dysregulated NK cell receptors signaling, as well as suppressive effects by regulatory cells or soluble factors within the microenvironment. Better understanding of the characteristics, as well as the underlying mechanisms of NK cell exhaustion, not only should increase our understanding of the basic biology of NK cells but also could reveal novel NK cell-based antitumor/infection targets. Here, we provide an overview of our current knowledge on NK cell exhaustion in tumors, and in chronic infections.
Collapse
Affiliation(s)
- Jiacheng Bi
- Shenzhen Laboratory of Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhigang Tian
- School of Life Sciences and Medical Center, Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, University of Science and Technology of China, Hefei, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol 2017; 31:37-54. [DOI: 10.1016/j.smim.2017.07.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
|
44
|
Pellom ST, Dudimah DF, Thounaojam MC, Uzhachenko RV, Singhal A, Richmond A, Shanker A. Bortezomib augments lymphocyte stimulatory cytokine signaling in the tumor microenvironment to sustain CD8+T cell antitumor function. Oncotarget 2017; 8:8604-8621. [PMID: 28052005 PMCID: PMC5352426 DOI: 10.18632/oncotarget.14365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022] Open
Abstract
Tumor-induced immune tolerance poses a major challenge for therapeutic interventions aimed to manage cancer. We explored approaches to overcome T-cell suppression in murine breast and kidney adenocarcinomas, and lung fibrosarcoma expressing immunogenic antigens. We observed that treatment with a reversible proteasome inhibitor bortezomib (1 mg/kg body weight) in tumor-bearing mice significantly enhanced the expression of lymphocyte-stimulatory cytokines IL-2, IL-12, and IL-15. Notably, bortezomib administration reduced pulmonary nodules of mammary adenocarcinoma 4T1.2 expressing hemagglutinin (HA) model antigen (4T1HA) in mice. Neutralization of IL-12 and IL-15 cytokines with a regimen of blocking antibodies pre- and post-adoptive transfer of low-avidity HA518-526-specific CD8+T-cells following intravenous injection of 4T1HA cells increased the number of pulmonary tumor nodules. This neutralization effect was counteracted by the tumor metastasis-suppressing action of bortezomib treatments. In bortezomib-treated 4T1HA tumor-bearing mice, CD4+T-cells showed increased IL-2 production, CD11c+ dendritic cells showed increased IL-12 and IL-15 production, and HA-specific activated CD8+T-cells showed enhanced expression of IFNγ, granzyme-B and transcription factor eomesodermin. We also noted a trend of increased expression of IL-2, IL-12 and IL-15 receptors as well as increased phosphorylation of STAT5 in tumor-infiltrating CD8+T-cells following bortezomib treatment. Furthermore, bortezomib-treated CD8+T-cells showed increased phosphorylation of mitogen-activated protein kinase p38, and Akt, which was abrogated by phosphatidylinositide 3-kinase (PI3K) inhibitor. These data support the therapeutic potential of bortezomib in conjunction with other immunotherapies to augment the strength of convergent signals from CD8+T-cell signaling molecules including TCR, cytokine receptors and downstream PI3K/Akt/STAT5 pathways to sustain CD8+T-cell effector function in the tumor microenvironment.
Collapse
Affiliation(s)
- Samuel T. Pellom
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA
| | - Duafalia F. Dudimah
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Menaka C. Thounaojam
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Roman V. Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Ashutosh Singhal
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Translational and Clinical Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Center for Translational and Clinical Immunology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|