1
|
Zhu Y, Guo Y, Guo P, Zhang J, He Y, Xia Y, Wei Z, Dai Y. Estrogen receptor β activation alleviates inflammatory bowel disease by suppressing NLRP3-dependent IL-1β production in macrophages via downregulation of intracellular calcium level. J Adv Res 2025; 71:571-584. [PMID: 38844124 DOI: 10.1016/j.jare.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Although several estrogen receptor β (ERβ) agonists have been reported to alleviate IBD, the pivotal mechanism remains obscure. OBJECTIVES To examine the effects and mechanisms of ERβ activation on cytokine/chemokine networks in colitis mice. METHODS Dextran sulfate sodium salt (DSS) and trinitro-benzene-sulfonic acid (TNBS) were used to induce mouse colitis model. Multiple molecular biological methods were employed to evaluate the severity of mouse colitis and the level of cytokine and/or chemokine. RESULTS Bioinformatics analysis, ELISA and immunofluorescence results showed that the targeted cytokines and/or chemokines associated with ERβ expression and activation is IL-1β, and the anti-colitis effect of ERβ activation was significantly attenuated by the overexpression of AAV9-IL-1β. Immunofluorescence analysis indicated that ERβ activation led to most evident downregulation of IL-1β expression in colonic macrophages as compared to monocytes and neutrophils. Given the pivotal roles of NLRP3, NLRC4, and AIM2 inflammasome activation in the production of IL-1β, we examined the influence of ERβ activation on inflammasome activity. ELISA and WB results showed that ERβ activation selectively blocked the NLRP3 inflammasome assembly-mediated IL-1β secretion. The calcium-sensing receptor (CaSR) and calcium signaling play crucial roles in the assembly of the NLRP3 inflammasome. WB and immunofluorescence results showed that ERβ activation reduced intracellular CaSR expression and calcium signaling in colonic macrophages. Combination with CaSR overexpression plasmid reversed the suppressive effect of ERβ activation on NLRP3 inflammasome assembly, and counteracting the downregulation of IL-1β secretion. CONCLUSION Our research uncovers that the anti-colitis effect of ERβ activation is accomplished through the reduction of IL-1β levels in colonic tissue, achieved by specifically decreasing CaSR expression in macrophages to lower intracellular calcium levels and inhibit NLRP3 inflammasome assembly-mediated IL-1β production.
Collapse
Affiliation(s)
- Yanrong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Pengxiang Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yue He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| |
Collapse
|
2
|
Zhou W, Yu C, Meng T, Jiang Q, Yu F, Yuan H. Glutaminase-responsive nano-carrier for precise rejuvenation of senescent cells by restoring autophagy in chronic kidney disease treatment. Int J Pharm 2025; 674:125469. [PMID: 40089039 DOI: 10.1016/j.ijpharm.2025.125469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Cellular senescence disrupts tissue homeostasis and diminishes physiological integrity, leading to the accumulation of senescent cells (SCs) in multiple senescence-associated diseases such as chronic kidney disease (CKD). Treatment of SCs has been approved to be a feasible approach to these diseases. However, curing SCs in different cell types remains challenging. In this study, we leveraged the high expression of glutaminase (GLS) in SCs to develop a drug delivery system utilizing γ-poly glutamic acid (γ-PGA) conjugated with octadecylamine (ODA) to encapsulate rapamycin (RP), resulting in a GLS-responsive drug delivery system, designated as RPPO. In a model of drug induced senescence, the γ-PGA component of RPPO was degraded by cellular GLS, facilitating the release of encapsulated RP and rejuvenating SCs by restoring the autophagic capacity. Additionally, in a model of CKD in mice, RPPO enhanced recovery by rejuvenating SCs, reducing fibrosis, and alleviating inflammation. Thus, this senescent cell-responsive drug delivery system presents a novel approach for the treatment of CKD.
Collapse
Affiliation(s)
- Wentao Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China
| | - Caini Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China
| | - Fangying Yu
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016 China.
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 China.
| |
Collapse
|
3
|
Li J, Huang Y, Wang Y, Han Q. A Poly-γ-Glutamic Acid/ε-Polylysine Hydrogel: Synthesis, Characterization, and Its Role in Accelerated Wound Healing. Gels 2025; 11:226. [PMID: 40277663 PMCID: PMC12027117 DOI: 10.3390/gels11040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Wound healing is a complex biological process involving inflammation, proliferation, and remodeling phases. Effective healing is essential for maintaining skin integrity, driving the need for advanced materials like hydrogels, known for their high water retention and tunable mechanical properties. In this study, we synthesized a biocompatible composite hydrogel composed of γ-polyglutamic acid (γ-PGA) and ε-polylysine (ε-PL) through a Schiff base reaction, forming a stable crosslinked network. Its physicochemical properties, including rheological behavior and swelling capacity, were systematically evaluated. Biocompatibility was assessed via in vitro hemolysis and cytotoxicity assays, and in vivo testing was performed using a full-thickness skin defect model in Sprague Dawley (SD) rats to evaluate wound-healing efficacy. The PGA-PL hydrogel demonstrated excellent physicochemical properties, with a maximum swelling ratio of 65.6%, and biocompatibility as evidenced by low hemolysis rates (<5%) and high cell viability (>80%). It promoted wound healing by inhibiting the inflammatory response, reducing levels of the inflammatory cytokine IL-6, enhancing angiogenesis, and accelerating collagen deposition. The hydrogel showed complete biodegradation within 21 days in vivo without inducing a significant inflammatory response and significantly accelerated wound healing, achieving an 86% healing rate within 7 days compared to 67% in the control group. The PGA-PL composite hydrogel exhibits excellent mechanical strength and biocompatibility, and its effective wound-healing capabilities lay the groundwork for future development and optimization in various tissue engineering applications.
Collapse
Affiliation(s)
- Jiaqi Li
- National Institutes for Food and Drug Control, Beijing 100050, China; (J.L.); (Y.H.); (Y.W.)
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanli Huang
- National Institutes for Food and Drug Control, Beijing 100050, China; (J.L.); (Y.H.); (Y.W.)
| | - Yalu Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; (J.L.); (Y.H.); (Y.W.)
- School of Medical Devices, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing 100050, China; (J.L.); (Y.H.); (Y.W.)
| |
Collapse
|
4
|
Xia F, Hu Y, Wang Y, Xue M, Zhu L, Li Y, Zhang Y, Wang S, Wang R, Yuan Q, He Y, Yuan D, Zhang J, Yuan C. Total saponins from Panax japonicus mediate the paracrine interaction between adipocytes and macrophages to promote lipolysis in the adipose tissue during aging via the NLRP3 inflammasome/GDF3/ATGL axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156304. [PMID: 39662098 DOI: 10.1016/j.phymed.2024.156304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Adipocytic lipolysis is strongly related to the increase of visceral fat, decrease of exercise capacity, and various other metabolic syndromes during aging. It is significantly influenced by the paracrine relationship between adipocytes and the adipose tissue macrophages (ATMs), and the cytokines secreted by ATMs have endocrine effects on adjacent tissues. We previously reported that the total saponins from Panax japonicus (TSPJs) can enhance lipid metabolism. In this work, we for the first time proved that TSPJs promoted adipocytic lipolysis by preventing NLRP3 activation in ATMs to inhibit the expression of GDF3. The decrease of GDF3 by TSPJs restored the expression of the adipose triglyceride lipase (ATGL) and phosphorylated hormone-sensitive lipase (p-HSL), both of which are known to decrease with aging. Thus, the NLRP3 inflammasome/GDF3/ATGL axis may be a worthy target in developing future clinical solutions for aging-related obesity.
Collapse
Affiliation(s)
- Fangqi Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Mengzhen Xue
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Leiqi Zhu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yuanyang Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jihong Zhang
- Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine& Traditional Chinese Medicine Hospital of China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
5
|
Tang P, Zhao S, Wang X, Wang S, Wang Y, Kong L, Luo J. Chloranthalactone B covalently binds to the NACHT domain of NLRP3 to attenuate NLRP3-driven inflammation. Biochem Pharmacol 2024; 226:116360. [PMID: 38871334 DOI: 10.1016/j.bcp.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
NLRP3 inflammasome plays an important role in autoimmunity and the dysregulation of NLRP3 inflammasome can lead to various human diseases. Natural products are an important source for the discovery of safe and effective inflammatory inhibitors. Chloranthalactone B (CTB), a lindenane sesquiterpenoid (LS) from a common traditional Chinese medicine (TCM) (Sarcandra glabra), could significantly inhibit the level of IL-1β. This study aims to investigate the anti-inflammatory mechanism and target of CTB and its therapeutic effects on inflammatory diseases. CTB significantly inhibited IL-1β secretion induced by different agonists. Co-IP and flow cytometry results showed that CTB inhibited NLRP3-NEK7 interactions, but had no significant effect on upstream events. Pull-down, DARTS, CETSA, biolayer interferometry assay (BLI), and LC/MS/MS results showed that CTB could covalently bind to cysteine 279 (Cys279) in the NACHT domain of NLRP3. The result of the chemical modification indicated that the epoxide motif was the key group of CTB for its anti-inflammatory effect of CTB. Further animal studies showed that CTB significantly reduced the symptoms and inflammation levels of gout, peritonitis, and acute lung injury. However, the protective effect of CTB against peritonitis and gout was abolished in NLRP3-knocked out (NLRP3 KO) mice. Overall, our research revealed that CTB was a specific NLRP3 covalent inhibitor, and epoxide motif was an active pharmacophore that covalently binds to NLRP3, which provided new insights in designing new NLRP3 inhibitors for treating NLRP3-driven diseases.
Collapse
Affiliation(s)
- Pengfei Tang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaoli Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Siyuan Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yongyue Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
6
|
He C, Liu J, Li J, Wu H, Jiao C, Ze X, Xu S, Zhu Z, Guo W, Xu J, Yao H. Hit-to-Lead Optimization of the Natural Product Oridonin as Novel NLRP3 Inflammasome Inhibitors with Potent Anti-Inflammation Activity. J Med Chem 2024; 67:9406-9430. [PMID: 38751194 DOI: 10.1021/acs.jmedchem.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Targeting NLRP3 inflammasome with inhibitors is a novel strategy for NLRP3-driven diseases. Herein, hit compound 5 possessing an attractive skeleton was identified from our in-house database of oridonin, and then a potential lead compound 32 was obtained by optimization of 5, displaying two-digit nanomolar inhibition on NLRP3. Moreover, compound 32 showed enhanced safety index (SI) relative to oridonin (IC50 = 77.2 vs 780.4 nM, SI = 40.5 vs 8.5) and functioned through blocking ASC oligomerization and interaction of NLRP3-ASC/NEK7, thereby suppressing NLRP3 inflammasome assembly and activation. Furthermore, diverse agonists-induced activations of NLRP3 could be impeded by compound 32 without altering NLRC4 or AIM2 inflammasome. Crucially, compound 32 possessed tolerable pharmaceutical properties and significant anti-inflammatory activity in MSU-induced gouty arthritis model. Therefore, this work enriched the SAR of NLRP3 inflammasome inhibitors and provided a potential candidate for the treatment of NLRP3-associated diseases.
Collapse
Affiliation(s)
- Chen He
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Junkai Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Junda Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Hongyu Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaotong Ze
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P. R. China
| |
Collapse
|
7
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
8
|
Wang H, Sun Y, Ma X, Yang T, Wang F. The Lactobacillus plantarum P-8 Probiotic Microcapsule Prevents DSS-Induced Colitis through Improving Intestinal Integrity and Reducing Colonic Inflammation in Mice. Nutrients 2024; 16:1055. [PMID: 38613088 PMCID: PMC11013935 DOI: 10.3390/nu16071055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Probiotics, recognized as beneficial and active microorganisms, often face challenges in maintaining their functionality under harsh conditions such as exposure to stomach acid and bile salts. In this investigation, we developed probiotic microcapsules and assessed their protective effects and underlying mechanisms in a murine model of dextran sulfate sodium (DSS)-induced colitis using male C57BL/6J mice. The administration of the probiotic microcapsules significantly mitigated body weight loss, prevented colon length shortening, decreased the disease activity index scores, and reduced histopathological scores in mice with DSS-induced colitis. Concurrently, the microencapsulated probiotics preserved intestinal barrier integrity by upregulating the expressions of tight junction proteins ZO-1 and occludin, as well as the mucus layer component MUC-2. Moreover, the treatment with probiotic microcapsules suppressed the activation of the NLRP3 inflammasome signaling pathway in the context of DSS-induced colitis. In conclusion, these findings support the utilization of probiotic microcapsules as a potential functional food ingredient to maintain the permeability of the intestinal barrier and alleviate colonic inflammation in UC.
Collapse
Affiliation(s)
| | | | | | | | - Feng Wang
- Department of Food Science, School of Biochemical Engineering, Beijing Union University, Beijing100023, China; (H.W.); (Y.S.); (X.M.); (T.Y.)
| |
Collapse
|
9
|
Li Y, Zhang W, Tang C, Wang C, Liu C, Chen Q, Yang K, Gu Y, Lei P, Xu H, Wang R. Antidiabetic effects and mechanism of γ-polyglutamic acid on type II diabetes mice. Int J Biol Macromol 2024; 261:129809. [PMID: 38290633 DOI: 10.1016/j.ijbiomac.2024.129809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Diabetes is one of the foremost chronic non-communicable diseases worldwide, which significantly impacts people's quality of life. This study aimed to investigate the hypoglycemic effects of γ-polyglutamic acid (γ-PGA) on STZ-induced type II diabetes mice and its potential mechanisms. The results indicated that γ-PGA intervention contributed to reducing fasting blood glucose levels in diabetic mice, regulating lipid metabolism in type II diabetes mice, and improving insulin resistance. Additionally, γ-PGA could alleviate liver inflammation, enhancing the activity of hepatic antioxidant enzymes. Investigation into the insulin signaling pathway revealed that γ-PGA significantly increased the expression of INSR, IRS-1, Akt, PI3K in diabetic mice, thereby enhancing insulin sensitivity and improving insulin resistance to regulate glucose metabolism. High-throughput sequencing of mouse gut microbiota using 16S rRNA showed that γ-PGA increased the abundance and evenness of beneficial bacteria in the intestines of type II diabetic mice, inhibited the growth of harmful bacteria, and may exerted hypoglycemic effects by modulating and improving relevant metabolic pathways associated with diabetes symptoms. This study provides new insights into the treatment of type II diabetes and highlights the significant potential of γ-PGA in treating type II diabetes.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weijie Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chen Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Changhui Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Yang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
10
|
Wang Z, Cheng F, Xu Y, Li X, Meng S. Role of innate immunity in SARS-CoV-2 infection. BIOSAFETY AND HEALTH 2023; 5:280-288. [PMID: 40078906 PMCID: PMC11894970 DOI: 10.1016/j.bsheal.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 03/14/2025] Open
Abstract
During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, activated macrophages, dendritic cells (D.C.), neutrophils, and natural killer (N.K.) cells are the first defense against infection. These immune effectors trap and ingest the virus, kill infected epithelial cells, or produce anti-viral cytokines. Evidence suggests that aging, obesity, and mental illness can lead to weakened innate immunity and, thus, are all associated with elevated infection and severe disease progression of coronavirus disease 2019 (COVID-19). Innate immune defense networks play a fundamental role in suppressing viral replication, infection establishment, and viral pathogenesis of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Cheng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxiu Xu
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songdong Meng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Liao WC, Wang CH, Sun TH, Su YC, Chen CH, Chang WT, Chen PL, Shiue YL. The Antimicrobial Effects of Colistin Encapsulated in Chelating Complex Micelles for the Treatment of Multi-Drug-Resistant Gram-Negative Bacteria: A Pharmacokinetic Study. Antibiotics (Basel) 2023; 12:antibiotics12050836. [PMID: 37237739 DOI: 10.3390/antibiotics12050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Infections caused by multi-drug-resistant Gram-negative bacteria (MDR-GNB) are an emerging problem globally. Colistin is the last-sort antibiotic for MDR-GNB, but its toxicity limits its clinical use. We aimed to test the efficacy of colistin-loaded micelles (CCM-CL) against drug-resistant Pseudomonas aeruginosa and compare their safety with that of free colistin in vitro and in vivo. Materials and methods: We incorporated colistin into chelating complex micelles (CCMs), thus producing colistin-loaded micelles (CCM-CL), and conducted both safety and efficacy surveys to elucidate their potential uses. Results: In a murine model, the safe dose of CCM-CL was 62.5%, which is much better than that achieved after the intravenous bolus injection of 'free' colistin. With a slow drug infusion, the safe dose of CCM-CL reached 16 mg/kg, which is double the free colistin, 8 mg/kg. The area under the curve (AUC) levels for CCM-CL were 4.09- and 4.95-fold higher than those for free colistin in terms of AUC0-t and AUC0-inf, respectively. The elimination half-lives of CCM-CL and free colistin groups were 12.46 and 102.23 min, respectively. In the neutropenic mice model with carbapenem-resistant Pseudomonas aeruginosa pneumonia, the 14-day survival rate of the mice treated with CCM-CL was 80%, which was significantly higher than the 30% in the free colistin group (p < 0.05). Conclusions: Our results showed that CCM-CL, an encapsulated form of colistin, is safe and effective, and thus may become a drug of choice against MDR-GNB.
Collapse
Affiliation(s)
- Wei-Chuan Liao
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Original Biomedicals Co., Ltd., Tainan 744092, Taiwan
| | - Chau-Hui Wang
- Original Biomedicals Co., Ltd., Tainan 744092, Taiwan
| | - Tzu-Hui Sun
- Original Biomedicals Co., Ltd., Tainan 744092, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yu-Cheng Su
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701301, Taiwan
| | | | - Wen-Teng Chang
- Department of Pharmaceutical Science and Technology, Chung Hwa University of Medical Technology, Tainan 717302, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701301, Taiwan
- Center for Infection Control, National Cheng Kung University Hospital, Tainan 701301, Taiwan
- Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, Tainan 701301, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701301, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
12
|
ZHAO Q, FENG M, JIN S, LIU X, LI S, GUO J, CHENG X, ZHOU G, YU X. 10,11-Dehydrocurvularin attenuates inflammation by suppressing NLRP3 inflammasome activation. Chin J Nat Med 2023; 21:163-171. [PMID: 37003639 DOI: 10.1016/s1875-5364(23)60418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 04/01/2023]
Abstract
10,11-Dehydrocurvularin (DCV) is a natural-product macrolide that has been shown to exert anti-inflammatory activity. However, the underlying mechanism of its anti-inflammatory activity remains poorly understood. Aberrant activation of the NLRP3 inflammasome is involved in diverse inflammation-related diseases, which should be controlled. The results showed that DCV specifically inhibited the activation of the NLRP3 inflammasome in association with reduced IL-1β secretion and caspase-1 activation, without effect on the NLRC4 and AIM2 inflammasomes. Furthermore, DCV disturbed the interaction between NEK7 and NLRP3, resulting in the inhibition of NLRP3 inflammasome activation. The C=C double bond of DCV was required for the NLRP3 inflammasome inhibition induced by DCV. Importantly, DCV ameliorated inflammation in vivo through inhibiting the NLRP3 inflammasome. Taken together, our study reveals a novel mechanism by which DCV suppresses inflammation, which indicates the potential role of DCV in NLRP3 inflammasome-driven inflammatory disorders.
Collapse
|
13
|
Sun L, Cheng L, Fu H, Wang R, Gu Y, Qiu Y, Sun K, Xu H, Lei P. A strategy for nitrogen conversion in aquaculture water based on poly-γ-glutamic acid synthesis. Int J Biol Macromol 2023; 229:1036-1043. [PMID: 36603727 DOI: 10.1016/j.ijbiomac.2022.12.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Ammonia and nitrite are nitrogenous pollutants in aquaculture effluents, which pose a major threat to the health of aquatic animals. In this study, we developed a nitrogen conversion strategy based on synthesis of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis NX-2. The nitrogen removal efficiency of NX-2 was closely related to synthesizing γ-PGA, and was positively correlated with the inoculum level. The degradation rates of ammonia nitrogen and nitrite at 104 CFU/mL were 84.42 % and 62.56 %, respectively. Through adaptive laboratory evolution (ALE) experiment, we obtained a strain named ALE 5 M with ammonia degradation rate of 98.03 % and nitrite of 93.62 % at the inoculum level of 104 CFU/mL. Transcriptome analysis showed that the strain was more likely to produce γ-PGA after ALE. By enzyme activity and qPCR analysis, we confirmed that ALE 5 M degraded ammonia nitrogen through γ-PGA synthesis, which provided a new way for nitrogen removal in aquaculture water.
Collapse
Affiliation(s)
- Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lifangyu Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Heng Fu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ke Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
14
|
JC2-11, a benzylideneacetophenone derivative, attenuates inflammasome activation. Sci Rep 2022; 12:22484. [PMID: 36577816 PMCID: PMC9797494 DOI: 10.1038/s41598-022-27129-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Dysregulation of inflammasome activation induces chronic and excess inflammation resulting in several disorders, such as metabolic disorders and cancers. Thus, screening for its regulator derived from natural materials has been conducted progressively. JC2-11 (JC) was designed to enhance the antioxidant activity based on a chalcone, which is abundant in edible plants and a precursor of flavonoids. This study examined the effects of JC on inflammasome activation in human and murine macrophages. JC inhibited the secretion of interleukin (IL)-1β and lactate dehydrogenases, and the cleavage of caspase-1 and gasdermin D in response to the tested activators (i.e., NLRP3, NLRC4, AIM2, and non-canonical inflammasome triggers). In addition, JC attenuated IL-1β secretion from lipopolysaccharide (LPS)-injected mice, an inflammasome-mediating disease model. Mechanistically, JC blocked the expression of the inflammasome components during the priming step of the inflammasome, and interrupted the production of mitochondrial reactive oxygen species. In addition, JC inhibited the activity of caspase-1. In conclusion, JC may be a candidate pan-inflammasome inhibitor.
Collapse
|
15
|
Parati M, Khalil I, Tchuenbou-Magaia F, Adamus G, Mendrek B, Hill R, Radecka I. Building a circular economy around poly(D/L-γ-glutamic acid)- a smart microbial biopolymer. Biotechnol Adv 2022; 61:108049. [DOI: 10.1016/j.biotechadv.2022.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
|
16
|
V. Lima B, Oliveira MJ, Barbosa MA, Gonçalves RM, Castro F. Harnessing chitosan and poly-(γ-glutamic acid)-based biomaterials towards cancer immunotherapy. MATERIALS TODAY ADVANCES 2022; 15:100252. [DOI: 10.1016/j.mtadv.2022.100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Jung EM, Lee GS. Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic. J Ginseng Res 2022; 46:331-336. [PMID: 35194373 PMCID: PMC8851744 DOI: 10.1016/j.jgr.2022.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) exhibits various symptoms, ranging from asymptomatic to severe pneumonia or death. The major features of patients in severe COVID-19 are the dysregulation of cytokine secretion, pneumonia, and acute lung injury. Consequently, it leads to acute respiratory distress syndrome, disseminated intravascular coagulation, multiple organ failure, and death. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19, influences nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3), the sensor of inflammasomes, directly or indirectly, culminating in the assembly of NLRP3 inflammasome and activation of inflammatory caspases, which induce the inflammatory disruption in severe COVID-19. Accordingly, the target therapeutics for inflammasome has attracted attention as a treatment for COVID-19. Korean Red Ginseng (KRG) inhibits several inflammatory responses, including the NLRP3 inflammasome signaling. This review discusses the role of KRG in the treatment and prevention of COVID-19 based on its anti-NLRP3 inflammasome efficacy.
Collapse
Affiliation(s)
- Eui-Man Jung
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
18
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
19
|
Sheng K, Xu Y, Kong X, Wang J, Zha X, Wang Y. Probiotic Bacillus cereus Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice through Improvement of the Intestinal Barrier Function, Anti-Inflammation, and Gut Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14810-14823. [PMID: 34677958 DOI: 10.1021/acs.jafc.1c03375] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dysbiosis leads to continuous progress of inflammatory bowel disease (IBD). However, current therapeutic approaches for IBD have limited efficacy and are associated with various side effects. This study focused on exploring the positive effect of a new Bacillus cereus (B. cereus) strain (HMPM18123) in a colitis mouse model and elucidate the underlying molecular mechanisms. The colitis symptoms were alleviated by the B. cereus administration as evidenced by decreased body weight loss, colon length shortening, disease activity index score, and histopathological score. The B. cereus mitigated intestinal epithelial barrier damage by upregulating tight junction protein expression. Moreover, B. cereus exerted anti-inflammatory effects by regulating macrophage polarization and suppressing the TLR4-NF-κB-NLRP3 inflammasome signaling pathways. B. cereus also rebalanced the damaged gut microbiota. Thus, the molecular mechanism of alleviating colitis by B. cereus treatment involved the regulation of the TLR4-NF-κB-NLRP3 inflammasome signaling pathways in intestinal mucosal barriers by modulating gut microbiota composition.
Collapse
Affiliation(s)
- Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Yifan Xu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Xiangdong Zha
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
20
|
Chen LZ, Zhang XX, Liu MM, Wu J, Ma D, Diao LZ, Li Q, Huang YS, Zhang R, Ruan BF, Liu XH. Discovery of Novel Pterostilbene-Based Derivatives as Potent and Orally Active NLRP3 Inflammasome Inhibitors with Inflammatory Activity for Colitis. J Med Chem 2021; 64:13633-13657. [PMID: 34506712 DOI: 10.1021/acs.jmedchem.1c01007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies have shown that the abnormal activation of the NLRP3 inflammasome is involved in a variety of inflammatory-based diseases. In this study, a high content screening model targeting the activation of inflammasome was first established and pterostilbene was discovered as the active scaffold. Based on this finding, total of 50 pterostilbene derivatives were then designed and synthesized. Among them, compound 47 was found to be the best one for inhibiting cell pyroptosis [inhibitory rate (IR) = 73.09% at 10 μM], showing low toxicity and high efficiency [against interleukin-1β (IL-1β): half-maximal inhibitory concentration (IC50) = 0.56 μM]. Further studies showed that compound 47 affected the assembly of the NLRP3 inflammasomes by targeting NLRP3. The in vivo biological activity showed that this compound significantly alleviated dextran sodium sulfate (DSS)-induced colitis in mice. In general, our study provided a novel lead compound directly targeting the NLRP3 protein, which is worthy of further research and structural optimization.
Collapse
Affiliation(s)
- Liu Zeng Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P.R. China
| | - Xing Xing Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Ming Ming Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Jing Wu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Duo Ma
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Liang Zhuo Diao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Qingshan Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230059, P.R. China
| | - Yan Shuang Huang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Rui Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| | - Ban Feng Ruan
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, P.R. China
| | - Xin Hua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P.R. China
| |
Collapse
|
21
|
Yang R, Yu H, Chen J, Zhu J, Song C, Zhou L, Sun Y, Zhang Q. Limonin Attenuates LPS-Induced Hepatotoxicity by Inhibiting Pyroptosis via NLRP3/Gasdermin D Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:982-991. [PMID: 33427450 DOI: 10.1021/acs.jafc.0c06775] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipopolysaccharide (LPS)-induced liver injury is the main factor in acute liver failure. The current study aims to investigate the protection of limonin, an antioxidant compound from citrus fruit, against LPS-induced liver toxicity and elucidate the potential mechanisms. We found that limonin elevated cell viability and reduced LDH release in LPS-treated HepG2 cells. Limonin also inhibited LPS-induced pyroptosis by inhibiting membrane rupture, reducing ROS generation, and decreasing gasdermin D activation. Moreover, limonin inhibited the formation of a NOD-like receptor protein 3 (NLRP3)/Apoptosis-associated speck-like protein containing a CARD (ASC) complex by reducing the related protein expression and the colocalization cytosolic of NLRP3 and caspase-1 and then suppressed IL-1β maturation. Ultimately, we established LPS-induced hepatotoxicity in vivo by using C57BL/6 mice administrated LPS (10 mg/kg) intraperitoneally and limonin (50 and 100 mg/kg) orally. We found that limonin dereased the serum ALT and AST activity and LDH release and increased the hepatic GSH amount in LPS-treated mice. Additionally, the liver histological evaluation revealed that limonin protects against LPS-induced liver damage. We further demonstrated that limonin ameliorated LPS-induced hepatotoxicity by inhibiting pyroptosis via the NLRP3/gasdermin D signaling pathway. In summary, this study uncovered the mechanism whereby limonin mitigated LPS-induced hepatotoxicity and documented that limonin might be a promising candidate drug for LPS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Runyu Yang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hanxi Yu
- College of Overseas Education, Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jianwei Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Changqin Song
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lvqi Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
22
|
Xu Z, Zhou Y, Liu M, Ma H, Sun L, Zahid A, Chen Y, Zhou R, Cao M, Wu D, Zhao W, Li B, Jin T. Homotypic CARD-CARD interaction is critical for the activation of NLRP1 inflammasome. Cell Death Dis 2021; 12:57. [PMID: 33431827 PMCID: PMC7801473 DOI: 10.1038/s41419-020-03342-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Cytosolic inflammasomes are supramolecular complexes that are formed in response to intracellular pathogens and danger signals. However, as to date, the detailed description of a homotypic caspase recruitment domain (CARD) interaction between NLRP1 and ASC has not been presented. We found the CARD-CARD interaction between purified NLRP1CARD and ASCCARD experimentally and the filamentous supramolecular complex formation in an in vitro proteins solution. Moreover, we determined a high-resolution crystal structure of the death domain fold of the human ASCCARD. Mutational and structural analysis revealed three conserved interfaces of the death domain superfamily (Type I, II, and III), which mediate the assembly of the NLRP1CARD/ASCCARD complex. In addition, we validated the role of the three major interfaces of CARDs in assembly and activation of NLRP1 inflammasome in vitro. Our findings suggest a Mosaic model of homotypic CARD interactions for the activation of NLRP1 inflammasome. The Mosaic model provides insights into the mechanisms of inflammasome assembly and signal transduction amplification.
Collapse
Affiliation(s)
- Zhihao Xu
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China ,grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Ying Zhou
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Muziying Liu
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Huan Ma
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Liangqi Sun
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Ayesha Zahid
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Yulei Chen
- grid.411902.f0000 0001 0643 6866College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021 China
| | - Rongbin Zhou
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China ,grid.9227.e0000000119573309CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031 China
| | - Minjie Cao
- grid.411902.f0000 0001 0643 6866College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021 China
| | - Dabao Wu
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Weidong Zhao
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Bofeng Li
- grid.59053.3a0000000121679639Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China 230001
| | - Tengchuan Jin
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China ,grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China ,grid.9227.e0000000119573309CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031 China
| |
Collapse
|
23
|
Dai Z, Chen XY, An LY, Li CC, Zhao N, Yang F, You ST, Hou CZ, Li K, Jiang C, You QD, Di B, Xu LL. Development of Novel Tetrahydroquinoline Inhibitors of NLRP3 Inflammasome for Potential Treatment of DSS-Induced Mouse Colitis. J Med Chem 2020; 64:871-889. [PMID: 33332136 DOI: 10.1021/acs.jmedchem.0c01924] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The NLRP3 inflammasome is a critical component of innate immunity, which defends internal and external threats. However, inappropriate activation of the NLRP3 inflammasome induces various human diseases. In this study, we discovered and synthesized a series of tetrahydroquinoline inhibitors of NLRP3 inflammasome. Among these analogues, compound 6 exhibited optimal NLRP3 inhibitory activity. In vitro studies indicated that compound 6 directly bound to the NACHT domain of NLRP3 but not to protein pyrin domain (PYD) or LRR domain, inhibited NLRP3 ATPase activity, and blocked ASC oligomerization, thereby inhibiting NLRP3 inflammasome assembly and activation. Compound 6 specifically inhibited the NLRP3 inflammasome activation, but had no effect on the activation of NLRC4 or AIM2 inflammasomes. Furthermore, in the dextran sulfate sodium (DSS)-induced colitis mouse model, compound 6 exhibited significant anti-inflammatory activity through inhibiting NLRP3 inflammasome in vivo. Therefore, our study provides a potent NLRP3 inflammasome inhibitor, which deserves further structural optimization as a novel therapeutic candidate for NLRP3-driven diseases.
Collapse
Affiliation(s)
- Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yan An
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cui-Cui Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ni Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Song-Tao You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Chen-Zhi Hou
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Kan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
24
|
Jeong DY, Daily JW, Lee GH, Ryu MS, Yang HJ, Jeong SY, Qiu JY, Zhang T, Park S. Short-Term Fermented Soybeans with Bacillus amyloliquefaciens Potentiated Insulin Secretion Capacity and Improved Gut Microbiome Diversity and Intestinal Integrity To Alleviate Asian Type 2 Diabetic Symptoms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13168-13178. [PMID: 32079403 DOI: 10.1021/acs.jafc.9b07962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We determined that consuming chungkookjang fermented by Bacillus subtilis (BS) or Bacillus amyloliquefaciens (BA) alleviated hyperglycemia in partially pancreatectomized (Px) rats, an Asian type 2 diabetic (T2D) animal model. Px rats had deteriorated glucose metabolism with decreased glucose-stimulated insulin secretion and insulin sensitivity. Insulin secretion capacity was improved in the ascending order of the Px-control, positive control (3 mg of metformin/kg of body weight), BS (4.5% BS diet), BA (4.5% BA diet), and normal-control (sham-operated rats). BA and BS increased β-cell mass and decreased malondialdehyde contents and tumor necrosis factor α expression in the islets. BA increased hepatic peroxisome proliferator-activated receptor (PPAR)-α and PPAR-β similar to the positive control. Bacillales, Lactobacillales, and Verrucomicrobiales (Akkermensia muciniphila) increased and Enterobacteriales decreased in the BA and BS compared to the Px-control. BA prevented the decrease in the villi area and the number of goblet cells in intestinal tissues. In conclusion, BA improved glucose regulation by potentiating insulin secretion and reducing insulin resistance while maintaining gut mucin contents by improving gut microbiota in lean T2D rats.
Collapse
Affiliation(s)
- Do Yeon Jeong
- Department of Research and Development, Sunchang Research Center for Fermentation Microbes, Sunchang 56048, Korea
| | - James W Daily
- Department of Research and Development, Daily Manufacturing, Incorporated, Rockwell, North Carolina 28138, United States
| | - Gae Ho Lee
- Korea Research Institute of Analytical Technology (KRIAT), Daejeon 34024, Korea
| | - Myeong Seon Ryu
- Department of Research and Development, Sunchang Research Center for Fermentation Microbes, Sunchang 56048, Korea
| | - Hee-Jong Yang
- Department of Research and Development, Sunchang Research Center for Fermentation Microbes, Sunchang 56048, Korea
| | - Seong-Yeop Jeong
- Department of Research and Development, Sunchang Research Center for Fermentation Microbes, Sunchang 56048, Korea
| | - Jing Yi Qiu
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
| | - Ting Zhang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
| |
Collapse
|
25
|
Ahn H, Lee GS. Riboflavin, vitamin B2, attenuates NLRP3, NLRC4, AIM2, and non-canonical inflammasomes by the inhibition of caspase-1 activity. Sci Rep 2020; 10:19091. [PMID: 33154451 PMCID: PMC7645791 DOI: 10.1038/s41598-020-76251-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Riboflavin is commonly taken as a nutritional supplement, and it converts to coenzymes during the process of energy production from carbohydrates, fats, and proteins. Although riboflavin is considered to be an anti-inflammatory vitamin because of its antioxidant properties, the effects of riboflavin on inflammasome have been not reported. Inflammasome, a cytosolic surveillance protein complex, leads to the activation of caspase-1, cytokine maturation, and pyroptosis. In the present study, riboflavin attenuated the indicators of NLRP3 inflammasome activation in macrophages, such as the maturation and secretion of interleukin (IL)-1β, IL-18, and caspase-1; the formation of Asc pyroptosome; and the cleavage of gasdermin D. In addition, the oral and peritoneal administration of riboflavin inhibited the peritoneal production of IL-1β and IL-18 in a mouse model. Mechanistically, riboflavin prevented mitochondrial perturbations, such as mitochondrial ROS production and mitochondrial DNA release, which trigger the NLRP3 inflammasome assembly. Riboflavin was further confirmed to disrupt the activity of caspase-1, and it also inhibited the AIM2, NLRC4, and non-canonical inflammasomes. Therefore, riboflavin has both an antioxidant effect and an anti-inflammasome property that regulates the inflammatory response.
Collapse
Affiliation(s)
- Huijeong Ahn
- Laboratory of Inflammatory Diseases, Department of Physiology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Geun-Shik Lee
- Laboratory of Inflammatory Diseases, Department of Physiology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
26
|
Ma X, Zhao M, Tang MH, Xue LL, Zhang RJ, Liu L, Ni HF, Cai XY, Kuang S, Hong F, Wang L, Chen K, Tang H, Li Y, Peng AH, Yang JH, Pei HY, Ye HY, Chen LJ. Flavonoids with Inhibitory Effects on NLRP3 Inflammasome Activation from Millettia velutina. JOURNAL OF NATURAL PRODUCTS 2020; 83:2950-2959. [PMID: 32989985 DOI: 10.1021/acs.jnatprod.0c00478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eight new flavonoids, including two β-hydroxy/methoxychalcones, velutones A and B (1 and 2), two 1,3-diarylpropan-1-ols, velutols C and D (3 and 4), a dihydroxychalcone, velutone E (5), a chalcone, velutone F (6), a furanoflavanone, velutone G (7), and a furanoflavonol, velutone H (8), and 14 known compounds were isolated from Millettia velutina. Their structures were determined by high-resolution electrospray ionisation mass spectrometry (HR-ESIMS) and spectroscopic data analyses and time-dependent density functional theory electronic circular dichroism (TD-DFT-ECD) calculations. Among the isolated constituents, compound 6 exhibited the most potent inhibitory effect (IC50: 1.3 μM) against nigericin-induced IL-1β release in THP-1 cells. The initial mechanism of action study revealed that compound 6 suppressed NLRP3 inflammasome activation via blocking ASC oligomerization without affecting the priming step, which subsequently inhibited caspase-1 activation and IL-1β secretion. Most importantly, compound 6 exerted potent protective effects in the LPS-induced septic shock mice model by improving the survival rate of mice and suppressing serum IL-1β release. These results demonstrated that compound 6 had the potential to be developed as a broad-spectrum NLRP3 inflammasome inhibitor for the treatment of NLRP3-related disease.
Collapse
Affiliation(s)
- Xu Ma
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Min Zhao
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ming-Hai Tang
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lin-Lin Xue
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rui-Jia Zhang
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ling Liu
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Heng-Fan Ni
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Xiao-Ying Cai
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuang Kuang
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Feng Hong
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lun Wang
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kai Chen
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Huan Tang
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan Li
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,School of Chemical Engineering, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ai-Hua Peng
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jian-Hong Yang
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - He-Ying Pei
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hao-Yu Ye
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li-Juan Chen
- Laboratory of Natural Product Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
27
|
Zhao C, Zhu Y, Kong B, Huang Y, Yan D, Tan H, Shang L. Dual-Core Prebiotic Microcapsule Encapsulating Probiotics for Metabolic Syndrome. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42586-42594. [PMID: 32869634 DOI: 10.1021/acsami.0c13518] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Designing strategies to utilize the synergistic effect of probiotics and prebiotics is a promising way in treating metabolic-related diseases. Here, inspired by the mutually promotable but mutually incompatible characteristics of Yin and Yang, dual-core microcapsules that encapsulate Lactobacillus and Bacillus subtilis into separate compartments were presented through electrostatically driven microfluidics. The microcapsules showed acid resistance and preserved probiotic activity. They also fostered the proliferation of probiotics while creating an anaerobic environment and promoted lactic acid fermentation without affecting each other. It has been demonstrated that the microcapsules could reduce inflammation, improve fat metabolism, and restore intestinal barrier functions, thus contributing to the treatment of metabolic syndrome in vivo. These features make the dual-core microcapsules an ideal candidate for treating metabolic syndrome and related diseases.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518035, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yujuan Zhu
- Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518035, China
| | - Bin Kong
- Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518035, China
| | - Yutong Huang
- Macau University of Science and Technology, Macau 999078, China
| | - Dewen Yan
- Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
| | - Hui Tan
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518035, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Ahn H, Han BC, Lee SH, Lee GS. Fructose-arginine, a non-saponin molecule of Korean Red Ginseng, attenuates AIM2 inflammasome activation. J Ginseng Res 2020; 44:808-814. [PMID: 33192124 PMCID: PMC7655492 DOI: 10.1016/j.jgr.2020.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 01/29/2023] Open
Abstract
Background Korean Red Ginseng extract (RGE) has been reported to act as an inflammasome modulator. Ginsenosides, saponin molecules of RGE, selectively inhibit activation of NLRP3 and AIM2 inflammasomes, while non-saponin molecules of RGE upregulate inflammasome components associated with the initiation of NLRP3 inflammasome activation. In this study, we investigated the effect of non-saponin components of RGE on AIM2 inflammasome activation. Methods The role of non-saponins of RGE on AIM2 inflammasomes was tested in mouse bone marrow-derived macrophages, a human monocyte-like cell line, and a mouse animal model. Cells or mice were transfected with dsDNA or inoculated with Listeria monocytogenes to activate AIM2 inflammasomes. Several indices of inflammasome activation were examined via immunoblot or ELISA analysis. Results The non-saponin fraction and saponin-eliminating fraction (SEF) of RGE selectively attenuated the activation of AIM2 inflammasomes, but not that of NLRP3 or NLRC4 inflammasomes. Fructose-arginine, an amino-sugar, was shown to be effective against AIM2 inflammasome activation. Conclusion Non-saponins of RGE, such as fructose-arginine, might be effective in regulating infectious and autoimmune diseases resulting from AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung-Cheol Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea.,Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung-Ho Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
29
|
Abstract
NOD-like receptor family pyrin domain containing 6 (NLRP6) is a novel NLR family member, that shows high expression in the intestine and liver (in contrast to NLRP3 in myeloid cells), to regulate inflammation and host defense against microbes. NLRP6 is reported to involved in inflammasome activation, regulation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, antiviral interferon (IFN) signaling, mucus secretion, and antimicrobial peptide (AMP) production. Here, we discuss the recent findings as well as debates regarding: how NLRP6 is induced ("signal I″) and activated ("signal II"); its roles in intestinal cells and immune cells; how NLRP6 and NLRP9 coordinate to regulate the anti-viral immune response in the intestine; potential targeting of NLRP6 in human diseases.
Collapse
Affiliation(s)
- Runzhi Li
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; School of Data Science, University of Science and Technology of China, Hefei, 230026, China; CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
30
|
Carnosol inhibits inflammasome activation by directly targeting HSP90 to treat inflammasome-mediated diseases. Cell Death Dis 2020; 11:252. [PMID: 32312957 PMCID: PMC7170921 DOI: 10.1038/s41419-020-2460-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Aberrant activation of inflammasomes, a group of protein complexes, is pathogenic in a variety of metabolic and inflammation-related diseases. Here, we report that carnosol inhibits NLRP3 inflammasome activation by directly targeting heat-shock protein 90 (HSP90), which is essential for NLRP3 inflammasome activity, thereby treating inflammasome-mediated diseases. Our data demonstrate that carnosol inhibits NLRP3 inflammasome activation in primary mouse bone marrow-derived macrophages (BMDMs), THP-1 cells and human peripheral blood mononuclear cells (hPBMCs). Mechanistically, carnosol inhibits inflammasome activation by binding to HSP90 and then inhibiting its ATPase activity. In vivo, our results show that carnosol has remarkable therapeutic effects in mouse models of NLRP3 inflammasome-mediated diseases, including endotoxemia and nonalcoholic steatohepatitis (NASH). Our data also suggest that intraperitoneal administration of carnosol (120 mg/kg) once daily for two weeks is well tolerated in mice. Thus, our study reveals the inhibitory effect of carnosol on inflammasome activation and demonstrates that carnosol is a safe and effective candidate for the treatment of inflammasome-mediated diseases.
Collapse
|
31
|
Liu G, Chen X, Wang Q, Yuan L. NEK7: a potential therapy target for NLRP3-related diseases. Biosci Trends 2020; 14:74-82. [PMID: 32295992 DOI: 10.5582/bst.2020.01029] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
NLRP3 inflammasome plays an essential role in innate immunity, yet the activation mechanism of NLRP3 inflammasome is not clear. In human or animal models, inappropriate NLRP3 inflammasome activation is implicated in many NLRP3-related diseases, such as tumors, inflammatory diseases and autoimmune diseases. Until now, a great number of inhibitors have been used to disturb the related signaling pathways, such as IL-1β blockade, IL-18 blockade and caspase-1 inhibitors. Unfortunately, most of these inhibitors just disturb the signaling pathways after the activation of NLRP3 inflammasome. Inhibitors that directly regulate NLRP3 to abolish the inflammation response may be more effective. NEK7 is a multifunctional kinase affecting centrosome duplication, mitochondrial regulation, intracellular protein transport, DNA repair and mitotic spindle assembly. Researchers have made significant observations on the regulation of gene transcription or protein expression of the NLRP3 inflammasome signaling pathway by NEK7. Those signaling pathways include ROS signaling, potassium efflux, lysosomal destabilization, and NF-κB signaling. Furthermore, NEK7 has been proved to be involved in many NLRP3-related diseases in humans or in animal models. Inhibitors focused on NEK7 may regulate NLRP3 to abolish the inflammation response and NEK7 may be a potential therapeutic target for NLRP3-related diseases.
Collapse
Affiliation(s)
- Ganglei Liu
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueliang Chen
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianqian Wang
- Department of Oncology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Lianwen Yuan
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Ahn H, Kim J, Lee H, Lee E, Lee GS. Characterization of equine inflammasomes and their regulation. Vet Res Commun 2020; 44:51-59. [PMID: 32297137 DOI: 10.1007/s11259-020-09772-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Inflammasome, a cytosolic multi-protein complex, assembly is a response to sensing intracellular pathogenic and endogenic danger signals followed by caspase-1 activation, which maturates precursor cytokines such as interleukin (IL)-1β. Most inflammasome research has been undertaken in humans and rodents, and inflammasomes in veterinary species have not been well-characterized. In this study, we observed the effects of well-known inflammasome activators on equine peripheral blood monocytes (PBMCs). The NLRP3 inflammasome triggers include ATP, nigericin, aluminum crystals, and monosodium urate crystals, and NLRP3 activation induces IL-1β secretion in a dose-dependent manner. Activators of NLRC4 and AIM2 inflammasomes include cytosolic flagellin and dsDNA, and their activation induces IL-1β secretion. The bacterial inflammasome triggers Salmonella Typhimurium and Listeria monocytogenes also induce IL-β releases. To elucidate the role of potassium efflux as an upstream signal of NLRP3 inflammasome activation, equine PBMCs were treated with blockers of potassium efflux in the presence of NLRP3 triggers. As a result, the IL-1β secretion stemming from equine NLRP3 inflammasome activation was not completely attenuated by the inhibition of potassium efflux. Taken together, the results indicate that equine PBMCs normally secrete IL-1β in response to well-known inflammasome activators, although equine NLRP3 inflammasome activation might not be dependent on potassium efflux.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Jeongeun Kim
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Hansae Lee
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea. .,Laboratory of Inflammatory Diseases, Department of Physiology, College of Veterinary Medicine, Kangwon National University, 24341, Chuncheon, Republic of Korea.
| |
Collapse
|
33
|
Kim J, Ahn H, Yu S, Ahn JH, Ko HJ, Kweon MN, Hong EJ, An BS, Lee E, Lee GS. IκBζ controls NLRP3 inflammasome activation via upregulation of the Nlrp3 gene. Cytokine 2020; 127:154983. [PMID: 31918161 DOI: 10.1016/j.cyto.2019.154983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 01/05/2023]
Abstract
Inflammasome activation induces the maturation and secretion of interleukin (IL)-1β and -18, and is dependent on NF-κB signaling to induce the transcription of the inflammasome components, called the priming step. This study elucidated the role of IκBζ, an atypical IκBs (inhibitor of κB) and a coactivator of NF-κB target genes, on the activation of inflammasome. Bone marrow-derived macrophages (BMDMs) that originated from IκBζ-encoding Nfkbiz gene depletion mice presented a defect in NLRP3 inflammasome activation. In addition, the Nfkbiz+/- and Nfkbiz-/- mice significantly attenuated serum IL-1β secretion in response to a monosodium urate injection, a NLRP3 trigger, when compared with Nfkbiz-+/+ mice. The lack of IκBζ in BMDMs produced a disability in the expression of Nlrp3 and pro-Il1β mRNAs during the priming step. In addition, ectopic IκBζ expression enhanced the Nlrp3 promoter activity, and Nlrp3 and pro-Il1β transcription. Overall, IκBζ controlled the activation of NLRP3 inflammasome by upregulating the Nlrp3 gene during the priming step.
Collapse
Affiliation(s)
- Jeongeun Kim
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sangjung Yu
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine and Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterial Science, College of Natural Resources and Life Science, Pusan National University, Gyeongsangnam-do 50612, Republic of Korea
| | - Eunsong Lee
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
34
|
Jiang F, Hu Q, Zhang Z, Li H, Li H, Zhang D, Li H, Ma Y, Xu J, Chen H, Cui Y, Zhi Y, Zhang Y, Xu J, Zhu J, Lu T, Chen Y. Discovery of Benzo[cd]indol-2(1H)-ones and Pyrrolo[4,3,2-de]quinolin-2(1H)-ones as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the First Bromodomain with Potential High Efficiency against Acute Gouty Arthritis. J Med Chem 2019; 62:11080-11107. [DOI: 10.1021/acs.jmedchem.9b01010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fei Jiang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qinghua Hu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zhimin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Huili Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Dewei Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Hanwen Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yu Ma
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jingjing Xu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haifang Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yong Cui
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanle Zhi
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanmin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Junyu Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jiapeng Zhu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
35
|
Kim J, Ahn H, Han BC, Shin H, Kim JC, Jung EM, Kim J, Yang H, Lee J, Kang SG, Lee SH, Lee GS. Obovatol inhibits NLRP3, AIM2, and non-canonical inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153019. [PMID: 31302317 DOI: 10.1016/j.phymed.2019.153019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Obovatol, a biphenolic chemical originating from Magnolia obovata, has been utilized as a traditional medicine for the treatment of inflammatory diseases. Inflammasome induces maturation of inflammatory cytokines in response to intracellular danger signals, and its dysregulation induces inflammatory diseases. PURPOSE The effect of obovatol on inflammasome activation has not been reported, although its anti-inflammatory properties have been studied. STUDY DESIGN/METHODS Obovatol was treated to macrophages with inflammasome triggers, and secretions of interleukin (IL)-1β, IL-18, and caspase-1 were measured as readouts of inflammasome activation. In addition, Asc pyroptosome formation, caspase-1 activity, and mitochondrial reactive oxygen species (ROS) production were analyzed in mechanical studies. Anti-inflammasome properties of obovatol were confirmed in an animal model. RESULTS Obovatol inhibited NLRP3, AIM2, and non-canonical inflammasomes through inhibition of Asc pyroptosome formation and mitochondrial ROS generation. In addition, obovatol disrupted the priming step of inflammasome activation and inhibited transcription of inflammatory cytokines. In mice, obovatol attenuated serum IL-1β elevation in response to monosodium urate crystals. CONCLUSION Obovatol is suggested as an inhibitor of NLRP3, AIM2, and non-canonical inflammasomes.
Collapse
Affiliation(s)
- Jeongeun Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Byung-Cheol Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea; Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34337, Republic of Korea
| | - Hyunjung Shin
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34337, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Juyeol Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Heejung Yang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jeonghyun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Ho Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34337, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
36
|
Ahn H, Kim J, Kang SG, Yoon SI, Ko HJ, Kim PH, Hong EJ, An BS, Lee E, Lee GS. Mercury and arsenic attenuate canonical and non-canonical NLRP3 inflammasome activation. Sci Rep 2018; 8:13659. [PMID: 30209319 PMCID: PMC6135747 DOI: 10.1038/s41598-018-31717-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
Exposure to heavy metals can cause several diseases associated with the immune system. Although the effects of heavy metals on production of inflammatory cytokines have been previously studied, the role of heavy metals in inflammasome activation remains poorly studied. The inflammasome is an intracellular multi-protein complex that detects intracellular danger signals, resulting in inflammatory responses such as cytokine maturation and pyroptosis. In this study, we elucidated the effects of four heavy metals, including cadmium (Cd), mercury (Hg), arsenic (As), and lead (Pb), on the activation of NLRP3, NLRC4, and AIM2 inflammasomes. In our results, mercury and arsenic inhibited interleukin (IL)-1β and IL-18 secretion resulting from canonical and non-canonical NLRP3 inflammasome activation in macrophages and attenuated elevation of serum IL-1β in response to LPS treatment in mice. In the mechanical studies, mercury interrupted production of mitochondrial reactive oxygen species, release of mitochondrial DNA, and activity of recombinant caspase-1, whereas arsenic down-regulated expression of promyelocytic leukemia protein. Both mercury and arsenic inhibited Asc pyroptosome formation and gasdermin D cleavage. Thus, we suggest that exposure to mercury and/or arsenic could disrupt inflammasome-mediated inflammatory responses, which might cause unexpected side effects.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jeongeun Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Seung Goo Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine and Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterial Science, College of Natural Resources and Life Science, Pusan National University, Gyeongsangnam-do, 50612, Republic of Korea
| | - Eunsong Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
37
|
Triggers of NLRC4 and AIM2 inflammasomes induce porcine IL-1β secretion. Vet Res Commun 2018; 42:265-273. [DOI: 10.1007/s11259-018-9729-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022]
|
38
|
He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, Liu Q, Liang G, Deng X, Jiang W, Zhou R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun 2018; 9:2550. [PMID: 29959312 PMCID: PMC6026158 DOI: 10.1038/s41467-018-04947-6] [Citation(s) in RCA: 532] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/02/2018] [Indexed: 12/27/2022] Open
Abstract
Oridonin (Ori) is the major active ingredient of the traditional Chinese medicinal herb Rabdosia rubescens and has anti-inflammatory activity, but the target of Ori remains unknown. NLRP3 is a central component of NLRP3 inflammasome and has been involved in a wide variety of chronic inflammation-driven human diseases. Here, we show that Ori is a specific and covalent inhibitor for NLRP3 inflammasome. Ori forms a covalent bond with the cysteine 279 of NLRP3 in NACHT domain to block the interaction between NLRP3 and NEK7, thereby inhibiting NLRP3 inflammasome assembly and activation. Importantly, Ori has both preventive or therapeutic effects on mouse models of peritonitis, gouty arthritis and type 2 diabetes, via inhibition of NLRP3 activation. Our results thus identify NLRP3 as the direct target of Ori for mediating Ori's anti-inflammatory activity. Ori could serve as a lead for developing new therapeutics against NLRP3-driven diseases.
Collapse
Affiliation(s)
- Hongbin He
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, 230027, China
| | - Hua Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yun Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jin Ye
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Aoli Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Gaolin Liang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China. .,Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
39
|
Ahn H, Han BC, Kim J, Kang SG, Kim PH, Jang KH, So SH, Lee SH, Lee GS. Nonsaponin fraction of Korean Red Ginseng attenuates cytokine production via inhibition of TLR4 expression. J Ginseng Res 2018; 43:291-299. [PMID: 30976167 PMCID: PMC6437451 DOI: 10.1016/j.jgr.2018.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/27/2022] Open
Abstract
Background Ginsenosides of Korean Red Ginseng extracts (RGE) and its saponin components suppress secretion of inflammasome-mediating cytokines, whereas the nonsaponin fraction (NS) of RGE oppositely stimulates cytokine secretion. Although direct exposure of NS to macrophages in mice induces cytokine production, oral administration of NS has not been studied in inflammasome-related disease in animal models. Methods Mice were fed RGE or NS for 7 days and then developed peritonitis. Peritoneal cytokines were measured, and peritoneal exudate cells (PECs) were collected to assay expression levels of a set of toll-like receptors (TLRs) and cytokines in response to NS ingestion. In addition, the role of intestinal bacteria in NS-fed mice was assessed. The effect of preexposure to NS in bone marrow–derived macrophages (BMDMs) on cytokine production was further confirmed. Results NS ingestion attenuated secretion of peritoneal cytokines resulting from peritonitis. In addition, the isolated PECs from NS-fed mice presented lower TLR transcription levels than PECs from control diet–fed mice. BMDMs treated with NS showed downregulation of TLR4 mRNA and protein expression, which was mediated by the TLR4-MyD88-NFκB signal pathway. BMDMs pretreated with NS produced less cytokines in response to TLR4 ligands. Conclusion NS administration directly inhibits TLR4 expression in inflammatory cells such as macrophages, thereby reducing secretion of cytokines during peritonitis.
Collapse
Key Words
- Alum, aluminum potassium sulfate
- BMDMs, bone marrow–derived macrophages
- Cytokine
- HKST, heat-killed Salmonella typhimurium
- IL, interleukin
- Korean Red Ginseng extracts
- LB, Luria-Bertani
- LCCM, L929 cell-conditioned medium
- LPS, lipopolysaccharide
- Lys, lysate
- MSU, monosodium urate crystal
- NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NLRP3, (NOD)2-like receptor protein 3
- NOD, nucleotide-binding and oligomerization domain
- NS, nonsaponin fraction
- Non, nontreatment
- Nonsaponin fraction
- PECs, peritoneal exudate cells
- Peritonitis
- RGE, Korean Red Ginseng extracts
- SF, saponin fraction
- Sup, supernatant
- TLR4
- TLRs, toll-like receptors
- ip, intraperitoneally
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung-Cheol Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea.,Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jeongeun Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyoung Hwa Jang
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung Ho So
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung-Ho Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
40
|
Ahn H, Kwon HM, Lee E, Kim PH, Jeung EB, Lee GS. Role of inflammasome regulation on immune modulators. J Biomed Res 2018; 32:401-410. [PMID: 30514828 PMCID: PMC6283823 DOI: 10.7555/jbr.32.20170120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammatory responses are essential in eliminating harmful substrates from damaged tissue and inducing recovery. Several cytokines participate in and facilitate this response. Certain cytokines such as interleukin (IL)-1β and IL-18 are initially produced in precursor form in response to toll-like receptor (TLR) ligands and undergo maturation by inflammasomes, which are cytosolic multi-protein complexes containing nucleotide-binding oligomerization domain (NOD)-containing protein 2-like receptors (NLRs). Immune modulators targeting inflammasomes have been investigated to control inflammatory diseases such as metabolic syndrome. However, most immune modulators possessing anti-inflammasome properties attenuate production of other cytokines, which are essential for host defense. In this review, we analyzed the effect of anti-inflammasome agents on the production of cytokines which are not regulated by inflammasome and involving in initial immune responses. As a result, the inflammasome inhibitors are put into three categories: non-effector, stimulator, or inhibitor of cytokine production. Even the stimulator of cytokine production ameliorated symptoms resulting from inflammasome activation in mouse models. Thus, we suggest ideal immune modulators targeting inflammasomes in order to enhance cytokine production while inhibiting cytokine maturation.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science
| | - Hyuk Moo Kwon
- College of Veterinary Medicine and Institute of Veterinary Science
| | - Eunsong Lee
- College of Veterinary Medicine and Institute of Veterinary Science
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eui-Bae Jeung
- Lab. of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science
| |
Collapse
|
41
|
Methylene blue inhibits NLRP3, NLRC4, AIM2, and non-canonical inflammasome activation. Sci Rep 2017; 7:12409. [PMID: 28963531 PMCID: PMC5622101 DOI: 10.1038/s41598-017-12635-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022] Open
Abstract
Methylene blue (MB), which has antioxidant, anti-inflammatory, neuroprotective, and mitochondria protective effects, has been widely used as a dye and medication. However, the effect of MB on inflammasome activation has not yet been studied. Inflammasomes are multi-protein complexes that induce maturation of interleukins (ILs)-1β and -18 as well as caspase-1-mediated cell death, known as pyroptosis. Dysregulation of inflammasomes causes several diseases such as type 2 diabetes, Alzheimer’s disease, and gout. In this study, we assess the effect of MB on inflammasome activation in macrophages. As the result, MB attenuated activation of canonical inflammasomes such as NLRP3, NLRC4, and AIM2 as well as non-canonical inflammasome activation. In addition, MB inhibited upstream signals such as inflammasome assembly, phagocytosis, and gene expression of inflammasome components via inhibition of NF-κB signaling. Furthermore, MB reduced the activity of caspase-1. The anti-inflammasome properties of MB were further confirmed in mice models. Thus, we suggest that MB is a broad-spectrum anti-inflammasome candidate molecule.
Collapse
|
42
|
NLR members in inflammation-associated carcinogenesis. Cell Mol Immunol 2017; 14:403-405. [PMID: 28366939 DOI: 10.1038/cmi.2017.14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 12/24/2022] Open
|
43
|
NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Sci Rep 2017; 7:41123. [PMID: 28117341 PMCID: PMC5259731 DOI: 10.1038/srep41123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
We have previously showed that IL-1β is involved in the pathogenesis of both spontaneously occurring and passively induced IgA nephropathy (IgAN) models. However, the exact causal-relationship between NLRP3 inflammasome and the pathogenesis of IgAN remains unknown. In the present study, we showed that [1] IgA immune complexes (ICs) activated NLRP3 inflammasome in macrophages involving disruption of mitochondrial integrity and induction of mitochondrial ROS, bone marrow-derived dendritic cells (BMDCs) and renal intrinsic cells; [2] knockout of NLRP3 inhibited IgA ICs-mediated activation of BMDCs and T cells; and [3] knockout of NLRP3 or a kidney-targeting delivery of shRNA of NLRP3 improved renal function and renal injury in a mouse IgAN model. These results strongly suggest that NLRP3 inflammasome serves as a key player in the pathogenesis of IgAN partly through activation of T cells and mitochondrial ROS production and that a local, kidney-targeting suppression of NLRP3 be a therapeutic strategy for IgAN.
Collapse
|
44
|
Han BC, Ahn H, Lee J, Jeon E, Seo S, Jang KH, Lee SH, Kim CH, Lee GS. Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 2016; 41:513-523. [PMID: 29021698 PMCID: PMC5628333 DOI: 10.1016/j.jgr.2016.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022] Open
Abstract
Background Korean Red Ginseng extracts (RGE) have been suggested as effective immune modulators, and we reported that ginsenosides possess anti-inflammasome properties. However, the properties of nonsaponin components of RGE have not been well studied. Methods To assess the roles of nonsaponin fractions (NS) in NLRP3 inflammasome activation, we treated murine macrophages with or without first or second inflammasome activation signals with RGE, NS, or saponin fractions (SF). The first signal was nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-mediated transcription of pro-interleukin (IL)-1β and NLRP3 while the second signal triggered assembly of inflammasome components, leading to IL-1β maturation. In addition, we examined the role of NS in IL-6 production and IL-1β maturation in mice. Results NS induced IL-1β and NLRP3 transcription via toll-like receptor 4 signaling, whereas SF blocked expression. During the second signal, SF attenuated NLRP3 inflammasome activation while NS did not. Further, NS-injected mice presented increased IL-1β maturation and IL-6 production. Conclusion SF and NS of RGE play differential roles in the NLRP3 inflammasome activation. Hence, RGE can be suggested as an NLRP3 inflammasome modulator.
Collapse
Affiliation(s)
- Byung-Cheol Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea.,Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jiseon Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eunsaem Jeon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Sanghoon Seo
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyoung Hwa Jang
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung-Ho Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Cheon Ho Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|