1
|
Cabana VC, Lussier MP. RNF13 variants L311S and L312P associated with developmental epileptic encephalopathy alter dendritic organization in hippocampal neurons. IBRO Neurosci Rep 2025; 18:559-573. [PMID: 40276023 PMCID: PMC12018061 DOI: 10.1016/j.ibneur.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Developmental and epileptic encephalopathy (DEE) is a group of rare and serious neurological disorders where seizures exacerbate developmental impairment. Recently, genetic mutations in the RNF13 gene were reported to cause DEE73. Specifically, two leucines from the ubiquitin E3 ligase RNF13 are converted to serine or proline (L311S and L312P). These mutations are located within a dileucine motif, which impairs RNF13's capacity to interact with AP-3. A second motif allows RNF13 to interact with AP-1 when the dileucine sorting motif is altered. The present study demonstrates that RNF13 variants L311S and L312P are trafficked through an AP-1-dependent pathway in HeLa cells. In cultures of primary rat hippocampal neurons, the protein level of the variants is significantly higher in dendrites than for wild-type protein. L311S and L312P variants alter dendritic components similarly to an RNF13 AP-3-defective binding variant or a dominant negative for RNF13's ubiquitin ligase activity. Compared to non-transfected neurons, the variants change the distribution of EEA1-positive early endosomes throughout the dendrites. While the WT alters the distribution of lysosomes (Lamp1-positive) in dendrites, the variants only decrease their presence in proximal dendrites. Unlike the variants, RNF13 WT increases the abundance of PSD-95 in distal dendrites. Interestingly, only the variants with altered dileucine motifs decrease the total number of postsynaptic inhibitory protein Gephyrin puncta. This study reports that genetic variants L311S and L312P mainly act as a dominant negative protein. This research provides valuable insights into the dendritic defects that occur when DEE73-associated genetic variants of RNF13 are present.
Collapse
Affiliation(s)
- Valérie C. Cabana
- Department of Chemistry, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- CERMO-FC - The Center of Excellence in Research on Ophan Diseases - Fondation Courtois, Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- PROTEO - The Quebec Network for Research on Protein Function, Engineering and Applications, Montréal, QC H3C 3P8, Canada
| | - Marc P. Lussier
- Department of Chemistry, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- CERMO-FC - The Center of Excellence in Research on Ophan Diseases - Fondation Courtois, Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- PROTEO - The Quebec Network for Research on Protein Function, Engineering and Applications, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
2
|
Sogorb-Esteve A, Weiner S, Simrén J, Swift IJ, Bocchetta M, Todd EG, Cash DM, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Laforce R, Graff C, Galimberti D, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler CR, Le Ber I, Finger E, Tartaglia MC, Masellis M, Rowe JB, Synofzik M, Moreno F, Borroni B, Genfi, Blennow K, Zetterberg H, Rohrer JD, Gobom J. Proteomic analysis reveals distinct cerebrospinal fluid signatures across genetic frontotemporal dementia subtypes. Sci Transl Med 2025; 17:eadm9654. [PMID: 39908349 DOI: 10.1126/scitranslmed.adm9654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
We used an untargeted mass spectrometric approach, tandem mass tag proteomics, for the identification of proteomic signatures in genetic frontotemporal dementia (FTD). A total of 238 cerebrospinal fluid (CSF) samples from the Genetic FTD Initiative were analyzed, including samples from 107 presymptomatic (44 C9orf72, 38 GRN, and 25 MAPT) and 55 symptomatic (27 C9orf72, 17 GRN, and 11 MAPT) mutation carriers as well as 76 mutation-negative controls ("noncarriers"). We found shared and distinct proteomic alterations in each genetic form of FTD. Among the proteins significantly altered in symptomatic mutation carriers compared with noncarriers, we found that a set of proteins including neuronal pentraxin 2 and fatty acid binding protein 3 changed across all three genetic forms of FTD and patients with Alzheimer's disease from previously published datasets. We observed differential changes in lysosomal proteins among symptomatic mutation carriers with marked abundance decreases in MAPT carriers but not other carriers. Further, we identified mutation-associated proteomic changes already evident in presymptomatic mutation carriers. Weighted gene coexpression network analysis combined with gene ontology annotation revealed clusters of proteins enriched in neurodegeneration and glial responses as well as synapse- or lysosome-related proteins indicating that these are the central biological processes affected in genetic FTD. These clusters correlated with measures of disease severity and were associated with cognitive decline. This study revealed distinct proteomic changes in the CSF of patients with genetic FTD, providing insights into the pathological processes involved in the disease. In addition, we identified proteins that warrant further exploration as diagnostic and prognostic biomarker candidates.
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University, UB8 3PH London, UK
| | - Emily G Todd
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - David M Cash
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Phoebe H Foster
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Eve Ferry-Bolder
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, 08036 Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Bioclinicum, Karolinska Institutet, 171 64 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 171 77 Solna, Sweden
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, 20122 Milan, Italy
- University of Milan, Centro Dino Ferrari, 20122 Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
- Neurology Service, University Hospitals Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Pietro Tiraboschi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, 45141 Essen, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, 80539 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
- Department of Neurology, Martin-Luther-University Hospital of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Florence Pasquier
- University of Lille, 59000 Lille, France
- Inserm 1172, Lille, 59000 Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, 59000 Lille, France
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec H4A 3J1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec H3A 0G4, Canada
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario N6A 5A5, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, CB2 3EB Cambridge, UK
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, 20014 San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, 20014 San Sebastian, Gipuzkoa, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Department of Continuity of Care and Frialy, ASST Spedali Civili Brescia, 25123 Brescia, Italy
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, 75013 Paris, France
- University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, Anhui, P.R. China
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| |
Collapse
|
3
|
Matsuzawa R, Kawahara D, Kashima M, Hirata H, Ozaki H. tomoseqr: A Bioconductor package for spatial reconstruction and visualization of 3D gene expression patterns based on RNA tomography. PLoS One 2025; 20:e0311296. [PMID: 39774435 PMCID: PMC11709299 DOI: 10.1371/journal.pone.0311296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025] Open
Abstract
RNA tomography computationally reconstructs 3D spatial gene expression patterns genome-widely from 1D tomo-seq data, generated by RNA sequencing of cryosection samples along three orthogonal axes. We developed tomoseqr, an R package designed for RNA tomography analysis of tomo-seq data, to reconstruct and visualize 3D gene expression patterns through user-friendly graphical interfaces. We show the effectiveness of tomoseqr using simulated and real tomo-seq data, validating its utility for researchers. R package tomoseqr is available on Bioconductor (https://doi.org/doi:10.18129/B9.bioc.tomoseqr) and GitHub (https://github.com/bioinfo-tsukuba/tomoseqr).
Collapse
Affiliation(s)
- Ryosuke Matsuzawa
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daichi Kawahara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa Japan
| | - Makoto Kashima
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Anang V, Antonescu L, Nho R, Soni S, Mebratu YA. Targeting the Ubiquitin Proteasome System to Combat Influenza A Virus: Hijacking the Cleanup Crew. Rev Med Virol 2024; 34:e70005. [PMID: 39516190 DOI: 10.1002/rmv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Influenza A virus (IAV) remains a significant global public health threat, causing substantial illness and economic burden. Despite existing antiviral drugs, the emergence of resistant strains necessitates alternative therapeutic strategies. This review explores the complex interplay between the ubiquitin proteasome system (UPS) and IAV pathogenesis. We discuss how IAV manipulates the UPS to promote its lifecycle, while also highlighting how host cells utilise the UPS to counteract viral infection. Recent research on deubiquitinases as potential regulators of IAV infection is also addressed. By elucidating the multifaceted role of the UPS in IAV pathogenesis, this review aims to identify potential targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Vandana Anang
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Laura Antonescu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Richard Nho
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sourabh Soni
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yohannes A Mebratu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Cabana VC, Sénécal AM, Bouchard AY, Kourrich S, Cappadocia L, Lussier MP. AP-1 contributes to endosomal targeting of the ubiquitin ligase RNF13 via a secondary and novel non-canonical binding motif. J Cell Sci 2024; 137:jcs262035. [PMID: 39206621 DOI: 10.1242/jcs.262035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular trafficking between organelles is typically assured by short motifs that contact carrier proteins to transport them to their destination. The ubiquitin E3 ligase RING finger protein 13 (RNF13), a regulator of proliferation, apoptosis and protein trafficking, localizes to endolysosomal compartments through the binding of a dileucine motif to clathrin adaptor protein complex AP-3. Mutations within this motif reduce the ability of RNF13 to interact with AP-3. Here, our study shows the discovery of a glutamine-based motif that resembles a tyrosine-based motif within the C-terminal region of RNF13 that binds to the clathrin adaptor protein complex AP-1, notably without a functional interaction with AP-3. Using biochemical, molecular and cellular approaches in HeLa cells, our study demonstrates that a RNF13 dileucine variant uses an AP-1-dependent pathway to be exported from the Golgi towards the endosomal compartment. Overall, this study provides mechanistic insights into the alternate route used by this variant of the dileucine sorting motif of RNF13.
Collapse
Affiliation(s)
- Valérie C Cabana
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Audrey M Sénécal
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Antoine Y Bouchard
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Saïd Kourrich
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 avenue du Président-Kennedy, Montréal, QC H2X 3X8, Canada
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Laurent Cappadocia
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| | - Marc P Lussier
- Département de Chimie, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Montréal, QC H3C 3P8, Canada
| |
Collapse
|
6
|
Lo TH, Weng IC, Chen HL, Liu FT. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Semin Immunopathol 2024; 46:6. [PMID: 39042263 DOI: 10.1007/s00281-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Guo S, Zhang BB, Gao L, Yu XY, Shen JH, Yang F, Zhang WC, Jin YG, Li G, Wang YG, Han ZY, Liu Y. RNF13 protects against pathological cardiac hypertrophy through p62-NRF2 pathway. Free Radic Biol Med 2023; 209:252-264. [PMID: 37852547 DOI: 10.1016/j.freeradbiomed.2023.10.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Heart failure (HF) severely impairs human health because of its high incidence and mortality. Cardiac hypertrophy is the main cause of HF, while its underlying mechanism is not fully clear. As an E3 ubiquitin ligase, Ring finger protein 13 (RNF13) plays a crucial role in many disorders, such as liver immune, neurological disease and tumorigenesis, whereas the function of RNF13 in cardiac hypertrophy remains largely unknown. In the present study, we found that the protein expression of RNF13 is up-regulated in the transverse aortic constriction (TAC)-induced murine hypertrophic hearts and phenylephrine (PE)-induced cardiomyocyte hypertrophy. Functional investigations indicated that RNF13 global knockout mice accelerates the degree of TAC-induced cardiac hypertrophy, including cardiomyocyte enlargement, cardiac fibrosis and heart dysfunction. On the contrary, adeno-associated virus 9 (AAV9) mediated-RNF13 overexpression mice alleviated cardiac hypertrophy. Furthermore, we demonstrated that adenoviral RNF13 attenuates the PE-induced cardiomyocyte hypertrophy and down-regulates the expression of cardiac hypertrophic markers, while the opposite results were observed in the RNF13 knockdown group. The RNA-sequence of RNF13 knockout and wild type mice showed that RNF13 deficiency activates oxidative stress after TAC surgery. In terms of the mechanism, we found that RNF13 directly interacted with p62 and promoted the activation of downstream NRF2/HO-1 signaling. Finally, we proved that p62 knockdown can reverse the effect of RNF13 in cardiac hypertrophy. In conclusion, RNF13 protects against the cardiac hypertrophy via p62-NRF2 axis.
Collapse
Affiliation(s)
- Sen Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
| | - Bin-Bin Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Xiao-Yue Yu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Ji-Hong Shen
- Department of Electrocardiogram, The Second Affiliated Hospital of Zhengzhou University, No.2 Jingba Road, Zhengzhou, China
| | - Fan Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Wen-Cai Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Ya-Ge Jin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Gang Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Yan-Ge Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Zhan-Ying Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
8
|
Taylor A, Kashyape PS, Jain R, El Naofal M, Tayoun AA. Heterozygous gain of function variants in a critical region of RNF13 cause congenital microcephaly, epileptic encephalopathy, blindness, and failure to thrive. Am J Med Genet A 2023; 191:2723-2727. [PMID: 37668308 DOI: 10.1002/ajmg.a.63390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Missense variants in the RNF13 gene have been previously known to cause congenital microcephaly, epileptic encephalopathy, blindness, and failure to thrive through a gain-of-function disease mechanism. Here, we identify a nonsense variant, expected to result in protein truncation, in a similarly affected patient. We show that this nonsense variant, residing in the terminal exon, is likely to escape nonsense-mediated decay while removing a critical region for protein function, thus resulting in a gain-of-function effect. We review the literature and disease databases and identify several other affected individuals with overlapping phenotypes carrying distinct truncating variants in the terminal exon upstream of the putative critical region. Furthermore, we analyze truncating variants from the general population, namely, the Genome Aggregation Database (gnomAD), and provide additional evidence supporting our hypothesis, and ruling out haploinsufficiency as an alternative disease mechanism. In summary, our case report, literature review, and analysis of disease and population databases strongly support the hypothesis that heterozygous gain-of-function variants in a critical region of RNF13 cause congenital microcephaly, epileptic encephalopathy, blindness, and failure to thrive.
Collapse
Affiliation(s)
- Alan Taylor
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Pawan S Kashyape
- Neurology Department, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Ruchi Jain
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Maha El Naofal
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
9
|
Lin Z, Yang P, Hu Y, Xu H, Duan J, He F, Dou K, Wang L. RING finger protein 13 protects against nonalcoholic steatohepatitis by targeting STING-relayed signaling pathways. Nat Commun 2023; 14:6635. [PMID: 37857628 PMCID: PMC10587083 DOI: 10.1038/s41467-023-42420-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. Recent studies show that innate immunity-related signaling pathways fuel NAFLD progression. This study aims to identify potent regulators of innate immunity during NAFLD progression. To this end, a phenotype-based high-content screening is performed, and RING finger protein 13 (RNF13) is identified as an effective inhibitor of lipid accumulation in vitro. In vivo gain- and loss-of-function assays are conducted to investigate the role of RNF13 in NAFLD. Transcriptome sequencing and immunoprecipitation-mass spectrometry are performed to explore the underlying mechanisms. We reveal that RNF13 protein is upregulated in the liver of individuals with NASH. Rnf13 knockout in hepatocytes exacerbate insulin resistance, steatosis, inflammation, cell injury and fibrosis in the liver of diet-induced mice, which can be alleviated by Rnf13 overexpression. Mechanically, RNF13 facilitates the proteasomal degradation of stimulator of interferon genes protein (STING) in a ubiquitination-dependent way. This study provides a promising innate immunity-related target for NAFLD treatment.
Collapse
Affiliation(s)
- Zhibin Lin
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yufeng Hu
- Gannan Innovation and Transformation Medical Research Institute, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei He
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Zhang Y, Li QS, Liu HL, Tang HT, Yang HL, Wu DQ, Huang YY, Li LC, Liu LH, Li MX. MKRN1 promotes colorectal cancer metastasis by activating the TGF-β signalling pathway through SNIP1 protein degradation. J Exp Clin Cancer Res 2023; 42:219. [PMID: 37620897 PMCID: PMC10464235 DOI: 10.1186/s13046-023-02788-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The Makorin ring finger protein 1 (MKRN1) gene, also called RNF61, is located on the long arm of chromosome 7 and is a member of the RING finger protein family. The E3 ubiquitin ligase MKRN1 is closely linked to tumour development, but the exact mechanism needs to be elucidated. In this study, we aimed to investigate the specific mechanism and role of MKRN1 in colorectal cancer (CRC) development. METHODS MKRN1 expression in CRC was analysed using the Cancer Cell Line Encyclopaedia and the Cancer Genome Atlas (TCGA) databases. Rectal tumour tissues were frozen to explore the MKRN1 expression in CRC and its clinical significance. The impact of MKRN1 on CRC cell proliferation and migration was observed using CCK8, colony formation, wound healing, and transwell assays. A combination of MKRN1 quantitative proteomics, ubiquitination modification omics analysis, and a string of in vitro and in vivo experiments revealed the potential mechanisms by which MKRN1 regulates CRC metastasis. RESULTS MKRN1 expression was significantly elevated in CRC tissues compared to paracancerous tissues and was positively linked with prognosis (P < 0.01). MKRN1 downregulation inhibits CRC cell proliferation, migration, and invasion. Conversely, MKRN1 overexpression promotes the proliferation, migration, and invasion of CRC cells. Mechanistically, MKRN1 induces epithelial-mesenchymal transition (EMT) in CRC cells via ubiquitination and degradation of Smad nuclear-interacting protein 1 (SNIP1). Furthermore, SNIP1 inhibits transforming growth factor-β (TGF-β) signalling, and MKRN1 promotes TGF-β signalling by degrading SNIP1 to induce EMT in CRC cells. Finally, using conditional knockout mice, intestinal lesions and metastatic liver microlesions were greatly reduced in the intestinal knockout MKRN1 group compared to that in the control group. CONCLUSIONS High MKRN1 levels promote TGF-β signalling through ubiquitination and degradation of SNIP1, thereby facilitating CRC metastasis, and supporting MKRN1 as a CRC pro-cancer factor. The MKRN1/SNIP1/TGF-β axis may be a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Yi Zhang
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Qin-Shan Li
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China.
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
| | - Hong-Lin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100000, People's Republic of China
| | - Hong-Ting Tang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Han-Lin Yang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Dao-Qiu Wu
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Yu-Ying Huang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
| | - Li-Cheng Li
- Clinical Medical College, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China
- Department of HematologyGuizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou, Guiyang, People's Republic of China
| | - Li-Hong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Meng-Xing Li
- Clinical Medical College, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
- Department of HematologyGuizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou, Guiyang, People's Republic of China.
- Department of Pathophysiology, Guizhou Medical University, Guizhou, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
11
|
Lu C, Lu P, Gong L, Zhu LJ, An Y, Wang Y. Rational design and development of novel NAE inhibitors for the treatment of pancreatic cancer. Med Chem Res 2023. [DOI: 10.1007/s00044-022-02979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Lin M, Jin Y, Wang F, Meng Y, Huang J, Qin X, Fan Z. MARCH9 Mediates NOX2 Ubiquitination to Alleviate NLRP3 Inflammasome-Dependent Pancreatic Cell Pyroptosis in Acute Pancreatitis. Pancreas 2023; 52:e62-e69. [PMID: 37378901 DOI: 10.1097/mpa.0000000000002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
OBJECTIVE The pathogenesis of acute pancreatitis mainly involves NLRP3 inflammasome-mediated pancreatic cell injury, although regulators of this inflammasome machinery are still not fully identified. Membrane-associated RING-CH 9 (MARCH9) is a member of MARCH-type finger proteins, which regulates innate immunity through catalyzing polyubiquitination of critical immune factors. The aim of present research is to examine the function of MARCH9 in acute pancreatitis. METHODS Cerulein-induced acute pancreatitis was established on pancreatic cell line AR42J and rat model. Reactive oxygen species (ROS) accumulation and NLRP3 inflammasome-dependent cell pyroptosis in pancreas were examined by flow cytometry. RESULTS MARCH9 was downregulated by cerulein, but overexpressing MARCH9 could inhibit NLRP3 inflammasome activation and ROS accumulation, thus suppressing pancreatic cell pyroptosis and mitigating pancreatic injury. We further uncovered that the mechanism underlying such an effect of MARCH9 is through mediating the ubiquitination of NADPH oxidase-2, whose deficiency reduces cellular ROS accumulation and inflammasome formation. CONCLUSIONS Our results suggested that MARCH9 suppresses NLRP3 inflammasome-mediated pancreatic cell injury through mediating the ubiquitination and degradation of NADPH oxidase-2, which compromises ROS generation and NLRP3 inflammasomal activation.
Collapse
Affiliation(s)
- Min Lin
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Yuzhou Jin
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Fushuang Wang
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Yao Meng
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jin Huang
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | | | | |
Collapse
|
13
|
Khani M, Nafissi S, Shamshiri H, Moazzeni H, Taheri H, Elahi E. Identification of RNF13 as cause of recessively inherited ALS in a multi-case pedigree. J Med Genet 2022; 60:jmedgenet-2022-108645. [PMID: 35879052 DOI: 10.1136/jmg-2022-108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. The approximately 50 known ALS-associated genes do not fully explain its heritability, which suggests the existence of yet unidentified causative genes. We report results of studies aimed at identification of the genetic cause of ALS in a pedigree (three patients) without mutations in the common ALS-causative genes. METHODS Clinical investigations included thorough neurological and non-neurological examinations and testings. Genetic analysis was performed by exome sequencing. Functional studies included identification of altered splicing by PCR and sequencing, and mutated proteins by western blot analysis. Apoptosis in the presence and absence of tunicamycin was assessed in transfected HEK293T cells using an Annexin-PE-7AAD kit in conjunction with flow cytometry. RESULTS Clinical features are described in detail. Disease progression in the patients of the pedigree was relatively slow and survival was relatively long. An RNF13 mutation was identified as the cause of the recessively inherited ALS in the pedigree. The gene is highly conserved, and its encoded protein (RING finger protein 13) can potentially affect various neurodegenerative-relevant functions, including protein homeostasis. The RNF13 splice site mutation caused expression of two mis-spliced forms of RNF13 mRNA and an aberrant RNF13 protein, and affected apoptosis. CONCLUSION RNF13 was identified as a novel causative gene of recessively inherited ALS. The gene affects protein homeostasis, which is one of most important components of the pathology of neurodegeneration. The contribution of RNF13 to the aetiology of another neurodegenerative disease is discussed.
Collapse
Affiliation(s)
- Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, The Islamic Republic of Iran
| | - Shahriar Nafissi
- Department of Neurology, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Hosein Shamshiri
- Department of Neurology, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, The Islamic Republic of Iran
| | - Hanieh Taheri
- School of Biology, College of Science, University of Tehran, Tehran, The Islamic Republic of Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, The Islamic Republic of Iran
| |
Collapse
|
14
|
Zhuang Y, Liu PF, Zhan Y, Kong DL, Tian F, Zhao P. RING finger protein 128 (RNF128) regulates malignant biological behaviors of colorectal cancer cells via PI3K/AKT signaling pathway. Cell Biol Int 2022; 46:1604-1611. [PMID: 35723244 DOI: 10.1002/cbin.11835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
Abstract
This study was designed and conducted to clarify the impact of RNF128 expression on malignant biological behaviors of colorectal cancer (CRC) cells and the underlying mechanism. The expression of RNF128 in CRC tissues was analyzed using mRNA sequencing data of TCGA database and was validated by Western blot assay. The experimental studies on biological functions of RNF128 in vitro were conducted to assess its impact on the proliferation, apoptosis, and metastasis of CRC cells. Furthermore, tumor xenograft models in nude mice were established to investigate the relationship between RNF128 expression and tumor growth in vivo. The expression levels of both RNF128 mRNA and protein were significantly increased in CRC tissues (p < .001). The knockdown of RNF128 markedly suppressed the malignant phenotype of HCT116 and SW480 cells in vitro, including cell growth, antiapoptosis, migration, and invasion (p < .001). On the other hand, knockdown of RNF128 exerted a remarkable effect on the growth inhibition of tumor xenografts in vivo (p < .001). Further investigation revealed that RNF128 knockdown lead to a significant decrease in the expression of p-AKT and p-PI3K protein. More importantly, the proliferative, antiapoptotic, metastatic abilities of RNF128-knockdown cells were markedly increased by 740 Y-P treatment (p < .001). These findings further suggested that PI3K/AKT signaling pathway played a key role in RNF128-mediated aggressive phenotype of CRC cells. RNF128 functions as a tumor promoter in the pathogenesis of CRC via regulating PI3K/AKT pathway, and it could be a valuable target for CRC treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Peng-Fei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yang Zhan
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Da-Lu Kong
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fei Tian
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Peng Zhao
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
15
|
Wang T, Liu W, Wang C, Ma X, Akhtar MF, Li Y, Li L. MRKNs: Gene, Functions, and Role in Disease and Infection. Front Oncol 2022; 12:862206. [PMID: 35463379 PMCID: PMC9024132 DOI: 10.3389/fonc.2022.862206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
The makorin RING finger protein (MKRN) gene family encodes proteins (makorins) with a characteristic array of zinc-finger motifs present in a wide array from invertebrates to vertebrates. MKRNs (MKRN1, MKRN2, MKRN3, MKRN4) as RING finger E3 ligases that mediate substrate degradation are related with conserved RING finger domains that control multiple cellular components via the ubiquitin-proteasome system (UPS), including p53, p21, FADD, PTEN, p65, Nptx1, GLK, and some viral or bacterial proteins. MKRNs also served as diverse roles in disease, like MKRN1 in transcription regulation, metabolic disorders, and tumors; MKRN2 in testis physiology, neurogenesis, apoptosis, and mutation of MKRN2 regulation signals transduction, inflammatory responses, melanoma, and neuroblastoma; MKRN3 in central precocious puberty (CPP) therapy; and MKRN4 firstly reported as a novel E3 ligase instead of a pseudogene to contribute to systemic lupus erythematosus (SLE). Here, we systematically review advances in the gene’s expression, function, and role of MKRNs orthologs in disease and pathogens infection. Further, MKRNs can be considered targets for the host’s innate intracellular antiviral defenses and disease therapy.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xuelian Ma
- Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | | | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li, ; Liangliang Li,
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li, ; Liangliang Li,
| |
Collapse
|
16
|
Huang D, Liu Y, Gao L, Wei X, Xu Y, Cai R, Su Q. MiR-32-3p Regulates Myocardial Injury Induced by Microembolism and Microvascular Obstruction by Targeting RNF13 to Regulate the Stability of Atherosclerotic Plaques. J Cardiovasc Transl Res 2022; 15:143-166. [PMID: 34185281 DOI: 10.1007/s12265-021-10150-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to explore the molecular mechanism of myocardial protection. The effects of miR-32-3p and ring finger protein 13 (RNF13) on endoplasmic reticulum (ER) stress-induced apoptosis of A-10 cells and human umbilical vein endothelial cells (HUVEC) were detected using flow cytometry. The effects of miR-32-3p and phenylbutyric acid (PBA) on plaque instability and myocardial tissue injury in rats were investigated after establishment of arterial plaque model and embolization model and treatment with miR-32-3p-antagomir and PBA. RNF13, which was differentially expressed in myocardial infarction, was the direct target gene of miR-32-3p. MiR-32-3p inhibited RNF13 expression and targeted RNF13 to inhibit ER stress-induced cell apoptosis. Furthermore, inhibiting miR-32-3p expression induced arterial plaque instability by reducing survival, increasing pathological lesions in arterial tissue, up-regulating ER stress-related proteins, and regulating the expressions of apoptosis-related proteins in the model rats. However, PBA reversed the effects of miR-32-3p-antagomir on the model rats. MiR-32-3p regulates myocardial injury induced by micro-embolism and micro-vascular obstruction by targeting RNF13 to regulate the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Dajun Huang
- Department of Cardiology, Wuzhou Gongren Hospital, No.1, Nansan Lane, Goadi Road, Wuzhou, 543001, Guangxi, China
| | - Yang Liu
- Department of Cardiology, The Second Nanning People's Hospital, The Third Affiliated Hospital of Guangxi Medical University, No.13, Dancun Road, Nanning, 530031, Guangxi, China
| | - Le Gao
- Department of Cardiology, Wuzhou Gongren Hospital, No.1, Nansan Lane, Goadi Road, Wuzhou, 543001, Guangxi, China
| | - Xiaomin Wei
- Department of Cardiology, Wuzhou Gongren Hospital, No.1, Nansan Lane, Goadi Road, Wuzhou, 543001, Guangxi, China
| | - Yuli Xu
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Ruping Cai
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Qiang Su
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, No.15, Lequn Road, Guilin, 541001, Guangxi, China.
| |
Collapse
|
17
|
Miyakawa K, Nishi M, Ogawa M, Matsunaga S, Sugiyama M, Nishitsuji H, Kimura H, Ohnishi M, Watashi K, Shimotohno K, Wakita T, Ryo A. Galectin-9 restricts hepatitis B virus replication via p62/SQSTM1-mediated selective autophagy of viral core proteins. Nat Commun 2022; 13:531. [PMID: 35087074 PMCID: PMC8795376 DOI: 10.1038/s41467-022-28171-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Autophagy has been linked to a wide range of functions, including a degradative process that defends host cells against pathogens. Although the involvement of autophagy in HBV infection has become apparent, it remains unknown whether selective autophagy plays a critical role in HBV restriction. Here, we report that a member of the galectin family, GAL9, directs the autophagic degradation of HBV HBc. BRET screening revealed that GAL9 interacts with HBc in living cells. Ectopic expression of GAL9 induces the formation of HBc-containing cytoplasmic puncta through interaction with another antiviral factor viperin, which co-localized with the autophagosome marker LC3. Mechanistically, GAL9 associates with HBc via viperin at the cytoplasmic puncta and enhanced the auto-ubiquitination of RNF13, resulting in p62 recruitment to form LC3-positive autophagosomes. Notably, both GAL9 and viperin are type I IFN-stimulated genes that act synergistically for the IFN-dependent proteolysis of HBc in HBV-infected hepatocytes. Collectively, these results reveal a previously undescribed antiviral mechanism against HBV in infected cells and a form of crosstalk between the innate immune system and selective autophagy in viral infection. In human cells, invading pathogens trigger an innate immune response that helps prevent viral replication and spread. Here, the authors reveal a mechanism of innate immunity that selectively leads to the autophagic degradation of hepatitis B virus core protein.
Collapse
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Hironori Nishitsuji
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Gunma, 370-0006, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan.
| |
Collapse
|
18
|
From Drosophila to Human: Biological Function of E3 Ligase Godzilla and Its Role in Disease. Cells 2022; 11:cells11030380. [PMID: 35159190 PMCID: PMC8834447 DOI: 10.3390/cells11030380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
The ubiquitin–proteasome system is of fundamental importance in all fields of biology due to its impact on proteostasis and in regulating cellular processes. Ubiquitination, a type of protein post-translational modification, involves complex enzymatic machinery, such as E3 ubiquitin ligases. The E3 ligases regulate the covalent attachment of ubiquitin to a target protein and are involved in various cellular mechanisms, including the cell cycle, cell division, endoplasmic reticulum stress, and neurotransmission. Because the E3 ligases regulate so many physiological events, they are also associated with pathologic conditions, such as cancer, neurological disorders, and immune-related diseases. This review focuses specifically on the protease-associated transmembrane-containing the Really Interesting New Gene (RING) subset of E3 ligases. We describe the structure, partners, and physiological functions of the Drosophila Godzilla E3 ligase and its human homologues, RNF13, RNF167, and ZNRF4. Also, we summarize the information that has emerged during the last decade regarding the association of these E3 ligases with pathophysiological conditions, such as cancer, asthma, and rare genetic disorders. We conclude by highlighting the limitations of the current knowledge and pinpointing the unresolved questions relevant to RNF13, RNF167, and ZNRF4 ubiquitin ligases.
Collapse
|
19
|
Gong L, Lu P, Lu C, Li M, Wan H, Wang Y. Design, Synthesis and Biological Evaluation of Coumarin Derivatives as NEDD8 Activating Enzyme Inhibitors in Pancreatic Cancer Cells. Med Chem 2022; 18:679-693. [PMID: 34895126 DOI: 10.2174/1573406418666211210163817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is one of the ubiquitin-like proteins which is activated by the NEDD8 activating enzyme (NAE). The overexpressed NAE can cause a variety of diseases such as numerous cancer types and inflammatory diseases. The selective inhibition of NAE could mediate the rate of ubiquitination and the subsequent degradation of proteins associated with cancer so as to achieve the purpose of treatment. OBJECTIVE In this article, we decided to study the synthesis and screening of coumarin scaffold derivatives against cancer cell lines, specifically the human pancreatic cancer cell line BxPC-3. METHODS Twenty-four targeted compounds were synthesized, and their anti-proliferative activity against three cancer cell lines, cytotoxicity against three normal cell lines through CCK-8 and MTT assay were evaluated to screen out the candidate compound. Then the target was further confirmed by both enzyme and cell-based experiments, as well as cell apoptosis research. RESULTS Several new 4-position substituted coumarin derivatives (12a~x) were synthesized and most of them exhibit antiproliferative activity in three cancer cell lines. A series of experiments were performed to identify the best candidate compound 12v. This compound displayed the highest potency against BxPC-3 with an IC50 value of 0.28 μM. It can also inhibit NAE activity in enzyme and cellbased assay, and induce CRLs-mediated accumulation of the substrate and apoptosis in BxPC-3 cells. Meanwhile, it exhibited relatively low toxicity in three normal cells. CONCLUSION Based on these results, we found that compound 12v inhibited NAE activity in enzyme and cell-based systems and induced apoptosis in BxPC-3 cells. Additionally, it also had a low toxicity. These results suggested that 12v may be promising lead compounds for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Lei Gong
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Peng Lu
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Cheng Lu
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Mengli Li
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Huiyang Wan
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| |
Collapse
|
20
|
Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers (Basel) 2021; 13:cancers13246188. [PMID: 34944807 PMCID: PMC8699458 DOI: 10.3390/cancers13246188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive neoplasm with a poor survival rate. This is mainly due to late detection, which substantially limits therapy options. A better understanding of the early phases of pancreatic carcinogenesis is fundamental for improving patient prognosis in the future. In this article, we focused on the tumor microenvironment (TME), which provides the biological niche for the development of PDAC from its most common precursor lesions, PanIN (pancreatic intraepithelial neoplasias). Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor microenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or even halt tumor progression.
Collapse
|
21
|
Cabana VC, Bouchard AY, Sénécal AM, Ghilarducci K, Kourrich S, Cappadocia L, Lussier MP. RNF13 Dileucine Motif Variants L311S and L312P Interfere with Endosomal Localization and AP-3 Complex Association. Cells 2021; 10:cells10113063. [PMID: 34831286 PMCID: PMC8620429 DOI: 10.3390/cells10113063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are rare and serious neurological disorders characterized by severe epilepsy with refractory seizures and a significant developmental delay. Recently, DEE73 was linked to genetic alterations of the RNF13 gene, which convert positions 311 or 312 in the RNF13 protein from leucine to serine or proline, respectively (L311S and L312P). Using a fluorescence microscopy approach to investigate the molecular and cellular mechanisms affected by RNF13 protein variants, the current study shows that wild-type RNF13 localizes extensively with endosomes and lysosomes, while L311S and L312P do not extensively colocalize with the lysosomal marker Lamp1. Our results show that RNF13 L311S and L312P proteins affect the size of endosomal vesicles along with the temporal and spatial progression of fluorescently labeled epidermal growth factor, but not transferrin, in the endolysosomal system. Furthermore, GST-pulldown and co-immunoprecipitation show that RNF13 variants disrupt association with AP-3 complex. Knockdown of AP-3 complex subunit AP3D1 alters the lysosomal localization of wild-type RNF13 and similarly affects the size of endosomal vesicles. Importantly, our study provides a first step toward understanding the cellular and molecular mechanism altered by DEE73-associated genetic variations of RNF13.
Collapse
Affiliation(s)
- Valérie C. Cabana
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Antoine Y. Bouchard
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Audrey M. Sénécal
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Kim Ghilarducci
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Saïd Kourrich
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laurent Cappadocia
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
| | - Marc P. Lussier
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (V.C.C.); (A.Y.B.); (A.M.S.); (K.G.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines—Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada;
- Correspondence: ; Tel.: +1-(514)-987-3000 (ext. 5591); Fax: +1-(514)-987-4054
| |
Collapse
|
22
|
Feng L, Wang J, Zhang J, Diao J, He L, Fu C, Liao H, Xu X, Gao Y, Zhou C. Comprehensive Analysis of E3 Ubiquitin Ligases Reveals Ring Finger Protein 223 as a Novel Oncogene Activated by KLF4 in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:738709. [PMID: 34722520 PMCID: PMC8551701 DOI: 10.3389/fcell.2021.738709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer is one of the major malignancies and causes of mortality worldwide. E3 ubiquitin-protein ligases transfer activated ubiquitin from ubiquitin-conjugating enzymes to protein substrates and confer substrate specificity in cancer. In this study, we first downloaded data from The Cancer Genome Atlas pancreatic adenocarcinoma dataset, acquired all 27 differentially expressed genes (DEGs), and identified genomic alterations. Then, the prognostic significance of DEGs was analyzed, and eight DEGs (MECOM, CBLC, MARCHF4, RNF166, TRIM46, LONRF3, RNF39, and RNF223) and two clinical parameters (pathological N stage and T stage) exhibited prognostic significance. RNF223 showed independent significance as an unfavorable prognostic marker and was chosen for subsequent analysis. Next, the function of RNF223 in the pancreatic cancer cell lines ASPC-1 and PANC-1 was investigated, and RNF223 silencing promoted pancreatic cancer growth and migration. To explore the potential targets and pathways of RNF223 in pancreatic cancer, quantitative proteomics was applied to analyze differentially expressed proteins, and metabolism-related pathways were primarily enriched. Finally, the reason for the elevated expression of RNF223 was analyzed, and KLF4 was shown to contribute to the increased expression of RNF233. In conclusion, this study comprehensively analyzed the clinical significance of E3 ligases. Functional assays revealed that RNF223 promotes cancer by regulating cell metabolism. Finally, the elevated expression of RNF223 was attributed to KLF4-mediated transcriptional activation. This study broadens our knowledge regarding E3 ubiquitin ligases and signal transduction and provides novel markers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jieqing Wang
- The First Affiliated Hospital, Sun Yat-sen university, Guangzhou, China
| | - Jianmin Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingfang Diao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | | | - Chaoyi Fu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Chenjie Zhou
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Chen N, Zheng Q, Wan G, Guo F, Zeng X, Shi P. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments. Cancer Metastasis Rev 2021; 40:739-759. [PMID: 34342796 DOI: 10.1007/s10555-021-09980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer (PC) is a highly aggressive cancer, with a 9% 5-year survival rate and a high risk of recurrence. In part, this is because PC is composed of heterogeneous subgroups with different biological and functional characteristics and personalized anticancer treatments are required. Posttranslational modifications (PTMs) play an important role in modifying protein functions/roles and are required for the maintenance of cell viability and biological processes; thus, their dysregulation can lead to disease. Different types of PTMs increase the functional diversity of the proteome, which subsequently influences most aspects of normal cell biology or pathogenesis. This review primarily focuses on ubiquitination, SUMOylation, and NEDDylation, as well as the current understanding of their roles and molecular mechanisms in pancreatic carcinogenesis. Additionally, we briefly summarize studies and clinical trials on PC treatments to advance our knowledge of drugs available to target the ubiquitination, SUMOylation, and NEDDylation PTM types. Further investigation of PTMs could be a critical field of study in relation to PC, as they have been implicated in the initiation and progression of many other types of cancer.
Collapse
Affiliation(s)
- Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
- Department of Cell Biology & University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guoqing Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China
| | - Feng Guo
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
24
|
Mo Y, Wang Y, Zhang S, Xiong F, Yan Q, Jiang X, Deng X, Wang Y, Fan C, Tang L, Zhang S, Gong Z, Wang F, Liao Q, Guo C, Li Y, Li X, Li G, Zeng Z, Xiong W. Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2. Mol Cancer 2021; 20:112. [PMID: 34465340 PMCID: PMC8406723 DOI: 10.1186/s12943-021-01409-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/14/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are widely expressed in human cells and are closely associated with cancer development. However, they have rarely been investigated in the context of nasopharyngeal carcinoma (NPC). METHODS We screened a new circRNA, circRNF13, in NPC cells using next-generation sequencing of mRNA. Reverse transcription polymerase chain reaction and RNA fluorescence in situ hybridization were used to detect circRNF13 expression in 12 non-tumor nasopharyngeal epithelial (NPE) tissues and 36 NPC samples. Cell proliferation was detected using MTT and flow cytometry assays, and colony formation capability was detected using colony formation assays. Cell migration and invasion were analyzed using wound-healing and Transwell assays, respectively. Cell glycolysis was analyzed using the Seahorse glycolytic stress test. Glucose transporter type 1 (GLUT1) ubiquitination and SUMOylation modifications were analyzed using co-immunoprecipitation and western blotting. CircRNF13 and Small Ubiquitin-like Modifier 2 (SUMO2) interactions were analyzed using RNA pull-down and luciferase reporter assays. Finally, to test whether circRNF13 inhibited NPC proliferation and metastasis in vivo, we used a xenograft nude mouse model generated by means of subcutaneous or tail vein injection. RESULTS We found that circRNF13 was stably expressed at low levels in NPC clinical tissues and NPC cells. In vitro and in vivo experiments showed that circRNF13 inhibited NPC proliferation and metastasis. Moreover, circRNF13 activated the SUMO2 protein by binding to the 3'- Untranslated Region (3'-UTR) of the SUMO2 gene and prolonging the half-life of SUMO2 mRNA. Upregulation of SUMO2 promotes GLUT1 degradation through SUMOylation and ubiquitination of GLUT1, which regulates the AMPK-mTOR pathway by inhibiting glycolysis, ultimately resulting in the proliferation and metastasis of NPC. CONCLUSIONS Our results revealed that a novel circRNF13 plays an important role in the development of NPC through the circRNF13-SUMO2-GLUT1 axis. This study implies that circRNF13 mediates glycolysis in NPC by binding to SUMO2 and provides an important theoretical basis for further elucidating the pathogenesis of NPC and targeted therapy.
Collapse
Affiliation(s)
- Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Qijia Yan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Xiangying Deng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Le Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
25
|
Zhu L, Lu P, Gong L, Lu C, Li M, Wang Y. Design, Synthesis, and Biological Evaluation of 4-amino Substituted 2Hchromen- 2-one Derivatives as an NEDD8 Activating Enzyme Inhibitor in Pancreatic Cancer Cells. Med Chem 2021; 16:969-983. [PMID: 31880252 DOI: 10.2174/1573406416666191227121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND NEDD8 activating enzyme (NAE) plays a critical role in various cellular functions in carcinomas. The selective inhibition of NAE could mediate the rate of ubiquitination and the subsequent degradation of proteins associated with cancer so as to achieve the purpose of treatment. OBJECTIVE In this article, we decided to study the synthesis and screening of 4-amino substituted 2H-chromen-2-one derivatives against cancer cell lines, specifically the human pancreatic cancer cell line BxPC-3. METHODS After synthesis of twenty targeted compounds, we evaluated their anti-proliferative activity against six cancer cell lines, cytotoxicity against three normal cell lines through MTT assay, and hemolysis to screen out the candidate compound, which was further conducted drug-like physical property measurement, target confirmation by enzyme-based experiment, cell apoptosis, and synergistic effect research. RESULTS Starting from intermediates 4 and 5, several new 4-amino substituted 2H-chromen-2-one derivatives (9-28) were synthesized and evaluated for their cell activities using six cancer cell lines. We performed tests of cytotoxicity, hemolysis, ATP-dependent NAE inhibition in the enzyme- based system, apoptosis, and synergistic effect in BxPC-3 cells against the best candidate compound 21. CONCLUSION Based on these results, we found that compound 21 inhibited NAE activity in an ATP-dependent manner in the enzyme-based system, induced apoptosis in BxPC-3 cells, and synergized with bortezomib on BxPC-3 cell growth inhibition. Additionally, it had low toxicity with reasonable Log P-value and water solubility.
Collapse
Affiliation(s)
- Lijuan Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Peng Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Lei Gong
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Cheng Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Mengli Li
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| |
Collapse
|
26
|
Xu F, Gao J, Bergmann S, Sims AC, Ashbrook DG, Baric RS, Cui Y, Jonsson CB, Li K, Williams RW, Schughart K, Lu L. Genetic Dissection of the Regulatory Mechanisms of Ace2 in the Infected Mouse Lung. Front Immunol 2021; 11:607314. [PMID: 33488611 PMCID: PMC7819859 DOI: 10.3389/fimmu.2020.607314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of morbidity and mortality after viral infections, including influenza A virus H1N1, SARS-CoV, MERS-CoV, and SARS-CoV-2. The angiotensin I converting enzyme 2 (ACE2) is a key host membrane-bound protein that modulates ALI induced by viral infection, pulmonary acid aspiration, and sepsis. However, the contributions of ACE2 sequence variants to individual differences in disease risk and severity after viral infection are not understood. In this study, we quantified H1N1 influenza-infected lung transcriptomes across a family of 41 BXD recombinant inbred strains of mice and both parents—C57BL/6J and DBA/2J. In response to infection Ace2 mRNA levels decreased significantly for both parental strains and the expression levels was associated with disease severity (body weight loss) and viral load (expression levels of viral NA segment) across the BXD family members. Pulmonary RNA-seq for 43 lines was analyzed using weighted gene co-expression network analysis (WGCNA) and Bayesian network approaches. Ace2 not only participated in virus-induced ALI by interacting with TNF, MAPK, and NOTCH signaling pathways, but was also linked with high confidence to gene products that have important functions in the pulmonary epithelium, including Rnf128, Muc5b, and Tmprss2. Comparable sets of transcripts were also highlighted in parallel studies of human SARS-CoV-infected primary human airway epithelial cells. Using conventional mapping methods, we determined that weight loss at two and three days after viral infection maps to chromosome X—the location of Ace2. This finding motivated the hierarchical Bayesian network analysis, which defined molecular endophenotypes of lung infection linked to Ace2 expression and to a key disease outcome. Core members of this Bayesian network include Ace2, Atf4, Csf2, Cxcl2, Lif, Maml3, Muc5b, Reg3g, Ripk3, and Traf3. Collectively, these findings define a causally-rooted Ace2 modulatory network relevant to host response to viral infection and identify potential therapeutic targets for virus-induced respiratory diseases, including those caused by influenza and coronaviruses.
Collapse
Affiliation(s)
- Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jun Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States.,Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Silke Bergmann
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David G Ashbrook
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yan Cui
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kui Li
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Klaus Schughart
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
27
|
Zhang K, Qin X, Zhou X, Zhou J, Wen P, Chen S, Wu M, Wu Y, Zhuang J. Analysis of genes and underlying mechanisms involved in foam cells formation and atherosclerosis development. PeerJ 2020; 8:e10336. [PMID: 33240650 PMCID: PMC7678445 DOI: 10.7717/peerj.10336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Background Foam cells (FCs) play crucial roles in the process of all stages of atherosclerosis. Smooth muscle cells (SMCs) and macrophages are the major sources of FCs. This study aimed to identify the common molecular mechanism in these two types of FCs. Methods GSE28829, GSE43292, GSE68021, and GSE54666 were included to identify the differentially expressed genes (DEGs) associated with FCs derived from SMCs and macrophages. Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by using the DAVID database. The co-regulated genes associated with the two origins of FCs were validated (GSE9874), and their expression in vulnerable atherosclerosis plaques (GSE120521 and GSE41571) was assessed. Results A total of 432 genes associated with FCs derived from SMCs (SMC-FCs) and 81 genes associated with FCs derived from macrophages (M-FCs) were identified, and they were mainly involved in lipid metabolism, inflammation, cell cycle/apoptosis. Furthermore, three co-regulated genes associated with FCs were identified: GLRX, RNF13, and ABCA1. These three common genes showed an increased tendency in unstable or ruptured plaques, although in some cases, no statistically significant difference was found. Conclusions DEGs related to FCs derived from SMCs and macrophages have contributed to the understanding of the molecular mechanism underlying the formation of FCs and atherosclerosis. GLRX, RNF13, and ABCA1 might be potential targets for atherosclerosis treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Xianyu Qin
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Jianrong Zhou
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Pengju Wen
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Shaoxian Chen
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Min Wu
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Ji M, Niu S, Guo J, Mi H, Jiang P. Silencing RNF13 Alleviates Parkinson’s Disease – Like Problems in Mouse Models by Regulating the Endoplasmic Reticulum Stress–Mediated IRE1α-TRAF2-ASK1-JNK Pathway. J Mol Neurosci 2020; 70:1977-1986. [DOI: 10.1007/s12031-020-01599-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
|
29
|
Ubiquitination of IGF2BP3 by E3 ligase MKRN2 regulates the proliferation and migration of human neuroblastoma SHSY5Y cells. Biochem Biophys Res Commun 2020; 529:43-50. [PMID: 32560817 DOI: 10.1016/j.bbrc.2020.05.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
Neuroblastoma (NB) is a paediatric tumour that shows great biomolecule and clinical heterogeneity, and patients with NB often develop various neurological complications. Currently, the disease is mainly treated by surgery and still lacks specific therapeutic drugs; therefore, targets are urgently needed. Makorin ring finger protein 2 (MKRN2) is an E3 ligase whose effects on neuroblastoma have not been illustrated. shRNAs for MKRN2 have been designed, and MKRN2-knockdown human neuroblastoma SHSY5Y cells were established. MKRN2 knockdown promotes the proliferation and migration of SHSY5Y cells. Because MKRN2 is an E3 ligase, we performed a series of experiments, and Insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) was identified as a new substrate for MKRN2. IGF2BP3 is an RNA-binding protein that regulates the stability of many mRNAs, including CD44 and PDPN, and our study demonstrated that MKRN2 regulates the expression of CD44 and PDPN in an IGF2BP3-dependent manner. These results suggest that MKRN2 might be a potential therapeutic target for neuroblastoma.
Collapse
|
30
|
Porcine RING Finger Protein 114 Inhibits Classical Swine Fever Virus Replication via K27-Linked Polyubiquitination of Viral NS4B. J Virol 2019; 93:JVI.01248-19. [PMID: 31413123 PMCID: PMC6803260 DOI: 10.1128/jvi.01248-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Porcine RING finger protein 114 (pRNF114) is a member of the RING domain E3 ligases. In this study, it was shown that pRNF114 is a potential anti-CSFV factor and the anti-CSFV effect of pRNF114 depends on its E3 ligase activity. Notably, pRNF114 targets and catalyzes the K27-linked polyubiquitination of the NS4B protein and then promotes proteasome-dependent degradation of NS4B, inhibiting the replication of CSFV. To our knowledge, pRNF114 is the first E3 ligase to be identified as being involved in anti-CSFV activity, and targeting NS4B could be a crucial route for antiviral development. In the host, many RING domain E3 ligases have been reported to inhibit viral replication through various mechanisms. In a previous screen, we found that porcine RING finger protein 114 (pRNF114), a RING domain E3 ubiquitin ligase, inhibits classical swine fever virus (CSFV) replication. This study aimed to clarify the underlying antiviral mechanism of pRNF114 against CSFV. Upon CSFV infection, pRNF114 mRNA was upregulated both in vitro and in vivo. CSFV replication was significantly suppressed in PK-pRNF114 cells stably expressing pRNF114 by the lentivirus-delivered system, whereas CSFV growth was enhanced in PK-15 cells with RNF114 knockout by the CRISPR/Cas9 system. The RING domain of pRNF114, which has E3 ubiquitin ligase activity, is crucial for its antiviral activity. Mechanistically, pRNF114 interacted with the CSFV NS4B protein through their C-terminal domains, which led to the K27-linked polyubiquitination and degradation of NS4B through a proteasome-dependent pathway. Collectively, these findings indicate that pRNF114 as a critical regulator of CSFV replication and uncover a mechanism by which pRNF114 employs its E3 ubiquitin ligase activity to inhibit CSFV replication. IMPORTANCE Porcine RING finger protein 114 (pRNF114) is a member of the RING domain E3 ligases. In this study, it was shown that pRNF114 is a potential anti-CSFV factor and the anti-CSFV effect of pRNF114 depends on its E3 ligase activity. Notably, pRNF114 targets and catalyzes the K27-linked polyubiquitination of the NS4B protein and then promotes proteasome-dependent degradation of NS4B, inhibiting the replication of CSFV. To our knowledge, pRNF114 is the first E3 ligase to be identified as being involved in anti-CSFV activity, and targeting NS4B could be a crucial route for antiviral development.
Collapse
|
31
|
Hou P, Ma X, Zhang Q, Wu CJ, Liao W, Li J, Wang H, Zhao J, Zhou X, Guan C, Ackroyd J, Jiang S, Zhang J, Spring DJ, Wang YA, DePinho RA. USP21 deubiquitinase promotes pancreas cancer cell stemness via Wnt pathway activation. Genes Dev 2019; 33:1361-1366. [PMID: 31488580 PMCID: PMC6771391 DOI: 10.1101/gad.326314.119] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
The ubiquitin-specific protease (USP) family is the largest group of cysteine proteases. Cancer genomic analysis identified frequent amplification of USP21 (22%) in human pancreatic ductal adenocarcinoma (PDAC). USP21 overexpression correlates with human PDAC progression, and enforced expression of USP21 accelerates murine PDAC tumor growth and drives PanIN to PDAC progression in immortalized human pancreatic ductal cells. Conversely, depletion of USP21 impairs PDAC tumor growth. Mechanistically, USP21 deubiquitinates and stabilizes the TCF/LEF transcription factor TCF7, which promotes cancer cell stemness. Our work identifies and validates USP21 as a PDAC oncogene, providing a potential druggable target for this intractable disease.
Collapse
Affiliation(s)
- Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Wenting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xin Zhou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Carolyn Guan
- Princeton University, Princeton, New Jersey 08544, USA
| | - Jeffery Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
32
|
Wei CY, Zhu MX, Yang YW, Zhang PF, Yang X, Peng R, Gao C, Lu JC, Wang L, Deng XY, Lu NH, Qi FZ, Gu JY. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J Hematol Oncol 2019; 12:21. [PMID: 30832692 PMCID: PMC6399928 DOI: 10.1186/s13045-019-0711-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/21/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ring finger proteins (RNFs) were involved in carcinogenesis. Here, we aimed to explore the detailed mechanism of RNF128 in the progression of melanoma. METHODS We reanalyzed several gene expression profiles from the Gene Expression Omnibus (GEO) database and obtained the overlapped differential expressed RNF genes. Among them, RNF128 was selected to further explore its expression, the biological significance, and the underlying molecular mechanism, as well as the clinical relevance in melanoma patients. RESULTS RNF128 was found to be significantly downregulated in the selected datasets, which was further verified in our melanoma tissues. Moreover, RNF128 downregulation was shown to correlate with the malignant phenotype of melanoma, and further functional assays demonstrated that low levels of RNF128 promoted melanoma progression via inducing cell epithelial-mesenchymal transition (EMT) and the acquisition of stemness. Mechanistically, RNF128 interference activated the Wnt pathway via simultaneously ubiquitinating CD44/cortactin (CTTN), resulting in CD44 and c-Myc transcription, thus revealed that RNF128 participated in a positive feedback of the Wnt pathway-CD44 loop. Clinically, we found that patients expressing low RNF128 and high CD44/CTTN levels had a poor prognosis. CONCLUSION Downregulated RNF128 activates Wnt signaling to induce cellular EMT and stemness by ubiquitinating and degrading CD44/CTTN, and RNF128 is a reliable diagnostic and prognostic biomarker, and a deeper understanding of RNF128 may contribute to the treatment of melanoma.
Collapse
Affiliation(s)
- Chuan-Yuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Meng-Xuan Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yan-Wen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Xuan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Rui Peng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xin-Yi Deng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Nan-Hang Lu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fa-Zhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian-Ying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
33
|
Edvardson S, Nicolae CM, Noh GJ, Burton JE, Punzi G, Shaag A, Bischetsrieder J, De Grassi A, Pierri CL, Elpeleg O, Moldovan GL. Heterozygous RNF13 Gain-of-Function Variants Are Associated with Congenital Microcephaly, Epileptic Encephalopathy, Blindness, and Failure to Thrive. Am J Hum Genet 2019; 104:179-185. [PMID: 30595371 DOI: 10.1016/j.ajhg.2018.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) initiates a stress response mechanism to clear out the unfolded proteins by either facilitating their re-folding or inducing their degradation. When this fails, an apoptotic cascade is initiated so that the affected cell is eliminated. IRE1α is a critical sensor of the unfolded-protein response, essential for initiating the apoptotic signaling. Here, we report an infantile neurodegenerative disorder associated with enhanced activation of IRE1α and increased apoptosis. Three unrelated affected individuals with congenital microcephaly, infantile epileptic encephalopathy, and profound developmental delay were found to carry heterozygous variants (c.932T>C [p.Leu311Ser] or c.935T>C [p.Leu312Pro]) in RNF13, which codes for an IRE1α-interacting protein. Structural modeling predicted that the variants, located on the surface of the protein, would not alter overall protein folding. Accordingly, the abundance of RNF13 and IRE1α was not altered in affected individuals' cells. However, both IRE1α-mediated stress signaling and stress-induced apoptosis were increased in affected individuals' cells. These results indicate that the RNF13 variants confer gain of function to the encoded protein and thereby lead to altered signaling of the ER stress response associated with severe neurodegeneration in infancy.
Collapse
Affiliation(s)
- Simon Edvardson
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Grace J Noh
- Department of Genetics, Southern California Permanente Medical Group, Fontana, CA 92335, USA
| | - Jennifer E Burton
- University of Illinois College of Medicine at Peoria, Illini Drive, Peoria, IL 61605, USA
| | - Giuseppe Punzi
- Laboratory of Biochemistry, Molecular and Computational Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70125, Italy
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jessica Bischetsrieder
- Department of Genetics, Southern California Permanente Medical Group, Fontana, CA 92335, USA
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Computational Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70125, Italy
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Computational Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70125, Italy
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
34
|
Montori-Grau M, Pedreira-Casahuga R, Boyer-Díaz Z, Lassot I, García-Martínez C, Orozco A, Cebrià J, Osorio-Conles O, Chacón MR, Vendrell J, Vázquez-Carrera M, Desagher S, Jiménez-Chillarón JC, Gómez-Foix AM. GNIP1 E3 ubiquitin ligase is a novel player in regulating glycogen metabolism in skeletal muscle. Metabolism 2018; 83:177-187. [PMID: 29466708 DOI: 10.1016/j.metabol.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glycogenin-interacting protein 1 (GNIP1) is a tripartite motif (TRIM) protein with E3 ubiquitin ligase activity that interacts with glycogenin. These data suggest that GNIP1 could play a major role in the control of glycogen metabolism. However, direct evidence based on functional analysis remains to be obtained. OBJECTIVES The aim of this study was 1) to define the expression pattern of glycogenin-interacting protein/Tripartite motif containing protein 7 (GNIP/TRIM7) isoforms in humans, 2) to test their ubiquitin E3 ligase activity, and 3) to analyze the functional effects of GNIP1 on muscle glucose/glycogen metabolism both in human cultured cells and in vivo in mice. RESULTS We show that GNIP1 was the most abundant GNIP/TRIM7 isoform in human skeletal muscle, whereas in cardiac muscle only TRIM7 was expressed. GNIP1 and TRIM7 had autoubiquitination activity in vitro and were localized in the Golgi apparatus and cytosol respectively in LHCN-M2 myoblasts. GNIP1 overexpression increased glucose uptake in LHCN-M2 myotubes. Overexpression of GNIP1 in mouse muscle in vivo increased glycogen content, glycogen synthase (GS) activity and phospho-GSK-3α/β (Ser21/9) and phospho-Akt (Ser473) content, whereas decreased GS phosphorylation in Ser640. These modifications led to decreased blood glucose levels, lactate levels and body weight, without changing whole-body insulin or glucose tolerance in mouse. CONCLUSION GNIP1 is an ubiquitin ligase with a markedly glycogenic effect in skeletal muscle.
Collapse
Affiliation(s)
- Marta Montori-Grau
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Departament de Farmacologia, Toxicologia i Química Terapéutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Spain.
| | - Robert Pedreira-Casahuga
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Zoé Boyer-Díaz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Celia García-Martínez
- Departament de Patologia i Terapèutica Experimental, UB, Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Orozco
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Judith Cebrià
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; Endocrine Division, Esplugues de Llobregat, Barcelona, Spain
| | - Oscar Osorio-Conles
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Matilde R Chacón
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Joan Vendrell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Manuel Vázquez-Carrera
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Departament de Farmacologia, Toxicologia i Química Terapéutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Spain
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Josep Carles Jiménez-Chillarón
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; Endocrine Division, Esplugues de Llobregat, Barcelona, Spain
| | - Anna Ma Gómez-Foix
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain
| |
Collapse
|
35
|
Zhang Y, Li LF, Munir M, Qiu HJ. RING-Domain E3 Ligase-Mediated Host-Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses. Front Immunol 2018; 9:1083. [PMID: 29872431 PMCID: PMC5972323 DOI: 10.3389/fimmu.2018.01083] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research.
Collapse
Affiliation(s)
- Yuexiu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, City of Lancaster, United Kingdom
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
36
|
Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 2018; 8:2789. [PMID: 29434336 PMCID: PMC5809607 DOI: 10.1038/s41598-018-21268-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential mineral element for animals and humans. Cardamine hupingshanensis (Brassicaceae), found in the Wuling mountain area of China, has been identified as a novel Se hyperaccumulator plant. However, the mechanism for selenium tolerance in Cardamine plants remains unknown. In this study, two cDNA libraries were constructed from seedlings of C. hupingshanensis treated with selenite. Approximately 100 million clean sequencing reads were de novo assembled into 48,989 unigenes, of which 39,579 and 33,510 were expressed in the roots and leaves, respectively. Biological pathways and candidate genes involved in selenium tolerance mechanisms were identified. Differential expression analysis identified 25 genes located in four pathways that were significantly responsive to selenite in C. hupingshanensis seedlings. The results of RNA sequencing (RNA-Seq) and quantitative real-time PCR (RT-qPCR) confirmed that storage function, oxidation, transamination and selenation play very important roles in the selenium tolerance in C. hupingshanensis. Furthermore, a different degradation pathway synthesizing malformed or deformed selenoproteins increased selenium tolerance at different selenite concentrations. This study provides novel insights into the mechanisms of selenium tolerance in a hyperaccumulator plant, and should serve as a rich gene resource for C. hupingshanensis.
Collapse
Affiliation(s)
- Yifeng Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China.,Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Qiaoyu Tang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Meiru Wu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Di Mou
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Hui Liu
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chi Zhang
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Li Ding
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
37
|
Wakil SM, Ram R, Muiya NP, Mehta M, Andres E, Mazhar N, Baz B, Hagos S, Alshahid M, Meyer BF, Morahan G, Dzimiri N. A genome-wide association study reveals susceptibility loci for myocardial infarction/coronary artery disease in Saudi Arabs. Atherosclerosis 2015; 245:62-70. [PMID: 26708285 DOI: 10.1016/j.atherosclerosis.2015.11.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple loci have been identified for coronary artery disease (CAD) by genome-wide association studies (GWAS), but no such studies on CAD incidence has been reported yet for any Middle Eastern population. METHODS In this study, we performed a GWAS for CAD and myocardial infarction (MI) incidence in 5668 Saudis of Arab descent using the Affymetrix Axiom Genotyping platform. RESULTS We describe SNPs at 16 loci that showed significant (P < 5 × 10(-8)) or suggestive GWAS association (P < 1 × 10(-5)) with CAD or MI, in the ethnic Saudi Arab population. Among the four variants reaching GWAS significance in the present study, the rs10738607_G [0.78(0.71-0.85); p = 2.17E-08] in CDNK2A/B gene was associated with CAD. Two other SNPs on the same gene, rs10757274_G [0.79(0.73-0.86); p = 2.98E-08] and rs1333045_C [0.79(0.73-0.86); p = 1.15E-08] as well as the rs9982601_T [1.38(1.23-1.55); p = 3.49E-08] on KCNE2 were associated with MI. These variants have been previously described in other populations. Several SNPs, including the rs7421388 (PLCL1) and rs12541758 (TRPA1) displaying a suggestive GWAS association (P < 1 × 10(-5)) with CAD as well as rs41411047 (RNF13), rs32793 (PDZD2) and rs4739066 (YTHDF3), similarly showing weak association with MI, were confirmed in an independent dataset. Furthermore, our estimation of heritability of CAD and MI based on observed genome-wide sharing in unrelated Saudi Arabs was approximately 33% and 44%, respectively. CONCLUSIONS Our study has identified susceptibility variants for CAD/MI in ethnic Arabs. These findings provide further insights into pathways contributing to the susceptibility for CAD and will enable more comprehensive genetic studies of these diseases in Middle East populations.
Collapse
Affiliation(s)
- Salma M Wakil
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ramesh Ram
- Harry Perkins Institute of Medical Research, University of Western Australia, Australia
| | - Nzioka P Muiya
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Munish Mehta
- Harry Perkins Institute of Medical Research, University of Western Australia, Australia
| | - Editha Andres
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nejat Mazhar
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Batoul Baz
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Samya Hagos
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maie Alshahid
- King Faisal Heart Institute, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, University of Western Australia, Australia
| | - Nduna Dzimiri
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Cheng H, Wang A, Meng J, Zhang Y, Zhu D. Enhanced metastasis in RNF13 knockout mice is mediated by a reduction in GM-CSF levels. Protein Cell 2015. [PMID: 26197965 PMCID: PMC4598322 DOI: 10.1007/s13238-015-0188-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RING finger protein 13 (RNF13) is a novel E3 ubiquitin ligase whose expression is associated with cancer development. However, its specific role in cancer progression and metastasis remains unclear. Here, a B16F10/LLC experimental pulmonary metastatic model was developed to examine the formation of metastatic foci in the lung. A greater number of tumor colonies were observed in the lungs of RNF13-knockout (KO) mice than in their wild-type (WT) littermates, whereas no significant differences in tumor size were observed between the two groups. In short-term experiments, the number of fluorescently-labeled B16F10 cells increased remarkably in RNF13-KO lungs at early time points, whereas clearance of tumor cells from the blood was not affected. These results indicated that RNF13 may inhibit the colonization of B16F10 cells in the lung. Assessment of the concentration of various cytokines in tumor bearing lungs and blood did not detect significant differences between the blood of RNF13-KO and WT mice; however the levels of GM-CSF were significantly reduced in RNF13-KO tumor bearing lungs, which may have guided more B16F10 cells to migrate to the lungs. This was confirmed by lower GM-CSF concentrations in conditioned media from the culture of RNF13-KO lung slices. Collectively, our results suggest that host RNF13 affects the concentration of GM-CSF in tumor-bearing lungs, leading to a reduction in the colonization of metastatic tumor cells in the lung.
Collapse
Affiliation(s)
- He Cheng
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Aodi Wang
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiao Meng
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yong Zhang
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Dahai Zhu
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
39
|
Accelerated regeneration of the skeletal muscle in RNF13-knockout mice is mediated by macrophage-secreted IL-4/IL-6. Protein Cell 2014; 5:235-47. [PMID: 24563216 PMCID: PMC3967074 DOI: 10.1007/s13238-014-0025-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/14/2014] [Indexed: 01/13/2023] Open
Abstract
RING finger protein 13 (RNF13) is a newly identified E3 ligase reported to be functionally significant in the regulation of cancer development, muscle cell growth, and neuronal development. In this study, the function of RNF13 in cardiotoxin-induced skeletal muscle regeneration was investigated using RNF13-knockout mice. RNF13-/- mice exhibited enhanced muscle regeneration—characterized by accelerated satellite cell proliferation—compared with wild-type mice. The expression of RNF13 was remarkably induced in macrophages rather than in the satellite cells of wild-type mice at the very early stage of muscle damage. This result indicated that inflammatory cells are important in RNF13-mediated satellite cell functions. The cytokine levels in skeletal muscles were further analyzed and showed that RNF13-/- mice produced greater amounts of various cytokines than wild-type mice. Among these, IL-4 and IL-6 levels significantly increased in RNF13-/- mice. The accelerated muscle regeneration phenotype was abrogated by inhibiting IL-4/IL-6 action in RNF13-/- mice with blocking antibodies. These results indicate that RNF13 deficiency promotes skeletal muscle regeneration via the effects on satellite cell niche mediated by IL-4 and IL-6.
Collapse
|
40
|
Arshad A, Gu X, Arshad M. RNF13 protein regulates endoplasmic reticulum stress induced apoptosis in dopaminergic SH-SY5Y cells by enhancing IRE1α stability. J Recept Signal Transduct Res 2013; 34:119-24. [PMID: 24303962 DOI: 10.3109/10799893.2013.863920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Any interruption in the folding capacity of endoplasmic reticulum (ER) may result in inducing ER stress which would initiate an adaptive signaling mechanism called Unfolded Protein Response (UPR) in order to restore homeostasis, failing to which would initiate signaling pathway leading to death of the cell. Finding new mediators could help better understand the molecular mechanisms of ER stress-induced apoptosis. Our lab initiated a genetic screen method using retroviral insertion mutation system to look for genes whose inactivation would confer resistance to apoptosis. In our previous findings, Ring finger protein 13 (RNF13) was identified whose down-regulation conferred survival against ER stress-induced apoptosis. Our previous results also showed important role of RNF13 in apoptotic signaling in 293T cells as a result of strong RNF13-IRE1α interaction. In current study, using SH-SY5Y cells, overexpression of RNF13 in apoptosis assays and RT-PCR analysis has shown to induce apoptosis as well as splicing of X-box binding Protein 1 (XBP1) confirming its role in ER stress mediated cell death in this cell line as well. Western blot analysis has revealed that overexpression of both N-terminal as well as C-terminal tagged RNF13 resulted in activation of c-Jun N-terminal kinase (JNK) in SH-SY5Y cells. Our co-immunoprecipitation assays in SH-SY5Y cells also showed a strong interaction of RNF13 with IRE1α. Finally, Cycloheximide chase experiment exhibited that RNF13-IRE1α interaction increased the stability of IRE1α. Altogether, our data suggest that RNF13 may act as an important regulator of IRE1α, mediating ER stress-mediated apoptosis in neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Abida Arshad
- School of Life Sciences, Beijing Institute of Technology , Beijing , China
| | | | | |
Collapse
|
41
|
Arshad M, Ye Z, Gu X, Wong CK, Liu Y, Li D, Zhou L, Zhang Y, Bay WP, Yu VC, Li P. RNF13, a RING finger protein, mediates endoplasmic reticulum stress-induced apoptosis through the inositol-requiring enzyme (IRE1α)/c-Jun NH2-terminal kinase pathway. J Biol Chem 2013; 288:8726-8736. [PMID: 23378536 DOI: 10.1074/jbc.m112.368829] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disturbance of homeostasis at endoplasmic reticulum (ER) causes stress to cells that in turn triggers an adaptive signaling pathway termed unfolded protein response for the purpose of restoring normal cellular physiology or initiating signaling events leading to apoptosis. Identification of those genes that are involved in the unfolded protein response-mediated apoptotic signaling pathway would be valuable toward elucidating the molecular mechanism underlying the relationship between ER stress and apoptosis. We initiated a genetic screen by using the retroviral insertion mutation system to search for genes whose inactivation confers resistance to apoptosis induction by staurosporine. Using this approach, RING finger protein 13 (RNF13) was identified. Interestingly, RNF13 is highly enriched in ER. RNF13 knockdown cells are resistant to apoptosis and JNK activation triggered by ER stress. Conversely, overexpression of RNF13 induces JNK activation and caspase-dependent apoptosis. The RING and transmembrane domains of RNF13 are both required for its effects on JNK activation and apoptosis. Moreover, systematic analysis of the involvement of individual signaling components in the ER stress pathway using knockdown approach reveals that RNF13 acts upstream of the IRE1α-TRAF2 signaling axis for JNK activation and apoptosis. Finally, RNF13 co-immunoprecipitates with IRE1α, and the intact RING domain is also required for mediating its interaction. Together, our data support a model that RNF13 is a critical mediator for facilitating ER stress-induced apoptosis through the activation of the IRE1α-TRAF2-JNK signaling pathway.
Collapse
Affiliation(s)
- Muhammad Arshad
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad 44000, Pakistan
| | - Zhongde Ye
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Gu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chung Kai Wong
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China
| | - Yang Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - De Li
- Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Linkang Zhou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Zhang
- Institute of Molecular and Cell Biology, A-STAR, Republic of Singapore 138673
| | - Wan Ping Bay
- Department of Pharmacy, National University of Singapore, Republic of Singapore 119077
| | - Victor C Yu
- Department of Pharmacy, National University of Singapore, Republic of Singapore 119077
| | - Peng Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Zhang Q, Li Y, Zhang L, Yang N, Meng J, Zuo P, Zhang Y, Chen J, Wang L, Gao X, Zhu D. E3 ubiquitin ligase RNF13 involves spatial learning and assembly of the SNARE complex. Cell Mol Life Sci 2013; 70:153-65. [PMID: 22890573 PMCID: PMC11113611 DOI: 10.1007/s00018-012-1103-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/01/2012] [Accepted: 07/19/2012] [Indexed: 11/26/2022]
Abstract
Changes in the structure and number of synapses modulate learning, memory and cognitive disorders. Ubiquitin-mediated protein modification is a key mechanism for regulating synaptic activity, though the precise control of this process remains poorly understood. RING finger protein 13 (RNF13) is a recently identified E3 ubiquitin ligase, and its in vivo function remains completely unknown. We show here that genetic deletion of RNF13 in mice leads to a significant deficit in spatial learning as determined by the Morris water maze test and Y-maze learning test. At the ultrastructral level, the synaptic vesicle density was decreased and the area of the active zone was increased at hippocampal synapses of RNF13-null mice compared with those of wild-type littermates. We found no change in the levels of SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex proteins in the hippocampus of RNF13-null mice, but impaired SNARE complex assembly. RNF13 directly interacted with snapin, a SNAP-25-interacting protein. Interestingly, snapin was ubiquitinated by RNF13 via the lysine-29 conjugated polyubiquitin chain, which in turn promoted the association of snapin with SNAP-25. Consistently, we found an attenuated interaction between snapin and SNAP-25 in the RNF13-null mice. Therefore, these results suggest that RNF13 is involved in the regulation of the SNARE complex, which thereby controls synaptic function.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Yanfeng Li
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Lei Zhang
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Jiao Meng
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Pingping Zuo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Yong Zhang
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 100730 China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| | - Xiang Gao
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Research, Nanjing University, Nanjing, 210061 China
| | - Dahai Zhu
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100005 China
| |
Collapse
|
43
|
Characterisation of human RING finger protein TRIM69, a novel testis E3 ubiquitin ligase and its subcellular localisation. Biochem Biophys Res Commun 2012; 429:6-11. [PMID: 23131556 DOI: 10.1016/j.bbrc.2012.10.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 10/24/2012] [Indexed: 11/17/2022]
Abstract
The E3 ubiquitin ligase activity and subcellular localisation of human TRIM69 (hTRIM69) gene were studied. It was found that hTRIM69 mediated ubiquitination in an E2 conjugating enzyme selective fashion in vitro and an intact RING finger domain was indispensible for the process. Further evidences showed that hTRIM69 could mediate ubiquitination in vivo, which could be enhanced by a proteasome inhibitor. hTRIM69 was found to localise in both the cytoplasm and the nucleus in a speckled aggregating pattern, which also required an intact RING finger domain. Collectively, hTRIM69 is a novel E3 ubiquitin ligase identified from human testis and may function to ubiquitinate its particular substrates during spermatogenesis.
Collapse
|
44
|
Xia Y, Tang L, Yao L, Wan B, Yang X, Yu L. Literature and patent analysis of the cloning and identification of human functional genes in China. SCIENCE CHINA. LIFE SCIENCES 2012; 55:268-282. [PMID: 22527523 DOI: 10.1007/s11427-012-4299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
The Human Genome Project was launched at the end of the 1980s. Since then, the cloning and identification of functional genes has been a major focus of research across the world. In China too, the potentially profound impact of such studies on the life sciences and on human health was realized, and relevant studies were initiated in the 1990s. To advance China's involvement in the Human Genome Project, in the mid-1990s, Committee of Experts in Biology from National High Technology Research and Development Program of China (863 Program) proposed the "two 1%" goal. This goal envisaged China contributing 1% of the total sequencing work, and cloning and identifying 1% of the total human functional genes. Over the past 20 years, tremendous achievement has been accomplished by Chinese scientists. It is well known that scientists in China finished the 1% of sequencing work of the Human Genome Project, whereas, there is no comprehensive report about "whether China had finished cloning and identifying 1% of human functional genes". In the present study, the GenBank database at the National Center of Biotechnology Information, the PubMed search tool, and the patent database of the State Intellectual Property Office, China, were used to retrieve entries based on two screening standards: (i) Were the newly cloned and identified genes first reported by Chinese scientists? (ii) Were the Chinese scientists awarded the gene sequence patent? Entries were retrieved from the databases up to the cut-off date of 30 June 2011 and the obtained data were analyzed further. The results showed that 589 new human functional genes were first reported by Chinese scientists and 159 gene sequences were patented (http://gene.fudan.sh.cn/introduction/database/chinagene/chinagene.html). This study systematically summarizes China's contributions to human functional genomics research and answers the question "has China finished cloning and identifying 1% of human functional genes?" in the affirmative.
Collapse
Affiliation(s)
- Yan Xia
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
45
|
Marzook H, Li DQ, Nair VS, Mudvari P, Reddy SDN, Pakala SB, Santhoshkumar TR, Pillai MR, Kumar R. Metastasis-associated protein 1 drives tumor cell migration and invasion through transcriptional repression of RING finger protein 144A. J Biol Chem 2012; 287:5615-26. [PMID: 22184113 PMCID: PMC3285335 DOI: 10.1074/jbc.m111.314088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/16/2011] [Indexed: 01/01/2023] Open
Abstract
Metastasis-associated protein 1 (MTA1), a component of the nucleosome-remodeling and histone deacetylase complex, is widely up-regulated in human cancers and significantly correlated with tumor invasion and metastasis, but the mechanisms involved remain largely unknown. Here, we report that MTA1 transcriptionally represses the expression of RING finger protein 144A (RNF144A), an uncharacterized gene whose protein product possesses potential E3 ubiquitin ligase activity, by recruiting the histone deacetylase 2 (HDAC2) and CCAAT/enhancer-binding protein α (c/EBPα) co-repressor complex onto human RNF144A promoter. Furthermore, an inverse correlation between the expression levels of MTA1 and RNF144A was demonstrated in publicly available breast cancer microarray datasets and the MCF10 breast cancer progression model system. To address functional aspects of MTA1 regulation of RNF144A, we demonstrate that RNF144A is a novel suppressor of cancer migration and invasion, two requisite steps of metastasis in vivo, and knockdown of endogenous RNF144A by small interfering RNAs accelerates the migration and invasion of MTA1-overexpressing cells. These results suggest that RNF144A is partially responsible for MTA1-mediated migration and invasion and that MTA1 overexpression in highly metastatic cancer cells drives cell migration and invasion by, at least in part, interfering with the suppressive function of RNF144A through transcriptional repression of RNF144A expression. Together, these findings provide novel mechanistic insights into regulation of tumor progression and metastasis by MTA1 and highlight a previously unrecognized role of RNF144A in MTA1-driven cancer cell migration and invasion.
Collapse
Affiliation(s)
- Hezlin Marzook
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India and
| | - Da-Qiang Li
- the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, George Washington University, Washington, D. C. 20037
| | - Vasudha S. Nair
- the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, George Washington University, Washington, D. C. 20037
| | - Prakriti Mudvari
- the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, George Washington University, Washington, D. C. 20037
| | - Sirigiri Divijendra Natha Reddy
- the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, George Washington University, Washington, D. C. 20037
| | - Suresh B. Pakala
- the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, George Washington University, Washington, D. C. 20037
| | - T. R. Santhoshkumar
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India and
| | - M. Radhakrishna Pillai
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India and
| | - Rakesh Kumar
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India and
- the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, George Washington University, Washington, D. C. 20037
| |
Collapse
|
46
|
Nakamura N. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function. MEMBRANES 2011; 1:354-93. [PMID: 24957874 PMCID: PMC4021871 DOI: 10.3390/membranes1040354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023]
Abstract
A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
47
|
Neutzner A, Neutzner M, Benischke AS, Ryu SW, Frank S, Youle RJ, Karbowski M. A systematic search for endoplasmic reticulum (ER) membrane-associated RING finger proteins identifies Nixin/ZNRF4 as a regulator of calnexin stability and ER homeostasis. J Biol Chem 2011; 286:8633-8643. [PMID: 21205830 DOI: 10.1074/jbc.m110.197459] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify novel regulators of endoplasmic reticulum (ER)-linked protein degradation and ER function, we determined the entire inventory of membrane-spanning RING finger E3 ubiquitin ligases localized to the ER. We identified 24 ER membrane-anchored ubiquitin ligases and found Nixin/ZNRF4 to be central for the regulation of calnexin turnover. Ectopic expression of wild type Nixin induced a dramatic down-regulation of the ER-localized chaperone calnexin that was prevented by inactivation of the Nixin RING domain. Importantly, Nixin physically interacts with calnexin in a glycosylation-independent manner, induces calnexin ubiquitination, and p97-dependent degradation, indicating an ER-associated degradation-like mechanism of calnexin turnover.
Collapse
Affiliation(s)
- Albert Neutzner
- From the Biochemistry Section, Surgical Neurological Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892,; the Department of Biomedicine, and the University Eye Clinic, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland,.
| | - Melanie Neutzner
- the Department of Biomedicine, and the University Eye Clinic, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland,; the Department of Neuropathology, Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4031 Basel, Switzerland
| | - Anne-Sophie Benischke
- the Department of Biomedicine, and the University Eye Clinic, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Seung-Wook Ryu
- From the Biochemistry Section, Surgical Neurological Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892,; the Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea, and
| | - Stephan Frank
- the Department of Neuropathology, Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4031 Basel, Switzerland
| | - Richard J Youle
- From the Biochemistry Section, Surgical Neurological Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Mariusz Karbowski
- From the Biochemistry Section, Surgical Neurological Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892,; the Center for Biomedical Engineering and Technology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
48
|
Jin X, Cheng H, Chen J, Zhu D. RNF13: an emerging RING finger ubiquitin ligase important in cell proliferation. FEBS J 2010; 278:78-84. [PMID: 21078127 DOI: 10.1111/j.1742-4658.2010.07925.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein ubiquitination mediated by ubiquitin ligases plays a very important role in a wide spectrum of biological processes including development and disease pathogenesis. RING finger protein 13 (RNF13) is a recently identified ubiquitin ligase which contains an N-terminal protease-associated domain and a C-terminal RING finger domain separated by a transmembrane region. RNF13 is an evolutionarily conserved protein. Most interestingly, RNF13 expression is developmentally regulated during myogenesis and is upregulated in various human tumors. These data suggest that RNF13, acting as an ubiquitin ligase, might have profound biological functions during development and disease. This minireview summarizes recent work on RNF13 functions related to cell proliferation, differentiation and cancer development.
Collapse
Affiliation(s)
- Xianglan Jin
- National Laboratory of Medical Molecular Biology, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
49
|
Bocock JP, Carmicle S, Sircar M, Erickson AH. Trafficking and proteolytic processing of RNF13, a model PA-TM-RING family endosomal membrane ubiquitin ligase. FEBS J 2010; 278:69-77. [PMID: 21078126 DOI: 10.1111/j.1742-4658.2010.07924.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RING finger protein 13 (RNF13) is a ubiquitously expressed, highly regulated ubiquitin ligase anchored in endosome membranes. A RING domain located in the cytoplasmic half of this type 1 membrane protein mediates ubiquitination in vitro but physiological substrates have not yet been identified. The protein localized in endosomal membranes undergoes extensive proteolysis in a proteasome-dependent manner, but the mRNA level can be increased and the encoded protein stabilized under specific physiological conditions. The cytoplasmic half of RNF13 is released from the membrane by regulatory proteases and therefore has the potential to mediate ubiquitination at distant sites independent of the full-length protein. In response to protein kinase C activation, the full-length protein is stabilized and moves to recycling endosomes and to the inner nuclear membrane, which exposes the RING domain to the nucleoplasm. Thus RNF13 is a ubiquitin ligase that can potentially mediate ubiquitination in endosomes, on the plasma membrane, in the cytoplasm, in the nucleoplasm or on the inner nuclear membrane, with the site(s) regulated by signaling events that modulate protein targeting and proteolysis.
Collapse
Affiliation(s)
- Jeffrey P Bocock
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
50
|
Drozdov I, Tsoka S, Ouzounis CA, Shah AM. Genome-wide expression patterns in physiological cardiac hypertrophy. BMC Genomics 2010; 11:557. [PMID: 20937113 PMCID: PMC3091706 DOI: 10.1186/1471-2164-11-557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 10/11/2010] [Indexed: 01/28/2023] Open
Abstract
Background Genome-wide expression patterns in physiological cardiac hypertrophy. Co-expression patterns in physiological cardiac hypertrophy Results In this study, the first large-scale analysis of publicly available genome-wide expression data of several in vivo murine models of physiological LVH was carried out using network analysis. On evaluating 3 million gene co-expression patterns across 141 relevant microarray experiments, it was found that physiological adaptation is an evolutionarily conserved processes involving preservation of the function of cytochrome c oxidase, induction of autophagy compatible with cell survival, and coordinated regulation of angiogenesis. Conclusion This analysis not only identifies known biological pathways involved in physiological LVH, but also offers novel insights into the molecular basis of this phenotype by identifying key networks of co-expressed genes, as well as their topological and functional properties, using relevant high-quality microarray experiments and network inference.
Collapse
Affiliation(s)
- Ignat Drozdov
- King's College London (KCL) BHF Centre of Research Excellence - Cardiovascular Division - School of Medicine - James Black Centre - 125 Coldharbour Lane, London, UK
| | | | | | | |
Collapse
|