1
|
Wei J, Cao Z, Li Q, Li X, Wang Q, Zhang Y, Zhang R, Wu X, Dai Q, Li X, Zhou Z, Sun F, Jiao S, Zhao B. Nuclear ubiquitination permits Hippo-YAP signal for liver development and tumorigenesis. Nat Chem Biol 2025:10.1038/s41589-025-01901-8. [PMID: 40379800 DOI: 10.1038/s41589-025-01901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/03/2025] [Indexed: 05/19/2025]
Abstract
Hippo-YAP signaling is crucial to organ development and tumorigenesis. VGLL4, which occupies TEAD to prevent YAP binding, is the main transcriptional repressor of Hippo-YAP activity. Here we identified the nuclear E3 ligase ubiquitin protein ligase E3 component n-recognin 5 (UBR5) poly-ubiquitinated VGLL4 at Lys61 for its degradation, which permits Hippo-YAP signaling for the development of the liver biliary system in mice and multiple cancers in humans. In mouse liver development, Ubr5 and Vgll4 exhibited reciprocal expression patterns spatiotemporally. Ubr5 deletion impaired cholangiocyte development and hepatocyte reprogramming, which could be efficiently rescued by restoring Hippo-YAP through ablating Vgll4. We also found that the UBR5-VGLL4-YAP axis is associated with the progression of human pan-cancers. Targeting nuclear E3 ligases in multiple types of patient-derived tumor organoids suppressed their expansion. Our identification of UBR5 as the bona fide E3 ligase of VGLL4 offers a molecular framework of nuclear Hippo-YAP regulation and suggests nuclear ubiquitination as a potential therapeutic target for YAP-dependent malignancies.
Collapse
Affiliation(s)
- Jinsong Wei
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhifa Cao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Li
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingzhe Wang
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiming Zhang
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Run Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xingru Wu
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Quanhui Dai
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinyang Li
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Bing Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute of Organoid Technology, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Lai JHC, Tsogka M, Xia J. Sodium arsenite induces aggresome formation by promoting PICK1 BAR domain homodimer formation. Mol Biol Cell 2024; 35:ar128. [PMID: 39083353 PMCID: PMC11481693 DOI: 10.1091/mbc.e24-05-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The aggresome is a perinuclear structure that sequesters misfolded proteins. It is implicated in various neurodegenerative diseases. The perinuclear structure enriched with protein interacting with C kinase 1 (PICK1) was found to be inducible by cellular stressors, colocalizing with microtubule-organizing center markers and ubiquitin, hence classifying it as an aggresome. Sodium arsenite but not arsenate was found to potently induce aggresome formation through an integrated stress response-independent pathway. In HEK293T cells, under arsenite stress, PICK1 localization to the aggresome was prioritized, and formation of PICK1 homodimers was favored. Additionally, PICK1 could enhance protein entry into aggresomes. This study shows that arsenite can induce the formation of both RNA stress granules and aggresomes at the same time, and that PICK1 shows conditional localization to aggresomes, suggesting a possible involvement of PICK1 in neurodegenerative diseases.
Collapse
Affiliation(s)
- John Ho Chun Lai
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Marianthi Tsogka
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- The Brain and Intelligence Research Institute, and Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, China
| |
Collapse
|
3
|
Ciullo A, Li L, Li C, Tsi K, Farrell C, Pellegrini M, Marbán E, Ibrahim AGE. Non-coding RNA yREX3 from human extracellular vesicles exerts macrophage-mediated cardioprotection via a novel gene-methylating mechanism. Eur Heart J 2024; 45:2660-2673. [PMID: 38865332 PMCID: PMC11297535 DOI: 10.1093/eurheartj/ehae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND AND AIMS Extracellular vesicles (EVs) secreted by cardiosphere-derived cells exert immunomodulatory effects through the transmission of small non-coding RNAs. METHODS The mechanism and role of yREX3, a small Y RNA abundant in EVs in myocardial injury, was investigated. RESULTS yREX3 attenuates cardiac ischaemic injury by selective DNA methylation. Synthetic yREX3 encapsulated in lipid nanoparticles triggers broad transcriptomic changes in macrophages, localizes to the nucleus, and mediates epigenetic silencing of protein interacting with C kinase-1 (Pick1) through methylation of upstream CpG sites. Moreover, yREX3 interacts with polypyrimidine tract binding protein 3 (PTBP3) to methylate the Pick1 gene locus in a DNA methyltransferase-dependent manner. Suppression of Pick1 in macrophages potentiates Smad3 signalling and enhances efferocytosis, minimizing heart necrosis in rats with myocardial infarction. Adoptive transfer of Pick1-deficient macrophages recapitulates the cardioprotective effects of yREX3 in vivo. CONCLUSIONS These findings highlight the role of a small Y RNA mined from EVs with a novel gene-methylating mechanism.
Collapse
Affiliation(s)
- Alessandra Ciullo
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Liang Li
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Chang Li
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Kara Tsi
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Colin Farrell
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| | - Ahmed G E Ibrahim
- Cedars-Sinai Medical Center, Smidt Heart Institute, 8700 Beverly Blvd, 1090 Davis Bldg, Los Angeles, CA 90048, USA
| |
Collapse
|
4
|
Xu X, Guo Y, Luo X, Shen Z, Sun Z, Shen B, Zhou C, Wang J, Lu J, Zhang Q, Ye Y, Luo Y, Qu Y, Cai X, Dong H, Lu L. Hydronidone ameliorates liver fibrosis by inhibiting activation of hepatic stellate cells via Smad7-mediated degradation of TGFβRI. Liver Int 2023; 43:2523-2537. [PMID: 37641479 DOI: 10.1111/liv.15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is a wound-healing reaction that eventually leads to cirrhosis. Hydronidone is a new pyridine derivative with the potential to treat liver fibrosis. In this study, we explored the antifibrotic effects of hydronidone and its potential mode of action. METHODS The anti-hepatic fibrosis effects of hydronidone were studied in carbon tetrachloride (CCl4 )- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- induced animal liver fibrosis. The antifibrotic mechanisms of hydronidone were investigated in hepatic stellate cells (HSCs). The antifibrotic effect of hydronidone was further tested after Smad7 knockdown in HSCs in mouse models of fibrosis. RESULTS In animal models, hydronidone attenuated liver damage and collagen accumulation, and reduced the expression of fibrosis-related genes. Hydronidone decreased the expression of fibrotic genes in HSCs. Impressively, hydronidone significantly upregulated Smad7 expression and promoted the degradation of transforming growth factor β receptor I (TGFβRI) in HSCs and thus inhibited the TGFβ-Smad signalling pathway. Specific knockdown of Smad7 in HSCs in vivo blocked the antifibrotic effect of hydronidone. CONCLUSION Hydronidone ameliorates liver fibrosis by inhibiting HSCs activation via Smad7-mediated TGFβRI degradation. Hydronidone is a potential drug candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuecheng Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyang Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongshang Sun
- Department of Gastroenterology, Huaian First People's Hospital, Nanjing Medical University, Huaian, China
| | - Bo Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Ye
- Continent Pharmaceuticals Co., Ltd., Beijing, China
| | - Ying Luo
- Continent Pharmaceuticals Co., Ltd., Beijing, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Tuersuntuoheti A, Li Q, Teng Y, Li X, Huang R, Lu Y, Li K, Liang J, Miao S, Wu W, Song W. YWK-II/APLP2 inhibits TGF-β signaling by interfering with the TGFBR2-Hsp90 interaction. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119548. [PMID: 37479189 DOI: 10.1016/j.bbamcr.2023.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Transforming growth factor-β (TGF-β) regulates multiple cellular biological processes by activating TGF-β type I receptors (TGFBR1) and type II receptors (TGFBR2), and Hsp90 stabilizes these receptors through specific interactions. In many malignancies, one of the most deregulated signaling pathways is the TGF-β signaling pathway, which is often inactivated by mutations or deregulation of TGF-β type II receptors (TGFBR2). However, the molecular mechanisms are not well understood. In this study, we show that YWK-II/APLP2, an immediately early response gene for TGF-β signaling, inhibits TGF-β signaling by promoting the degradation of the TGFBR2 protein. Knockdown of YWK-II/APLP2 increases the TGFBR2 protein level and sensitizes cells to TGF-β stimulation, while YWK-II/APLP2 overexpression destabilizes TGFBR2 and desensitizes cells to TGF-β. Mechanistically, YWK-II/APLP2 is associated with TGFBR2 in a TGF-β activity-dependent manner, binds to Hsp90 to interfere with the interaction between TGFBR2 and Hsp90, and leads to enhanced ubiquitination and degradation of TGFBR2. Taken together, YWK-II/APLP2 is involved in negatively regulating the duration and intensity of TGF-β/Smad signaling and suggests that aberrantly high expression of YWK-II/APLP2 in malignancies may antagonize the growth inhibition mediated by TGF-β signaling and play a role in carcinogenesis.
Collapse
Affiliation(s)
- Amannisa Tuersuntuoheti
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qinshan Li
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yu Teng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
6
|
Li Y, Xu M, Xiang BL, Li X, Zhang DF, Zhao H, Bi R, Yao YG. Functional genomics identify causal variant underlying the protective CTSH locus for Alzheimer's disease. Neuropsychopharmacology 2023; 48:1555-1566. [PMID: 36739351 PMCID: PMC10516988 DOI: 10.1038/s41386-023-01542-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, which has a high heritability of up to 79%. Exploring the genetic basis is essential for understanding the pathogenic mechanisms underlying AD development. Recent genome-wide association studies (GWASs) reported an AD-associated signal in the Cathepsin H (CTSH) gene in European populations. However, the exact functional/causal variant(s), and the genetic regulating mechanism of CTSH in AD remain to be determined. In this study, we carried out a comprehensive study to characterize the role of CTSH variants in the pathogenesis of AD. We identified rs2289702 in CTSH as the most significant functional variant that is associated with a protective effect against AD. The genetic association between rs2289702 and AD was validated in independent cohorts of the Han Chinese population. The CTSH mRNA expression level was significantly increased in AD patients and AD animal models, and the protective allele T of rs2289702 was associated with a decreased expression level of CTSH through the disruption of the binding affinity of transcription factors. Human microglia cells with CTSH knockout showed a significantly increased phagocytosis of Aβ peptides. Our study identified CTSH as being involved in AD genetic susceptibility and uncovered the genetic regulating mechanism of CTSH in pathogenesis of AD.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Hui Zhao
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
7
|
He Q, Huo R, Wang J, Xu H, Zhao S, Zhang J, Sun Y, Jiao Y, Weng J, Zhao J, Cao Y. Exosomal miR-3131 derived from endothelial cells with KRAS mutation promotes EndMT by targeting PICK1 in brain arteriovenous malformations. CNS Neurosci Ther 2023; 29:1312-1324. [PMID: 36718590 PMCID: PMC10068464 DOI: 10.1111/cns.14103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
AIMS To explore the underlying mechanism by which low-frequency KRAS mutations result in extensive EndMT occurrence. METHODS Exosomes derived from primarily cultured brain arteriovenous malformation (bAVMs) and human umbilical vein endothelial cells (HUVECs) transfected with KRASG12D , KRASWT , or KRASNC lentiviruses were isolated, and their effects on HUVECs were identified by western blotting and immunofluorescence staining. The expression levels of exosomal microRNAs (miRNAs) were evaluated by miRNA microarray, followed by functional experiments on miR-3131 and detection of its downstream target, and miR-3131 inhibitor in reversing the EndMT process induced by KRASG12D -transfected HUVECs and bAVM endothelial cells (ECs) were explored. RESULTS Exosomes derived from KRASG12D bAVM ECs and KRASG12D -transfected HUVECs promoted EndMT in HUVECs. MiR-3131 levels were highest in the exosomes of KRASG12D -transfected HUVECs, and HUVECs transfected with the miR-3131 mimic acquired mesenchymal phenotypes. RNA-seq and dual-luciferase reporter assays revealed that PICK1 is the direct downstream target of miR-3131. Exosomal miR-3131 was highly expressed in KRASG12D bAVMexos compared with non-KRAS-mutant bAVMexos or HUVECexos . Finally, a miR-3131 inhibitor reversed EndMT in HUVECs treated with exosomes or the supernatant of KRASG12D -transfected HUVECs and KRASG12D bAVM ECs. CONCLUSION Exosomal miR-3131 promotes EndMT in KRAS-mutant bAVMs, and miR-3131 might be a potential biomarker and therapeutic target in KRASG12D -mutant bAVMs.
Collapse
Affiliation(s)
- Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaozhi Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yingfan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute of Brain Disorders, Beijing, China
| |
Collapse
|
8
|
Shi C, Sun B, Wu H, Zhang R, Wu L, Guo L, Li C, Xi Y, Yuan W, Zhang Y, Xu G. Dysfunction of Caveolae-Mediated Endocytic TβRI Degradation Results in Hypersensitivity of TGF-β/Smad Signaling in Osteogenesis Imperfecta. J Bone Miner Res 2023; 38:103-118. [PMID: 36321807 DOI: 10.1002/jbmr.4734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/22/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder caused by mutations of type I collagen-related genes, and excessive transforming growth factor-beta (TGF-β) signaling is a common mechanism. TGF-β/Smad signaling has inhibitory effects on osteoblast differentiation and maturation and is mainly transduced and regulated by the internalization of a tetrameric receptor complex comprising types I and II TGF-β receptors (TβRI and TβRII). During internalization, clathrin-mediated endocytosis enhances TGF-β/Smad signaling via Smad2/3 phosphorylation and receptors recycling, while caveolae-mediated endocytosis turns off TGF-β/Smad signaling by promoting receptor ubiquitination and degradation. In this study, using an animal model of OI (Colla2oim , osteogenesis imperfecta murine [oim]/oim mouse), we found that osteoblastic cells of oim/oim mice were more sensitive to the inhibitory effects of TGF-β on osteoblast differentiation and maturation and had much higher cell membrane protein levels of TGF-β receptors than those of wild-type (wt)/wt mice. Further results showed that clathrin-mediated endocytosis of TβRI was enhanced, whereas caveolae-mediated TβRI endocytic degradation was reduced in oim/oim mice, combined with reduced caveolin-1 (Cav-1) phosphorylation. In addition, type I collagen downregulated TβRI via focal adhesion kinase (FAK) and Src activation-dependent Cav-1 phosphorylation. To further examine this mechanism, 4-week-old oim/oim and wt/wt mice were treated with either TβRI kinase inhibitor (SD-208) or vehicle for 8 weeks. SD-208 treatment significantly reduced the fracture incidence in oim/oim mice. Micro-computed tomography and biomechanical testing showed that femoral bone mass and strength were significantly improved with SD-208 treatment in both genotypes. Additionally, SD-208 significantly promoted osteoblast differentiation and bone formation and inhibited bone resorption. In conclusion, dysfunction of caveolae-mediated endocytic TβRI degradation is a possible mechanism for the enhanced TGF-β/Smad signaling in OI. Targeting this mechanism using a TβRI kinase inhibitor effectively reduced fractures and improved bone mass and strength in OI model and, thus, may offer a new strategy for the treatment of OI. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Changgui Shi
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bin Sun
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huiqiao Wu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Rongcheng Zhang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lecheng Wu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhai Xi
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen Yuan
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ying Zhang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Chen X, Zhao Q, Xu Y, Wu Q, Zhang R, Du Q, Miao Y, Zuo Y, Zhang HG, Huang F, Ren T, He J, Qiao C, Li Y, Li S, Xu Y, Wu D, Yu Z, Lv H, Wang J, Zheng H, Yuan Y. E3 ubiquitin ligase MID1 ubiquitinates and degrades type-I interferon receptor 2. Immunology 2022; 167:398-412. [PMID: 35794827 DOI: 10.1111/imm.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Type I interferon (IFN-I) is a common biological molecule used for the treatment of viral diseases. However, the clinical antiviral efficacy of IFN-I needs to be greatly improved. In this study, IFN-I receptor 2 (IFNAR2) was revealed to undergo degradation at the protein level in cells treated with IFN-I for long periods of time. Further studies found a physical interaction between the E3 ubiquitin ligase Midline-1 (MID1) and IFNAR2. As a consequence, MID1 induced both K48-linked and K63-linked polyubiquitination of IFNAR2, which promoted IFNAR2 protein degradation in a lysosome-dependent manner. Conversely, knockdown of MID1 largely restricted IFN-I-induced degradation of IFNAR2. Importantly, MID1 regulated the strength of IFN-I signaling and IFN-I-induced antiviral activity. These findings reveal a regulatory mechanism of IFNAR2 ubiquitination and protein stability in IFN-I signaling, which could provide a potential target for improving the antiviral efficacy of IFN-I.
Collapse
Affiliation(s)
- Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Qian Zhao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ying Xu
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.,Department of Intensive Care Unit, Qinghai Provincial People's Hospital, Xining, China
| | - Qiuyu Wu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qian Du
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hong-Guang Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fan Huang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Tengfei Ren
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jiuyi He
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yue Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shifeng Li
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhengyuan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou, China
| | - Jun Wang
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Sørensen AT, Rombach J, Gether U, Madsen KL. The Scaffold Protein PICK1 as a Target in Chronic Pain. Cells 2022; 11:1255. [PMID: 35455935 PMCID: PMC9031029 DOI: 10.3390/cells11081255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Well-tolerated and effective drugs for treating chronic pain conditions are urgently needed. Most chronic pain patients are not effectively relieved from their pain and suffer from debilitating drug side effects. This has not only drastic negative consequences for the patients' quality of life, but also constitute an enormous burden on society. It is therefore of great interest to explore new potent targets for effective pain treatment with fewer side effects and without addiction liability. A critical component of chronic pain conditions is central sensitization, which involves the reorganization and strengthening of synaptic transmission within nociceptive pathways. Such changes are considered as maladaptive and depend on changes in the surface expression and signaling of AMPA-type glutamate receptors (AMPARs). The PDZ-domain scaffold protein PICK1 binds the AMPARs and has been suggested to play a key role in these maladaptive changes. In the present paper, we review the regulation of AMPARs by PICK1 and its relation to pain pathology. Moreover, we highlight other pain-relevant PICK1 interactions, and we evaluate various compounds that target PICK1 and have been successfully tested in pain models. Finally, we evaluate the potential on-target side effects of interfering with the action of PICK1 action in CNS and beyond. We conclude that PICK1 constitutes a valid drug target for the treatment of inflammatory and neuropathic pain conditions without the side effects and abuse liability associated with current pain medication.
Collapse
Affiliation(s)
| | | | | | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.T.S.); (J.R.); (U.G.)
| |
Collapse
|
11
|
Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6675208. [PMID: 34335834 PMCID: PMC8321733 DOI: 10.1155/2021/6675208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-β signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-β signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-β signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-β signaling. Specifically, this review evaluates TGF-β's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Long Ye
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ruo-Nan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Xuan Liu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Yi Wang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xue-Mei Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Juan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou 215124, China
| |
Collapse
|
12
|
Chen H, Cai J, Wang J, Qiu Y, Jiang C, Wang Y, Wang Y, Yi C, Guo Lv, Pan L, Guan Y, Zheng J, Qiu D, Du C, Liu Q, Chen G, Yang Y, Xu Y, Xiang AP, Zhang Q. Targeting Nestin + hepatic stellate cells ameliorates liver fibrosis by facilitating TβRI degradation. J Hepatol 2021; 74:1176-1187. [PMID: 33217494 DOI: 10.1016/j.jhep.2020.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis is a wound healing response that arises from various aetiologies. The intermediate filament protein Nestin has been reported to participate in maintaining tissue homeostasis during wound healing responses. However, little is known about the role Nestin plays in liver fibrosis. This study investigated the function and precise regulatory network of Nestin during liver fibrosis. METHODS Nestin expression was assessed via immunostaining and quantitative real-time PCR (qPCR) in fibrotic/cirrhotic samples. The induction of Nestin expression by transforming growth factor beta (TGFβ)-Smad2/3 signalling was investigated through luciferase reporter assays. The functional role of Nestin in hepatic stellate cells (HSCs) was investigated by examining the pathway activity of profibrogenic TGFβ-Smad2/3 signalling and degradation of TGFβ receptor I (TβRI) after interfering with Nestin. The in vivo effects of knocking down Nestin were examined with an adeno-associated virus vector (serotype 6, AAV6) carrying short-hairpin RNA targeting Nestin in fibrotic mouse models. RESULTS Nestin was mainly expressed in activated HSCs and increased with the progression of liver fibrosis. The profibrogenic pathway TGFβ-Smad2/3 induced Nestin expression directly. Knocking down Nestin promoted caveolin 1-mediated TβRI degradation, resulting in TGFβ-Smad2/3 pathway impairment and reduced fibrosis marker expression in HSCs. In AAV6-treated murine fibrotic models, knocking down Nestin resulted in decreased levels of inflammatory infiltration, hepatocellular damage, and a reduced degree of fibrosis. CONCLUSION The expression of Nestin in HSCs was induced by TGFβ and positively correlated with the degree of liver fibrosis. Knockdown of Nestin decreased activation of the TGFβ pathway and alleviated liver fibrosis both in vitro and in vivo. Our data demonstrate a novel role of Nestin in controlling HSC activation in liver fibrosis. LAY SUMMARY Liver fibrosis has various aetiologies but represents a common process in chronic liver diseases that is associated with high morbidity and mortality. Herein, we demonstrate that the intermediate filament protein Nestin plays an essential profibrogenic role in liver fibrosis by forming a positive feedback loop with the TGFβ-Smad2/3 pathway, providing a potential therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Huaxin Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianye Cai
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiancheng Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuan Qiu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chenhao Jiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yi Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yiqin Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chenju Yi
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijie Pan
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Facility Centre, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongbo Qiu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cong Du
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Qi Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Lee S, Lim GE, Kim YN, Koo HS, Shim J. AP2M1 Supports TGF-β Signals to Promote Collagen Expression by Inhibiting Caveolin Expression. Int J Mol Sci 2021; 22:ijms22041639. [PMID: 33561975 PMCID: PMC7915421 DOI: 10.3390/ijms22041639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
The extracellular matrix (ECM) is important for normal development and disease states, including inflammation and fibrosis. To understand the complex regulation of ECM, we performed a suppressor screening using Caenorhabditis elegans expressing the mutant ROL-6 collagen protein. One cuticle mutant has a mutation in dpy-23 that encodes the μ2 adaptin (AP2M1) of clathrin-associated protein complex II (AP-2). The subsequent suppressor screening for dpy-23 revealed the lon-2 mutation. LON-2 functions to regulate body size through negative regulation of the tumor growth factor-beta (TGF-β) signaling pathway responsible for ECM production. RNA-seq analysis showed a dominant change in the expression of collagen genes and cuticle components. We noted an increase in the cav-1 gene encoding caveolin-1, which functions in clathrin-independent endocytosis. By knockdown of cav-1, the reduced TGF-β signal was significantly restored in the dpy-23 mutant. In conclusion, the dpy-23 mutation upregulated cav-1 expression in the hypodermis, and increased CAV-1 resulted in a decrease of TβRI. Finally, the reduction of collagen expression including rol-6 by the reduced TGF-β signal influenced the cuticle formation of the dpy-23 mutant. These findings could help us to understand the complex process of ECM regulation in organism development and disease conditions.
Collapse
Affiliation(s)
- Saerom Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
- Department of Biochemistry, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ga-Eun Lim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
| | - Yong-Nyun Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
| | - Hyeon-Sook Koo
- Department of Biochemistry, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (H.-S.K.); (J.S.); Tel.: +82-2-2123-2695 (H.-S.K.); +82-31-920-2262 (J.S.)
| | - Jaegal Shim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
- Correspondence: (H.-S.K.); (J.S.); Tel.: +82-2-2123-2695 (H.-S.K.); +82-31-920-2262 (J.S.)
| |
Collapse
|
14
|
Wong HH, Seet SH, Bascom CC, Isfort RJ, Bard F. Red-COLA1: a human fibroblast reporter cell line for type I collagen transcription. Sci Rep 2020; 10:19723. [PMID: 33184327 PMCID: PMC7665053 DOI: 10.1038/s41598-020-75683-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
Type I collagen is a key protein of most connective tissue and its up-regulation is required for wound healing but is also involved in fibrosis. Control of expression of this collagen remains poorly understood apart from Transforming Growth Factor beta (TGF-β1)-mediated induction. To generate a sensitive, practical, robust, image-based high-throughput-compatible reporter system, we genetically inserted a short-lived fluorescence reporter downstream of the endogenous type I collagen (COL1A1) promoter in skin fibroblasts. Using a variety of controls, we demonstrate that the cell line faithfully reports changes in type I collagen expression with at least threefold enhanced sensitivity compared to endogenous collagen monitoring. We use this assay to test the potency of anti-fibrotic compounds and screen siRNAs for regulators of TGF-β1-induced type I collagen expression. We propose our reporter cell line, Red-COLA1, as a new efficient tool to study type I collagen transcriptional regulation.
Collapse
Affiliation(s)
- Hui Hui Wong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sze Hwee Seet
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Charles C Bascom
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Cincinnati, OH, 45040, USA
| | - Robert J Isfort
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Cincinnati, OH, 45040, USA
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| |
Collapse
|
15
|
TGFβ1-Smad3 signaling mediates the formation of a stable serine racemase dimer in microglia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140447. [DOI: 10.1016/j.bbapap.2020.140447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022]
|
16
|
Chen L, Tao F, Zhang Y, Shu C, Xiang W, Yang L, Chen X, Hong Y, Chen B, Li K, Zhang W, Hao K, Ge F, Wang Z, Lyu J. Islet-cell autoantigen 69 accelerates liver regeneration by downregulating Tgfbr1 and attenuating Tgfβ signaling in mice. FEBS Lett 2020; 594:2881-2893. [PMID: 32531799 DOI: 10.1002/1873-3468.13859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/08/2022]
Abstract
Regeneration is a unique defense mechanism of liver tissue in response to functional cell loss induced by toxic chemicals or surgical resection. In this study, we found that Islet-cell autoantigen 69 (Ica69) accelerates liver regeneration in mice. Following 70% partial hepatectomy, both Ica69 mRNA and protein are significantly upregulated in mouse hepatocytes at the early stage of liver regeneration. Compared with the wild-type mice, Ica69-deficient mice have more severe liver injury, delayed liver regeneration, and high surgical accidental mortality following hepatectomy. Mechanistically, Ica69 interacts with Pick1 protein to regulate Tgfbr1 protein expression and Tgfβ-induced Smad2 phosphorylation. Our findings suggest that Ica69 in liver tissue is a new potential target for promoting liver regeneration.
Collapse
Affiliation(s)
- Linjie Chen
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Fei Tao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | | | - Chongyi Shu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Weiling Xiang
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Leixiang Yang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Xiaopan Chen
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Yeting Hong
- Laboratory Medical School, Hangzhou Medical College, China
| | - Bingyu Chen
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Kaiqiang Li
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Wei Zhang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Ke Hao
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Feihang Ge
- Laboratory Medical School, Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Zhen Wang
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| |
Collapse
|
17
|
Lei B, Wang D, Zhang M, Deng Y, Jiang H, Li Y. miR-615-3p promotes the epithelial-mesenchymal transition and metastasis of breast cancer by targeting PICK1/TGFBRI axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:71. [PMID: 32336285 PMCID: PMC7183699 DOI: 10.1186/s13046-020-01571-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 02/22/2023]
Abstract
Background Increasing evidence indicates that epithelial-mesenchymal transition (EMT) can be regulated by microRNAs (miRNAs). miR-615-3p was shown to be involved in tumor development. However, the role of miR-615-3p in the metastasis of breast cancer remains largely unknown. Methods The expression of miR-615-3p in breast cancer cells and tissues was assessed by qRT-PCR and situ hybridization assays. Effects of miR-615-3p on tumor metastasis were evaluated with experiments in vitro and mouse model. EMT markers were detected by western blot and immunofluorescence assays. Molecular mechanism of miR-615-3p in the regulation of breast cancer cell metastasis was analyzed by Western Blot, Co-immunoprecipitation, and Luciferase assay. Results In the present study, we found that miR-615-3p was significantly elevated in breast cancer cells and tissues, especially in those with metastasis. In breast cancer cell lines, stable overexpression of miR-615-3p was sufficient to promote cell motility in vitro, and pulmonary metastasis in vivo, accompanied by the reduced expression of epithelial markers and the increased levels of mesenchymal markers. Further studies revealed that the reintroduction of miR-615-3p increased the downstream signaling of TGF-β, the type I receptor (TGFBRI) by targeting the 3′-untranslated regions (3′-UTR) of PICK1. PICK1 inhibits the binding of DICER1 to Smad2/3 and the processing of pre-miR-615-3p to mature miR-615-3p in breast cancer cells, thus exerting a negative feedback loop. Conclusions Our data highlight an important role of miR-615-3p in the molecular etiology of breast cancer, and implicate the potential application of miR-615-3p in cancer therapy.
Collapse
Affiliation(s)
- Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150086, China
| | - Dandan Wang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Ming Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150086, China
| | - Yuwei Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| | - Yiwen Li
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
18
|
Qiu H, Ma L, Feng F. PICK1 attenuates high glucose-induced pancreatic β-cell death through the PI3K/Akt pathway and is negatively regulated by miR-139-5p. Biochem Biophys Res Commun 2020; 522:14-20. [DOI: 10.1016/j.bbrc.2019.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
|
19
|
Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cell Mol Life Sci 2019; 76:3349-3361. [PMID: 31073744 PMCID: PMC11105272 DOI: 10.1007/s00018-019-03128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The actin-related protein complex 2/3 (Arp2/3) generates branched actin networks important for many cellular processes such as motility, vesicular trafficking, cytokinesis, and intercellular junction formation and stabilization. Activation of Arp2/3 requires interaction with actin nucleation-promoting factors (NPFs). Regulation of Arp2/3 activity is achieved by endogenous inhibitory proteins through direct binding to Arp2/3 and competition with NPFs or by binding to Arp2/3-induced actin filaments and disassembly of branched actin networks. Arp2/3 inhibition has recently garnered more attention as it has been associated with attenuation of cancer progression, neurotoxic effects during drug abuse, and pathogen invasion of host cells. In this review, we summarize current knowledge on expression, inhibitory mechanisms and function of endogenous proteins able to inhibit Arp2/3 such as coronins, GMFs, PICK1, gadkin, and arpin. Moreover, we discuss cellular consequences of pharmacological Arp2/3 inhibition.
Collapse
Affiliation(s)
- Sandra Chánez-Paredes
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Armando Montoya-García
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| |
Collapse
|
20
|
Roles of Myosin-Mediated Membrane Trafficking in TGF-β Signaling. Int J Mol Sci 2019; 20:ijms20163913. [PMID: 31408934 PMCID: PMC6719161 DOI: 10.3390/ijms20163913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Recent findings have revealed the role of membrane traffic in the signaling of transforming growth factor-β (TGF-β). These findings originate from the pivotal function of TGF-β in development, cell proliferation, tumor metastasis, and many other processes essential in malignancy. Actin and unconventional myosin have crucial roles in subcellular trafficking of receptors; research has also revealed a growing number of unconventional myosins that have crucial roles in TGF-β signaling. Unconventional myosins modulate the spatial organization of endocytic trafficking and tether membranes or transport them along the actin cytoskeletons. Current models do not fully explain how membrane traffic forms a bridge between TGF-β and the downstream effectors that produce its functional responsiveness, such as cell migration. In this review, we present a brief overview of the current knowledge of the TGF-β signaling pathway and the molecular components that comprise the core pathway as follows: ligands, receptors, and Smad mediators. Second, we highlight key role(s) of myosin motor-mediated protein trafficking and membrane domain segregation in the modulation of the TGF-β signaling pathway. Finally, we review future challenges and provide future prospects in this field.
Collapse
|
21
|
Zhao B, Chen Y, Jiang N, Yang L, Sun S, Zhang Y, Wen Z, Ray L, Liu H, Hou G, Lin X. Znhit1 controls intestinal stem cell maintenance by regulating H2A.Z incorporation. Nat Commun 2019; 10:1071. [PMID: 30842416 PMCID: PMC6403214 DOI: 10.1038/s41467-019-09060-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
Lgr5+ stem cells are crucial to gut epithelium homeostasis; however, how these cells are maintained is not fully understood. Zinc finger HIT-type containing 1 (Znhit1) is an evolutionarily conserved subunit of the SRCAP chromosome remodeling complex. Currently, the function of Znhit1 in vivo and its working mechanism in the SRCAP complex are unknown. Here we show that deletion of Znhit1 in intestinal epithelium depletes Lgr5+ stem cells thus disrupts intestinal homeostasis postnatal establishment and maintenance. Mechanistically, Znhit1 incorporates histone variant H2A.Z into TSS region of genes involved in Lgr5+ stem cell fate determination, including Lgr5, Tgfb1 and Tgfbr2, for subsequent transcriptional regulation. Importantly, Znhit1 promotes the interaction between H2A.Z and YL1 (H2A.Z chaperone) by controlling YL1 phosphorylation. These results demonstrate that Znhit1/H2A.Z is essential for Lgr5+ stem cell maintenance and intestinal homeostasis. Our findings identified a dominant role of Znhit1/H2A.Z in controlling mammalian organ development and tissue homeostasis in vivo.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Ying Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Li Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Zhang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lorraine Ray
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Han Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Guoli Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
22
|
Wang B, Xu X, Yang Z, Zhang L, Liu Y, Ma A, Xu G, Tang M, Jing T, Wu L, Liu Y. POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1. EBioMedicine 2019; 41:320-332. [PMID: 30745168 PMCID: PMC6441868 DOI: 10.1016/j.ebiom.2019.01.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background Hyper-activation of TGF-β signaling is critically involved in progression of hepatocellular carcinoma (HCC). However, the events that contribute to the dysregulation of TGF-β pathway in HCC, especially at the post-translational level, are not well understood. Methods Associations of deubiquitinase POH1 with TGF-β signaling activity and the outcomes of HCC patients were examined by data mining of online HCC datasets, immunohistochemistry analyses using human HCC specimens, spearman correlation and survival analyses. The effects of POH1 on the ubiquitination and stability of the TGF-β receptors (TGFBR1 and TGFBR2) and the activation of downstream effectors were tested by western blotting. Primary mouse liver tissues from polyinosinic:polycytidylic acid (poly I:C)- treated Mx-Cre+, poh1f/f mice and control mice were used to detect the TGF-β receptors. The metastatic-related capabilities of HCC cells were studied in vitro and in mice. Findings Here we show that POH1 is a critical regulator of TGF-β signaling and promotes tumor metastasis. Integrative analyses of HCC subgroups classified with unsupervised transcriptome clustering of the TGF-β response, metastatic potential and outcomes, reveal that POH1 expression positively correlates with activities of TGF-β signaling in tumors and with malignant disease progression. Functionally, POH1 intensifies TGF-β signaling delivery and, as a consequence, promotes HCC cell metastatic properties both in vitro and in vivo. The expression of the TGF-β receptors was severely downregulated in POH1-deficient mouse hepatocytes. Mechanistically, POH1 deubiquitinates the TGF-β receptors and CAV1, therefore negatively regulates lysosome pathway-mediated turnover of TGF-β receptors. Conclusion Our study highlights the pathological significance of aberrantly expressed POH1 in TGF-β signaling hyperactivation and aggressive progression in HCC.
Collapse
Affiliation(s)
- Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Aihui Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Guiqin Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Ming Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Lin Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| |
Collapse
|
23
|
Zhang X, Xie H, Chang P, Zhao H, Xia Y, Zhang L, Guo X, Huang C, Yan F, Hu L, Lin C, Li Y, Xiong Z, Wang X, Li G, Deng L, Wang S, Tao L. Glycoprotein M6B Interacts with TβRI to Activate TGF-β-Smad2/3 Signaling and Promote Smooth Muscle Cell Differentiation. Stem Cells 2018; 37:190-201. [PMID: 30372567 PMCID: PMC7379588 DOI: 10.1002/stem.2938] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023]
Abstract
Smooth muscle cells (SMCs), which form the walls of blood vessels, play an important role in vascular development and the pathogenic process of vascular remodeling. However, the molecular mechanisms governing SMC differentiation remain poorly understood. Glycoprotein M6B (GPM6B) is a four-transmembrane protein that belongs to the proteolipid protein family and is widely expressed in neurons, oligodendrocytes, and astrocytes. Previous studies have revealed that GPM6B plays a role in neuronal differentiation, myelination, and osteoblast differentiation. In the present study, we found that the GPM6B gene and protein expression levels were significantly upregulated during transforming growth factor-β1 (TGF-β1)-induced SMC differentiation. The knockdown of GPM6B resulted in the downregulation of SMC-specific marker expression and repressed the activation of Smad2/3 signaling. Moreover, GPM6B regulates SMC Differentiation by Controlling TGF-β-Smad2/3 Signaling. Furthermore, we demonstrated that similar to p-Smad2/3, GPM6B was profoundly expressed and coexpressed with SMC differentiation markers in embryonic SMCs. Moreover, GPM6B can regulate the tightness between TβRI, TβRII, or Smad2/3 by directly binding to TβRI to activate Smad2/3 signaling during SMC differentiation, and activation of TGF-β-Smad2/3 signaling also facilitate the expression of GPM6B. Taken together, these findings demonstrate that GPM6B plays a crucial role in SMC differentiation and regulates SMC differentiation through the activation of TGF-β-Smad2/3 signaling via direct interactions with TβRI. This finding indicates that GPM6B is a potential target for deriving SMCs from stem cells in cardiovascular regenerative medicine. Stem Cells 2018 Stem Cells 2019;37:190-201.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Huaning Xie
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Pan Chang
- Central Laboratory, Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiong Guo
- Department of Cardiology, Hospital of People's Liberation Army, Golmud, Qinghai, People's Republic of China
| | - Chong Huang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Feng Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Lang Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Chen Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhenyu Xiong
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiong Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Guohua Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Longxiang Deng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
24
|
PICK1 Deficiency Induces Autophagy Dysfunction via Lysosomal Impairment and Amplifies Sepsis-Induced Acute Lung Injury. Mediators Inflamm 2018; 2018:6757368. [PMID: 30402043 PMCID: PMC6192133 DOI: 10.1155/2018/6757368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by infection. Multiple organ failure ultimately leads to high morbidity and mortality. Unfortunately, therapies against these responses have been unsuccessful due to the insufficient underlying pathophysiological evidence. Protein interacting with C-kinase 1 (PICK1) has received considerable attention because of its important physiological functions in many tissues. However, its role in sepsis-induced acute lung injury (ALI) is unclear. In this study, we used cecal ligation and puncture (CLP) to establish a septic model and found that decreased microtubule-associated protein-1light chain 3 (LC3)-II/LC3-I in PICK1−/− septic mice was caused by autophagy dysfunction. Consistently, the transmission electron microscopy (TEM) of bone marrow-derived macrophages (BMDMs) from PICK1−/− mice showed the accumulation of autophagosomes as well. However, more serious damage was caused by PICK1 deficiency indicating that the disrupted autophagic flux was harmful to sepsis-induced ALI. We also observed that it was the impaired lysosomal function that mediated autophagic flux blockade, and the autophagy progress was relevant to PI3K-Akt-mTOR pathway. These findings will aid in the potential development of PICK1 with novel evidence of autophagy in sepsis treatment and prevention.
Collapse
|
25
|
Impact of Aging in Microglia-Mediated D-Serine Balance in the CNS. Mediators Inflamm 2018; 2018:7219732. [PMID: 30363571 PMCID: PMC6180939 DOI: 10.1155/2018/7219732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/19/2018] [Accepted: 08/30/2018] [Indexed: 01/12/2023] Open
Abstract
A mild chronic inflammatory state, like that observed in aged individuals, affects microglial function, inducing a dysfunctional phenotype that potentiates neuroinflammation and cytotoxicity instead of neuroprotection in response to additional challenges. Given that inflammatory activation of microglia promotes increased release of D-serine, we postulate that age-dependent inflammatory brain environment leads to microglia-mediated changes on the D-serine-regulated glutamatergic transmission. Furthermore, D-serine dysregulation, in addition to affecting synaptogenesis and synaptic plasticity, appears also to potentiate NMDAR-dependent excitotoxicity, promoting neurodegeneration and cognitive impairment. D-serine dysregulation promoted by microglia could have a role in age-related cognitive impairment and in the induction and progression of neurodegenerative processes like Alzheimer's disease.
Collapse
|
26
|
Shih-Wei W, Chih-Ling C, Kao YC, Martin R, Knölker HJ, Shiao MS, Chen CL. Pentabromopseudilin: a myosin V inhibitor suppresses TGF-β activity by recruiting the type II TGF-β receptor to lysosomal degradation. J Enzyme Inhib Med Chem 2018; 33:920-935. [PMID: 29768059 PMCID: PMC6009923 DOI: 10.1080/14756366.2018.1465416] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pentabromopseudilin (PBrP) is a marine antibiotic isolated from the marine bacteria Pseudomonas bromoutilis and Alteromonas luteoviolaceus. PBrP exhibits antimicrobial, anti-tumour, and phytotoxic activities. In mammalian cells, PBrP is known to act as a reversible and allosteric inhibitor of myosin Va (MyoVa). In this study, we report that PBrP is a potent inhibitor of transforming growth factor-β (TGF-β) activity. PBrP inhibits TGF-β-stimulated Smad2/3 phosphorylation, plasminogen activator inhibitor-1 (PAI-1) protein production and blocks TGF-β-induced epithelial–mesenchymal transition in epithelial cells. PBrP inhibits TGF-β signalling by reducing the cell-surface expression of type II TGF-β receptor (TβRII) and promotes receptor degradation. Gene silencing approaches suggest that MyoVa plays a crucial role in PBrP-induced TβRII turnover and the subsequent reduction of TGF-β signalling. Because, TGF-β signalling is crucial in the regulation of diverse pathophysiological processes such as tissue fibrosis and cancer development, PBrP should be further explored for its therapeutic role in treating fibrotic diseases and cancer.
Collapse
Affiliation(s)
- Wang Shih-Wei
- a Department of Biological Sciences , National Sun Yat-sen University , Kaohsiung , Taiwan, ROC
| | - Chung Chih-Ling
- a Department of Biological Sciences , National Sun Yat-sen University , Kaohsiung , Taiwan, ROC
| | - Yu-Chen Kao
- a Department of Biological Sciences , National Sun Yat-sen University , Kaohsiung , Taiwan, ROC
| | - René Martin
- b Department of Chemistry , TU Dresden , Dresden , Germany
| | | | - Meng-Shin Shiao
- c Faculty of Medicine Ramathibodi Hospital , Mahidol University , Bangkok , Thailand
| | - Chun-Lin Chen
- a Department of Biological Sciences , National Sun Yat-sen University , Kaohsiung , Taiwan, ROC.,d Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica , Kaohsiung , Taiwan, ROC
| |
Collapse
|
27
|
Qian M, Lou Y, Wang Y, Zhang M, Jiang Q, Mo Y, Han K, Jin S, Dai Q, Yu Y, Wang Z, Wang J. PICK1 deficiency exacerbates sepsis-associated acute lung injury and impairs glutathione synthesis via reduction of xCT. Free Radic Biol Med 2018; 118:23-34. [PMID: 29471107 DOI: 10.1016/j.freeradbiomed.2018.02.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/07/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023]
Abstract
The role of oxidative stress has been well documented in the development of sepsis-induced acute lung injury (ALI). Protein interaction with C-kinase 1 (PICK1) participates in oxidative stress-related neuronal diseases. However, its function in lung infections and inflammatory diseases is not known. We therefore sought to investigate whether PICK1 is involved in sepsis-induced ALI. Cecal ligation and puncture (CLP) was performed in anesthetized wild type (WT) and PICK1 knock out (KO, PICK1-/-) mice with C57BL/6 background. At the time of CLP, mice were given fluid resuscitation. Mouse lungs were harvested at 24 and 72 h for Western blot analysis, qRT-PCR, BALF analysis, Hematoxylin and Eosin staining, TUNEL staining, maleimide staining, flow cytometry analysis, GCL, GSH, GSSG and cysteine levels measurement. A marked elevation of PICK1 mRNA and protein level were demonstrated in lung tissue, which was accompanied by increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and consumption of glutathione (GSH). N-acetylcysteine (NAC), buthionine sulfoximine (BSO) and GSH-monoethyl ester (GSH-MEE) were injected into mice via caudal vein to regulate glutathione (GSH) level in lung. Alterations of lung GSH content induced PICK1 level change after CLP challenge. In PICK1-/- underwent with CLP, lung injury and survival were significantly aggravated compared with wild-type mice underwent with CLP. Concomitantly, CLP-induced lung cell apoptosis was exacerbated in PICK1-/- mice. The level of xCT, other than PKCα, in lung tissue was significantly lowered in PICK1-/- but not in wild type that underwent CLP surgery. Meanwhile, Nrf2 activation, which dominating xCT expression, was inhibited in PICK1-/- but not in wild type mice that underwent CLP surgery, as well. Moreover, higher level of PICK1 was detected in PBMCs of septic patients than healthy controls. Taken together, PICK1 plays a pivotal role in sepsis-induced ALI by regulating GSH synthesis via affecting the substrate-specific subunit of lung cystine/glutamate transporter, xCT.
Collapse
Affiliation(s)
- Meizi Qian
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yingying Lou
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yixiu Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Minyuan Zhang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Qun Jiang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yunchang Mo
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Kunyuan Han
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Shenhui Jin
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Qinxue Dai
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Yulong Yu
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Zhen Wang
- Institute of Molecular Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Junlu Wang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
28
|
Binding of PICK1 PDZ domain with calcineurin B regulates osteoclast differentiation. Biochem Biophys Res Commun 2018; 496:83-88. [PMID: 29305867 DOI: 10.1016/j.bbrc.2017.12.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 12/20/2022]
Abstract
The calcineurin/nuclear factor of activated T cell (NFAT) signaling pathway plays a major role in osteoclast differentiation; however, the proteins that react with the calcineurin-NFAT complex in osteoclasts to regulate osteoclastogenesis remain unclear. Here, we present evidence that PICK1 also positively regulates calcineurin B in osteoclasts to activate NFAT to promote osteoclastogenesis. mRNA and protein expression of PICK1 in murine primary bone marrow macrophages (BMMs) was significantly increased during RANKL-induced osteoclast differentiation. The interaction of PICK1 with calcineurin B in BMMs was confirmed by co-immunoprecipitation. An inhibitor of the PICK1 PDZ domain significantly decreased osteoclastogenesis marker gene expression and the number of TRAP-positive multinucleated cells among RAW264.7 osteoclast progenitor cells. Overexpression of PICK1 in RAW264.7 cells significantly increased the number of TRAP-positive mature osteoclasts. Increased NFAT activation with transcriptional activation of PICK1 during RAW264.7 osteoclastogenesis was also confirmed in a tetracycline-controlled PICK1 expression system. These results suggest that the PDZ domain of PICK1 directly interacts with calcineurin B in osteoclast progenitor cells and promotes osteoclast differentiation through activation of calcineurin-NFAT signaling.
Collapse
|
29
|
Yakymovych I, Yakymovych M, Heldin CH. Intracellular trafficking of transforming growth factor β receptors. Acta Biochim Biophys Sin (Shanghai) 2018; 50:3-11. [PMID: 29186283 DOI: 10.1093/abbs/gmx119] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGFβ) family members signal via heterotetrameric complexes of type I (TβRI) and type II (TβRII) dual specificity kinase receptors. The availability of the receptors on the cell surface is controlled by several mechanisms. Newly synthesized TβRI and TβRII are delivered from the Golgi apparatus to the cell surface via separate routes. On the cell surface, TGFβ receptors are distributed between different microdomains of the plasma membrane and can be internalized via clathrin- and caveolae-mediated endocytic mechanisms. Although receptor endocytosis is not essential for TGFβ signaling, localization of the activated receptor complexes on the early endosomes promotes TGFβ-induced Smad activation. Caveolae-mediated endocytosis, which is widely regarded as a mechanism that facilitates the degradation of TGFβ receptors, has been shown to be required for TGFβ signaling via non-Smad pathways. The importance of proper control of TGFβ receptor intracellular trafficking is emphasized by clinical data, as mislocalization of receptors has been described in connection with several human diseases. Thus, control of intracellular trafficking of the TGFβ receptors together with the regulation of their expression, posttranslational modifications and down-regulation, ensure proper regulation of TGFβ signaling.
Collapse
Affiliation(s)
- Ihor Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Mariya Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
30
|
Serralheiro P, Soares A, Costa Almeida CM, Verde I. TGF-β1 in Vascular Wall Pathology: Unraveling Chronic Venous Insufficiency Pathophysiology. Int J Mol Sci 2017; 18:E2534. [PMID: 29186866 PMCID: PMC5751137 DOI: 10.3390/ijms18122534] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic venous insufficiency and varicose veins occur commonly in affluent countries and are a socioeconomic burden. However, there remains a relative lack of knowledge about venous pathophysiology. Various theories have been suggested, yet the molecular sequence of events is poorly understood. Transforming growth factor-beta one (TGF-β1) is a highly complex polypeptide with multifunctional properties that has an active role during embryonic development, in adult organ physiology and in the pathophysiology of major diseases, including cancer and various autoimmune, fibrotic and cardiovascular diseases. Therefore, an emphasis on understanding its signaling pathways (and possible disruptions) will be an essential requirement for a better comprehension and management of specific diseases. This review aims at shedding more light on venous pathophysiology by describing the TGF-β1 structure, function, activation and signaling, and providing an overview of how this growth factor and disturbances in its signaling pathway may contribute to specific pathological processes concerning the vessel wall which, in turn, may have a role in chronic venous insufficiency.
Collapse
Affiliation(s)
- Pedro Serralheiro
- Norfolk and Norwich University Hospital, Colney Ln, Norwich NR47UY, UK.
- Faculty of Health Sciences, CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Andreia Soares
- Norfolk and Norwich University Hospital, Colney Ln, Norwich NR47UY, UK.
| | - Carlos M Costa Almeida
- Department of General Surgery (C), Coimbra University Hospital Centre, Portugal; Faculty of Medicine, University of Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal.
| | - Ignacio Verde
- Faculty of Health Sciences, CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| |
Collapse
|
31
|
Wu L. Functional characteristics of a novel SMAD4 mutation from thoracic aortic aneurysms (TAA). Gene 2017; 628:129-133. [PMID: 28716708 DOI: 10.1016/j.gene.2017.07.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
SMAD4 is as an essential mediator of the transforming growth factor β (TGF-β) signaling pathway, and dysregulated TGF-β signaling is linked with thoracic aortic aneurysms (TAAs). In this study, we functionally characterized the Smad4 S271N mutation (the mutation c. 812G>A in Smad4 results in the amino acid substitution Ser271Asn) that was isolated from TAA individuals. We first constructed wild-type human Smad4 and Smad4 S271N plasmids. These constructs were then transiently transfected into HEK293T cells, and subsequent real-time PCR and western blotting demonstrated that wild-type Smad4 and Smad4 S271N were successfully expressed in 293T cells. We found that HEK293T cells overexpressing Smad4 S271N showed a strong increase in both cytoplasmic and nuclear Smad4 protein levels in response to TGF-β1. Although TGF-β signaling was the same in wild-type Smad4- and Smad4 S271N-transfected cells following TGF-β1 exposure, interestingly, we observed that transient Smad4 S271N expression in HEK293T cells caused a significant basal activation of TGF-β signaling. These results indicated that Smad4 may not directly induce TAA; rather it may contribute to TAA in combination with other risk factors.
Collapse
Affiliation(s)
- Lifei Wu
- Basic Medical College, Shanxi Medical University, 56 Xinjian S Rd, Taiyuan, Shanxi 30001, China.
| |
Collapse
|
32
|
The TGF-β signalling negative regulator PICK1 represses prostate cancer metastasis to bone. Br J Cancer 2017; 117:685-694. [PMID: 28697177 PMCID: PMC5572169 DOI: 10.1038/bjc.2017.212] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Backgroud: Constitutive activation of TGF-β signalling is a well-recognised mechanism in bone metastasis of prostate cancer (PCa). Protein Interacting with PRKCA 1 (PICK1) is a critical negative regulator of the TGF-β pathway. However, the clinical significance and biological role of PICK1 in PCa bone metastasis remain obscure. Methods: PICK1 expression is evaluated by immunohistochemistry (IHC) in 198 PCa patients. Statistical analysis is performed to explore correlation between PICK1 expression and clinicopathological features in PCa patients. The biological role of PICK1 is examined in PC-3 and C4-2B cells in vitro and a mouse intracardial model in vivo. Results: PICK1 expression is decreased in PCa tissues with bone metastasis and bone-derived cells and downregulation of PICK1 positively correlates with serum PSA level, Gleason grade and bone metastasis status in PCa patients. Overexpression of PICK1 suppresses PCa cell invasion and migration in vitro and bone metastasis in vivo. Our results further indicate downregulation of PICK1 is caused by miR-210-3p overexpression in PCa tissues with bone metastasis. Clinical negative correlation of PICK1 with miR-210-3p is confirmed in PCa tissues. Conclusions: Our findings uncover a novel functionally and clinically relevant epigenetic regulatory mechanism for constitutive activation of TGF-β signalling in bone metastasis of PCa.
Collapse
|
33
|
Pentabromophenol suppresses TGF-β signaling by accelerating degradation of type II TGF-β receptors via caveolae-mediated endocytosis. Sci Rep 2017; 7:43206. [PMID: 28230093 PMCID: PMC5322341 DOI: 10.1038/srep43206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Pentabromophenol (PBP), a brominated flame retardant (BFR), is widely used in various consumer products. BFRs exert adverse health effects such as neurotoxic and endocrine-disrupting effects. In this study, we found that PBP suppressed TGF-β response by accelerating the turnover rate of TGF-β receptors. PBP suppressed TGF-β-mediated cell migration, PAI-1 promoter-driven reporter gene activation, and Smad2/3 phosphorylation in various cell types. Furthermore, PBP abolished TGF-β-mediated repression of E-cadherin expression, in addition to the induction of vimentin expression and N-cadherin and fibronectin upregulation, thus blocking TGF-β-induced epithelial–mesenchymal transition in A549 and NMuMG cells. However, this inhibition was not observed with other congeners such as tribromophenol and triiodophenol. TGF-β superfamily members play key roles in regulating various biological processes including cell proliferation and migration as well as cancer development and progression. The results of this in vitro study provide a basis for studies on the detailed relationship between PBP and modulation of TGF-β signalling. Because PBP is similar to other BFRs such as polybrominated diphenyl ethers (PBDEs), additional laboratory and mechanistic studies should be performed to examine BFRs as potential risk factors for tumorigenesis and other TGF-β-related diseases.
Collapse
|
34
|
Jacko AM, Nan L, Li S, Tan J, Zhao J, Kass DJ, Zhao Y. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II. Cell Death Dis 2016; 7:e2474. [PMID: 27853171 PMCID: PMC5260874 DOI: 10.1038/cddis.2016.371] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022]
Abstract
The transforming growth factor β-1 (TGFβ-1) signaling pathway plays a central role in the pathogenesis of pulmonary fibrosis. Two TGFβ-1 receptors, TβRI and TβRII, mediate this pathway. TβRI protein stability, as mediated by the ubiquitin/de-ubiquitination system, has been well studied; however, the molecular regulation of TβRII still remains unclear. Here we reveal that a de-ubiquitinating enzyme, USP11, promotes TGFβ-1 signaling through de-ubiquitination and stabilization of TβRII. We elucidate the role that mitoxantrone (MTX), an USP11 inhibitor, has in the attenuation of TGFβ-1 signaling. Inhibition or downregulation of USP11 results in increases in TβRII ubiquitination and reduction of TβRII stability. Subsequently, TGFβ-1 signaling is greatly attenuated, as shown by the decreases in phosphorylation of SMAD2/3 levels as well as that of fibronectin (FN) and smooth muscle actin (SMA). Overexpression of USP11 reduces TβRII ubiquitination and increases TβRII stabilization, thereby elevating phosphorylation of SMAD2/3 and the ultimate expression of FN and SMA. Further, elevated expression of USP11 and TβRII were detected in lung tissues from bleomycin-challenged mice and IPF patients. Therefore, USP11 may contribute to the pathogenesis of pulmonary fibrosis by stabilization of TβRII and promotion of TGFβ-1 signaling. This study provides mechanistic evidence for development of USP11 inhibitors as potential antifibrotic drugs for pulmonary fibrosis.
Collapse
Affiliation(s)
- A M Jacko
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - L Nan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Anesthesia, The First Affiliated Hospital of Jilin University, Changchun, China
| | - S Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - J Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D J Kass
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Li N, Yang Y, He K, Zhang F, Zhao L, Zhou W, Yuan J, Liang W, Fang X. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane. Sci Rep 2016; 6:33469. [PMID: 27641076 PMCID: PMC5027577 DOI: 10.1038/srep33469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023] Open
Abstract
Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.
Collapse
Affiliation(s)
- Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yong Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Kangmin He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Fayun Zhang
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Libo Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wei Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jinghe Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wei Liang
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
36
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 2016; 98:115-21. [DOI: 10.1016/j.neuint.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
|
38
|
Xie J, Wu X, Zhou Q, Yang Y, Tian Y, Huang C, Meng X, Li J. PICK1 confers anti-inflammatory effects in acute liver injury via suppressing M1 macrophage polarization. Biochimie 2016; 127:121-32. [PMID: 27157267 DOI: 10.1016/j.biochi.2016.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
Protein interacting with C kinase 1 (PICK1) is a scaffolding protein mainly implicated in neurological diseases, however, the function of PICK1 in acute liver injury (ALI) remains unknown. Our study found a dramatical decrease in mRNA and protein levels of PICK1 in liver tissues and isolated Kupffer cells (KCs) from the liver in mice with ALI. Furthermore, pretreatment the mice with ALI with FSC-231, a pharmacological inhibitor of PICK1, could significantly augment inflammatory response. Furthermore, in vitro studies showed that both lipopolysaccharide (LPS) and interferon gamma (IFN-γ) significantly reduced the expression of PICK1, while IL-4 elevated its expression in RAW 264.7 cells. Additionally, over-expression of PICK1 inhibited the expression of M1 biomarkers by suppressing NF-κB activity, and enhanced the expression of M2 biomarkers by promoting STAT6 activity. In contrast, knockdown of PICK1 or FSC-231 pretreatment promoted M1 polarization and suppressed M2 polarization. Besides, caveolin-1 was identified as a potential target gene controlled by PICK1 in RAW 264.7 cells. Mechanistic investigation revealed a dual role of PICK1 in regulating macrophage polarization and implied PICK1 as a potential therapeutic target in ALI.
Collapse
Affiliation(s)
- Juan Xie
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Xiaoqin Wu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Qun Zhou
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Yuanyao Tian
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China; Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
39
|
He J, Zheng YW, Lin YF, Mi S, Qin XW, Weng SP, He JG, Guo CJ. Caveolae Restrict Tiger Frog Virus Release in HepG2 cells and Caveolae-Associated Proteins Incorporated into Virus Particles. Sci Rep 2016; 6:21663. [PMID: 26887868 PMCID: PMC4757878 DOI: 10.1038/srep21663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/21/2016] [Indexed: 12/26/2022] Open
Abstract
Caveolae are flask-shaped invaginations of the plasma membrane. Caveolae play important roles in the process of viruses entry into host cells, but the roles of caveolae at the late stage of virus infection were not completely understood. Tiger frog virus (TFV) has been isolated from the diseased tadpoles of the frog, Rana tigrina rugulosa, and causes high mortality of tiger frog tadpoles cultured in Southern China. In the present study, the roles of caveolae at the late stage of TFV infection were investigated. We showed that TFV virions were localized with the caveolae at the late stage of infection in HepG2 cells. Disruption of caveolae by methyl-β-cyclodextrin/nystatin or knockdown of caveolin-1 significantly increase the release of TFV. Moreover, the interaction between caveolin-1 and TFV major capsid protein was detected by co-immunoprecipitation. Those results suggested that caveolae restricted TFV release from the HepG2 cells. Caveolae-associated proteins (caveolin-1, caveolin-2, cavin-1, and cavin-2) were selectively incorporated into TFV virions. Different combinations of proteolytic and/or detergent treatments with virions showed that caveolae-associated proteins were located in viral capsid of TFV virons. Taken together, caveolae might be a restriction factor that affects virus release and caveolae-associated proteins were incorporated in TFV virions.
Collapse
Affiliation(s)
- Jian He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.,MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Wen Zheng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Fan Lin
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shu Mi
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Xiao-Wei Qin
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.,MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Chang-Jun Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.,MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| |
Collapse
|
40
|
Araki S, Izumiya Y, Rokutanda T, Ianni A, Hanatani S, Kimura Y, Onoue Y, Senokuchi T, Yoshizawa T, Yasuda O, Koitabashi N, Kurabayashi M, Braun T, Bober E, Yamagata K, Ogawa H. Sirt7 Contributes to Myocardial Tissue Repair by Maintaining Transforming Growth Factor-β Signaling Pathway. Circulation 2015. [PMID: 26202810 DOI: 10.1161/circulationaha.114.014821] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sirt7, 1 of the 7 members of the mammalian sirtuin family, promotes oncogenic transformation. Tumor growth and metastasis require fibrotic and angiogenic responses. Here, we investigated the role of Sirt7 in cardiovascular tissue repair process. METHODS AND RESULTS In wild-type mice, Sirt7 expression increased in response to acute cardiovascular injury, including myocardial infarction and hind-limb ischemia, particularly at the active wound healing site. Compared with wild-type mice, homozygous Sirt7-deficient (Sirt7(-/-)) mice showed susceptibility to cardiac rupture after myocardial infarction, delayed blood flow recovery after hind-limb ischemia, and impaired wound healing after skin injury. Histological analysis showed reduced fibrosis, fibroblast differentiation, and inflammatory cell infiltration in the border zone of infarction in Sirt7(-/-) mice. In vitro, Sirt7(-/-) mouse-derived or Sirt7 siRNA-treated cardiac fibroblasts showed reduced transforming growth factor-β signal activation and low expression levels of fibrosis-related genes compared with wild-type mice-derived or control siRNA-treated cells. These changes were accompanied by reduction in transforming growth factor receptor I protein. Loss of Sirt7 activated autophagy in cardiac fibroblasts. Transforming growth factor-β receptor I downregulation induced by loss of Sirt7 was blocked by autophagy inhibitor, and interaction of Sirt7 with protein interacting with protein kinase-Cα was involved in this process. CONCLUSION Sirt7 maintains transforming growth factor receptor I by modulating autophagy and is involved in the tissue repair process.
Collapse
Affiliation(s)
- Satoshi Araki
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Yasuhiro Izumiya
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.).
| | - Taku Rokutanda
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Alessandro Ianni
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Shinsuke Hanatani
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Yuichi Kimura
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Yoshiro Onoue
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Takafumi Senokuchi
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Tatsuya Yoshizawa
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Osamu Yasuda
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Norimichi Koitabashi
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Masahiko Kurabayashi
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Thomas Braun
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Eva Bober
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Kazuya Yamagata
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| | - Hisao Ogawa
- From Departments of Cardiovascular Medicine (S.A., Y.I., T.R., S.H., Y.K., Y.O., H.O.) and Medical Biochemistry (T.S., T.Y., K.Y.), Graduate School of Medical Sciences, Kumamoto University, Japan; Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.I., T.B., E.B.); Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Japan (O.Y.); and Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan (N.K., M.K.)
| |
Collapse
|
41
|
He K, Yan X, Li N, Dang S, Xu L, Zhao B, Li Z, Lv Z, Fang X, Zhang Y, Chen YG. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Res 2015; 25:738-52. [PMID: 25998683 DOI: 10.1038/cr.2015.60] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 01/12/2015] [Accepted: 02/02/2015] [Indexed: 12/18/2022] Open
Abstract
Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.
Collapse
Affiliation(s)
- Kangmin He
- 1] Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China [2] Institute of Vascular Medicine Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xiaohua Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Dang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zijian Li
- Institute of Vascular Medicine Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zhizhen Lv
- Institute of Vascular Medicine Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Youyi Zhang
- Institute of Vascular Medicine Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Hwangbo C, Tae N, Lee S, Kim O, Park OK, Kim J, Kwon SH, Lee JH. Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-β type I receptor internalization. Oncogene 2015; 35:389-401. [PMID: 25893292 DOI: 10.1038/onc.2015.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/12/2015] [Accepted: 02/16/2015] [Indexed: 01/14/2023]
Abstract
Syntenin, a tandem PDZ domain containing scaffold protein, functions as a positive regulator of cancer cell progression in several human cancers. We report here that syntenin positively regulates transforming growth factor (TGF)-β1-mediated Smad activation and the epithelial-to-mesenchymal transition (EMT) by preventing caveolin-1-mediated internalization of TGF-β type I receptor (TβRI). Knockdown of syntenin suppressed TGF-β1-mediated cell migration, transcriptional responses and Smad2/3 activation in various types of cells; however, overexpression of syntenin facilitated TGF-β1-mediated responses. In particular, syntenin knockdown abolished both the basal and TGF-β1-mediated repression of E-cadherin expression, as well as induction of vimentin expression along with Snail and Slug upregulation; thus, blocking the TGF-β1-induced EMT in A549 cells. In contrast, overexpression of syntenin exhibited the opposite effect. Knockdown of syntenin-induced ubiquitination and degradation of TβRI, but not TGF-β type II receptor, leading to decreased TβRI expression at the plasma membrane. Syntenin associated with TβRI at its C-terminal domain and a syntenin mutant lacking C-terminal domain failed to increase TGF-β1-induced responses. Biochemical analyzes revealed that syntenin inhibited the interaction between caveolin-1 and TβRI and knockdown of syntenin induced a massive internalization of TβRI and caveolin-1 from lipid rafts, indicating that syntenin may increase TGF-β signaling by inhibiting caveolin-1-dependent internalization of TβRI. Moreover, a positive correlation between syntenin expression and phospho-Smad2 levels is observed in human lung tumors. Taken together, these findings demonstrate that syntenin may act as an important positive regulator of TGF-β signaling by regulating caveolin-1-mediated internalization of TβRI; thus, providing a novel function for syntenin that is linked to cancer progression.
Collapse
Affiliation(s)
- C Hwangbo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - N Tae
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - S Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - O Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - O K Park
- Division of Bio-imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Gangwon-Do, Republic of Korea
| | - J Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - S-H Kwon
- Division of Bio-imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Gangwon-Do, Republic of Korea
| | - J-H Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| |
Collapse
|
43
|
Herhaus L, Al-Salihi MA, Dingwell KS, Cummins TD, Wasmus L, Vogt J, Ewan R, Bruce D, Macartney T, Weidlich S, Smith JC, Sapkota GP. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling. Open Biol 2015; 4:140065. [PMID: 24850914 PMCID: PMC4042855 DOI: 10.1098/rsob.140065] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis.
Collapse
Affiliation(s)
- Lina Herhaus
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Mazin A Al-Salihi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Kevin S Dingwell
- Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill NW7 1AA, UK
| | - Timothy D Cummins
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Lize Wasmus
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Janis Vogt
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Richard Ewan
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - David Bruce
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Thomas Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Simone Weidlich
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - James C Smith
- Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill NW7 1AA, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St., Dundee DD1 5EH, UK
| |
Collapse
|
44
|
Zhao B, Chen YG. Regulation of TGF-β Signal Transduction. SCIENTIFICA 2014; 2014:874065. [PMID: 25332839 PMCID: PMC4190275 DOI: 10.1155/2014/874065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/02/2014] [Indexed: 05/30/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity, and migration. TGF-β signaling can be mediated by Smad proteins or other signaling proteins such as MAP kinases and Akt. TGF-β signaling is tightly regulated at different levels along the pathways to ensure its proper physiological functions in different cells and tissues. Deregulation of TGF-β signaling has been associated with various kinds of diseases, such as cancer and tissue fibrosis. This paper focuses on our recent work on regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Bing Zhao
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Abstract
The transforming growth factor beta (TGFβ) signaling pathway is important for normal cell homeostasis and has critical roles in apoptosis, cell-cycle arrest, and cellular differentiation (reviewed in Massague, 2008). In the classical TGFβ pathway, the endosomal trafficking of receptors has a direct outcome on signal transduction-receptors internalized via clathrin-mediated endocytosis enter the early endosome and propagate signaling, while those internalized via membrane rafts are targeted for degradation. Recently, there have been a number of articles that have identified TGFβ receptor-binding proteins that direct receptor endocytosis and/or intracellular trafficking and affect signal output (Atfi et al., 2007; Bauge, Girard, Leclercq, Galera, & Boumediene, 2012; Bizet et al., 2011, 2012; Chen et al., 2007; Gunaratne, Benchabane, & Di Guglielmo, 2012; Hao et al., 2011; McLean, Bhattacharya, & Di Guglielmo, 2013; Zhao et al., 2012). Given the importance of TGFβ receptor trafficking to signaling outcome, this chapter will focus on strategies to isolate membrane rafts and techniques to follow the trafficking of cell-surface TGFβ receptors and provide examples of functional readouts to assess TGFβ signal transduction.
Collapse
Affiliation(s)
- Sarah McLean
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Gianni M Di Guglielmo
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
| |
Collapse
|
46
|
Shi Y, Gochuico BR, Yu G, Tang X, Osorio JC, Fernandez IE, Risquez CF, Patel AS, Shi Y, Wathelet MG, Goodwin AJ, Haspel JA, Ryter SW, Billings EM, Kaminski N, Morse D, Rosas IO. Syndecan-2 exerts antifibrotic effects by promoting caveolin-1-mediated transforming growth factor-β receptor I internalization and inhibiting transforming growth factor-β1 signaling. Am J Respir Crit Care Med 2013; 188:831-41. [PMID: 23924348 DOI: 10.1164/rccm.201303-0434oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Alveolar transforming growth factor (TGF)-β1 signaling and expression of TGF-β1 target genes are increased in patients with idiopathic pulmonary fibrosis (IPF) and in animal models of pulmonary fibrosis. Internalization and degradation of TGF-β receptor TβRI inhibits TGF-β signaling and could attenuate development of experimental lung fibrosis. OBJECTIVES To demonstrate that after experimental lung injury, human syndecan-2 confers antifibrotic effects by inhibiting TGF-β1 signaling in alveolar epithelial cells. METHODS Microarray assays were performed to identify genes differentially expressed in alveolar macrophages of patients with IPF versus control subjects. Transgenic mice that constitutively overexpress human syndecan-2 in macrophages were developed to test the antifibrotic properties of syndecan-2. In vitro assays were performed to determine syndecan-2-dependent changes in epithelial cell TGF-β1 signaling, TGF-β1, and TβRI internalization and apoptosis. Wild-type mice were treated with recombinant human syndecan-2 during the fibrotic phase of bleomycin-induced lung injury. MEASUREMENTS AND MAIN RESULTS We observed significant increases in alveolar macrophage syndecan-2 levels in patients with IPF. Macrophage-specific overexpression of human syndecan-2 in transgenic mice conferred antifibrotic effects after lung injury by inhibiting TGF-β1 signaling and downstream expression of TGF-β1 target genes, reducing extracellular matrix production and alveolar epithelial cell apoptosis. In vitro, syndecan-2 promoted caveolin-1-dependent internalization of TGF-β1 and TβRI in alveolar epithelial cells, which inhibited TGF-β1 signaling and epithelial cell apoptosis. Therapeutic administration of human syndecan-2 abrogated lung fibrosis in mice. CONCLUSIONS Alveolar macrophage syndecan-2 exerts antifibrotic effects by promoting caveolin-1-dependent TGF-β1 and TβRI internalization and inhibiting TGF-β1 signaling in alveolar epithelial cells. Hence, molecules that facilitate TβRI degradation via endocytosis represent potential therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Shi
- 1 Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Aerbajinai W, Lee K, Chin K, Rodgers GP. Glia maturation factor-γ negatively modulates TLR4 signaling by facilitating TLR4 endocytic trafficking in macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 190:6093-103. [PMID: 23677465 DOI: 10.4049/jimmunol.1203048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TLR4 signaling must be tightly regulated to provide both effective immune protection and avoid inflammation-induced pathology. Thus, the mechanisms that negatively regulate the TLR4-triggered inflammatory response are of particular importance. Glia maturation factor-γ (GMFG), a novel actin depolymerization factor/cofilin superfamily protein that is expressed in inflammatory cells, has been implicated in mediating neutrophil and T cell migration, but its function in macrophage immune response remains unclear. In the current study, the role of GMFG in the LPS-induced TLR4-signaling pathway was investigated in THP-1 macrophages and human primary macrophages. LPS stimulation of macrophages decreased GMFG mRNA and protein expression. We show that GMFG negatively regulates LPS-induced activation of NF-κB-, MAPK-, and IRF3-signaling pathways and subsequent production of proinflammatory cytokines and type I IFN in human macrophages. We found that endogenous GMFG localized within early and late endosomes. GMFG knockdown delayed LPS-induced TLR4 internalization and caused prolonged TLR4 retention at the early endosome, suggesting that TLR4 transport from early to late endosomes is interrupted, which may contribute to enhanced LPS-induced TLR4 signaling. Taken together, our findings suggest that GMFG functions as a negative regulator of TLR4 signaling by facilitating TLR4 endocytic trafficking in macrophages.
Collapse
Affiliation(s)
- Wulin Aerbajinai
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
48
|
Her NG, Jeong SI, Cho K, Ha TK, Han J, Ko KP, Park SK, Lee JH, Lee MG, Ryu BK, Chi SG. PPARδ promotes oncogenic redirection of TGF-β1 signaling through the activation of the ABCA1-Cav1 pathway. Cell Cycle 2013; 12:1521-35. [PMID: 23598720 DOI: 10.4161/cc.24636] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TGF-β1 plays biphasic functions in prostate tumorigenesis, inhibiting cell growth at early stages but promoting malignant progression at later stages. However, the molecular basis for the oncogenic conversion of TGF-β1 function remains largely undefined. Here, we demonstrate that PPARδ is a direct transcription target of TGF-β1 and plays a critical role in oncogenic redirection of TGF-β1 signaling. Blockade of PPARδ induction enhances tumor cell response to TGF-β1-mediated growth inhibition, while its activation promotes TGF-β1-induced tumor growth, migration and invasion. PPARδ-mediated switch of TGF-β1 function is associated with down- and upregulation of Smad and ERK signaling, respectively, and tightly linked to its function to activate ABCA1 cholesterol transporter followed by caveolin-1 (Cav1) induction. Intriguingly, TGF-β1 activation of the PPARδ-ABCA1-Cav1 pathway facilitates degradation of TGF-β receptors (TβRs) and attenuates Smad but enhances ERK response to TGF-β1. Expression of PPARδ and Cav1 is tightly correlated in both prostate tissues and cell lines and significantly higher in cancer vs. normal tissues. Collectively, our study shows that PPARδ is a transcription target of TGF-β1 and contributes to the oncogenic conversion of TGF-β1 function through activation of the ABCA1-Cav1-TβR signaling axis.
Collapse
Affiliation(s)
- Nam-Gu Her
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigão P, Stipursky J, Kahn SA, Romão LF, de Miranda J, Alves-Leon SV, de Souza JM, Castro NG, Panizzutti R, Gomes FCA. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 2012; 287:41432-45. [PMID: 23055518 PMCID: PMC3510841 DOI: 10.1074/jbc.m112.380824] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Assembly of synapses requires proper coordination between pre- and postsynaptic elements. Identification of cellular and molecular events in synapse formation and maintenance is a key step to understand human perception, learning, memory, and cognition. A key role for astrocytes in synapse formation and function has been proposed. Here, we show that transforming growth factor β (TGF-β) signaling is a novel synaptogenic pathway for cortical neurons induced by murine and human astrocytes. By combining gain and loss of function approaches, we show that TGF-β1 induces the formation of functional synapses in mice. Further, TGF-β1-induced synaptogenesis involves neuronal activity and secretion of the co-agonist of the NMDA receptor, d-serine. Manipulation of d-serine signaling, by either genetic or pharmacological inhibition, prevented the TGF-β1 synaptogenic effect. Our data show a novel molecular mechanism that might impact synaptic function and emphasize the evolutionary aspect of the synaptogenic property of astrocytes, thus shedding light on new potential therapeutic targets for synaptic deficit diseases.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Redondo S, Navarro-Dorado J, Ramajo M, Medina Ú, Tejerina T. The complex regulation of TGF-β in cardiovascular disease. Vasc Health Risk Manag 2012; 8:533-9. [PMID: 23028232 PMCID: PMC3446857 DOI: 10.2147/vhrm.s28041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor β (TGF-β1) is a pleiotropic cytokine with many and complex effects in cell and tissue physiology. This is made possible by a very complex and interwoven signaling system, whose regulation continues to be the focus of a growing line of research. This complex regulation translates to a key role in cardiovascular physiology, hemostasis, and the blood–vessel interface. In accordance with this, the TGF-β1 pathway appears to be deregulated in related disorders, such as atherosclerotic vascular disease and myeloproliferative syndromes. It is expected that the growing amount of experimental and clinical research will yield medical advances in the applications of knowledge of the TGF-β1 pathway to diagnosis and therapeutics.
Collapse
Affiliation(s)
- Santiago Redondo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain.
| | | | | | | | | |
Collapse
|