1
|
Wu K, Zhou J, Tang Y, Zhang Q, Xiong L, Li X, Zhuo Z, Luo M, Yuan Y, Liu X, Zhong Z, Guo X, Yu Z, Sheng X, Luo G, Chen H. Werner syndrome exonuclease promotes gut regeneration and causes age-associated gut hyperplasia in Drosophila. PLoS Biol 2025; 23:e3003121. [PMID: 40261911 PMCID: PMC12013949 DOI: 10.1371/journal.pbio.3003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Human Werner syndrome (adult progeria, a well-established model of human aging) is caused by mutations in the Werner syndrome (WRN) gene. However, the expression patterns and functions of WRN in natural aging remain poorly understood. Despite the link between WRN deficiencies and progeria, our analyses of human colon tissues, mouse crypts, and Drosophila midguts revealed that WRN expression does not decrease but rather increases in intestinal stem cells (ISCs) with aging. Mechanistically, we found that the Drosophila WRN homologue (WRNexo) binds to Heat shock 70-kDa protein cognate 3 (Hsc70-3/Bip) to regulate the unfolded protein response of the endoplasmic reticulum (UPRER). Activation of the WRNexo-mediated UPRER in ISCs is required for ISC proliferation during injury repair. However, persistent DNA damage during aging leads to chronic upregulation of WRNexo in ISCs, where excessive WRNexo-induced ER stress drives age-associated gut hyperplasia in Drosophila. This study reveals how elevated WRNexo contributes to stem cell aging, providing new insights into organ aging and the pathogenesis of age-related diseases, such as colon cancer.
Collapse
Affiliation(s)
- Kun Wu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yiming Tang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoqiao Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mei Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - XiaoXin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Sheng
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Lee SH, Won Y, Gibbs D, Caldwell B, Goldstein A, Choi E, Goldenring JR. Amphiregulin Switches Progenitor Cell Fate for Lineage Commitment During Gastric Mucosal Regeneration. Gastroenterology 2024; 167:469-484. [PMID: 38492892 PMCID: PMC11260537 DOI: 10.1053/j.gastro.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND & AIMS Isthmic progenitors, tissue-specific stem cells in the stomach corpus, maintain mucosal homeostasis by balancing between proliferation and differentiation to gastric epithelial lineages. The progenitor cells rapidly adopt an active state in response to mucosal injury. However, it remains unclear how the isthmic progenitor cell niche is controlled during the regeneration of damaged epithelium. METHODS We recapitulated tissue recovery process after acute mucosal injury in the mouse stomach. Bromodeoxyuridine incorporation was used to trace newly generated cells during the injury and recovery phases. To define the epithelial lineage commitment process during recovery, we performed single-cell RNA-sequencing on epithelial cells from the mouse stomachs. We validated the effects of amphiregulin (AREG) on mucosal recovery, using recombinant AREG treatment or AREG-deficient mice. RESULTS We determined that an epidermal growth factor receptor ligand, AREG, can control progenitor cell lineage commitment. Based on the identification of lineage-committed subpopulations in the corpus epithelium through single-cell RNA-sequencing and bromodeoxyuridine incorporation, we showed that isthmic progenitors mainly transition into short-lived surface cell lineages but are less frequently committed to long-lived parietal cell lineages in homeostasis. However, mucosal regeneration after damage directs the lineage commitment of isthmic progenitors towards parietal cell lineages. During recovery, AREG treatment promoted repopulation with parietal cells, while suppressing surface cell commitment of progenitors. In contrast, transforming growth factor-α did not alter parietal cell regeneration, but did induce expansion of surface cell populations. AREG deficiency impairs parietal cell regeneration but increases surface cell commitment. CONCLUSIONS These data demonstrate that different epidermal growth factor receptor ligands can distinctly regulate isthmic progenitor-driven mucosal regeneration and lineage commitment.
Collapse
Affiliation(s)
- Su-Hyung Lee
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Yoonkyung Won
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gibbs
- Institute for Systems Biology, Seattle, Washington
| | - Brianna Caldwell
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
3
|
Josserand M, Rubanova N, Stefanutti M, Roumeliotis S, Espenel M, Marshall OJ, Servant N, Gervais L, Bardin AJ. Chromatin state transitions in the Drosophila intestinal lineage identify principles of cell-type specification. Dev Cell 2023; 58:3048-3063.e6. [PMID: 38056452 DOI: 10.1016/j.devcel.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Tissue homeostasis relies on rewiring of stem cell transcriptional programs into those of differentiated cells. Here, we investigate changes in chromatin occurring in a bipotent adult stem cells. Combining mapping of chromatin-associated factors with statistical modeling, we identify genome-wide transitions during differentiation in the adult Drosophila intestinal stem cell (ISC) lineage. Active, stem-cell-enriched genes transition to a repressive heterochromatin protein-1-enriched state more prominently in enteroendocrine cells (EEs) than in enterocytes (ECs), in which the histone H1-enriched Black state is preeminent. In contrast, terminal differentiation genes associated with metabolic functions follow a common path from a repressive, primed, histone H1-enriched Black state in ISCs to active chromatin states in EE and EC cells. Furthermore, we find that lineage priming has an important function in adult ISCs, and we identify histone H1 as a mediator of this process. These data define underlying principles of chromatin changes during adult multipotent stem cell differentiation.
Collapse
Affiliation(s)
- Manon Josserand
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France
| | - Natalia Rubanova
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France; Institut Curie Bioinformatics Core Facility, PSL Research University, INSERM U900, MINES ParisTech, Paris 75005, France
| | - Marine Stefanutti
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France
| | - Spyridon Roumeliotis
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France
| | - Marion Espenel
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005 Paris, France
| | - Owen J Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia
| | - Nicolas Servant
- Institut Curie Bioinformatics Core Facility, PSL Research University, INSERM U900, MINES ParisTech, Paris 75005, France
| | - Louis Gervais
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France.
| | - Allison J Bardin
- Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, Genetics and Developmental Biology Department, 75248 Paris, France.
| |
Collapse
|
4
|
Li C, Yang L, Wang Y, Du H, Zhang J, Lu Y, Li B, Chen K. Functional analysis of zona pellucida domain protein Dusky in Tribolium castaneum. INSECT SCIENCE 2022; 29:388-398. [PMID: 34237197 DOI: 10.1111/1744-7917.12938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The zona pellucida domain protein Dusky (Dy) plays a vital role in wing morphogenesis in insects, but little information on its function has been reported. In this study, we found that dy regulated wing cell size, larval and pupal duration, and the metabolism of amino acid and 20-hydroxyecdysone in Tribolium castaneum. Using RNA-seq, 413 differentially expressed genes were identified between physiological buffer-injected and dy-double-stranded RNA-treated larvae, including 88 downregulated genes and 325 upregulated genes. Among these genes, dy knockdown increased CYP18A1 expression to elevate the 26-hydroxylation of 20-hydroxyecdysone, which ultimately led to growth defects in wing cells. Silencing of dy upregulated the transcription of genes encoding tyrosine aminotransferase, 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1, 2-dioxygenase, and Pale to promote the catabolism of tyrosine and phenylalanine, which eventually reduced amino acid content. Furthermore, dy knockdown upregulated 4E-BP expression, and 4E-BP silencing partially phenocopied dy RNA interference-mediated wing morphogenesis. These results suggest that Dy controls 20-hydroxyecdysone and amino acid metabolism to regulate wing morphogenesis in the insect.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
5
|
Wei T, Wu L, Ji X, Gao Y, Xiao G. Ursolic Acid Protects Sodium Dodecyl Sulfate-Induced Drosophila Ulcerative Colitis Model by Inhibiting the JNK Signaling. Antioxidants (Basel) 2022; 11:antiox11020426. [PMID: 35204308 PMCID: PMC8869732 DOI: 10.3390/antiox11020426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Ursolic acid (UA) is a bioactive molecule widely distributed in various fruits and vegetables, which was reported to play a therapeutic role in ulcerative colitis (UC) induced by toxic chemicals. However, the underlying mechanism has not been well clarified in vivo. Here, using a Drosophila UC model induced by sodium dodecyl sulfate (SDS), we investigated the defensive effect of UA on intestinal damage. The results showed that UA could significantly protect Drosophila from the damage caused by SDS exposure. Further, UA alleviated the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by SDS and upregulated the activities of total superoxide dismutase (T-SOD) and catalase (CAT). Moreover, the proliferation and differentiation of intestine stem cells (ISCs) as well as the excessive activation of the c-Jun N-terminal kinase (JNK)-dependent JAK/STAT signaling pathway induced by SDS were restored by UA. In conclusion, UA prevents intestine injury from toxic compounds by reducing the JNK/JAK/STAT signaling pathway. UA may provide a theoretical basis for functional food or natural medicine development.
Collapse
Affiliation(s)
- Tian Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lei Wu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
| | - Xiaowen Ji
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
| | - Yan Gao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
| | - Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
- Correspondence: ; Tel.: +86-177-3022-7689
| |
Collapse
|
6
|
Jin Z, Che M, Xi R. Identification of progenitor cells and their progenies in adult Drosophila midgut. Methods Cell Biol 2022; 170:169-187. [DOI: 10.1016/bs.mcb.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Huang J, Sheng X, Zhuo Z, Xiao D, Wu K, Wan G, Chen H. ClC-c regulates the proliferation of intestinal stem cells via the EGFR signalling pathway in Drosophila. Cell Prolif 2021; 55:e13173. [PMID: 34952996 PMCID: PMC8780901 DOI: 10.1111/cpr.13173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives Adult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified. Materials and Methods Flies were used to generate tissue‐specific gene knockdown and gene knockout. qRT‐PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA‐seq was used to screen downstream mechanisms. Results Here, we report a member of the chloride channel family, ClC‐c, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClC‐c in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway. Conclusion Our findings reveal an ISC‐specific function of ClC‐c in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis.
Collapse
Affiliation(s)
- Jinping Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Sheng
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangpeng Zhuo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Danqing Xiao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gang Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Viitanen A, Gullmets J, Morikka J, Katajisto P, Mattila J, Hietakangas V. An image analysis method for regionally defined cellular phenotyping of the Drosophila midgut. CELL REPORTS METHODS 2021; 1:100059. [PMID: 35474669 PMCID: PMC9017226 DOI: 10.1016/j.crmeth.2021.100059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022]
Abstract
The intestine is divided into functionally distinct regions along the anteroposterior (A/P) axis. How the regional identity influences the function of intestinal stem cells (ISCs) and their offspring remain largely unresolved. We introduce an imaging-based method, "Linear Analysis of Midgut" (LAM), which allows quantitative, regionally defined cellular phenotyping of the whole Drosophila midgut. LAM transforms image-derived cellular data from three-dimensional midguts into a linearized representation, binning it into segments along the A/P axis. Through automated multivariate determination of regional borders, LAM allows mapping and comparison of cellular features and frequencies with subregional resolution. Through the use of LAM, we quantify the distributions of ISCs, enteroblasts, and enteroendocrine cells in a steady-state midgut, and reveal unprecedented regional heterogeneity in the ISC response to a Drosophila model of colitis. Altogether, LAM is a powerful tool for organ-wide quantitative analysis of the regional heterogeneity of midgut cells.
Collapse
Affiliation(s)
- Arto Viitanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Josef Gullmets
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Jack Morikka
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Pekka Katajisto
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Jaakko Mattila
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| |
Collapse
|
9
|
Liu J, Wu J, Wang R, Zhong D, Qiu Y, Wang H, Song Z, Zhu Y. ANKRD22 Drives Rapid Proliferation of Lgr5 + Cells and Acts as a Promising Therapeutic Target in Gastric Mucosal Injury. Cell Mol Gastroenterol Hepatol 2021; 12:1433-1455. [PMID: 34217895 PMCID: PMC8488249 DOI: 10.1016/j.jcmgh.2021.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Rapid gastric epithelial progenitor cell (EPC) proliferation and inflammatory response inhibition play key roles in promoting the repair of gastric mucosal damage. However, specific targets inducing these effects are unknown. In this study, we explored the effects of a potential target, Ankyrin repeat domain 22 (ANKRD22). METHODS An acute gastric mucosal injury model was established with Ankrd22-/- and Ankrd22+/+ mice by intragastric administration of acidified ethanol. Organoid culture and flow cytometry were performed to evaluate the effects of ANKRD22 on leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) gastric EPC proliferation. The mechanisms by which ANKRD22 affects gastric EPC proliferation and inflammatory responses were explored by mitochondrial Ca2+ influx and immunoblotting. Candidate ANKRD22 inhibitors then were screened virtually and validated in vitro and in vivo. RESULTS After acute gastric mucosal injury, the number of Lgr5+ gastric EPCs was increased significantly in Ankrd22-/- mice compared with that in Ankrd22+/+ mice. Moreover, Ankrd22 knockout attenuated inflammatory cell infiltration into damaged gastric tissues. ANKRD22 deletion also reduced mitochondrial Ca2+ influx and cytoplasmic nuclear factor of activated T cells in gastric epithelial cells and macrophages, which further induced Lgr5+ gastric EPC proliferation and decreased macrophage release of tumor necrosis factor-α and interleukin 1α. In addition, a small molecule, AV023, was found to show similar effects to those produced by ANKRD22 deletion in vitro. Intraperitoneal injection of AV023 into the mouse model promoted the repair of gastric mucosal damage, with increased proliferation of Lgr5+ gastric EPCs and visible relief of inflammation. CONCLUSIONS ANKRD22 inhibition is a potential target-based therapeutic approach for promoting the repair of gastric mucosal damage.
Collapse
Affiliation(s)
- Jingwen Liu
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Rui Wang
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Dandan Zhong
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Yiqing Qiu
- Department of Urology Surgery, Hangzhou, Zhejiang, China
| | - Hongping Wang
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Zhenya Song
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhenya Song, MD, Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China. fax: (86)-571-87214404
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China,Key Laboratory of Tumor Microenviroment and Immune Therapy of Zhejiang Province, Hangzhou, Zhejiang, China,Correspondence Address correspondence to: Yongliang Zhu, PhD, Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
10
|
Resnik-Docampo M, Cunningham KM, Ruvalcaba SM, Choi C, Sauer V, Jones DL. Neuroglian regulates Drosophila intestinal stem cell proliferation through enhanced signaling via the epidermal growth factor receptor. Stem Cell Reports 2021; 16:1584-1597. [PMID: 33961791 PMCID: PMC8190597 DOI: 10.1016/j.stemcr.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022] Open
Abstract
The Drosophila intestine is an excellent system for elucidating mechanisms regulating stem cell behavior. Here we show that the septate junction (SJ) protein Neuroglian (Nrg) is expressed in intestinal stem cells (ISCs) and enteroblasts (EBs) within the fly intestine. SJs are not present between ISCs and EBs, suggesting Nrg plays a different role in this tissue. We reveal that Nrg is required for ISC proliferation in young flies, and depletion of Nrg from ISCs and EBs suppresses increased ISC proliferation in aged flies. Conversely, overexpression of Nrg in ISC and EBs promotes ISC proliferation, leading to an increase in cells expressing ISC/EB markers; in addition, we observe an increase in epidermal growth factor receptor (Egfr) activation. Genetic epistasis experiments reveal that Nrg acts upstream of Egfr to regulate ISC proliferation. As Nrg function is highly conserved in mammalian systems, our work characterizing the role of Nrg in the intestine has implications for the treatment of intestinal disorders that arise due to altered ISC behavior.
Collapse
Affiliation(s)
- Martin Resnik-Docampo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathleen M Cunningham
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Mateo Ruvalcaba
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Charles Choi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vivien Sauer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Ferguson M, Petkau K, Shin M, Galenza A, Fast D, Foley E. Differential effects of commensal bacteria on progenitor cell adhesion, division symmetry and tumorigenesis in the Drosophila intestine. Development 2021; 148:dev.186106. [DOI: 10.1242/dev.186106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Microbial factors influence homeostatic and oncogenic growth in the intestinal epithelium. However, we know little about immediate effects of commensal bacteria on stem cell division programs. In this study, we examined the effects of commensal Lactobacillus species on homeostatic and tumorigenic stem cell proliferation in the female Drosophila intestine. We identified Lactobacillus brevis as a potent stimulator of stem cell divisions. In a wild-type midgut, L.brevis activates growth regulatory pathways that drive stem cell divisions. In a Notch-deficient background, L.brevis-mediated proliferation causes rapid expansion of mutant progenitors, leading to accumulation of large, multi-layered tumors throughout the midgut. Mechanistically, we showed that L.brevis disrupts expression and subcellular distribution of progenitor cell integrins, supporting symmetric divisions that expand intestinal stem cell populations. Collectively, our data emphasize the impact of commensal microbes on division and maintenance of the intestinal progenitor compartment.
Collapse
Affiliation(s)
- Meghan Ferguson
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kristina Petkau
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Anthony Galenza
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David Fast
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
12
|
Maier D. Membrane-Anchored Hairless Protein Restrains Notch Signaling Activity. Genes (Basel) 2020; 11:genes11111315. [PMID: 33171957 PMCID: PMC7694644 DOI: 10.3390/genes11111315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The Notch signaling pathway governs cell-to-cell communication in higher eukaryotes. In Drosophila, after cleavage of the transmembrane receptor Notch, the intracellular domain of Notch (ICN) binds to the transducer Suppressor of Hairless (Su(H)) and shuttles into the nucleus to activate Notch target genes. Similarly, the Notch antagonist Hairless transfers Su(H) into the nucleus to repress Notch target genes. With the aim to prevent Su(H) nuclear translocation, Hairless was fused to a transmembrane domain to anchor the protein at membranes. Indeed, endogenous Su(H) co-localized with membrane-anchored Hairless, demonstrating their binding in the cytoplasm. Moreover, adult phenotypes uncovered a loss of Notch activity, in support of membrane-anchored Hairless sequestering Su(H) in the cytosol. A combined overexpression of membrane-anchored Hairless with Su(H) lead to tissue proliferation, which is in contrast to the observed apoptosis after ectopic co-overexpression of the wild-type genes, indicating a shift to a gain of Notch activity. A mixed response, general de-repression of Notch signaling output, plus inhibition at places of highest Notch activity, perhaps reflects Su(H)’s role as activator and repressor, supported by results obtained with the Hairless-binding deficient Su(H)LLL mutant, inducing activation only. Overall, the results strengthen the idea of Su(H) and Hairless complex formation within the cytosolic compartment.
Collapse
Affiliation(s)
- Dieter Maier
- Deptartment of General Genetics 190g, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
13
|
Zhou J, Wu L, Li W, Xu X, Ju F, Yu S, Guo J, Li G, Shi J, Zhou S. Long Noncoding RNA LINC01485 Promotes Tumor Growth and Migration via Inhibiting EGFR Ubiquitination and Activating EGFR/Akt Signaling in Gastric Cancer. Onco Targets Ther 2020; 13:8413-8425. [PMID: 32904620 PMCID: PMC7457555 DOI: 10.2147/ott.s257151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Although several long non-coding RNAs (lncRNAs) have been found to be involved in gastric cancer tumorigenesis, the more comprehensive contributions of lncRNAs to gastric cancer require further investigation. Here, we identify a cytoplasmic lncRNA, LINC01485, which promotes tumor growth and migration in gastric cancer. Materials and Methods Microarray and computational analysis were utilized to identify differential expression in LINC01485 and EGFR. Real-time PCR and Western blotting assays were used to confirm the expression of LINC01485 and EGFR in gastric cancer cells. Cell proliferation, wound-healing and transwell assays were performed to measure cell growth, migration and invasion. Immunoprecipitation, RNA pull-down, and RNA fluorescence in situ hybridization (RNA-FISH) assays were used to test the interaction of c-Cbl with LINC01485 and EGFR. Furthermore, tumor xenograft in nude mice was performed to test tumor growth in vivo. Results LINC01485 was upregulated and associated with tumor size, lymphatic metastasis and advanced pathological stage in gastric cancer. LINC01485 promoted gastric cancer cell proliferation, migration and invasion in vitro and in vivo. Furthermore, LINC01485 levels were positively correlated with EGFR expression in gastric cancer tissues and significantly increased the expression and phosphorylation (Tyr1045) of EGFR in gastric cancer cells. Mechanistically, LINC01485 competes with c-Cbl for binding to phosphorylated Tyr1045 site of EGFR, thus interfering with c-Cbl-mediated ubiquitination and subsequent degradation of EGFR. Conclusion LINC01485 promoted EGFR stabilization and activation of EGFR/Akt signaling in gastric cancer. Our findings illustrate the diversity of cytoplasmic lncRNAs in signal transduction and highlight the important roles of lncRNAs in gastric cancer.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of Gastrointestinal Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| | - Lulu Wu
- Department of Gastrointestinal Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| | - Weiling Li
- Department of Obstetrics and Gynecology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| | - Xiao Xu
- Department of Gastrointestinal Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| | - Feng Ju
- Department of Gastrointestinal Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| | - Shao Yu
- Department of Gastrointestinal Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| | - Jianfeng Guo
- Department of B-Ultrasound Room, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| | - Gang Li
- Department of B-Ultrasound Room, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| | - Jun Shi
- Department of Gastrointestinal Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| | - Sujun Zhou
- Department of Gastrointestinal Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Mehrotra S, Bansal P, Oli N, Pillai SJ, Galande S. Defective Proventriculus Regulates Cell Specification in the Gastric Region of Drosophila Intestine. Front Physiol 2020; 11:711. [PMID: 32760283 PMCID: PMC7372014 DOI: 10.3389/fphys.2020.00711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/29/2020] [Indexed: 01/16/2023] Open
Abstract
The gastrointestinal tract in metazoans consists of diverse epithelial cells with distinct cell morphology and physiological functions. The development and homeostasis of gastrointestinal epithelia involve spatiotemporal regulation by many signaling pathways, essential to confer their region-specific function and identity. The adult Drosophila midgut and the mammalian intestine share a high degree of conservation between such signaling pathways. Due to availability of sophisticated techniques for genetic manipulation, Drosophila is an excellent model to study mechanisms of tissue homeostasis regulation in a regionally defined manner. The gastric region located in the Drosophila middle-midgut coincides with the region containing fewest number of stem cells. It is also known as the copper cell (CC) region since it is composed of specialized groups of acid-secreting CCs, along with interstitial cells and enteroendocrine cells. The generation and maintenance of these cell populations are determined by the bone morphogenic protein-like Decapentaplegic (Dpp) signaling pathway. The morphogenic gradient of the Dpp signaling activity induces differential expression of specific transcription factors labial (lab) and defective proventriculus (dve), which are required for the generation of various cell types specific to this region. In this study, we investigated the role of Dve in regulation of tissue homeostasis in the CC region. Our studies reveal that ectopic expression of dve in stem cells suppresses their self-renewal throughout the intestine. We further demonstrate that Dve is not required for generation of CCs. Higher levels of Dve can alter cell specification by inhibition of cut expression, which in turn prevents CC formation during homeostasis.
Collapse
Affiliation(s)
- Sonam Mehrotra
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, India
| | - Priyanka Bansal
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, India
| | - Neha Oli
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science and Education and Research, Pune, India
| | | | - Sanjeev Galande
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science and Education and Research, Pune, India
| |
Collapse
|
15
|
Gervais L, van den Beek M, Josserand M, Sallé J, Stefanutti M, Perdigoto CN, Skorski P, Mazouni K, Marshall OJ, Brand AH, Schweisguth F, Bardin AJ. Stem Cell Proliferation Is Kept in Check by the Chromatin Regulators Kismet/CHD7/CHD8 and Trr/MLL3/4. Dev Cell 2020; 49:556-573.e6. [PMID: 31112698 PMCID: PMC6547167 DOI: 10.1016/j.devcel.2019.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/15/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Chromatin remodeling accompanies differentiation, however, its role in self-renewal is less well understood. We report that in Drosophila, the chromatin remodeler Kismet/CHD7/CHD8 limits intestinal stem cell (ISC) number and proliferation without affecting differentiation. Stem-cell-specific whole-genome profiling of Kismet revealed its enrichment at transcriptionally active regions bound by RNA polymerase II and Brahma, its recruitment to the transcription start site of activated genes and developmental enhancers and its depletion from regions bound by Polycomb, Histone H1, and heterochromatin Protein 1. We demonstrate that the Trithorax-related/MLL3/4 chromatin modifier regulates ISC proliferation, colocalizes extensively with Kismet throughout the ISC genome, and co-regulates genes in ISCs, including Cbl, a negative regulator of Epidermal Growth Factor Receptor (EGFR). Loss of kismet or trr leads to elevated levels of EGFR protein and signaling, thereby promoting ISC self-renewal. We propose that Kismet with Trr establishes a chromatin state that limits EGFR proliferative signaling, preventing tumor-like stem cell overgrowths. Chromatin modifiers Kismet and Trr limit intestinal stem cell proliferation Kismet and Trr colocalize at transcriptionally active regions and co-regulate genes EGFR negative regulator Cbl is a target gene of Kismet and Trr Kismet and Trr limit EGFR signaling in ISCs, preventing tumor-like ISC accumulation
Collapse
Affiliation(s)
- Louis Gervais
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France.
| | - Marius van den Beek
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Manon Josserand
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Jérémy Sallé
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Marine Stefanutti
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Carolina N Perdigoto
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Patricia Skorski
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Khallil Mazouni
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris 75015, France; CNRS, URA2578, Rue du Dr Roux, Paris 75015, France
| | - Owen J Marshall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK; Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris 75015, France; CNRS, URA2578, Rue du Dr Roux, Paris 75015, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France.
| |
Collapse
|
16
|
Tzortzopoulos A, Thomaidou D, Gaitanou M, Matsas R, Skoulakis E. Expression of Mammalian BM88/CEND1 in Drosophila Affects Nervous System Development by Interfering with Precursor Cell Formation. Neurosci Bull 2019; 35:979-995. [PMID: 31079319 PMCID: PMC6864003 DOI: 10.1007/s12264-019-00386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
We used Drosophila melanogaster as an experimental model to express mouse and pig BM88/CEND1 (cell cycle exit and neuronal differentiation 1) in order to investigate its potential functional effects on Drosophila neurogenesis. BM88/CEND1 is a neuron-specific protein whose function is implicated in triggering cells to exit from the cell cycle and differentiate towards a neuronal phenotype. Transgenic flies expressing either mouse or pig BM88/CEND1 in the nervous system had severe neuronal phenotypes with variable expressivity at various stages of embryonic development. In early embryonic stage 10, BM88/CEND1 expression led to an increase in the neural-specific antigenicity of neuroectoderm at the expense of precursor cells [neuroblasts (Nbs) and ganglion mother cells (GMCs)] including the defective formation and differentiation of the MP2 precursors, whereas at later stages (12-15), protein accumulation induced gross morphological defects primarily in the CNS accompanied by a reduction of Nb and GMC markers. Furthermore, the neuronal precursor cells of embryos expressing BM88/CEND1 failed to carry out proper cell-cycle progression as revealed by the disorganized expression patterns of specific cell-cycle markers. BM88/CEND1 accumulation in the Drosophila eye affected normal eye disc development by disrupting the ommatidia. Finally, we demonstrated that expression of BM88/CEND1 modified/reduced the levels of activated MAP kinase indicating a functional effect of BM88/CEND1 on the MAPK signaling pathway. Our findings suggest that the expression of mammalian BM88/CEND1 in Drosophila exerts specific functional effects associated with neuronal precursor cell formation during embryonic neurogenesis and proper eye disc development. This study also validates the use of Drosophila as a powerful model system in which to investigate gene function and the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Dimitra Thomaidou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Efthimios Skoulakis
- "Alexander Fleming" Biomedical Sciences Research Centre, 16672, Athens, Greece
| |
Collapse
|
17
|
Ye S, Ding YF, Jia WH, Liu XL, Feng JY, Zhu Q, Cai SL, Yang YS, Lu QY, Huang XT, Yang JS, Jia SN, Ding GP, Wang YH, Zhou JJ, Chen YD, Yang WJ. SET Domain-Containing Protein 4 Epigenetically Controls Breast Cancer Stem Cell Quiescence. Cancer Res 2019; 79:4729-4743. [PMID: 31308046 DOI: 10.1158/0008-5472.can-19-1084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/06/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
Quiescent cancer stem cells (CSC) play important roles in tumorigenesis, relapse, and resistance to chemoradiotherapy. However, the determinants of CSC quiescence and how they sustain themselves to generate tumors and relapse beyond resistance to chemoradiotherapy remains unclear. Here, we found that SET domain-containing protein 4 (SETD4) epigenetically controls breast CSC (BCSC) quiescence by facilitating heterochromatin formation via H4K20me3 catalysis. H4K20me3 localized to the promoter regions and regulated the expression of a set of genes in quiescent BCSCs (qBCSC). SETD4-defined qBCSCs were resistant to chemoradiotherapy and promoted tumor relapse in a mouse model. Upon activation, a SETD4-defined qBCSC sustained itself in a quiescent state by asymmetric division and concurrently produced an active daughter cell that proliferated to produce a cancer cell population. Single-cell sequence analysis indicated that SETD4+ qBCSCs clustered together as a distinct cell type within the heterogeneous BCSC population. SETD4-defined quiescent CSCs were present in multiple cancer types including gastric, cervical, ovarian, liver, and lung cancers and were resistant to chemotherapy. SETD4-defined qBCSCs had a high tumorigenesis potential and correlated with malignancy and chemotherapy resistance in clinical breast cancer patients. Taken together, the results from our previous study and current study on six cancer types reveal an evolutionarily conserved mechanism of cellular quiescence epigenetically controlled by SETD4. Our findings provide insights into the mechanism of tumorigenesis and relapse promoted by SETD4-defined quiescent CSCs and have broad implications for clinical therapies. SIGNIFICANCE: These findings advance our knowledge on the epigenetic determinants of quiescence in cancer stem cell populations and pave the way for future pharmacologic developments aimed at targeting drug-resistant quiescent stem cells.
Collapse
Affiliation(s)
- Sen Ye
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Fu Ding
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Huan Jia
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Li Liu
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing-Yi Feng
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qian Zhu
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sun-Li Cai
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yao-Shun Yang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qian-Yun Lu
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Ting Huang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Shu Yang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Nan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-Ping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yue-Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ding Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China. .,Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
The role of the EGFR signaling pathway in stem cell differentiation during planarian regeneration and homeostasis. Semin Cell Dev Biol 2018; 87:45-57. [PMID: 29775660 DOI: 10.1016/j.semcdb.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
Cell signaling is essential for cells to adequately respond to their environment. One of the most evolutionarily conserved signaling pathways is that of the epidermal growth factor receptor (EGFR). Transmembrane receptors with intracellular tyrosine kinase activity are activated by the binding of their corresponding ligands. This in turn activates a wide variety of intracellular cascades and induces the up- or downregulation of target genes, leading to a specific cellular response. Freshwater planarians are an excellent model in which to study the role of cell signaling in the context of stem-cell based regeneration. Owing to the presence of a population of pluripotent stem cells called neoblasts, these animals can regenerate the entire organism from a tiny piece of the body. Here, we review the current state of knowledge of the planarian EGFR pathway. We describe the main components of the pathway and their functions in other animals, and focus in particular on receptors and ligands identified in the planarian Schmidtea mediterranea. Moreover, we summarize current data on the function of some of these components during planarian regeneration and homeostasis. We hypothesize that the EGFR pathway may act as a key regulator of the terminal differentiation of distinct populations of lineage-committed progenitors.
Collapse
|
20
|
Yin C, Xi R. A Phyllopod-Mediated Feedback Loop Promotes Intestinal Stem Cell Enteroendocrine Commitment in Drosophila. Stem Cell Reports 2017; 10:43-57. [PMID: 29276156 PMCID: PMC5768918 DOI: 10.1016/j.stemcr.2017.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/17/2023] Open
Abstract
The intestinal epithelium in the Drosophila midgut is maintained by intestinal stem cells (ISCs), which are capable of generating both enterocytes and enteroendocrine cells (EEs) via alternative cell fate specification. Activation of Delta-Notch signaling directs ISCs for enterocyte generation, but how EEs are generated from ISCs remains poorly understood. Here, we identified Phyllopod (Phyl) as a key regulator that drives EE generation from ISCs. Phyl, which is normally suppressed by Notch, functions as an adaptor protein that bridges Tramtrack 69 (Ttk69) and E3 ubiquitin ligase Sina for degradation. Degradation of Ttk69 allows the activation of the Achaete-Scute Complex (AS-C)-Pros regulatory axis, which promotes EE specification. Interestingly, expression of AS-C genes in turn further induces Phyl expression, thereby establishing a positive feedback loop for continuous EE fate specification and commitment. This positive feedback circuit-driven regulatory mechanism could represent a common strategy for reliable and irreversible cell fate determination from progenitor cells.
Collapse
Affiliation(s)
- Chang Yin
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Rongwen Xi
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
21
|
Li C, Li B, Ma S, Lü P, Chen K. Dusky works upstream of Four-jointed and Forked in wing morphogenesis in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2017; 26:677-686. [PMID: 28677915 DOI: 10.1111/imb.12327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dusky (dy) is required for cytoskeletal reorganization during wing morphogenesis in Drosophila melanogaster, but which genes participate together with dy for wing morphogenesis has remained unclear. In Tribolium castaneum, dy is highly expressed at the late embryonic stage. Tissue-specific expression analysis indicated high expression levels of dy in the epidermis, head and fat body of late-stage larvae. RNA interference (RNAi) targeting dy significantly decreased adult wing size and caused improper folding of the elytra. Meanwhile, dy knockdown reduced the transcription of four-jointed (fj) and forked (f). Our results show that fj RNAi reduces adult wing size and that silencing f results in abnormal wing folding in T. castaneum. Interestingly, knocking down fj and f simultaneously phenocopies dy RNAi, suggesting that dy probably acts upstream of fj and f to regulate wing morphogenesis in T. castaneum.
Collapse
Affiliation(s)
- C Li
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - S Ma
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - P Lü
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - K Chen
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Piccolo P, Attanasio S, Secco I, Sangermano R, Strisciuglio C, Limongelli G, Miele E, Mutarelli M, Banfi S, Nigro V, Pons T, Valencia A, Zentilin L, Campione S, Nardone G, Lynnes TC, Celestino-Soper PBS, Spoonamore KG, D'Armiento FP, Giacca M, Staiano A, Vatta M, Collesi C, Brunetti-Pierri N. MIB2 variants altering NOTCH signalling result in left ventricle hypertrabeculation/non-compaction and are associated with Ménétrier-like gastropathy. Hum Mol Genet 2017; 26:33-43. [PMID: 28013292 DOI: 10.1093/hmg/ddw365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/19/2016] [Indexed: 12/30/2022] Open
Abstract
We performed whole exome sequencing in individuals from a family with autosomal dominant gastropathy resembling Ménétrier disease, a premalignant gastric disorder with epithelial hyperplasia and enhanced EGFR signalling. Ménétrier disease is believed to be an acquired disorder, but its aetiology is unknown. In affected members, we found a missense p.V742G variant in MIB2, a gene regulating NOTCH signalling that has not been previously linked to human diseases. The variant segregated with the disease in the pedigree, affected a highly conserved amino acid residue, and was predicted to be deleterious although it was found with a low frequency in control individuals. The purified protein carrying the p.V742G variant showed reduced ubiquitination activity in vitro and white blood cells from affected individuals exhibited significant reductions of HES1 and NOTCH3 expression reflecting alteration of NOTCH signalling. Because mutations of MIB1, the homolog of MIB2, have been found in patients with left ventricle non-compaction (LVNC), we investigated members of our family with Ménétrier-like disease for this cardiac abnormality. Asymptomatic left ventricular hypertrabeculation, the mildest end of the LVNC spectrum, was detected in two members carrying the MIB2 variant. Finally, we identified an additional MIB2 variant (p.V984L) affecting protein stability in an unrelated isolated case with LVNC. Expression of both MIB2 variants affected NOTCH signalling, proliferation and apoptosis in primary rat cardiomyocytes.In conclusion, we report the first example of left ventricular hypertrabeculation/LVNC with germline MIB2 variants resulting in altered NOTCH signalling that might be associated with a gastropathy clinically overlapping with Ménétrier disease.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Sergio Attanasio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Ilaria Secco
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Riccardo Sangermano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Giuseppe Limongelli
- Department of Cardiothoracic Sciences, Monaldi Hospital, Second University of Naples, Naples, Italy
| | - Erasmo Miele
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Tirso Pons
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alfonso Valencia
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Severo Campione
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, Federico II University, Naples, Italy
| | - Ty C Lynnes
- Department of Medical and Molecular Genetics
| | | | - Katherine G Spoonamore
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Annamaria Staiano
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| | - Matteo Vatta
- Department of Medical and Molecular Genetics.,Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy
| |
Collapse
|
23
|
Liu Q, Jin LH. Tissue-resident stem cell activity: a view from the adult Drosophila gastrointestinal tract. Cell Commun Signal 2017; 15:33. [PMID: 28923062 PMCID: PMC5604405 DOI: 10.1186/s12964-017-0184-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract serves as a fast-renewing model for unraveling the multifaceted molecular mechanisms underlying remarkably rapid cell renewal, which is exclusively fueled by a small number of long-lived stem cells and their progeny. Stem cell activity is the best-characterized aspect of mucosal homeostasis in mitotically active tissues, and the dysregulation of regenerative capacity is a hallmark of epithelial immune defects. This dysregulation is frequently associated with pathologies ranging from chronic enteritis to malignancies in humans. Application of the adult Drosophila gastrointestinal tract model in current and future studies to analyze the immuno-physiological aspects of epithelial defense strategies, including stem cell behavior and re-epithelialization, will be necessary to improve our general understanding of stem cell participation in epithelial turnover. In this review, which describes exciting observations obtained from the adult Drosophila gastrointestinal tract, we summarize a remarkable series of recent findings in the literature to decipher the molecular mechanisms through which stem cells respond to nonsterile environments.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin, 150040, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin, 150040, China.
| |
Collapse
|
24
|
Sallé J, Gervais L, Boumard B, Stefanutti M, Siudeja K, Bardin AJ. Intrinsic regulation of enteroendocrine fate by Numb. EMBO J 2017; 36:1928-1945. [PMID: 28533229 DOI: 10.15252/embj.201695622] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022] Open
Abstract
How terminal cell fates are specified in dynamically renewing adult tissues is not well understood. Here we explore terminal cell fate establishment during homeostasis using the enteroendocrine cells (EEs) of the adult Drosophila midgut as a paradigm. Our data argue against the existence of local feedback signals, and we identify Numb as an intrinsic regulator of EE fate. Our data further indicate that Numb, with alpha-adaptin, acts upstream or in parallel of known regulators of EE fate to limit Notch signaling, thereby facilitating EE fate acquisition. We find that Numb is regulated in part through its asymmetric and symmetric distribution during stem cell divisions; however, its de novo synthesis is also required during the differentiation of the EE cell. Thus, this work identifies Numb as a crucial factor for cell fate choice in the adult Drosophila intestine. Furthermore, our findings demonstrate that cell-intrinsic control mechanisms of terminal cell fate acquisition can result in a balanced tissue-wide production of terminally differentiated cell types.
Collapse
Affiliation(s)
- Jérémy Sallé
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Louis Gervais
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Benjamin Boumard
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France.,Département de Biologie, École Normale Supérieure de Lyon, Lyon, France
| | - Marine Stefanutti
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Katarzyna Siudeja
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France .,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| |
Collapse
|
25
|
Epidermal Growth Factor Pathway Signaling in Drosophila Embryogenesis: Tools for Understanding Cancer. Cancers (Basel) 2017; 9:cancers9020016. [PMID: 28178204 PMCID: PMC5332939 DOI: 10.3390/cancers9020016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
EGF signaling is a well-known oncogenic pathway in animals. It is also a key developmental pathway regulating terminal and dorsal-ventral patterning along with many other aspects of embryogenesis. In this review, we focus on the diverse roles for the EGF pathway in Drosophila embryogenesis. We review the existing body of evidence concerning EGF signaling in Drosophila embryogenesis focusing on current uncertainties in the field and areas for future study. This review provides a foundation for utilizing the Drosophila model system for research into EGF effects on cancer.
Collapse
|
26
|
Halbrook CJ, Wen HJ, Ruggeri JM, Takeuchi KK, Zhang Y, Pasca di Magliano M, Crawford HC. Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cell Mol Gastroenterol Hepatol 2016; 3:99-118. [PMID: 28090569 PMCID: PMC5235341 DOI: 10.1016/j.jcmgh.2016.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mitogen-activated protein kinase (MAPK) signaling in the exocrine pancreas has been extensively studied in the context of pancreatic cancer, where its potential as a therapeutic target is limited by acquired drug resistance. However, its role in pancreatitis is less understood. We investigated the role of mitogen-activated protein kinase kinase (MEK)-initiated MAPK signaling in pancreatitis to determine the potential for MEK inhibition in treating pancreatitis patients. METHODS To examine the role of MEK signaling in pancreatitis, we used both genetic and pharmacologic approaches to inhibit the MAPK signaling pathway in a murine model of cerulein-induced pancreatitis. We generated mice harboring inducible short hairpins targeting the MEK isoforms Map2k1 and/or Map2k2 specifically in the pancreatic epithelium. We also used the MEK inhibitor trametinib to determine the efficacy of systemic inhibition in mice with pancreatitis. RESULTS We demonstrated an essential role for MEK signaling in the initiation of pancreatitis. We showed that both systemic and parenchyma-specific MEK inhibition in established pancreatitis induces epithelial differentiation and stromal remodeling. However, systemic MEK inhibition also leads to a loss of the proliferative capacity of the pancreas, preventing the restoration of organ mass. CONCLUSIONS MEK activity is required for the initiation and maintenance of pancreatitis. MEK inhibition may be useful in the treatment of chronic pancreatitis to interrupt the vicious cycle of destruction and repair but at the expense of organ regeneration.
Collapse
Affiliation(s)
- Christopher J. Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jeanine M. Ruggeri
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kenneth K. Takeuchi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Reprint requests Address requests for reprints to: Howard Crawford, PhD, NCRC Building 520, Room 1347, 1600 Huron Parkway, Ann Arbor, Michigan 48109-1600. fax: (734) 647-6977.NCRC Building 520Room 1347, 1600 Huron ParkwayAnn ArborMichigan 48109-1600
| |
Collapse
|
27
|
Jiang H, Tian A, Jiang J. Intestinal stem cell response to injury: lessons from Drosophila. Cell Mol Life Sci 2016; 73:3337-49. [PMID: 27137186 PMCID: PMC4998060 DOI: 10.1007/s00018-016-2235-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022]
Abstract
Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration. Here we review the current understanding of the mechanisms that control ISC self-renewal, proliferation, and lineage differentiation in Drosophila adult midgut with a focus on the niche signaling network that governs ISC activity in response to injury.
Collapse
Affiliation(s)
- Huaqi Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Aiguo Tian
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
28
|
Li H, Qi Y, Jasper H. Ubx dynamically regulates Dpp signaling by repressing Dad expression during copper cell regeneration in the adult Drosophila midgut. Dev Biol 2016; 419:373-381. [PMID: 27570230 PMCID: PMC5681348 DOI: 10.1016/j.ydbio.2016.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
The gastrointestinal (GI) tract of metazoans is lined by a series of regionally distinct epithelia. To maintain structure and function of the GI tract, regionally diversified differentiation of somatic stem cell (SC) lineages is critical. The adult Drosophila midgut provides an accessible model to study SC regulation and specification in a regionally defined manner. SCs of the posterior midgut (PM) have been studied extensively, but the control of SCs in the middle midgut (MM) is less well understood. The MM contains a stomach-like copper cell region (CCR) that is regenerated by gastric stem cells (GSSCs) and contains acid-secreting copper cells (CCs). Bmp-like Decapentaplegic (Dpp) signaling determines the identity of GSSCs, and is required for CC regeneration, yet the precise control of Dpp signaling activity in this lineage remains to be fully established. Here, we show that Dad, a negative feedback regulator of Dpp signaling, is dynamically regulated in the GSSC lineage to allow CC differentiation. Dad is highly expressed in GSSCs and their first daughter cells, the gastroblasts (GBs), but has to be repressed in differentiating CCs to allow Dpp-mediated differentiation into CCs. We find that the Hox gene ultrabithorax (Ubx) is required for this regulation. Loss of Ubx prevents Dad repression in the CCR, resulting in defective CC regeneration. Our study highlights the need for dynamic control of Dpp signaling activity in the differentiation of the GSSC lineage and identifies Ubx as a critical regulator of this process.
Collapse
Affiliation(s)
- Hongjie Li
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | - Yanyan Qi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA.
| |
Collapse
|
29
|
Li H, Jasper H. Gastrointestinal stem cells in health and disease: from flies to humans. Dis Model Mech 2016; 9:487-99. [PMID: 27112333 PMCID: PMC4892664 DOI: 10.1242/dmm.024232] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gastrointestinal tract of complex metazoans is highly compartmentalized. It is lined by a series of specialized epithelia that are regenerated by specific populations of stem cells. To maintain tissue homeostasis, the proliferative activity of stem and/or progenitor cells has to be carefully controlled and coordinated with regionally distinct programs of differentiation. Metaplasias and dysplasias, precancerous lesions that commonly occur in the human gastrointestinal tract, are often associated with the aberrant proliferation and differentiation of stem and/or progenitor cells. The increasingly sophisticated characterization of stem cells in the gastrointestinal tract of mammals and of the fruit fly Drosophila has provided important new insights into these processes and into the mechanisms that drive epithelial dysfunction. In this Review, we discuss recent advances in our understanding of the establishment, maintenance and regulation of diverse intestinal stem cell lineages in the gastrointestinal tract of Drosophila and mice. We also discuss the field's current understanding of the pathogenesis of epithelial dysfunctions.
Collapse
Affiliation(s)
- Hongjie Li
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| |
Collapse
|
30
|
Wingert L, DiNardo S. Traffic jam functions in a branched pathway from Notch activation to niche cell fate. Development 2015; 142:2268-77. [PMID: 26092848 DOI: 10.1242/dev.124230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022]
Abstract
The niche directs key behaviors of its resident stem cells, and is thus crucial for tissue maintenance, repair and longevity. However, little is known about the genetic pathways that guide niche specification and development. The male germline stem cell niche in Drosophila houses two stem cell populations and is specified within the embryonic gonad, thus making it an excellent model for studying niche development. The hub cells that form the niche are specified early by Notch activation. Over the next few hours, these individual cells then cluster together and take up a defined position before expressing markers of hub cell differentiation. This timing suggests that there are other factors for niche development yet to be defined. Here, we have identified a role for the large Maf transcription factor Traffic jam (Tj) in hub cell specification downstream of Notch. Tj downregulation is the first detectable effect of Notch activation in hub cells. Furthermore, Tj depletion is sufficient to generate ectopic hub cells that can recruit stem cells. Surprisingly, ectopic niche cells in tj mutants remain dispersed in the absence of Notch activation. This led us to uncover a branched pathway downstream of Notch in which Bowl functions to direct hub cell assembly in parallel to Tj downregulation.
Collapse
Affiliation(s)
- Lindsey Wingert
- Department of Cell & Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell & Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Chen L, Chu C, Kong X, Huang G, Huang T, Cai YD. A hybrid computational method for the discovery of novel reproduction-related genes. PLoS One 2015; 10:e0117090. [PMID: 25768094 PMCID: PMC4358884 DOI: 10.1371/journal.pone.0117090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/13/2014] [Indexed: 12/12/2022] Open
Abstract
Uncovering the molecular mechanisms underlying reproduction is of great importance to infertility treatment and to the generation of healthy offspring. In this study, we discovered novel reproduction-related genes with a hybrid computational method, integrating three different types of method, which offered new clues for further reproduction research. This method was first executed on a weighted graph, constructed based on known protein-protein interactions, to search the shortest paths connecting any two known reproduction-related genes. Genes occurring in these paths were deemed to have a special relationship with reproduction. These newly discovered genes were filtered with a randomization test. Then, the remaining genes were further selected according to their associations with known reproduction-related genes measured by protein-protein interaction score and alignment score obtained by BLAST. The in-depth analysis of the high confidence novel reproduction genes revealed hidden mechanisms of reproduction and provided guidelines for further experimental validations.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People’s Republic of China
| | - Chen Chu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, People’s Republic of China
| | - Guohua Huang
- Institute of Systems Biology, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, People’s Republic of China
- * E-mail: (TH); (YDC)
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, 200444, People’s Republic of China
- * E-mail: (TH); (YDC)
| |
Collapse
|