1
|
Hassan HM, Zubair A, Helal MH, Almagharbeh WT, Elmagzoub RM. New hope and promise with CRISPR-Cas9 technology for the treatment of HIV. Funct Integr Genomics 2025; 25:108. [PMID: 40411669 DOI: 10.1007/s10142-025-01613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/26/2025]
Abstract
The commencement of Highly Active Antiretroviral Therapy almost completely stopped viral replication, enabling the immune system to restore its full functionality. The rise in life expectancy has resulted in a decrease in the incidence of classical infections and HIV-associated cancers. HAART has raised concerns, including its exorbitant cost (which hinders its implementation in developing nations), the need for strict adherence, and the potential for both immediate and prolonged ill effects. Lipodystrophy is a significant long-term consequence of HIV that may result in central fat accumulation and severe peripheral fat depletion. Current initiatives to tackle these difficulties include the global expansion of access to HAART, the development of novel drugs that mitigate early side effects, and the introduction of once-daily drug combinations that enhance adherence. The CRISPR-Cas9 system has facilitated the creation of a powerful instrument for precise gene editing. This method has lately established itself as the gold standard for efficient HIV-1 genome editing in HIV therapy, owing to progress in related disciplines. CRISPR may be customized to cleave specific sequences by altering Cas9. This article offers a concise overview of promising CRISPR-Cas9 technology. This technique has the potential to halt the transmission of HIV-1 and alleviate its symptoms. CRISPR-Cas9 technology will be significant in the fight against HIV-1 in the future.
Collapse
Affiliation(s)
- Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Akmal Zubair
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Mohamed H Helal
- Center for Scientific Research and Entrepreneurship, Northern Border University, 73213, Arar, Saudi Arabia
| | - Wesam Taher Almagharbeh
- Medical and Surgical Nursing Department, Faculty of Nursing, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ranya Mohammed Elmagzoub
- Faculty of Science and Technology, Department of Biology and Biotechnology, Al-Neelain University, Khartoum, Sudan
| |
Collapse
|
2
|
Zhu M, Xu R, Yuan J, Wang J, Ren X, Cong T, You Y, Ju A, Xu L, Wang H, Zheng P, Tao H, Lin C, Yu H, Du J, Lin X, Xie W, Li Y, Lan X. Tracking-seq reveals the heterogeneity of off-target effects in CRISPR-Cas9-mediated genome editing. Nat Biotechnol 2025; 43:799-810. [PMID: 38956324 DOI: 10.1038/s41587-024-02307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
The continued development of novel genome editors calls for a universal method to analyze their off-target effects. Here we describe a versatile method, called Tracking-seq, for in situ identification of off-target effects that is broadly applicable to common genome-editing tools, including Cas9, base editors and prime editors. Through tracking replication protein A (RPA)-bound single-stranded DNA followed by strand-specific library construction, Tracking-seq requires a low cell input and is suitable for in vitro, ex vivo and in vivo genome editing, providing a sensitive and practical genome-wide approach for off-target detection in various scenarios. We show, using the same guide RNA, that Tracking-seq detects heterogeneity in off-target effects between different editor modalities and between different cell types, underscoring the necessity of direct measurement in the original system.
Collapse
Affiliation(s)
- Ming Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
| | - Runda Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China
| | - Junsong Yuan
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiacheng Wang
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoyu Ren
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Tingting Cong
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yaxian You
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China
| | - Anji Ju
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China
| | - Longchen Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimin Wang
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Peiyuan Zheng
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Huiying Tao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chunhua Lin
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Honghao Yu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Key Laboratory of Medical Biotechnology and Translational Medicine, Guilin Medical University, Guilin, China
| | - Juanjuan Du
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xin Lin
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Xie
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yinqing Li
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| | - Xun Lan
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Peña-Gutiérrez I, Olalla-Sastre B, Río P, Rodríguez-Madoz JR. Beyond precision: evaluation of off-target clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing. Cytotherapy 2025; 27:279-286. [PMID: 39652018 DOI: 10.1016/j.jcyt.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/16/2024]
Abstract
The gene editing field has advanced rapidly since the development of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system because of its applicability in precisely modifying the genome. Among its multiple applications, the correction of genetic diseases has emerged as a potential curative treatment for many disorders that have eluded a cure to date. Despite its efficiency in achieving therapeutic levels of correction, the unexpected adverse effects of editing due to CRISPR/Cas9 nuclease activity are a major concern when translating these new strategies to the clinic. Multiple in silico tools and empirical methods have been developed to evaluate these off-target edits as well as other adverse alterations of the genome, including rearrangements, not only in ex vivo experiments but also in in vivo experiments. In this review, we summarize the available methods for the assessment of off-target effects of CRISPR/Cas9 systems, highlighting their advantages and limitations. Special attention will be paid to their application in pre-clinical studies and clinical trials, both in the manufacturing product and in the long-term follow-up of patients.
Collapse
Affiliation(s)
- Irene Peña-Gutiérrez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Madrid, Spain
| | - Beatriz Olalla-Sastre
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain; Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Madrid, Spain.
| | - Juan R Rodríguez-Madoz
- Hemato-Oncology Program, Instituto de Investigación Sanitaria de Navarra, Cima Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain.
| |
Collapse
|
4
|
Sheng T, Su H, Yao L, Qu Z, Liu H, Shao W, Zhang X. RhoB regulates prostate cancer cell proliferation and docetaxel sensitivity via the PI3K-AKT signaling pathway. BMC Cancer 2025; 25:354. [PMID: 40011853 PMCID: PMC11863435 DOI: 10.1186/s12885-025-13762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Docetaxel is a widely used first-line treatment for castration-resistant prostate cancer (CRPC). RhoB, a member of the Rho GTPase family, plays a major role in prostate cancer metastasis by modulating the PI3K-AKT signaling pathway. It is crucial in regulating cytoskeletal reassembly, cell migration, focal adhesion (FA) dynamics. To investigate RhoB's function in prostate cancer, CRISPR/Cas9 gene editing technique was utilized to knock out the RhoB gene in prostate cancer cells. Successful gene editing was confirmed by using T7 endonuclease I (T7EI) assays and Sanger sequencing. Knocking out RhoB enhanced epithelial-mesenchymal transition (EMT) and decreased the IC50 value of docetaxel in RhoB-knockout PC-3 cells. This suggests increased sensitivity to docetaxel. Furthermore, RhoB knockout prompted the migration and invasion of prostate cancer cells, effects that were reversed upon RhoB overexpression. Interestingly, RhoB status did not significantly influence the cell cycle of prostate cancer cells. RNA sequencing of PC-3 cells with either overexpressed or knock-out RhoB revealed that RhoB regulates pathways involved in FA, ECM receptor interaction, and PI3K-AKT signaling. These pathways directly influence the EMT process, cell migration, and invasion in prostate cancer cells. Notably, RhoB overexpression activated PI3K-AKT signaling when PC-3 cells were treated with low concentration of DTXL (50 nM, 72 h). This activation reduced DTXL's cytotoxicity, suggesting may confer chemoresistance via PI3K-AKT pathway activation.
Collapse
Affiliation(s)
- Tiantian Sheng
- Department of Pathology, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, Shandong, P.R. China
| | - Hang Su
- Department of Hyperbaric Medicine, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, Shandong, P.R. China
| | - Lu Yao
- Department of Clinical Medicine, Jining Medical University, Jining, 272067, P.R. China
| | - Zhen Qu
- Department of Pathology, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, Shandong, P.R. China
| | - Hui Liu
- Department of Pathology, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, Shandong, P.R. China
| | - Wenjuan Shao
- Department of Teaching and training, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, Shandong, P.R. China.
| | - Xiangyu Zhang
- Department of Pathology, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, Shandong, P.R. China.
| |
Collapse
|
5
|
Boomgarden AC, Upadhyay C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines (Basel) 2025; 13:148. [PMID: 40006695 PMCID: PMC11860913 DOI: 10.3390/vaccines13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The development of an effective HIV-1 vaccine remains a formidable challenge in biomedical research. Despite significant advancements in our understanding of HIV biology and pathogenesis, progress has been impeded by factors such as the virus's genetic diversity, high mutation rates, and its ability to establish latent reservoirs. Recent innovative approaches, including mosaic vaccines and mRNA technology to induce broadly neutralizing antibodies, have shown promise. However, the efficacy of these vaccines has been modest, with the best results achieving approximately 30% effectiveness. Ongoing research emphasizes the necessity of a multifaceted strategy to overcome these obstacles and achieve a breakthrough in HIV-1 vaccine development. This review summarizes current approaches utilized to further understand HIV-1 biology and to create a global vaccine. We discuss the impact of these approaches on vaccine development for other diseases, including COVID-19, influenza, and Zika virus. Additionally, we highlight the specific limitations faced with each approach and present the methods researchers employ to overcome these challenges. These innovative techniques, which have demonstrated preclinical and clinical success, have advanced the field closer to the ultimate goal of developing a global HIV-1 vaccine. Leveraging these advancements will enable significant strides in combating HIV-1 and other infectious diseases, ultimately improving global health outcomes.
Collapse
Affiliation(s)
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
6
|
Panda G, Ray A. Deciphering Cas9 specificity: Role of domain dynamics and RNA:DNA hybrid interactions revealed through machine learning and accelerated molecular simulations. Int J Biol Macromol 2024; 283:137835. [PMID: 39566771 DOI: 10.1016/j.ijbiomac.2024.137835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
CRISPR/Cas9 technology is widely used for gene editing, but off-targeting still remains a major concern in therapeutic applications. Although Cas9 variants with better mismatch discrimination have been developed, they have significantly lower rates of on-target DNA cleavage. This study compares the dynamics of the highly specific Cas9 from Francisella novicida (FnCas9) to the commonly used SpCas9. Using long-scale atomistic Gaussian accelerated molecular dynamic simulations and machine learning techniques, we deciphered the structural factors behind FnCas9's higher specificity in native and off-target forms. Our analysis revealed that Cas9's cleavage specificity relies more on its domain rearrangement than on RNA:DNA heteroduplex shape, with significant conformational variations in Cas9 domains among off-target forms, while the RNA:DNA hybrid showed minimal changes, especially in FnCas9 compared to SpCas9. REC1-REC3 domains contacts with the RNA:DNA hybrid in FnCas9 acted as critical discriminator of off-target effects playing a pivotal role in influencing specificity. In FnCas9, allosteric signal transmission involves the REC3 and HNH domain, bypassing REC2, leading to a superior efficiency in information transmission. This study offers a quantitative framework for understanding the structural basis of elevated specificity, paving the way for the rational design of Cas9 variants with improved precision and specificity in genome editing applications.
Collapse
Affiliation(s)
- Gayatri Panda
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
7
|
Li Z, Lan J, Shi X, Lu T, Hu X, Liu X, Chen Y, He Z. Whole-Genome Sequencing Reveals Rare Off-Target Mutations in MC1R-Edited Pigs Generated by Using CRISPR-Cas9 and Somatic Cell Nuclear Transfer. CRISPR J 2024; 7:29-40. [PMID: 38353621 DOI: 10.1089/crispr.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used to create animal models for biomedical and agricultural use owing to its low cost and easy handling. However, the occurrence of erroneous cleavage (off-targeting) may raise certain concerns for the practical application of the CRISPR-Cas9 system. In this study, we created a melanocortin 1 receptor (MC1R)-edited pig model through somatic cell nuclear transfer (SCNT) by using porcine kidney cells modified by the CRISPR-Cas9 system. We then carried out whole-genome sequencing of two MC1R-edited pigs and two cloned wild-type siblings, together with the donor cells, to assess the genome-wide presence of single-nucleotide variants and small insertions and deletions (indels) and found only one candidate off-target indel in both MC1R-edited pigs. In summary, our study indicates that the minimal off-targeting effect induced by CRISPR-Cas9 may not be a major concern in gene-edited pigs created by SCNT.
Collapse
Affiliation(s)
- Zhenyang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jin Lan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tong Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoli Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Abstract
Epigenetics has transformed our understanding of the molecular basis of complex diseases, including cardiovascular and metabolic disorders. This review offers a comprehensive overview of the current state of knowledge on epigenetic processes implicated in cardiovascular and metabolic diseases, highlighting the potential of DNA methylation as a precision medicine biomarker and examining the impact of social determinants of health, gut bacterial epigenomics, noncoding RNA, and epitranscriptomics on disease development and progression. We discuss challenges and barriers to advancing cardiometabolic epigenetics research, along with the opportunities for novel preventive strategies, targeted therapies, and personalized medicine approaches that may arise from a better understanding of epigenetic processes. Emerging technologies, such as single-cell sequencing and epigenetic editing, hold the potential to further enhance our ability to dissect the complex interplay between genetic, environmental, and lifestyle factors. To translate research findings into clinical practice, interdisciplinary collaborations, technical and ethical considerations, and accessibility of resources and knowledge are crucial. Ultimately, the field of epigenetics has the potential to revolutionize the way we approach cardiovascular and metabolic diseases, paving the way for precision medicine and personalized health care, and improving the lives of millions of individuals worldwide affected by these conditions.
Collapse
Affiliation(s)
- Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, New York (A.A.B.)
| | - José Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, at Tufts University, Boston, MA (J.O.)
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain (J.O.)
- Consortium CIBERObn, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (J.O.)
| |
Collapse
|
9
|
Handelmann CR, Tsompana M, Samudrala R, Buck M. The impact of nucleosome structure on CRISPR/Cas9 fidelity. Nucleic Acids Res 2023; 51:2333-2344. [PMID: 36727449 PMCID: PMC10018339 DOI: 10.1093/nar/gkad021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) Cas system is a powerful tool that has the potential to become a therapeutic gene editor in the near future. Cas9 is the best studied CRISPR system and has been shown to have problems that restrict its use in therapeutic applications. Chromatin structure is a known impactor of Cas9 targeting and there is a gap in knowledge on Cas9's efficacy when targeting such locations. To quantify at a single base pair resolution how chromatin inhibits on-target gene editing relative to off-target editing of exposed mismatching targets, we developed the gene editor mismatch nucleosome inhibition assay (GEMiNI-seq). GEMiNI-seq utilizes a library of nucleosome sequences to examine all target locations throughout nucleosomes in a single assay. The results from GEMiNI-seq revealed that the location of the protospacer-adjacent motif (PAM) sequence on the nucleosome edge drives the ability for Cas9 to access its target sequence. In addition, Cas9 had a higher affinity for exposed mismatched targets than on-target sequences within a nucleosome. Overall, our results show how chromatin structure impacts the fidelity of Cas9 to potential targets and highlight how targeting sequences with exposed PAMs could limit off-target gene editing, with such considerations improving Cas9 efficacy and resolving current limitations.
Collapse
Affiliation(s)
- Christopher R Handelmann
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Maria Tsompana
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Michael J Buck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
10
|
Puppulin L, Ishikawa J, Sumino A, Marchesi A, Flechsig H, Umeda K, Kodera N, Nishimasu H, Shibata M. Dynamics of Target DNA Binding and Cleavage by Staphylococcus aureus Cas9 as Revealed by High-Speed Atomic Force Microscopy. ACS NANO 2023; 17:4629-4641. [PMID: 36848598 DOI: 10.1021/acsnano.2c10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Programmable DNA binding and cleavage by CRISPR-Cas9 has revolutionized the life sciences. However, the off-target cleavage observed in DNA sequences with some homology to the target still represents a major limitation for a more widespread use of Cas9 in biology and medicine. For this reason, complete understanding of the dynamics of DNA binding, interrogation and cleavage by Cas9 is crucial to improve the efficiency of genome editing. Here, we use high-speed atomic force microscopy (HS-AFM) to investigate Staphylococcus aureus Cas9 (SaCas9) and its dynamics of DNA binding and cleavage. Upon binding to single-guide RNA (sgRNA), SaCas9 forms a close bilobed structure that transiently and flexibly adopts also an open configuration. The SaCas9-mediated DNA cleavage is characterized by release of cleaved DNA and immediate dissociation, confirming that SaCas9 operates as a multiple turnover endonuclease. According to present knowledge, the process of searching for target DNA is mainly governed by three-dimensional diffusion. Independent HS-AFM experiments show a potential long-range attractive interaction between SaCas9-sgRNA and its target DNA. The interaction precedes the formation of the stable ternary complex and is observed exclusively in the vicinity of the protospacer-adjacent motif (PAM), up to distances of several nanometers. The direct visualization of the process by sequential topographic images suggests that SaCas9-sgRNA binds to the target sequence first, while the following binding of the PAM is accompanied by local DNA bending and formation of the stable complex. Collectively, our HS-AFM data reveal a potential and unexpected behavior of SaCas9 during the search for DNA targets.
Collapse
Affiliation(s)
- Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Junichiro Ishikawa
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Ayumi Sumino
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Arin Marchesi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Via Tronto, 10/A Torrette di Ancona, 60126, Ancona, Italy
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Inamori Research Institute for Science, Shimogyo-ku, Kyoto 600-8411, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
11
|
Guo C, Ma X, Gao F, Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol 2023; 11:1143157. [PMID: 36970624 PMCID: PMC10034092 DOI: 10.3389/fbioe.2023.1143157] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Gene editing stands for the methods to precisely make changes to a specific nucleic acid sequence. With the recent development of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, gene editing has become efficient, convenient and programmable, leading to promising translational studies and clinical trials for both genetic and non-genetic diseases. A major concern in the applications of the CRISPR/Cas9 system is about its off-target effects, namely the deposition of unexpected, unwanted, or even adverse alterations to the genome. To date, many methods have been developed to nominate or detect the off-target sites of CRISPR/Cas9, which laid the basis for the successful upgrades of CRISPR/Cas9 derivatives with enhanced precision. In this review, we summarize these technological advancements and discuss about the current challenges in the management of off-target effects for future gene therapy.
Collapse
Affiliation(s)
- Congting Guo
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Institute of Cardiovascular Sciences, Beijing, China
| | - Xiaoteng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Fei Gao, ; Yuxuan Guo,
| | - Yuxuan Guo
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Institute of Cardiovascular Sciences, Beijing, China
- Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- *Correspondence: Fei Gao, ; Yuxuan Guo,
| |
Collapse
|
12
|
Ma S, Zhou M, Xu Y, Gu X, Zou M, Abudushalamu G, Yao Y, Fan X, Wu G. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer 2023; 22:7. [PMID: 36627698 PMCID: PMC9832643 DOI: 10.1186/s12943-023-01715-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the most common tumors worldwide and the leading cause of tumor-related mortality. Endoscopy and serological tumor marker testing are currently the main methods of GC screening, and treatment relies on surgical resection or chemotherapy. However, traditional examination and treatment methods are more harmful to patients and less sensitive and accurate. A minimally invasive method to respond to GC early screening, prognosis monitoring, treatment efficacy, and drug resistance situations is urgently needed. As a result, liquid biopsy techniques have received much attention in the clinical application of GC. The non-invasive liquid biopsy technique requires fewer samples, is reproducible, and can guide individualized patient treatment by monitoring patients' molecular-level changes in real-time. In this review, we introduced the clinical applications of circulating tumor cells, circulating free DNA, circulating tumor DNA, non-coding RNAs, exosomes, and proteins, which are the primary markers in liquid biopsy technology in GC. We also discuss the current limitations and future trends of liquid biopsy technology as applied to early clinical biopsy technology.
Collapse
Affiliation(s)
- Shuo Ma
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Meiling Zhou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yanhua Xu
- grid.452743.30000 0004 1788 4869Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Xinliang Gu
- grid.440642.00000 0004 0644 5481Department of Laboratory Medicine, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001 Jiangsu China
| | - Mingyuan Zou
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Gulinaizhaer Abudushalamu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Yuming Yao
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Xiaobo Fan
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China
| | - Guoqiu Wu
- grid.452290.80000 0004 1760 6316Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, 210009 Jiangsu China ,grid.263826.b0000 0004 1761 0489Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009 Jiangsu China
| |
Collapse
|
13
|
Bhowmik R, Chaubey B. CRISPR/Cas9: a tool to eradicate HIV-1. AIDS Res Ther 2022; 19:58. [PMID: 36457057 PMCID: PMC9713993 DOI: 10.1186/s12981-022-00483-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
The development of antiretroviral therapy (ART) has been effective in suppressing HIV replication. However, severe drug toxicities due to the therapy and its failure in targeting the integrated proviral genome have led to the introduction of a new paradigm of gene-based therapies. With its effective inhibition and high precision, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein-9 nuclease (Cas9) or CRISPR/Cas9 has emerged as an effective genome editing tool in the last decade. Mediated by guide RNAs (gRNAs), Cas9 endonuclease acts like genetic scissors that can modify specific target sites. With this concept, CRISPR/Cas9 has been used to target the integrated proviral HIV-1 genome both in in vitro as well as in vivo studies including non-human primates. The CRISPR has also been tested for targeting latent HIV-1 by modulating the proviral transcription with the help of a specialized Cas9 mutant. Overcoming the limitations of the current therapy, CRISPR has the potential to become the primary genome editing tool for eradicating HIV-1 infection. In this review, we summarize the recent advancements of CRISPR to target the proviral HIV-1 genome, the challenges and future prospects.
Collapse
Affiliation(s)
- Ruchira Bhowmik
- grid.59056.3f0000 0001 0664 9773Virology Lab, Centre for Advance Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| | - Binay Chaubey
- grid.59056.3f0000 0001 0664 9773Virology Lab, Centre for Advance Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| |
Collapse
|
14
|
Jing Y, Mu F, Xing X, Huang J, Lou M, Xu H, Ning B, Lou Y, Gao Z, Luo H, Yan X, Li H, Wang N. Knockout and Restoration Reveal Differential Functional Roles of PPARγ1 and PPARγ2 in Chicken Adipogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14959-14973. [PMID: 36383077 DOI: 10.1021/acs.jafc.2c05549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipogenesis and is expressed as two isoforms, PPARγ1 and PPARγ2. Our previous lentiviral overexpression study showed that PPARγ1 and PPARγ2 differentially regulated proliferation, differentiation, and apoptosis of the immortalized chicken preadipocyte cell line (ICP2). However, we cannot rule out the possibility that the endogenous expression of PPARγ isoforms may compromise our findings. In this study, using the dual sgRNA-directed CRISPR/Cas9 system, we generated PPARγ (PPARγ-/-) and PPARγ2-specific knockout (PPARγ2-/-) ICP2 cell lines and investigated the differences in proliferation and differentiation among PPARγ-/-, PPARγ2-/-, and wild-type ICP2 cells. EdU proliferation assay showed that both PPARγ2-specific and PPARγ knockouts significantly increased the proliferation rates. Consistently, real-time RT-PCR analysis showed that both PPARγ2-specific and PPARγ knockouts significantly upregulated the expression of proliferation marker genes PCNA and cyclinD1. FACS analysis revealed that PPARγ knockout significantly increased the number of cells accumulating in the S phase and decreased the number of cells accumulating in the G1/G0 phase. Oil Red O staining and gene expression analysis showed both PPARγ2-specific and PPARγ knockouts dramatically reduced capacity for adipogenic differentiation. To corroborate our previous findings, PPARγ1 and PPARγ2 expression were restored in PPARγ-/- cells by using the lentiviruses expressing chicken PPARγ1 (LV-PPARγ1) and PPARγ2 (LV-PPARγ2), respectively. Subsequent assays showed that restoration of expression of either PPARγ1 or PPARγ2 suppressed proliferation and stimulated differentiation of the PPARγ-/- cells. By comparison, PPARγ2 had stronger anti-proliferative and pro-adipogenic effects than PPARγ1. To understand the molecular mechanism underlying their differential effects on differentiation of the PPARγ-/- cells, we performed RNA-seq in the PPARγ-/- cells in which individual PPARγ isoform expression was restored at 72 h of differentiation. Transcriptomic analysis revealed that restoring PPARγ1 expression caused far more differentially expressed genes (DEGs) than restoring PPARγ2 expression. GO and KEGG pathway enrichment analyses indicated that PPARγ1 and PPARγ2 had distinct and overlapping functions in adipogenesis. Taken together, our results clearly indicate that PPARγ1 and PPARγ2 differentially impact chicken adipogenesis.
Collapse
Affiliation(s)
- Yang Jing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Fang Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Xiaoxu Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Jiaxin Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Ming Lou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Haidong Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Bolin Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Yuqi Lou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Zhihui Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Haoyu Luo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Xiaohong Yan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| |
Collapse
|
15
|
Advances in CRISPR/Cas9. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9978571. [PMID: 36193328 PMCID: PMC9525763 DOI: 10.1155/2022/9978571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
CRISPR/Cas9 technology has become the most examined gene editing technology in recent years due to its simple design, yet low cost, high efficiency, and simple operation, which can also achieve simultaneous editing of multiple loci. It can also be carried out without using plasmids, saving lots of troubles caused by plasmids. CRISPR/Cas9 has shown great potential in the study of genes or genomic functions in microorganisms, plants, animals, and human beings. In this review, we will examine the history, structure, and basic mechanisms of the CRISPR/Cas9 system, describe its great value in precision medicine and sgRNA library screening, and dig its great potential in a new field: DNA information storage.
Collapse
|
16
|
Schusterbauer V, Fischer JE, Gangl S, Schenzle L, Rinnofner C, Geier M, Sailer C, Glieder A, Thallinger GG. Whole Genome Sequencing Analysis of Effects of CRISPR/Cas9 in Komagataella phaffii: A Budding Yeast in Distress. J Fungi (Basel) 2022; 8:jof8100992. [PMID: 36294556 PMCID: PMC9605565 DOI: 10.3390/jof8100992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The industrially important non-conventional yeast Komagataella phaffii suffers from low rates of homologous recombination, making site specific genetic engineering tedious. Therefore, genome editing using CRISPR/Cas represents a simple and efficient alternative. To characterize on- and off-target mutations caused by CRISPR/Cas9 followed by non-homologous end joining repair, we chose a diverse set of CRISPR/Cas targets and conducted whole genome sequencing on 146 CRISPR/Cas9 engineered single colonies. We compared the outcomes of single target CRISPR transformations to double target experiments. Furthermore, we examined the extent of possible large deletions by targeting a large genomic region, which is likely to be non-essential. The analysis of on-target mutations showed an unexpectedly high number of large deletions and chromosomal rearrangements at the CRISPR target loci. We also observed an increase of on-target structural variants in double target experiments as compared to single target experiments. Targeting of two loci within a putatively non-essential region led to a truncation of chromosome 3 at the target locus in multiple cases, causing the deletion of 20 genes and several ribosomal DNA repeats. The identified de novo off-target mutations were rare and randomly distributed, with no apparent connection to unspecific CRISPR/Cas9 off-target binding sites.
Collapse
Affiliation(s)
- Veronika Schusterbauer
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
- Institute of Biomedical Imaging, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | | | - Sarah Gangl
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Lisa Schenzle
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | | | - Martina Geier
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Christian Sailer
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | - Anton Glieder
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Gerhard G. Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-5343
| |
Collapse
|
17
|
Hänggeli KPA, Hemphill A, Müller N, Schimanski B, Olias P, Müller J, Boubaker G. Single- and duplex TaqMan-quantitative PCR for determining the copy numbers of integrated selection markers during site-specific mutagenesis in Toxoplasma gondii by CRISPR-Cas9. PLoS One 2022; 17:e0271011. [PMID: 36112587 PMCID: PMC9481009 DOI: 10.1371/journal.pone.0271011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Herein, we developed a single and a duplex TaqMan quantitative PCR (qPCR) for absolute quantification of copy numbers of integrated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) drug selectable marker for pyrimethamine resistance in Toxoplasma gondii knockouts (KOs). The single TaqMan qPCR amplifies a 174 bp DNA fragment of the inserted mdhfr-ts and of the wild-type (WT) dhfr-ts (wtdhfr-ts) which is present as single copy gene in Toxoplasma and encodes a sensitive enzyme to pyrimethamine. Thus, the copy number of the dhfr-ts fragment in a given DNA quantity from KO parasites with a single site-specific integration should be twice the number of dhfr-ts copies recorded in the same DNA quantity from WT parasites. The duplex TaqMan qPCR allows simultaneous amplification of the 174 bp dhfr-ts fragment and the T. gondii 529-bp repeat element. Accordingly, for a WT DNA sample, the determined number of tachyzoites given by dhfr-ts amplification is equal to the number of tachyzoites determined by amplification of the Toxoplasma 529-bp, resulting thus in a ratio of 1. However, for a KO clone having a single site-specific integration of mdhfr-ts, the calculated ratio is 2. We then applied both approaches to test T. gondii RH mutants in which the major surface antigen (SAG1) was disrupted through insertion of mdhfr-ts using CRISPR-Cas9. Results from both assays were in correlation showing a high accuracy in detecting KOs with multiple integrated mdhfr-ts. Southern blot analyses using BsaBI and DraIII confirmed qPCRs results. Both TaqMan qPCRs are needed for reliable diagnostic of T. gondii KOs following CRISPR-Cas9-mediated mutagenesis, particularly with respect to off-target effects resulting from multiple insertions of mdhfr-ts. The principle of the duplex TaqMan qPCR is applicable for other selectable markers in Toxoplasma. TaqMan qPCR tools may contribute to more frequent use of WT Toxoplasma strains during functional genomics.
Collapse
Affiliation(s)
- Kai Pascal Alexander Hänggeli
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- * E-mail: (GB); (AH)
| | - Norbert Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Bernd Schimanski
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- * E-mail: (GB); (AH)
| |
Collapse
|
18
|
CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Mol Biol Rep 2022; 49:12133-12150. [PMID: 36030476 PMCID: PMC9420241 DOI: 10.1007/s11033-022-07880-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Genome engineering has always been a versatile technique in biological research and medicine, with several applications. In the last several years, the discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 technology has swept the scientific community and revolutionised the speed of modern biology, heralding a new era of disease detection and rapid biotechnology discoveries. It enables successful gene editing by producing targeted double-strand breaks in virtually any organism or cell type. So, this review presents a comprehensive knowledge about the mechanism and structure of Cas9-mediated RNA-guided DNA targeting and cleavage. In addition, genome editing via CRISPR-Cas9 technology in various animals which are being used as models in scientific research including Non-Human Primates Pigs, Dogs, Zebra, fish and Drosophila has been discussed in this review. This review also aims to understand the applications, serious concerns and future perspective of CRISPR/Cas9-mediated genome editing.
Collapse
|
19
|
Huang X, Yang D, Zhang J, Xu J, Chen YE. Recent Advances in Improving Gene-Editing Specificity through CRISPR-Cas9 Nuclease Engineering. Cells 2022; 11:2186. [PMID: 35883629 PMCID: PMC9319960 DOI: 10.3390/cells11142186] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
CRISPR-Cas9 is the state-of-the-art programmable genome-editing tool widely used in many areas. For safe therapeutic applications in clinical medicine, its off-target effect must be dramatically minimized. In recent years, extensive studies have been conducted to improve the gene-editing specificity of the most popular CRISPR-Cas9 nucleases using different strategies. In this review, we summarize and discuss these strategies and achievements, with a major focus on improving the gene-editing specificity through Cas9 protein engineering.
Collapse
Affiliation(s)
- Xiaoqiang Huang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; (D.Y.); (J.Z.); (J.X.)
| | | | | | | | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; (D.Y.); (J.Z.); (J.X.)
| |
Collapse
|
20
|
Niu M, Zou Q. SgRNA-RF: Identification of SgRNA On-Target Activity With Imbalanced Datasets. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2442-2453. [PMID: 33979289 DOI: 10.1109/tcbb.2021.3079116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-guide RNA is a guide RNA (gRNA), which guides the insertion or deletion of uridine residues into kinetoplastid during RNA editing. It is a small non-coding RNA that can be combined with pre -mRNA pairing. SgRNA is a critical component of the CRISPR/Cas9 gene knockout system and play an important role in gene editing and gene regulation. It is important to accurately and quickly identify highly on-target activity sgRNAs. Due to its importance, several computational predictors have been proposed to predict sgRNAs on-target activity. All these methods have clearly contributed to the development of this very important field. However, they also have certain limitations. In the paper, we developed a new classifier SgRNA-RF, which extracts the features of nucleic acid composition and structure of on-target activity sgRNA sequence and identified by random forest algorithm. In addition to solving an imbalanced dataset, this paper proposed a new method called CS-Smote. We compared sgRNA-RF with state-of-the-art predictors on the five datasets, and found SgRNA-RF significantly improved the identification accuracy, with accuracies of 0.8636,0.9161,0.894,0.938,0.965,0.77,0.979,0.973, respectively. The user-friendly web server that implements sgRNA-RF is freely available at http://server.malab.cn/sgRNA-RF/.
Collapse
|
21
|
Inwardly rectifying potassium channels mediate polymyxin-induced nephrotoxicity. Cell Mol Life Sci 2022; 79:296. [PMID: 35570209 PMCID: PMC9108107 DOI: 10.1007/s00018-022-04316-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued polymyxin-induced toxicity. Specifically, we discovered that knockout of the inwardly rectifying potassium channels Kir4.2 and Kir5.1 (encoded by KCNJ15 and KCNJ16, respectively) rescued polymyxin-induced toxicity in HK-2 cells. Furthermore, we found that polymyxins induced cell depolarization via Kir4.2 and Kir5.1 and a significant cellular uptake of polymyxins was evident. All-atom molecular dynamics simulations revealed that polymyxin B1 spontaneously bound to Kir4.2, thereby increasing opening of the channel, resulting in a potassium influx, and changes of the membrane potential. Consistent with these findings, small molecule inhibitors (BaCl2 and VU0134992) of Kir potassium channels reduced polymyxin-induced toxicity in cell culture and mouse explant kidney tissue. Our findings provide critical mechanistic information that will help attenuate polymyxin-induced nephrotoxicity in patients and facilitate the design of novel, safer polymyxins.
Collapse
|
22
|
Saturation variant interpretation using CRISPR prime editing. Nat Biotechnol 2022; 40:885-895. [DOI: 10.1038/s41587-021-01201-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
|
23
|
Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X, Zhang X. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 2022; 21:56. [PMID: 35180868 PMCID: PMC8855550 DOI: 10.1186/s12943-022-01509-9] [Citation(s) in RCA: 447] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/15/2022] [Indexed: 02/08/2023] Open
Abstract
Liquid biopsy, characterized by minimally invasive detection through biofluids such as blood, saliva, and urine, has emerged as a revolutionary strategy for cancer diagnosis and prognosis prediction. Exosomes are a subset of extracellular vesicles (EVs) that shuttle molecular cargoes from donor cells to recipient cells and play a crucial role in mediating intercellular communication. Increasing studies suggest that exosomes have a great promise to serve as novel biomarkers in liquid biopsy, since large quantities of exosomes are enriched in body fluids and are involved in numerous physiological and pathological processes. However, the further clinical application of exosomes has been greatly restrained by the lack of high-quality separation and component analysis methods. This review aims to provide a comprehensive overview on the conventional and novel technologies for exosome isolation, characterization and content detection. Additionally, the roles of exosomes serving as potential biomarkers in liquid biopsy for the diagnosis, treatment monitoring, and prognosis prediction of cancer are summarized. Finally, the prospects and challenges of applying exosome-based liquid biopsy to precision medicine are evaluated.
Collapse
Affiliation(s)
- Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yixin Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China.
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
24
|
Erkut E, Yokota T. CRISPR Therapeutics for Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1832. [PMID: 35163754 PMCID: PMC8836469 DOI: 10.3390/ijms23031832] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder with a prevalence of approximately 1 in 3500-5000 males. DMD manifests as childhood-onset muscle degeneration, followed by loss of ambulation, cardiomyopathy, and death in early adulthood due to a lack of functional dystrophin protein. Out-of-frame mutations in the dystrophin gene are the most common underlying cause of DMD. Gene editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system is a promising therapeutic for DMD, as it can permanently correct DMD mutations and thus restore the reading frame, allowing for the production of functional dystrophin. The specific mechanism of gene editing can vary based on a variety of factors such as the number of cuts generated by CRISPR, the presence of an exogenous DNA template, or the current cell cycle stage. CRISPR-mediated gene editing for DMD has been tested both in vitro and in vivo, with many of these studies discussed herein. Additionally, novel modifications to the CRISPR system such as base or prime editors allow for more precise gene editing. Despite recent advances, limitations remain including delivery efficiency, off-target mutagenesis, and long-term maintenance of dystrophin. Further studies focusing on safety and accuracy of the CRISPR system are necessary prior to clinical translation.
Collapse
Affiliation(s)
- Esra Erkut
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8613-114 Street, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8613-114 Street, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8613-114 Street, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
25
|
Roy RK, Debashree I, Srivastava S, Rishi N, Srivastava A. CRISPR/ Cas9 Off-targets: Computational Analysis of Causes, Prediction,
Detection, and Overcoming Strategies. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210708150439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
CRISPR/Cas9 technology is a highly flexible RNA-guided endonuclease (RGEN)
based gene-editing tool that has transformed the field of genomics, gene therapy, and genome/
epigenome imaging. Its wide range of applications provides immense scope for understanding
as well as manipulating genetic/epigenetic elements. However, the RGEN is prone to
off-target mutagenesis that leads to deleterious effects. This review details the molecular and cellular
mechanisms underlying the off-target activity, various available detection tools and prediction
methodology ranging from sequencing to machine learning approaches, and the strategies to
overcome/minimise off-targets. A coherent and concise method increasing target precision would
prove indispensable to concrete manipulation and interpretation of genome editing results that
can revolutionise therapeutics, including clarity in genome regulatory mechanisms during development.
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Ipsita Debashree
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Sonal Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| |
Collapse
|
26
|
Bijlani S, Pang KM, Sivanandam V, Singh A, Chatterjee S. The Role of Recombinant AAV in Precise Genome Editing. Front Genome Ed 2022; 3:799722. [PMID: 35098210 PMCID: PMC8793687 DOI: 10.3389/fgeed.2021.799722] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The replication-defective, non-pathogenic, nearly ubiquitous single-stranded adeno-associated viruses (AAVs) have gained importance since their discovery about 50 years ago. Their unique life cycle and virus-cell interactions have led to the development of recombinant AAVs as ideal genetic medicine tools that have evolved into effective commercialized gene therapies. A distinctive property of AAVs is their ability to edit the genome precisely. In contrast to all current genome editing platforms, AAV exclusively utilizes the high-fidelity homologous recombination (HR) pathway and does not require exogenous nucleases for prior cleavage of genomic DNA. Together, this leads to a highly precise editing outcome that preserves genomic integrity without incorporation of indel mutations or viral sequences at the target site while also obviating the possibility of off-target genotoxicity. The stem cell-derived AAV (AAVHSCs) were found to mediate precise and efficient HR with high on-target accuracy and at high efficiencies. AAVHSC editing occurs efficiently in post-mitotic cells and tissues in vivo. Additionally, AAV also has the advantage of an intrinsic delivery mechanism. Thus, this distinctive genome editing platform holds tremendous promise for the correction of disease-associated mutations without adding to the mutational burden. This review will focus on the unique properties of direct AAV-mediated genome editing and their potential mechanisms of action.
Collapse
|
27
|
Shim AR, Huang K, Backman V, Szleifer I. Chromatin as self-returning walks: From population to single cell and back. BIOPHYSICAL REPORTS 2021; 2:100042. [PMID: 36425085 PMCID: PMC9680733 DOI: 10.1016/j.bpr.2021.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
With a growing understanding of the chromatin structure, many efforts remain focused on bridging the gap between what is suggested by population-averaged data and what is visualized for single cells. A popular approach to traversing these scales is to fit a polymer model to Hi-C contact data. However, Hi-C is an average of millions to billions of cells, and each cell may not contain all population-averaged contacts. Therefore, we employ a novel approach of summing individual chromosome trajectories-determined by our Self-Returning Random Walk model-to create populations of cells. We allow single cells to consist of disparate structures and reproduce a variety of experimentally relevant contact maps. We show that the amount of shared topology between cells, and their mechanism of formation, changes the population-averaged structure. Therefore, we present a modeling technique that, with few constraints and little oversight, can be used to understand which single-cell chromatin structures underlie population-averaged behavior.
Collapse
Affiliation(s)
- Anne R. Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Kai Huang
- Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, P. R. China,Corresponding author
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois,Department of Chemistry, Northwestern University, Evanston, Illinois,Corresponding author
| |
Collapse
|
28
|
Vicente MM, Chaves-Ferreira M, Jorge JMP, Proença JT, Barreto VM. The Off-Targets of Clustered Regularly Interspaced Short Palindromic Repeats Gene Editing. Front Cell Dev Biol 2021; 9:718466. [PMID: 34604217 PMCID: PMC8484971 DOI: 10.3389/fcell.2021.718466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The repurposing of the CRISPR/Cas bacterial defense system against bacteriophages as simple and flexible molecular tools has revolutionized the field of gene editing. These tools are now widely used in basic research and clinical trials involving human somatic cells. However, a global moratorium on all clinical uses of human germline editing has been proposed because the technology still lacks the required efficacy and safety. Here we focus on the approaches developed since 2013 to decrease the frequency of unwanted mutations (the off-targets) during CRISPR-based gene editing.
Collapse
Affiliation(s)
- Manuel M Vicente
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - Miguel Chaves-Ferreira
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - João M P Jorge
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - João T Proença
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - Vasco M Barreto
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
29
|
Atkins A, Chung CH, Allen AG, Dampier W, Gurrola TE, Sariyer IK, Nonnemacher MR, Wigdahl B. Off-Target Analysis in Gene Editing and Applications for Clinical Translation of CRISPR/Cas9 in HIV-1 Therapy. Front Genome Ed 2021; 3:673022. [PMID: 34713260 PMCID: PMC8525399 DOI: 10.3389/fgeed.2021.673022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
As genome-editing nucleases move toward broader clinical applications, the need to define the limits of their specificity and efficiency increases. A variety of approaches for nuclease cleavage detection have been developed, allowing a full-genome survey of the targeting landscape and the detection of a variety of repair outcomes for nuclease-induced double-strand breaks. Each approach has advantages and disadvantages relating to the means of target-site capture, target enrichment mechanism, cellular environment, false discovery, and validation of bona fide off-target cleavage sites in cells. This review examines the strengths, limitations, and origins of the different classes of off-target cleavage detection systems including anchored primer enrichment (GUIDE-seq), in situ detection (BLISS), in vitro selection libraries (CIRCLE-seq), chromatin immunoprecipitation (ChIP) (DISCOVER-Seq), translocation sequencing (LAM PCR HTGTS), and in vitro genomic DNA digestion (Digenome-seq and SITE-Seq). Emphasis is placed on the specific modifications that give rise to the enhanced performance of contemporary techniques over their predecessors and the comparative performance of techniques for different applications. The clinical relevance of these techniques is discussed in the context of assessing the safety of novel CRISPR/Cas9 HIV-1 curative strategies. With the recent success of HIV-1 and SIV-1 viral suppression in humanized mice and non-human primates, respectively, using CRISPR/Cas9, rigorous exploration of potential off-target effects is of critical importance. Such analyses would benefit from the application of the techniques discussed in this review.
Collapse
Affiliation(s)
- Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alexander G. Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
30
|
Sledzinski P, Dabrowska M, Nowaczyk M, Olejniczak M. Paving the way towards precise and safe CRISPR genome editing. Biotechnol Adv 2021; 49:107737. [PMID: 33785374 DOI: 10.1016/j.biotechadv.2021.107737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
As the possibilities of CRISPR-Cas9 technology have been revealed, we have entered a new era of research aimed at increasing its specificity and safety. This stage of technology development is necessary not only for its wider application in the clinic but also in basic research to better control the process of genome editing. Research during the past eight years has identified some factors influencing editing outcomes and led to the development of highly specific endonucleases, modified guide RNAs and computational tools supporting experiments. More recently, large-scale experiments revealed a previously overlooked feature: Cas9 can generate reproducible mutation patterns. As a result, it has become apparent that Cas9-induced double-strand break (DSB) repair is nonrandom and can be predicted to some extent. Here, we review the present state of knowledge regarding the specificity and safety of CRISPR-Cas9 technology to define gRNA, protein and target-related problems and solutions. These issues include sequence-specific off-target effects, immune responses, genetic variation and chromatin accessibility. We present new insights into the role of DNA repair in genome editing and define factors influencing editing outcomes. In addition, we propose practical guidelines for increasing the specificity of editing and discuss novel perspectives in improvement of this technology.
Collapse
Affiliation(s)
- Pawel Sledzinski
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Mateusz Nowaczyk
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland.
| |
Collapse
|
31
|
Zhang Y, Wang Q, Wang J, Tang X. Chemical Modification and Transformation Strategies of Guide RNAs in CRISPR-Cas9 Gene Editing Systems. Chempluschem 2021; 86:587-600. [PMID: 33830675 DOI: 10.1002/cplu.202000785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/13/2021] [Indexed: 12/19/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated protein 9) is a most powerful tool and has been widely used in gene editing and gene regulation since its discovery. However, wild-type CRISPR-Cas9 suffers from off-target effects and low editing efficiency. To overcome these limitations, engineered Cas9 proteins have been extensively investigated. In addition to Cas9 protein engineering, chemically synthesized guide RNAs have been developed to improve the efficiency and specificity of genome editing as well as spatiotemporal controllability, which broadens the biological applications of CRISPR-Cas9 gene editing system and increases their potentials as therapeutics. In this review, we summarize the latest research advances in remodeling guide RNAs through length optimization, chemical modifications, and conditional control, as well as their powerful applications in gene editing tools and promising therapeutic agents.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing, 100191, P. R. China
| |
Collapse
|
32
|
Niu M, Lin Y, Zou Q. sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks. PLANT MOLECULAR BIOLOGY 2021; 105:483-495. [PMID: 33385273 DOI: 10.1007/s11103-020-01102-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE We proposed an ensemble convolutional neural network model to identify sgRNA high on-target activity in four crops and we used one-hot encoding and k-mers for sequence encoding. As an important component of the CRISPR/Cas9 system, single-guide RNA (sgRNA) plays an important role in gene redirection and editing. sgRNA has played an important role in the improvement of agronomic species, but there is a lack of effective bioinformatics tools to identify the activity of sgRNA in agronomic species. Therefore, it is necessary to develop a method based on machine learning to identify sgRNA high on-target activity. In this work, we proposed a simple convolutional neural network method to identify sgRNA high on-target activity. Our study used one-hot encoding and k-mers for sequence data conversion and a voting algorithm for constructing the convolutional neural network ensemble model sgRNACNN for the prediction of sgRNA activity. The ensemble model sgRNACNN was used for predictions in four crops: Glycine max, Zea mays, Sorghum bicolor and Triticum aestivum. The accuracy rates of the four crops in the sgRNACNN model were 82.43%, 80.33%, 78.25% and 87.49%, respectively. The experimental results showed that sgRNACNN realizes the identification of high on-target activity sgRNA of agronomic data and can meet the demands of sgRNA activity prediction in agronomy to a certain extent. These results have certain significance for guiding crop gene editing and academic research. The source code and relevant dataset can be found in the following link: https://github.com/nmt315320/sgRNACNN.git .
Collapse
Affiliation(s)
- Mengting Niu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Lin
- Department of System Integration, Sparebanken Vest, Bergen, Norway.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
33
|
Aslesh T, Erkut E, Yokota T. Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing. Expert Opin Biol Ther 2021; 21:1049-1061. [PMID: 33401973 DOI: 10.1080/14712598.2021.1872539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder that affects approximately one in 3500-5000 male births. Patients experience muscle degeneration, loss of ambulation, and eventual death from cardiac or respiratory failure in early adulthood due to a lack of functional dystrophin protein, which is required to maintain the integrity of muscle cell membranes. Out-of-frame mutations in the DMD gene generally lead to no dystrophin protein expression and a more severe phenotype (DMD). Conversely, in-frame mutations are often associated with milder Becker muscular dystrophy (BMD) with a truncated dystrophin expression.Areas covered: Genome editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system can induce permanent corrections of the DMD gene, thus becoming an increasingly popular potential therapeutic method. In this review, we outline recent developments in CRISPR/Cas9 genome editing for the correction of DMD, both in vitro and in vivo, as well as novel delivery methods.Expert opinion: Despite recent advances, many limitations to CRISPR/Cas9 therapy are still prevalent such as off-target editing and immunogenicity. Specifically, for DMD, intervention time and efficient delivery to cardiac and skeletal muscles also present inherent challenges. Research needs to focus on the therapeutic safety and efficacy of this approach.
Collapse
Affiliation(s)
- Tejal Aslesh
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Esra Erkut
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Ballarino R, Bouwman BAM, Crosetto N. Genome-Wide CRISPR Off-Target DNA Break Detection by the BLISS Method. Methods Mol Biol 2021; 2162:261-281. [PMID: 32926388 DOI: 10.1007/978-1-0716-0687-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced palindromic repeat (CRISPR) systems are revolutionizing many areas of biology and medicine, where they are increasingly utilized as therapeutic tools for correcting disease-causing mutations. From a clinical perspective, unintended off-target (OT) DNA double-strand break (DSB) induction by CRISPR nucleases represents a major concern. Therefore, in recent years considerable effort has been dedicated to developing methods for assessing the OT activity of CRISPR nucleases, which in turn can be used to guide engineering of nucleases with minimal OT activity. Here we describe a detailed protocol for quantifying OT DSBs genome-wide in cultured cells transfected with CRISPR enzymes, based on the breaks labeling in situ and sequencing (BLISS) method that we have previously developed. CRISPR-BLISS is versatile and scalable, and allows assessment of multiple guide RNAs in different cell types and time points following cell transfection or transduction.
Collapse
Affiliation(s)
- Roberto Ballarino
- Science for Life Laboratory (SciLifeLab), Research Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Britta A M Bouwman
- Science for Life Laboratory (SciLifeLab), Research Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Science for Life Laboratory (SciLifeLab), Research Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
Knaupp AS, Mohenska M, Larcombe MR, Ford E, Lim SM, Wong K, Chen J, Firas J, Huang C, Liu X, Nguyen T, Sun YBY, Holmes ML, Tripathi P, Pflueger J, Rossello FJ, Schröder J, Davidson KC, Nefzger CM, Das PP, Haigh JJ, Lister R, Schittenhelm RB, Polo JM. TINC- A Method to Dissect Regulatory Complexes at Single-Locus Resolution- Reveals an Extensive Protein Complex at the Nanog Promoter. Stem Cell Reports 2020; 15:1246-1259. [PMID: 33296673 PMCID: PMC7724517 DOI: 10.1016/j.stemcr.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cellular identity is ultimately dictated by the interaction of transcription factors with regulatory elements (REs) to control gene expression. Advances in epigenome profiling techniques have significantly increased our understanding of cell-specific utilization of REs. However, it remains difficult to dissect the majority of factors that interact with these REs due to the lack of appropriate techniques. Therefore, we developed TINC: TALE-mediated isolation of nuclear chromatin. Using this new method, we interrogated the protein complex formed at the Nanog promoter in embryonic stem cells (ESCs) and identified many known and previously unknown interactors, including RCOR2. Further interrogation of the role of RCOR2 in ESCs revealed its involvement in the repression of lineage genes and the fine-tuning of pluripotency genes. Consequently, using the Nanog promoter as a paradigm, we demonstrated the power of TINC to provide insight into the molecular makeup of specific transcriptional complexes at individual REs as well as into cellular identity control in general. TINC allows the isolation of a specific locus for molecular analyses TINC identified hundreds of proteins at the Nanog promoter RCOR2 is a component of the pluripotency network in embryonic stem cells RCOR2 is required for efficient differentiation
Collapse
Affiliation(s)
- Anja S Knaupp
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Monika Mohenska
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael R Larcombe
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Sue Mei Lim
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kayla Wong
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jaber Firas
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Trung Nguyen
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Yu B Y Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Melissa L Holmes
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Pratibha Tripathi
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Schröder
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kathryn C Davidson
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Partha P Das
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jody J Haigh
- Australian Centre for Blood Diseases, Monash University, Clayton, VIC 3004, Australia; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
36
|
Antao AM, Karapurkar JK, Lee DR, Kim KS, Ramakrishna S. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Comput Struct Biotechnol J 2020; 18:3649-3665. [PMID: 33304462 PMCID: PMC7710510 DOI: 10.1016/j.csbj.2020.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are popular genome editing tools that belong to a class of programmable nucleases and have enabled tremendous progress in the field of regenerative medicine. We here outline the structural and molecular frameworks of the well-characterized type II CRISPR system and several computational tools intended to facilitate experimental designs. The use of CRISPR tools to generate disease models has advanced research into the molecular aspects of disease conditions, including unraveling the molecular basis of immune rejection. Advances in regenerative medicine have been hindered by major histocompatibility complex-human leukocyte antigen (HLA) genes, which pose a major barrier to cell- or tissue-based transplantation. Based on progress in CRISPR, including in recent clinical trials, we hypothesize that the generation of universal donor immune-engineered stem cells is now a realistic approach to tackling a multitude of disease conditions.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea
- CHA Stem Cell Institute, CHA University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
37
|
Meaker GA, Hair EJ, Gorochowski TE. Advances in engineering CRISPR-Cas9 as a molecular Swiss Army knife. Synth Biol (Oxf) 2020; 5:ysaa021. [PMID: 33344779 PMCID: PMC7737000 DOI: 10.1093/synbio/ysaa021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
The RNA-guided endonuclease system CRISPR-Cas9 has been extensively modified since its discovery, allowing its capabilities to extend far beyond double-stranded cleavage to high fidelity insertions, deletions and single base edits. Such innovations have been possible due to the modular architecture of CRISPR-Cas9 and the robustness of its component parts to modifications and the fusion of new functional elements. Here, we review the broad toolkit of CRISPR-Cas9-based systems now available for diverse genome-editing tasks. We provide an overview of their core molecular structure and mechanism and distil the design principles used to engineer their diverse functionalities. We end by looking beyond the biochemistry and toward the societal and ethical challenges that these CRISPR-Cas9 systems face if their transformative capabilities are to be deployed in a safe and acceptable manner.
Collapse
Affiliation(s)
- Grace A Meaker
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Emma J Hair
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
38
|
Krey K, Babnis AW, Pichlmair A. System-Based Approaches to Delineate the Antiviral Innate Immune Landscape. Viruses 2020; 12:E1196. [PMID: 33096788 PMCID: PMC7589202 DOI: 10.3390/v12101196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses pose substantial challenges for society, economy, healthcare systems, and research. Their distinctive pathologies are based on specific interactions with cellular factors. In order to develop new antiviral treatments, it is of central importance to understand how viruses interact with their host and how infected cells react to the virus on a molecular level. Invading viruses are commonly sensed by components of the innate immune system, which is composed of a highly effective yet complex network of proteins that, in most cases, mediate efficient virus inhibition. Central to this process is the activity of interferons and other cytokines that coordinate the antiviral response. So far, numerous methods have been used to identify how viruses interact with cellular processes and revealed that the innate immune response is highly complex and involves interferon-stimulated genes and their binding partners as functional factors. Novel approaches and careful experimental design, combined with large-scale, high-throughput methods and cutting-edge analysis pipelines, have to be utilized to delineate the antiviral innate immune landscape at a global level. In this review, we describe different currently used screening approaches, how they contributed to our knowledge on virus-host interactions, and essential considerations that have to be taken into account when planning such experiments.
Collapse
Affiliation(s)
- Karsten Krey
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Aleksandra W. Babnis
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Andreas Pichlmair
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
- German Center for Infection Research (DZIF), Munich Partner Site, 80538 Munich, Germany
| |
Collapse
|
39
|
Clement K, Hsu JY, Canver MC, Joung JK, Pinello L. Technologies and Computational Analysis Strategies for CRISPR Applications. Mol Cell 2020; 79:11-29. [PMID: 32619467 PMCID: PMC7497852 DOI: 10.1016/j.molcel.2020.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 03/12/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
The CRISPR-Cas system offers a programmable platform for eukaryotic genome and epigenome editing. The ability to perform targeted genetic and epigenetic perturbations enables researchers to perform a variety of tasks, ranging from investigating questions in basic biology to potentially developing novel therapeutics for the treatment of disease. While CRISPR systems have been engineered to target DNA and RNA with increased precision, efficiency, and flexibility, assays to identify off-target editing are becoming more comprehensive and sensitive. Furthermore, techniques to perform high-throughput genome and epigenome editing can be paired with a variety of readouts and are uncovering important cellular functions and mechanisms. These technological advances drive and are driven by accompanying computational approaches. Here, we briefly present available CRISPR technologies and review key computational advances and considerations for various CRISPR applications. In particular, we focus on the analysis of on- and off-target editing and CRISPR pooled screen data.
Collapse
Affiliation(s)
- Kendell Clement
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan Y Hsu
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew C Canver
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
40
|
Xie H, Ge X, Yang F, Wang B, Li S, Duan J, Lv X, Cheng C, Song Z, Liu C, Zhao J, Zhang Y, Wu J, Gao C, Zhang J, Gu F. High-fidelity SaCas9 identified by directional screening in human cells. PLoS Biol 2020; 18:e3000747. [PMID: 32644995 PMCID: PMC7347106 DOI: 10.1371/journal.pbio.3000747] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Staphylococcus aureus Cas9 (CRISPR-SaCas9) has been harnessed as an effective in vivo genome-editing tool to manipulate genomes. However, off-target effects remain a major bottleneck that precludes safe and reliable applications in genome editing. Here, we characterize the off-target effects of wild-type (WT) SaCas9 at single-nucleotide (single-nt) resolution and describe a directional screening system to identify novel SaCas9 variants with desired properties in human cells. Using this system, we identified enhanced-fidelity SaCas9 (efSaCas9) (variant Mut268 harboring the single mutation of N260D), which could effectively distinguish and reject single base-pair mismatches. We demonstrate dramatically reduced off-target effects (approximately 2- to 93-fold improvements) of Mut268 compared to WT using targeted deep-sequencing analyses. To understand the structural origin of the fidelity enhancement, we find that N260, located in the REC3 domain, orchestrates an extensive network of contacts between REC3 and the guide RNA-DNA heteroduplex. efSaCas9 can be broadly used in genome-editing applications that require high fidelity. Furthermore, this study provides a general strategy to rapidly evolve other desired CRISPR-Cas9 traits besides enhanced fidelity, to expand the utility of the CRISPR toolkit.
Collapse
Affiliation(s)
- Haihua Xie
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xianglian Ge
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Fayu Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Bang Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jinzhi Duan
- National Institute of Biological Sciences, Beijing, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Congsheng Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Zongming Song
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Changbao Liu
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| |
Collapse
|
41
|
Specht DA, Xu Y, Lambert G. Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding. Proc Natl Acad Sci U S A 2020; 117:11274-11282. [PMID: 32376630 PMCID: PMC7260945 DOI: 10.1073/pnas.1918685117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The versatility of CRISPR-Cas endonucleases as a tool for biomedical research has led to diverse applications in gene editing, programmable transcriptional control, and nucleic acid detection. Most CRISPR-Cas systems, however, suffer from off-target effects and unpredictable nonspecific binding that negatively impact their reliability and broader applicability. To better evaluate the impact of mismatches on DNA target recognition and binding, we develop a massively parallel CRISPR interference (CRISPRi) assay to measure the binding energy between tens of thousands of CRISPR RNA (crRNA) and target DNA sequences. By developing a general thermodynamic model of CRISPR-Cas binding dynamics, our results unravel a comprehensive map of the energetic landscape of nuclease-dead Cas12a (dCas12a) from Francisella novicida as it inspects and binds to its DNA target. Our results reveal concealed thermodynamic factors affecting dCas12a DNA binding, which should guide the design and optimization of crRNA that limits off-target effects, including the crucial role of an extended protospacer adjacent motif (PAM) sequence and the impact of the specific base composition of crRNA-DNA mismatches. Our generalizable approach should also provide a mechanistic understanding of target recognition and DNA binding when applied to other CRISPR-Cas systems.
Collapse
Affiliation(s)
- David A Specht
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Yasu Xu
- Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Guillaume Lambert
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
42
|
Abstract
The rapid advancement of genome editing technologies has opened up new possibilities in the field of medicine. Nuclease-based techniques such as the CRISPR/Cas9 system are now used to target genetically linked disorders that were previously hard-to-treat. The CRISPR/Cas9 gene editing approach wields several advantages over its contemporary editing systems, notably in the ease of component design, implementation and the option of multiplex genome editing. While results from the early phase clinical trials have been encouraging, the small patient population recruited into these trials hinders a conclusive assessment on the safety aspects of the CRISPR/Cas9 therapy. Potential safety concerns include the lack of fidelity in the CRISPR/Cas9 system which may lead to unintended DNA modifications at non-targeted gene loci. This review focuses modifications to the CRISPR/Cas9 components that can mitigate off-target effects in in vitro and preclinical models and its translatability to gene therapy in patient populations.
Collapse
Affiliation(s)
- Hua Alexander Han
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Key Laboratory for Major Obstetric Disease of Guangdong Province, The Third Affliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
43
|
Han HA, Pang JKS, Soh BS. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med (Berl) 2020; 98:615-632. [PMID: 32198625 PMCID: PMC7220873 DOI: 10.1007/s00109-020-01893-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
The rapid advancement of genome editing technologies has opened up new possibilities in the field of medicine. Nuclease-based techniques such as the CRISPR/Cas9 system are now used to target genetically linked disorders that were previously hard-to-treat. The CRISPR/Cas9 gene editing approach wields several advantages over its contemporary editing systems, notably in the ease of component design, implementation and the option of multiplex genome editing. While results from the early phase clinical trials have been encouraging, the small patient population recruited into these trials hinders a conclusive assessment on the safety aspects of the CRISPR/Cas9 therapy. Potential safety concerns include the lack of fidelity in the CRISPR/Cas9 system which may lead to unintended DNA modifications at non-targeted gene loci. This review focuses modifications to the CRISPR/Cas9 components that can mitigate off-target effects in in vitro and preclinical models and its translatability to gene therapy in patient populations.
Collapse
Affiliation(s)
- Hua Alexander Han
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Key Laboratory for Major Obstetric Disease of Guangdong Province, The Third Affliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
44
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
45
|
Wang R, Zhao X, Chen X, Qiu X, Qing G, Zhang H, Zhang L, Hu X, He Z, Zhong D, Wang Y, Luo Y. Rolling Circular Amplification (RCA)-Assisted CRISPR/Cas9 Cleavage (RACE) for Highly Specific Detection of Multiple Extracellular Vesicle MicroRNAs. Anal Chem 2020; 92:2176-2185. [PMID: 31875674 DOI: 10.1021/acs.analchem.9b04814] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiplexed detection of extracellular vesicle (EV)-derived microRNAs (miRNAs) plays a critical role in facilitating disease diagnosis and prognosis evaluation. Herein, we developed a highly specific nucleic acid detection platform for simultaneous quantification of several EV-derived miRNAs in constant temperature by integrating the advantages of a clustered regularly interspaced short palindromic repeats/CRISPR associated nucleases (CRISPR/Cas) system and rolling circular amplification (RCA) techniques. Particularly, the proposed approach demonstrated single-base resolution attributed to the dual-specific recognition from both padlock probe-mediated ligation and protospacer adjacent motif (PAM)-triggered cleavage. The high consistency between the proposed approach RCA-assisted CRISPR/Cas9 cleavage (RACE) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) in detecting EV-derived miRNAs' abundance from both cultured cancer cells and clinical lung cancer patients validated its robustness, revealing its potentials in the screening, diagnosis, and prognosis of various diseases. In summary, RACE is a powerful tool for multiplexed, specific detection of nucleic acids in point-of-care diagnostics and field-deployable analysis.
Collapse
Affiliation(s)
- Ruixuan Wang
- School of Materials and Energy , Southwest University , Tiansheng Street , Beibei , Chongqing 400715 , China.,Center of Smart Laboratory and Molecular Medicine, Medical School , Chongqing University , Chongqing 400044 , China.,Department of Clinical Laboratory Medicine, Southwest Hospital , Army Medical University , Chongqing 400038 , China
| | - Xianxian Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital , Army Medical University , Chongqing 400038 , China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, Medical School , Chongqing University , Chongqing 400044 , China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants , Bioengineering College of Chongqing University , Chongqing 400044 , China
| | - Xiaopei Qiu
- Center of Smart Laboratory and Molecular Medicine, Medical School , Chongqing University , Chongqing 400044 , China.,Department of Clinical Laboratory Medicine, Southwest Hospital , Army Medical University , Chongqing 400038 , China
| | - Guangchao Qing
- Center of Smart Laboratory and Molecular Medicine, Medical School , Chongqing University , Chongqing 400044 , China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants , Bioengineering College of Chongqing University , Chongqing 400044 , China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, Medical School , Chongqing University , Chongqing 400044 , China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants , Bioengineering College of Chongqing University , Chongqing 400044 , China
| | - Liangliang Zhang
- Center of Smart Laboratory and Molecular Medicine, Medical School , Chongqing University , Chongqing 400044 , China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants , Bioengineering College of Chongqing University , Chongqing 400044 , China
| | - Xiaolin Hu
- Center of Smart Laboratory and Molecular Medicine, Medical School , Chongqing University , Chongqing 400044 , China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants , Bioengineering College of Chongqing University , Chongqing 400044 , China
| | - Zhuoqi He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants , Bioengineering College of Chongqing University , Chongqing 400044 , China
| | - Daidi Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants , Bioengineering College of Chongqing University , Chongqing 400044 , China
| | - Ying Wang
- Department of Laboratory Medicine , Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital , Chongqing 400030 , China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, Medical School , Chongqing University , Chongqing 400044 , China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants , Bioengineering College of Chongqing University , Chongqing 400044 , China
| |
Collapse
|
46
|
Urbano A, Smith J, Weeks RJ, Chatterjee A. Gene-Specific Targeting of DNA Methylation in the Mammalian Genome. Cancers (Basel) 2019; 11:cancers11101515. [PMID: 31600992 PMCID: PMC6827012 DOI: 10.3390/cancers11101515] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is the most widely-studied epigenetic modification, playing a critical role in the regulation of gene expression. Dysregulation of DNA methylation is implicated in the pathogenesis of numerous diseases. For example, aberrant DNA methylation in promoter regions of tumor-suppressor genes has been strongly associated with the development and progression of many different tumors. Accordingly, technologies designed to manipulate DNA methylation at specific genomic loci are very important, especially in the context of cancer therapy. Traditionally, epigenomic editing technologies have centered around zinc finger proteins (ZFP)- and transcription activator-like effector protein (TALE)-based targeting. More recently, however, the emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-deactivated Cas9 (dCas9)-based editing systems have shown to be a more specific and efficient method for the targeted manipulation of DNA methylation. Here, we describe the regulation of the DNA methylome, its significance in cancer and the current state of locus-specific editing technologies for altering DNA methylation.
Collapse
Affiliation(s)
- Arthur Urbano
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin 9054, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, 3A Symonds Street, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
47
|
Liu Q, He D, Xie L. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature. PLoS Comput Biol 2019; 15:e1007480. [PMID: 31658261 PMCID: PMC6837542 DOI: 10.1371/journal.pcbi.1007480] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/07/2019] [Accepted: 10/08/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is a powerful genome editing technology and has a great potential for in vivo gene therapy. Successful translational application of CRISPR-Cas to biomedicine still faces many safety concerns, including off-target side effect, cell fitness problem after CRISPR-Cas treatment, and on-target genome editing side effect in undesired tissues. To solve these issues, it is needed to design sgRNA with high cell-specific efficacy and specificity. Existing single-guide RNA (sgRNA) design tools mainly depend on a sgRNA sequence and the local information of the targeted genome, thus are not sufficient to account for the difference in the cellular response of the same gene in different cell types. To incorporate cell-specific information into the sgRNA design, we develop novel interpretable machine learning models, which integrate features learned from advanced transformer-based deep neural network with cell-specific gene property derived from biological network and gene expression profile, for the prediction of CRISPR-Cas9 and CRISPR-Cas12a efficacy and specificity. In benchmark studies, our models significantly outperform state-of-the-art algorithms. Furthermore, we find that the network-based gene property is critical for the prediction of cell-specific post-treatment cellular response. Our results suggest that the design of efficient and safe CRISPR-Cas needs to consider cell-specific information of genes. Our findings may bolster developing more accurate predictive models of CRISPR-Cas across a broad spectrum of biological conditions as well as provide new insight into developing efficient and safe CRISPR-based gene therapy.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Computer Science, Hunter College, The City University of New York, New York City, NY, United States of America
| | - Di He
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York City, NY, United States of America
| | - Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, New York City, NY, United States of America
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York City, NY, United States of America
- Ph.D. Program in Biochemistry and Biology, The Graduate Center, The City University of New York, New York City, NY, United States of America
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York City, NY, United States of America
| |
Collapse
|
48
|
Wang D, Zhang C, Wang B, Li B, Wang Q, Liu D, Wang H, Zhou Y, Shi L, Lan F, Wang Y. Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nat Commun 2019; 10:4284. [PMID: 31537810 PMCID: PMC6753114 DOI: 10.1038/s41467-019-12281-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Highly specific Cas9 nucleases derived from SpCas9 are valuable tools for genome editing, but their wide applications are hampered by a lack of knowledge governing guide RNA (gRNA) activity. Here, we perform a genome-scale screen to measure gRNA activity for two highly specific SpCas9 variants (eSpCas9(1.1) and SpCas9-HF1) and wild-type SpCas9 (WT-SpCas9) in human cells, and obtain indel rates of over 50,000 gRNAs for each nuclease, covering ~20,000 genes. We evaluate the contribution of 1,031 features to gRNA activity and develope models for activity prediction. Our data reveals that a combination of RNN with important biological features outperforms other models for activity prediction. We further demonstrate that our model outperforms other popular gRNA design tools. Finally, we develop an online design tool DeepHF for the three Cas9 nucleases. The database, as well as the designer tool, is freely accessible via a web server, http://www.DeepHF.com/ .
Collapse
Affiliation(s)
- Daqi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200432, China
| | - Chengdong Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200432, China
| | - Bei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200432, China
| | - Bin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200432, China
| | - Qiang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200432, China
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200432, China
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200432, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200432, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Feng Lan
- Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, 100029, China.
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200432, China.
| |
Collapse
|
49
|
Klein M, Eslami-Mossallam B, Arroyo DG, Depken M. Hybridization Kinetics Explains CRISPR-Cas Off-Targeting Rules. Cell Rep 2019; 22:1413-1423. [PMID: 29425498 DOI: 10.1016/j.celrep.2018.01.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
Due to their specificity, efficiency, and ease of programming, CRISPR-associated nucleases are popular tools for genome editing. On the genomic scale, these nucleases still show considerable off-target activity though, posing a serious obstacle to the development of therapies. Off targeting is often minimized by choosing especially high-specificity guide sequences, based on algorithms that codify empirically determined off-targeting rules. A lack of mechanistic understanding of these rules has so far necessitated their ad hoc implementation, likely contributing to the limited precision of present algorithms. To understand the targeting rules, we kinetically model the physics of guide-target hybrid formation. Using only four parameters, our model elucidates the kinetic origin of the experimentally observed off-targeting rules, thereby rationalizing the results from both binding and cleavage assays. We favorably compare our model to published data from CRISPR-Cas9, CRISPR-Cpf1, CRISPR-Cascade, as well as the human Argonaute 2 system.
Collapse
Affiliation(s)
- Misha Klein
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Behrouz Eslami-Mossallam
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Dylan Gonzalez Arroyo
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Martin Depken
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, the Netherlands.
| |
Collapse
|
50
|
Safe CRISPR: Challenges and Possible Solutions. Trends Biotechnol 2019; 37:389-401. [DOI: 10.1016/j.tibtech.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022]
|