1
|
Järvelä I, Paetau R, Rajendran Y, Acharya A, Bharadwaj T, Leal SM, Lehesjoki AE, Palomäki M, Schrauwen I. Heterogeneous genetic patterns in bilateral perisylvian polymicrogyria: insights from a Finnish family cohort. Brain Commun 2024; 6:fcae142. [PMID: 38712318 PMCID: PMC11073749 DOI: 10.1093/braincomms/fcae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Bilateral perisylvian polymicrogyria is the most common form of regional polymicrogyria within malformations of cortical development, constituting 20% of all malformations of cortical development. Bilateral perisylvian polymicrogyria is characterized by an excessive folding of the cerebral cortex and abnormal cortical layering. Notable clinical features include upper motoneuron dysfunction, dysarthria and asymmetric quadriparesis. Cognitive impairment and epilepsy are frequently observed. To identify genetic variants underlying bilateral perisylvian polymicrogyria in Finland, we examined 21 families using standard exome sequencing, complemented by optical genome mapping and/or deep exome sequencing. Pathogenic or likely pathogenic variants were identified in 5/21 (24%) of families, of which all were confirmed as de novo. These variants were identified in five genes, i.e. DDX23, NUS1, SCN3A, TUBA1A and TUBB2B, with NUS1 and DDX23 being associated with bilateral perisylvian polymicrogyria for the first time. In conclusion, our results confirm the previously reported genetic heterogeneity of bilateral perisylvian polymicrogyria and underscore the necessity of more advanced methods to elucidate the genetic background of bilateral perisylvian polymicrogyria.
Collapse
Affiliation(s)
- Irma Järvelä
- Department of Medical Genetics, University of Helsinki, 00251 Helsinki, Finland
| | - Ritva Paetau
- Department of Child Neurology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Yasmin Rajendran
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
- Taub Institute, Columbia University Medical Center, 10032 New York, NY, USA
| | - Anna-Elina Lehesjoki
- Department of Medical Genetics, University of Helsinki, 00251 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Maarit Palomäki
- Medical Imaging Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, 10032 New York, NY, USA
| |
Collapse
|
2
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Tantry MSA, Santhakumar K. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development. Mol Neurobiol 2023; 60:3803-3823. [PMID: 36943622 DOI: 10.1007/s12035-023-03302-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Tubulins are the highly conserved subunit of microtubules which involve in various fundamental functions including brain development. Microtubules help in neuronal proliferation, migration, differentiation, cargo transport along the axons, synapse formation, and many more. Tubulin gene family consisting of multiple isotypes, their differential expression and varied post translational modifications create a whole new level of complexity and diversity in accomplishing manifold neuronal functions. The studies on the relation between tubulin genes and brain development opened a new avenue to understand the role of each tubulin isotype in neurodevelopment. Mutations in tubulin genes are reported to cause brain development defects especially cortical malformations, referred as tubulinopathies. There is an increased need to understand the molecular correlation between various tubulin mutations and the associated brain pathology. Recently, mutations in tubulin isotypes (TUBA1A, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, and TUBG1) have been linked to cause various neurodevelopmental defects like lissencephaly, microcephaly, cortical dysplasia, polymicrogyria, schizencephaly, subcortical band heterotopia, periventricular heterotopia, corpus callosum agenesis, and cerebellar hypoplasia. This review summarizes on the microtubule dynamics, their role in neurodevelopment, tubulin isotypes, post translational modifications, and the role of tubulin mutations in causing specific neurodevelopmental defects. A comprehensive list containing all the reported tubulin pathogenic variants associated with brain developmental defects has been prepared to give a bird's eye view on the broad range of tubulin functions.
Collapse
Affiliation(s)
- M S Ananthakrishna Tantry
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
4
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
5
|
Maillard C, Roux CJ, Charbit-Henrion F, Steffann J, Laquerriere A, Quazza F, Buisson NB. Tubulin mutations in human neurodevelopmental disorders. Semin Cell Dev Biol 2022; 137:87-95. [PMID: 35915025 DOI: 10.1016/j.semcdb.2022.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Mutations causing dysfunction of tubulins and microtubule-associated proteins, also known as tubulinopathies, are a group of recently described entities that lead to complex brain malformations. Anatomical and functional consequences of the disruption of tubulins include microcephaly, combined with abnormal corticogenesis due to impaired migration or lamination and abnormal growth cone dynamics of projecting and callosal axons. Key imaging features of tubulinopathies are characterized by three major patterns of malformations of cortical development (MCD): lissencephaly, microlissencephaly, and dysgyria. Additional distinctive MRI features include dysmorphism of the basal ganglia, midline commissural structure hypoplasia or agenesis, and cerebellar and brainstem hypoplasia. Tubulinopathies can be diagnosed as early as 21-24 gestational weeks using imaging and neuropathology, with possible extreme microlissencephaly with an extremely thin cortex, lissencephaly with either thick or thin/intermediate cortex, and dysgyria combined with cerebellar hypoplasia, pons hypoplasia and corpus callosum dysgenesis. More than 100 MCD-associated mutations have been reported in TUBA1A, TUBB2B, or TUBB3 genes, whereas fewer than ten are known in other genes such TUBB2A, TUBB or TUBG1. Although these mutations are scattered along the α- and β-tubulin sequences, recurrent mutations are consistently associated with almost identical cortical dysgenesis. Much of the evidence supports that these mutations alter the dynamic properties and functions of microtubules in several fashions. These include diminishing the abundance of functional tubulin heterodimers, altering GTP binding, altering longitudinal and lateral protofilament interactions, and impairing microtubule interactions with kinesin and/or dynein motors or with MAPs. In this review we discuss the recent advances in our understanding of the effects of mutations of tubulins and microtubule-associated proteins on human brain development and the pathogenesis of malformations of cortical development.
Collapse
Affiliation(s)
- Camille Maillard
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Charles Joris Roux
- Pediatric Radiology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Fabienne Charbit-Henrion
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Julie Steffann
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Annie Laquerriere
- Pathology Laboratory, Rouen University Hospital, Rouen, France; NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Floriane Quazza
- Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Nadia Bahi Buisson
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France; Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France.
| |
Collapse
|
6
|
Zhang W, Hu L, Huang X, Xie D, Wu J, Fu X, Liang D, Huang S. Whole-exome sequencing identified five novel de novo variants in patients with unexplained intellectual disability. J Clin Lab Anal 2022; 36:e24587. [PMID: 35837997 PMCID: PMC9459325 DOI: 10.1002/jcla.24587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Intellectual disability (ID) represents a neurodevelopmental disorder, which is characterized by marked defects in the intellectual function and adaptive behavior, with an onset during the developmental period. ID is mainly caused by genetic factors, and it is extremely genetically heterogeneous. This study aims to identify the genetic cause of ID using trio‐WES analysis. Methods We recruited four pediatric patients with unexplained ID from non‐consanguineous families, who presented at the Department of Pediatrics, Guizhou Provincial People's Hospital. Whole‐exome sequencing (WES) and Sanger sequencing validation were performed in the patients and their unaffected parents. Furthermore, conservative analysis and protein structural and functional prediction were performed on the identified pathogenic variants. Results We identified five novel de novo mutations from four known ID‐causing genes in the four included patients, namely COL4A1 (c.2786T>A, p.V929D and c.2797G>A, p.G933S), TBR1 (c.1639_1640insCCCGCAGTCC, p.Y553Sfs*124), CHD7 (c.7013A>T, p.Q2338L), and TUBA1A (c.1350del, p.E450Dfs*34). These mutations were all predicted to be deleterious and were located at highly conserved domains that might affect the structure and function of these proteins. Conclusion Our findings contribute to expanding the mutational spectrum of ID‐related genes and help to deepen the understanding of the genetic causes and heterogeneity of ID.
Collapse
Affiliation(s)
- Wenqiu Zhang
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Li Hu
- Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Xinyi Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Xie
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Jiangfen Wu
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China
| | - Xiaoling Fu
- Department of Pediatrics, Guizhou Provincial People's hospital, Guiyang, China
| | - Daiyi Liang
- Department of Neurology, Guizhou Provincial People's hospital, Guiyang, China
| | - Shengwen Huang
- School of Medicine, Guizhou University, Guiyang, China.,Prenatal Diagnosis Center, Guizhou Provincial People's hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
7
|
Ferla MP, Pagnamenta AT, Koukouflis L, Taylor JC, Marsden BD. Venus: Elucidating the Impact of Amino Acid Variants on Protein Function Beyond Structure Destabilisation. J Mol Biol 2022; 434:167567. [PMID: 35662467 PMCID: PMC9742853 DOI: 10.1016/j.jmb.2022.167567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Exploring the functional effect of a non-synonymous coding variant at the protein level requires multiple pieces of information to be interpreted appropriately. This is particularly important when embarking on the study of a potentially pathogenic variant linked to a rare or monogenic disease. Whereas accurate protein stability predictions alone are generally informative, other effects, such as disruption of post-translational modifications or weakened ligand binding, may also contribute to the disease phenotype. Furthermore, consideration of nearby variants that are found in the healthy population may strengthen or refute a given mechanistic hypothesis. Whilst there are several bioinformatics tools available that score a genetic variant in terms of deleteriousness, there is no single tool that assembles multiple effects of a variant on the encoded protein, beyond structural stability, and presents them on the structure for inspection. Venus is a web application which, given a protein substitution, rapidly estimates the predicted effect on protein stability of the variant, flags if the variant affects a post-translational modification site, a predicted linear motif or known annotation, and determines the effect on protein stability of variants which affect nearby residues and have been identified in healthy populations. Venus is built upon Michelanglo and the results can be exported to it, allowing them to be annotated and shared with other researchers. Venus is freely accessible at https://venus.cmd.ox.ac.uk and its source code is openly available at https://github.com/CMD-Oxford/Michelanglo-and-Venus.
Collapse
Affiliation(s)
- Matteo P Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Oxford NIHR Biomedical Research Centre, Oxford, UK.
| | - Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Oxford NIHR Biomedical Research Centre, Oxford, UK. https://twitter.com/@alistairp2011
| | - Leonidas Koukouflis
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Brian D Marsden
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK; Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK. https://twitter.com/@bmarsden19
| |
Collapse
|
8
|
Hecher L, Johannsen J, Bierhals T, Buhk JH, Hempel M, Denecke J. The Clinical Picture of a Bilateral Perisylvian Syndrome as the Initial Symptom of Mega-Corpus-Callosum Syndrome due to a MAST1-Gene Mutation. Neuropediatrics 2020; 51:435-439. [PMID: 32818970 DOI: 10.1055/s-0040-1710588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Congenital bilateral perisylvian syndrome (CBPS) is a rare neurological disorder associated with typical clinical and imaging features such as bilateral symmetrical polymicrogyria, either exclusively or mainly affecting the perisylvian region of the brain. We present a girl with the typical clinical picture of a CBPS and a complex migration disorder, predominantly presenting as bilateral symmetrical polymicrogyria associated with corpus callosum hyperplasia, ventricular dilation, and pontine hypoplasia. At the age of 6 months, the girl showed a profound global developmental delay, seizures refractory to treatment, and severe oromotor dysfunction. Exome analysis revealed a de novo mutation in microtubule-associated serine/threonine kinase 1 (MAST1). Recently, mutations in this gene were described in six patients with a cortical migration disorder named mega-corpus-callosum syndrome with cerebellar hypoplasia. Although all patients present the clinical and imaging features of CBPS, a clear assignment between CBPS and MAST1 mutations has not been reported yet.
Collapse
Affiliation(s)
- Laura Hecher
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Buhk
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Xie L, Huang J, Dai L, Luo J, Zhang J, Peng Q, Sun J, Zhang W. Loss-of-Function Plays a Major Role in Early Neurogenesis of Tubulin α-1 A (TUBA1A) Mutation-Related Brain Malformations. Mol Neurobiol 2020; 58:1291-1302. [PMID: 33165829 DOI: 10.1007/s12035-020-02193-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Tubulin α-1 A (TUBA1A) mutations cause a wide spectrum of brain abnormalities. Although many mutations have been identified and functionally verified, there are clearly many more, and the relationship between TUBA1A mutations and brain malformations remains unclear. The aim of this study was to identify a TUBA1A mutation in a fetus with severe brain abnormalities, verify it functionally, and determine the mechanism of the mutation-related pathogenesis. A de novo missense mutation of the TUBA1A gene, c.167C>G p.T56R/P.THR56Arg, was identified by exon sequencing. Computer simulations showed that the mutation results in a disruption of lateral interactions between the microtubules. Transfection of 293T cells with TUBA1A p.T56R showed that the mutated protein is only partially incorporated into the microtubule network, resulting in a decrease in the rate of microtubule re-integration in comparison with the wild-type protein. The mechanism of pathological changes induced by the mutant gene was determined by knockdown and overexpression. It was found that knockdown of TUBA1A reduced the generation of neural progenitor cells, while overexpression of wild-type or mutant TUBA1A promoted neurogenesis. Our identification and functional verification of the novel TUBA1A mutation extends the TUBA1A gene-phenotype database. Loss-of-function of TUBA1A was shown to play an important role in early neurogenesis of TUBA1A mutation-related brain malformations.
Collapse
Affiliation(s)
- Liangqun Xie
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jingrui Huang
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Lei Dai
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jiefeng Luo
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jiejie Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Qiaozhen Peng
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jingchi Sun
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
10
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
11
|
Battini R, Bertini E, Milone R, Aiello C, Pasquariello R, Rubegni A, Santorelli FM. Reconsidering NMIHBA Core Features: Macrocephaly Is Not a So Unusual Sign in PRUNE1-Related Encephalopathy. JOURNAL OF PEDIATRIC NEUROLOGY 2020. [DOI: 10.1055/s-0040-1715526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
PRUNE1-related disorders manifest as severe neurodevelopmental conditions associated with neurodegeneration, implying a differential diagnosis at birth with static encephalopathies, and later with those manifesting progressive brain damage with the involvement of both the central and the peripheral nervous system.Here we report on another patient with PRUNE1 (p.Asp106Asn) recurrent mutation, whose leukodystrophy, inferior olives hyperintensity, and macrocephaly led to the misleading clinical suspicion of Alexander disease. Clinical features, together with other recent descriptions, suggest avoiding the term “microcephaly” in defining this disorder that could be renamed “neurodevelopmental disorder with progressive encephalopathy, hypotonia, and variable brain anomalies” (NPEHBA).
Collapse
Affiliation(s)
- Roberta Battini
- Department of Developmental Neuroscience, Stella Maris Foundation, Scientific Institute for Research, Hospitalization and Healthcare, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Roberta Milone
- U.O. Neuropsichiatria Infantile, AULSS7 Pedemontana Regione Veneto, Thiene (VI), Italy
- Department of Developmental Neuroscience, Stella Maris Foundation, Scientific Institute for Research, Hospitalization and Healthcare, Pisa, Italy
| | - Chiara Aiello
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, Stella Maris Foundation, Scientific Institute for Research, Hospitalization and Healthcare, Pisa, Italy
| | - Anna Rubegni
- Molecular Medicine, Stella Maris Foundation, Scientific Institute for Research, Hospitalization and Healthcare, Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine, Stella Maris Foundation, Scientific Institute for Research, Hospitalization and Healthcare, Pisa, Italy
| |
Collapse
|
12
|
Iacomino M, Baldassari S, Tochigi Y, Kośla K, Buffelli F, Torella A, Severino M, Paladini D, Mandarà L, Riva A, Scala M, Balagura G, Accogli A, Nigro V, Minetti C, Fulcheri E, Zara F, Bednarek AK, Striano P, Suzuki H, Salpietro V. Loss of Wwox Perturbs Neuronal Migration and Impairs Early Cortical Development. Front Neurosci 2020; 14:644. [PMID: 32581702 PMCID: PMC7300205 DOI: 10.3389/fnins.2020.00644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Mutations in the WWOX gene cause a broad range of ultra-rare neurodevelopmental and brain degenerative disorders, associated with a high likelihood of premature death in animal models as well as in humans. The encoded Wwox protein is a WW domain-containing oxidoreductase that participates in crucial biological processes including tumor suppression, cell growth/differentiation and regulation of steroid metabolism, while its role in neural development is less understood. We analyzed the exomes of a family affected with multiple pre- and postnatal anomalies, including cerebellar vermis hypoplasia, severe neurodevelopmental impairment and refractory epilepsy, and identified a segregating homozygous WWOX mutation leading to a premature stop codon. Abnormal cerebral cortex development due to a defective architecture of granular and molecular cell layers was found in the developing brain of a WWOX-deficient human fetus from this family. A similar disorganization of cortical layers was identified in lde/lde rats (carrying a homozygous truncating mutation which disrupts the active Wwox C-terminal domain) investigated at perinatal stages. Transcriptomic analyses of Wwox-depleted human neural progenitor cells showed an impaired expression of a number of neuronal migration-related genes encoding for tubulins, kinesins and associated proteins. These findings indicate that loss of Wwox may affect different cytoskeleton components and alter prenatal cortical development, highlighting a regulatory role of the WWOX gene in migrating neurons across different species.
Collapse
Affiliation(s)
- Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashinoi, Japan
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | - Francesca Buffelli
- Fetal and Perinatal Pathology Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Luana Mandarà
- Medical Genetics Unit, Maria Paternò Arezzo Hospital, Ragusa, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Andrea Accogli
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ezio Fulcheri
- Fetal and Perinatal Pathology Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), Pathology Division of Anatomic Pathology, University of Genoa, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashinoi, Japan
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Aiken J, Buscaglia G, Aiken AS, Moore JK, Bates EA. Tubulin mutations in brain development disorders: Why haploinsufficiency does not explain TUBA1A tubulinopathies. Cytoskeleton (Hoboken) 2020; 77:40-54. [PMID: 31574570 DOI: 10.1002/cm.21567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
The neuronal cytoskeleton performs incredible feats during nervous system development. Extension of neuronal processes, migration, and synapse formation rely on the proper regulation of microtubules. Mutations that disrupt the primary α-tubulin expressed during brain development, TUBA1A, are associated with a spectrum of human brain malformations. One model posits that TUBA1A mutations lead to a reduction in tubulin subunits available for microtubule polymerization, which represents a haploinsufficiency mechanism. We propose an alternative model for the majority of tubulinopathy mutations, in which the mutant tubulin polymerizes into the microtubule lattice to dominantly "poison" microtubule function. Nine distinct α-tubulin and ten β-tubulin genes have been identified in the human genome. These genes encode similar tubulin proteins, called isotypes. Multiple tubulin isotypes may partially compensate for heterozygous deletion of a tubulin gene, but may not overcome the disruption caused by missense mutations that dominantly alter microtubule function. Here, we describe disorders attributed to haploinsufficiency versus dominant negative mechanisms to demonstrate the hallmark features of each disorder. We summarize literature on mouse models that represent both knockout and point mutants in tubulin genes, with an emphasis on how these mutations might provide insight into the nature of tubulinopathy patient mutations. Finally, we present data from a panel of TUBA1A tubulinopathy mutations generated in yeast α-tubulin that demonstrate that α-tubulin mutants can incorporate into the microtubule network and support viability of yeast growth. This perspective on tubulinopathy mutations draws on previous studies and additional data to provide a fresh perspective on how TUBA1A mutations disrupt neurodevelopment.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Georgia Buscaglia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - A Sophie Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Emily A Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
14
|
Epilepsy in Tubulinopathy: Personal Series and Literature Review. Cells 2019; 8:cells8070669. [PMID: 31269740 PMCID: PMC6678821 DOI: 10.3390/cells8070669] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
Mutations in tubulin genes are responsible for a large spectrum of brain malformations secondary to abnormal neuronal migration, organization, differentiation and axon guidance and maintenance. Motor impairment, intellectual disability and epilepsy are the main clinical symptoms. In the present study 15 patients from a personal cohort and 75 from 21 published studies carrying mutations in TUBA1A, TUBB2B and TUBB3 tubulin genes were evaluated with the aim to define a clinical and electrophysiological associated pattern. Epilepsy shows a wide range of severity without a specific pattern. Mutations in TUBA1A (60%) and TUBB2B (74%) and TUBB3 (25%) genes are associated with epilepsy. The accurate analysis of the Electroencephalogram (EEG) pattern in wakefulness and sleep in our series allows us to detect significant abnormalities of the background activity in 100% of patients. The involvement of white matter and of the inter-hemispheric connection structures typically observed in tubulinopathies is evidenced by the high percentage of asynchronisms in the organization of sleep activity recorded. In addition to asymmetries of the background activity, excess of slowing, low amplitude and Magnetic Resonance (MR) imaging confirm the presence of extensive brain malformations involving subcortical and midline structures. In conclusion, epilepsy in tubulinopathies when present has a favorable evolution over time suggesting a not particularly aggressive therapeutic approach.
Collapse
|
15
|
Aiken J, Moore JK, Bates EA. TUBA1A mutations identified in lissencephaly patients dominantly disrupt neuronal migration and impair dynein activity. Hum Mol Genet 2019; 28:1227-1243. [PMID: 30517687 DOI: 10.1093/hmg/ddy416] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
The microtubule cytoskeleton supports diverse cellular morphogenesis and migration processes during brain development. Mutations in tubulin genes are associated with severe human brain malformations known as 'tubulinopathies'; however, it is not understood how molecular-level changes in microtubule subunits lead to brain malformations. In this study, we demonstrate that missense mutations affecting arginine at position 402 (R402) of TUBA1A α-tubulin selectively impair dynein motor activity and severely and dominantly disrupt cortical neuronal migration. TUBA1A is the most commonly affected tubulin gene in tubulinopathy patients, and mutations altering R402 account for 30% of all reported TUBA1A mutations. We show for the first time that ectopic expression of TUBA1A-R402C and TUBA1A-R402H patient alleles is sufficient to dominantly disrupt cortical neuronal migration in the developing mouse brain, strongly supporting a causal role in the pathology of brain malformation. To isolate the precise molecular impact of R402 mutations, we generated analogous R402C and R402H mutations in budding yeast α-tubulin, which exhibit a simplified microtubule cytoskeleton. We find that R402 mutant tubulins assemble into microtubules that support normal kinesin motor activity but fail to support the activity of dynein motors. Importantly, the level of dynein impairment scales with the expression level of the mutant in the cell, suggesting a 'poisoning' mechanism in which R402 mutant α-tubulin acts dominantly by populating microtubules with defective binding sites for dynein. Based on our results, we propose a new model for the molecular pathology of tubulinopathies that may also extend to other tubulin-related neuropathies.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Cell and Developmental Biology
| | | | - Emily A Bates
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
16
|
Hebebrand M, Hüffmeier U, Trollmann R, Hehr U, Uebe S, Ekici AB, Kraus C, Krumbiegel M, Reis A, Thiel CT, Popp B. The mutational and phenotypic spectrum of TUBA1A-associated tubulinopathy. Orphanet J Rare Dis 2019; 14:38. [PMID: 30744660 PMCID: PMC6371496 DOI: 10.1186/s13023-019-1020-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TUBA1A-associated tubulinopathy is clinically heterogeneous with brain malformations, microcephaly, developmental delay and epilepsy being the main clinical features. It is an autosomal dominant disorder mostly caused by de novo variants in TUBA1A. RESULTS In three individuals with developmental delay we identified heterozygous de novo missense variants in TUBA1A using exome sequencing. While the c.1307G > A, p.(Gly436Asp) variant was novel, the two variants c.518C > T, p.(Pro173Leu) and c.641G > A, p.(Arg214His) were previously described. We compared the variable phenotype observed in these individuals with a carefully conducted review of the current literature and identified 166 individuals, 146 born and 20 fetuses with a TUBA1A variant. In 107 cases with available clinical information we standardized the reported phenotypes according to the Human Phenotype Ontology. The most commonly reported features were developmental delay (98%), anomalies of the corpus callosum (96%), microcephaly (76%) and lissencephaly (agyria-pachygyria) (70%), although reporting was incomplete in the different studies. We identified a total of 121 specific variants, including 15 recurrent ones. Missense variants cluster in the C-terminal region around the most commonly affected amino acid position Arg402 (13.3%). In a three-dimensional protein model, 38.6% of all disease-causing variants including those in the C-terminal region are predicted to affect the binding of microtubule-associated proteins or motor proteins. Genotype-phenotype analysis for recurrent variants showed an overrepresentation of certain clinical features. However, individuals with these variants are often reported in the same publication. CONCLUSIONS With 166 individuals, we present the most comprehensive phenotypic and genotypic standardized synopsis for clinical interpretation of TUBA1A variants. Despite this considerable number, a detailed genotype-phenotype characterization is limited by large inter-study variability in reporting.
Collapse
Affiliation(s)
- Moritz Hebebrand
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ute Hehr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany.
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| |
Collapse
|
17
|
The tubulin mutation database: A resource for the cytoskeleton community. Cytoskeleton (Hoboken) 2019; 76:186-191. [DOI: 10.1002/cm.21514] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 11/07/2022]
|
18
|
Challenges in managing epilepsy associated with focal cortical dysplasia in children. Epilepsy Res 2018; 145:1-17. [DOI: 10.1016/j.eplepsyres.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022]
|
19
|
Clinical and Functional Characterization of the Recurrent TUBA1A p.(Arg2His) Mutation. Brain Sci 2018; 8:brainsci8080145. [PMID: 30087272 PMCID: PMC6119949 DOI: 10.3390/brainsci8080145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022] Open
Abstract
The TUBA1A gene encodes tubulin alpha-1A, a protein that is highly expressed in the fetal brain. Alpha- and beta-tubulin subunits form dimers, which then co-assemble into microtubule polymers: dynamic, scaffold-like structures that perform key functions during neurogenesis, neuronal migration, and cortical organisation. Mutations in TUBA1A have been reported to cause a range of brain malformations. We describe four unrelated patients with the same de novo missense mutation in TUBA1A, c.5G>A, p.(Arg2His), as found by next generation sequencing. Detailed comparison revealed similar brain phenotypes with mild variability. Shared features included developmental delay, microcephaly, hypoplasia of the cerebellar vermis, dysplasia or thinning of the corpus callosum, small pons, and dysmorphic basal ganglia. Two of the patients had bilateral perisylvian polymicrogyria. We examined the effects of the p.(Arg2His) mutation by computer-based protein structure modelling and heterologous expression in HEK-293 cells. The results suggest the mutation subtly impairs microtubule function, potentially by affecting inter-dimer interaction. Based on its sequence context, c.5G>A is likely to be a common recurrent mutation. We propose that the subtle functional effects of p.(Arg2His) may allow for other factors (such as genetic background or environmental conditions) to influence phenotypic outcome, thus explaining the mild variability in clinical manifestations.
Collapse
|
20
|
Tan AP, Chong WK, Mankad K. Comprehensive genotype-phenotype correlation in lissencephaly. Quant Imaging Med Surg 2018; 8:673-693. [PMID: 30211035 DOI: 10.21037/qims.2018.08.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malformations of cortical development (MCD) are a heterogenous group of disorders with diverse genotypic and phenotypic variations. Lissencephaly is a subtype of MCD caused by defect in neuronal migration, which occurs between 12 and 24 weeks of gestation. The continuous advancement in the field of molecular genetics in the last decade has led to identification of at least 19 lissencephaly-related genes, most of which are related to microtubule structural proteins (tubulin) or microtubule-associated proteins (MAPs). The aim of this review article is to bring together current knowledge of gene mutations associated with lissencephaly and to provide a comprehensive genotype-phenotype correlation. Illustrative cases will be presented to facilitate the understanding of the described genotype-phenotype correlation.
Collapse
Affiliation(s)
- Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Wui Khean Chong
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Tubulin genes and malformations of cortical development. Eur J Med Genet 2018; 61:744-754. [PMID: 30016746 DOI: 10.1016/j.ejmg.2018.07.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/03/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023]
Abstract
A large number of genes encoding for tubulin proteins are expressed in the developing brain. Each is subject to specific spatial and temporal expression patterns. However, most are highly expressed in post-mitotic neurons during stages of neuronal migration and differentiation. The major tubulin subclasses (alpha- and beta-tubulin) share high sequence and structural homology. These globular proteins form heterodimers and subsequently co-assemble into microtubules. Microtubules are dynamic, cytoskeletal polymers which play key roles in cellular processes crucial for cortical development, including neuronal proliferation, migration and cortical laminar organisation. Mutations in seven genes encoding alpha-tubulin (TUBA1A), beta-tubulin (TUBB2A, TUBB2B, TUBB3, TUBB4A, TUBB) and gamma-tubulin (TUBG1) isoforms have been associated with a wide and overlapping range of brain malformations or "Tubulinopathies". The majority of cortical phenotypes include lissencephaly, polymicrogyria, microlissencephaly and simplified gyration. Well-known hallmarks of the tubulinopathies include dysmorphism of the basal ganglia (fusion of the caudate nucleus and putamen with absence of the anterior limb of the internal capsule), midline commissural structures hypoplasia and/or agenesis (anterior commissure, corpus callosum and fornix), hypoplasia of the oculomotor and optic nerves, cerebellar hypoplasia or dysplasia and dysmorphism of the hind-brain structures. The cortical and extra-cortical brain phenotypes observed are largely dependent on the specific tubulin gene affected. In the present review, all the published data on tubulin family gene mutations and the associated cortical phenotypes are summarized. In addition, the most typical neuroimaging patterns of malformations of cortical development associated with tubulin gene mutations detected on the basis of our own experience are described.
Collapse
|
22
|
Lasser M, Tiber J, Lowery LA. The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Front Cell Neurosci 2018; 12:165. [PMID: 29962938 PMCID: PMC6010848 DOI: 10.3389/fncel.2018.00165] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022] Open
Abstract
Neurons depend on the highly dynamic microtubule (MT) cytoskeleton for many different processes during early embryonic development including cell division and migration, intracellular trafficking and signal transduction, as well as proper axon guidance and synapse formation. The coordination and support from MTs is crucial for newly formed neurons to migrate appropriately in order to establish neural connections. Once connections are made, MTs provide structural integrity and support to maintain neural connectivity throughout development. Abnormalities in neural migration and connectivity due to genetic mutations of MT-associated proteins can lead to detrimental developmental defects. Growing evidence suggests that these mutations are associated with many different neurodevelopmental disorders, including intellectual disabilities (ID) and autism spectrum disorders (ASD). In this review article, we highlight the crucial role of the MT cytoskeleton in the context of neurodevelopment and summarize genetic mutations of various MT related proteins that may underlie or contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Jessica Tiber
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
23
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
24
|
Epileptogenic Brain Malformations and Mutations in Tubulin Genes: A Case Report and Review of the Literature. Int J Mol Sci 2017; 18:ijms18112273. [PMID: 29109381 PMCID: PMC5713243 DOI: 10.3390/ijms18112273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/07/2017] [Accepted: 10/27/2017] [Indexed: 11/17/2022] Open
Abstract
Malformations of the cerebral cortex are an important cause of developmental disabilities and epilepsy. Neurological disorders caused by abnormal neuronal migration have been observed to occur with mutations in tubulin genes. The α- and β-tubulin genes encode cytoskeletal proteins, which play a role in the developing brain. TUBA1A mutations are associated with a wide spectrum of neurological problems, which are characterized by peculiar clinical details and neuroradiologic patterns. This manuscript describes the case of a nine-year-old girl with microcephaly, mild facial dysmorphisms, epileptic seizures, and severe developmental delay, with a de novo heterozygous c.320A>G [p.(His 107 Arg)] mutation in TUBA1A gene, and the clinical aspects and neuroimaging features of "lissencephaly syndrome" are summarized. This case shows that TUBA1A mutations lead to a variety of brain malformations ranging from lissencephaly with perisylvian pachygyria to diffuse posteriorly predominant pachygyria, combined with internal capsule dysgenesis, cerebellar dysplasia, and callosal hypotrophy. This peculiar neuroradiological pattern, in combination with the usually severe clinical presentation, suggests the need for future molecular studies to address the mechanisms of TUBA1A mutation-induced neuropathology.
Collapse
|
25
|
Aiken J, Buscaglia G, Bates EA, Moore JK. The α-Tubulin gene TUBA1A in Brain Development: A Key Ingredient in the Neuronal Isotype Blend. J Dev Biol 2017; 5. [PMID: 29057214 PMCID: PMC5648057 DOI: 10.3390/jdb5030008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubules are dynamic cytoskeletal polymers that mediate numerous, essential functions such as axon and dendrite growth and neuron migration throughout brain development. In recent years, sequencing has revealed dominant mutations that disrupt the tubulin protein building blocks of microtubules. These tubulin mutations lead to a spectrum of devastating brain malformations, complex neurological and physical phenotypes, and even fatality. The most common tubulin gene mutated is the α-tubulin gene TUBA1A, which is the most prevalent α-tubulin gene expressed in post-mitotic neurons. The normal role of TUBA1A during neuronal maturation, and how mutations alter its function to produce the phenotypes observed in patients, remains unclear. This review synthesizes current knowledge of TUBA1A function and expression during brain development, and the brain malformations caused by mutations in TUBA1A.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, MS8108, 12801 E 17th Ave, Aurora, CO 80045, USA;
| | - Georgia Buscaglia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (G.B.); (E.A.B.)
| | - Emily A. Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (G.B.); (E.A.B.)
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, MS8108, 12801 E 17th Ave, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-6198; Fax: +1-303-724-3420
| |
Collapse
|
26
|
Belvindrah R, Natarajan K, Shabajee P, Bruel-Jungerman E, Bernard J, Goutierre M, Moutkine I, Jaglin XH, Savariradjane M, Irinopoulou T, Poncer JC, Janke C, Francis F. Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. J Cell Biol 2017; 216:2443-2461. [PMID: 28687665 PMCID: PMC5551700 DOI: 10.1083/jcb.201607074] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 12/24/2022] Open
Abstract
Mutation of α-tubulin isotypes is associated with cortical malformations. Belvindrah et al. show that Tuba1 mutation leads to impaired neuronal saltatory migration in vivo as a result of functional and structural microtubule defects. Comparative analyses of Tuba1a and Tuba8 in tubulin heterodimer structure and microtubule polymerization reveal an essential, noncompensated role for Tuba1a in the neuronal rostral migratory system. Brain development involves extensive migration of neurons. Microtubules (MTs) are key cellular effectors of neuronal displacement that are assembled from α/β-tubulin heterodimers. Mutation of the α-tubulin isotype TUBA1A is associated with cortical malformations in humans. In this study, we provide detailed in vivo and in vitro analyses of Tuba1a mutants. In mice carrying a Tuba1a missense mutation (S140G), neurons accumulate, and glial cells are dispersed along the rostral migratory stream in postnatal and adult brains. Live imaging of Tuba1a-mutant neurons revealed slowed migration and increased neuronal branching, which correlated with directionality alterations and perturbed nucleus–centrosome (N–C) coupling. Tuba1a mutation led to increased straightness of newly polymerized MTs, and structural modeling data suggest a conformational change in the α/β-tubulin heterodimer. We show that Tuba8, another α-tubulin isotype previously associated with cortical malformations, has altered function compared with Tuba1a. Our work shows that Tuba1a plays an essential, noncompensated role in neuronal saltatory migration in vivo and highlights the importance of MT flexibility in N–C coupling and neuronal-branching regulation during neuronal migration.
Collapse
Affiliation(s)
- Richard Belvindrah
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Kathiresan Natarajan
- Institut Curie, Paris Sciences et Lettres Research Université (PSL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), UMR 3348, Orsay, France
| | - Preety Shabajee
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Elodie Bruel-Jungerman
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jennifer Bernard
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Marie Goutierre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Imane Moutkine
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Xavier H Jaglin
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, Neuroscience Institute, New York University, New York, NY
| | - Mythili Savariradjane
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Theano Irinopoulou
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Christophe Poncer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres Research Université (PSL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), UMR 3348, Orsay, France
| | - Fiona Francis
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S-839, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, UMR S-839, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
27
|
Zollo M, Ahmed M, Ferrucci V, Salpietro V, Asadzadeh F, Carotenuto M, Maroofian R, Al-Amri A, Singh R, Scognamiglio I, Mojarrad M, Musella L, Duilio A, Di Somma A, Karaca E, Rajab A, Al-Khayat A, Mohan Mohapatra T, Eslahi A, Ashrafzadeh F, Rawlins LE, Prasad R, Gupta R, Kumari P, Srivastava M, Cozzolino F, Kumar Rai S, Monti M, Harlalka GV, Simpson MA, Rich P, Al-Salmi F, Patton MA, Chioza BA, Efthymiou S, Granata F, Di Rosa G, Wiethoff S, Borgione E, Scuderi C, Mankad K, Hanna MG, Pucci P, Houlden H, Lupski JR, Crosby AH, Baple EL. PRUNE is crucial for normal brain development and mutated in microcephaly with neurodevelopmental impairment. Brain 2017; 140:940-952. [PMID: 28334956 PMCID: PMC5382943 DOI: 10.1093/brain/awx014] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define cellular and clinical consequences associated with PRUNE mutation.
Collapse
Affiliation(s)
- Massimo Zollo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche DMMBM, Università di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy.,European School of Molecular Medicine, SEMM, University of Milan, Italy
| | - Mustafa Ahmed
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Veronica Ferrucci
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche DMMBM, Università di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy.,European School of Molecular Medicine, SEMM, University of Milan, Italy
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Fatemeh Asadzadeh
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche DMMBM, Università di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy
| | - Marianeve Carotenuto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche DMMBM, Università di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy
| | - Reza Maroofian
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Ahmed Al-Amri
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, UK.,National Genetic Centre, Directorate General of Royal Hospital, Ministry of Health, Muscat, Sultanate of Oman
| | - Royana Singh
- Molecular Genetics, Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, UP, India
| | - Iolanda Scognamiglio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche DMMBM, Università di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy
| | - Majid Mojarrad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luca Musella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche DMMBM, Università di Napoli Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy
| | - Angela Duilio
- Dipartimento di Scienze Chimiche, Università Federico II, Naples, Italy
| | - Angela Di Somma
- Dipartimento di Scienze Chimiche, Università Federico II, Naples, Italy
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Rajab
- National Genetic Centre, Directorate General of Royal Hospital, Ministry of Health, Muscat, Sultanate of Oman
| | - Aisha Al-Khayat
- Department of Biology, Sultan Qaboos University, PO Box 36, Post code 123, Sultanate of Oman
| | - Tribhuvan Mohan Mohapatra
- Molecular Genetics, Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, UP, India
| | - Atieh Eslahi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pediatric Neurology, Ghaem Medical Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Zip Code- 9919991766, Iran
| | - Lettie E Rawlins
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Rajniti Prasad
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, UP, India
| | - Rashmi Gupta
- Molecular Genetics, Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, UP, India
| | - Preeti Kumari
- Molecular Genetics, Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, UP, India
| | - Mona Srivastava
- Molecular Genetics, Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, UP, India.,Department of Psychiatry, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, UP, India
| | - Flora Cozzolino
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy
| | - Sunil Kumar Rai
- Molecular Genetics, Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi -221005, UP, India
| | - Maria Monti
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy.,Dipartimento di Scienze Chimiche, Università Federico II, Naples, Italy
| | - Gaurav V Harlalka
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Philip Rich
- Department of Neuroradiology, St. George's Hospital, London, UK
| | - Fatema Al-Salmi
- Department of Biology, Sultan Qaboos University, PO Box 36, Post code 123, Sultanate of Oman
| | - Michael A Patton
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK.,Department of Biology, Sultan Qaboos University, PO Box 36, Post code 123, Sultanate of Oman.,Genetics Research Centre, St. George's, University of London, London, SW17 0RE, UK
| | - Barry A Chioza
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Francesca Granata
- Unit of Neuroradiology, Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, University of Messina, Messina, Italy
| | - Sarah Wiethoff
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Eugenia Borgione
- Unit of Neuromuscular disorders, IRCCS Oasi Maria SS Troina, Enna, Italy
| | - Carmela Scuderi
- Unit of Neuromuscular disorders, IRCCS Oasi Maria SS Troina, Enna, Italy
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Michael G Hanna
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Piero Pucci
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, Naples, Italy.,Dipartimento di Scienze Chimiche, Università Federico II, Naples, Italy
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children's Hospital, Houston, TX 77030, USA
| | - Andrew H Crosby
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma L Baple
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
28
|
Minoura I. Towards an understanding of the isotype-specific functions of tubulin in neurons: Technical advances in tubulin expression and purification. Neurosci Res 2017; 122:1-8. [PMID: 28412269 DOI: 10.1016/j.neures.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Microtubules are cytoskeletal filaments critical for determining the complex morphology of neurons, as well as the basic architecture and organization of mitosis in all eukaryotic cells. Microtubules in humans are composed of 8 α- and 9 β-tubulin isotypes, each of which is encoded by different members of a multi-gene family. The expression pattern of tubulin isotypes, in addition to isotype-specific post-translational modifications, is thought to be critical for the morphogenesis of axons and dendrites. Recent studies revealed that several neurodevelopmental disorders are caused by mutations of specific tubulin isotypes, suggesting that each tubulin isotype has distinct functions. Therefore, in vitro and in vivo functional analyses of tubulin isotypes are important to understand the pathogenesis of developmental disorders. Likewise, analysis of developmental disorders may clarify the function of different tubulin isotypes. In this respect, both the preparation of specific tubulin isotypes and of specific mutant tubulin proteins is critical to understanding the function of tubulin. In the last 20 years, various methods have been developed to study functional differences between tubulin isotypes and the functional defects caused by tubulin mutations. These technical achievements have been discussed in this review. The function of tubulin/microtubules in neuronal morphogenesis as revealed through these techniques has also been described.
Collapse
Affiliation(s)
- Itsushi Minoura
- Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Goryo Chemical Inc., Earee Bldg. 5F, Kita 8 Nishi 18-35-100, Chuo-ku, Sapporo 060-0008, Japan.
| |
Collapse
|
29
|
Chakraborti S, Natarajan K, Curiel J, Janke C, Liu J. The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton (Hoboken) 2016; 73:521-550. [PMID: 26934450 DOI: 10.1002/cm.21290] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/18/2016] [Accepted: 02/26/2016] [Indexed: 11/11/2022]
Abstract
Across different cell types and tissues, microtubules are assembled from highly conserved dimers of α- and β-tubulin. Despite their highly similar structures, microtubules have functional heterogeneity, generated either by the expression of different tubulin genes, encoding distinct isotypes, or by posttranslational modifications of tubulin. This genetically encoded and posttranslational generated heterogeneity of tubulin-the "tubulin code"-has the potential to modulate microtubule structure, dynamics, and interactions with associated proteins. The tubulin code is therefore believed to regulate microtubule functions on a cellular and sub-cellular level. This review highlights the importance of the tubulin code for tubulin structure, as well as on microtubule dynamics and functions in neurons. It further summarizes recent developments in the understanding of mutations in tubulin genes, and how they are linked to neurodegenerative and neurodevelopmental disorders. The current advances in the knowledge of the tubulin code on the molecular and the functional level will certainly lead to a better understanding of how complex signaling events control microtubule functions, especially in cells of the nervous system. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3348, Orsay, F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS, UMR 3348, Orsay, F-91405, France
| | - Kathiresan Natarajan
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3348, Orsay, F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS, UMR 3348, Orsay, F-91405, France
| | - Julian Curiel
- Children's National Health System, Center for Neuroscience Research, Washington, District of Columbia
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3348, Orsay, F-91405, France. .,Université Paris Sud, Université Paris-Saclay, CNRS, UMR 3348, Orsay, F-91405, France.
| | - Judy Liu
- Children's National Health System, Center for Neuroscience Research, Washington, District of Columbia.
| |
Collapse
|
30
|
Hutchins BI, Kotan LD, Taylor-Burds C, Ozkan Y, Cheng PJ, Gurbuz F, Tiong JDR, Mengen E, Yuksel B, Topaloglu AK, Wray S. CCDC141 Mutation Identified in Anosmic Hypogonadotropic Hypogonadism (Kallmann Syndrome) Alters GnRH Neuronal Migration. Endocrinology 2016; 157:1956-66. [PMID: 27014940 PMCID: PMC4870868 DOI: 10.1210/en.2015-1846] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The first mutation in a gene associated with a neuronal migration disorder was identified in patients with Kallmann Syndrome, characterized by hypogonadotropic hypogonadism and anosmia. This pathophysiological association results from a defect in the development of the GnRH and the olfactory system. A recent genetic screening of Kallmann Syndrome patients revealed a novel mutation in CCDC141. Little is known about CCDC141, which encodes a coiled-coil domain containing protein. Here, we show that Ccdc141 is expressed in GnRH neurons and olfactory fibers and that knockdown of Ccdc141 reduces GnRH neuronal migration. Our findings in human patients and mouse models predict that CCDC141 takes part in embryonic migration of GnRH neurons enabling them to form a hypothalamic neuronal network to initiate pulsatile GnRH secretion and reproductive function.
Collapse
Affiliation(s)
- B Ian Hutchins
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - L Damla Kotan
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - Carol Taylor-Burds
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - Yusuf Ozkan
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - Paul J Cheng
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - Fatih Gurbuz
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - Jean D R Tiong
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - Eda Mengen
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - Bilgin Yuksel
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - A Kemal Topaloglu
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| | - Susan Wray
- National Institute of Neurological Disorders and Stroke (B.I.H., C.T.-B., P.J.C., J.D.R.T., S.W.), National Institutes of Health, Bethesda, Maryland 20892; Department of Biotechnology (L.D.K., A.K.T.), Institute of Sciences, Cukurova University, 01330 Adana, Turkey; Fırat University (Y.O.), 23119 Elazıg, Turkey; and Division of Pediatric Endocrinology (F.G., E.M., B.Y., A.K.T.), Faculty of Medicine, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
31
|
Gartz Hanson M, Aiken J, Sietsema DV, Sept D, Bates EA, Niswander L, Moore JK. Novel α-tubulin mutation disrupts neural development and tubulin proteostasis. Dev Biol 2015; 409:406-19. [PMID: 26658218 DOI: 10.1016/j.ydbio.2015.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/10/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Mutations in the microtubule cytoskeleton are linked to cognitive and locomotor defects during development, and neurodegeneration in adults. How these mutations impact microtubules, and how this alters function at the level of neurons is an important area of investigation. Using a forward genetic screen in mice, we identified a missense mutation in Tuba1a α-tubulin that disrupts cortical and motor neuron development. Homozygous mutant mice exhibit cortical dysgenesis reminiscent of human tubulinopathies. Motor neurons fail to innervate target muscles in the limbs and show synapse defects at proximal targets. To directly examine effects on tubulin function, we created analogous mutations in the α-tubulin isotypes in budding yeast. These mutations sensitize yeast cells to microtubule stresses including depolymerizing drugs and low temperatures. Furthermore, we find that mutant α-tubulin is depleted from the cell lysate and from microtubules, thereby altering ratios of α-tubulin isotypes. Tubulin-binding cofactors suppress the effects of the mutation, indicating an important role for these cofactors in regulating the quality of the α-tubulin pool. Together, our results give new insights into the functions of Tuba1a, mechanisms for regulating tubulin proteostasis, and how compromising these may lead to neural defects.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel V Sietsema
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Emily A Bates
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Lee Niswander
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
32
|
TUBA1A Mutation Associated With Eye Abnormalities in Addition to Brain Malformation. Pediatr Neurol 2015; 53:442-4. [PMID: 26294046 DOI: 10.1016/j.pediatrneurol.2015.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE We describe the case of a boy with a TUBA1A mutation presenting with microphthalmia and congenital cataracts in addition to microcephaly and severe brain malformation. METHODS A boy presented in early infancy with microphthalmia, congenital cataracts, and microcephaly. His neurological course included severe hypotonia and drug-resistant epilepsy. Magnetic resonance imaging of the brain revealed a complex malformation that included agenesis of the corpus callosum, severely hypoplastic cerebellar vermis, mildly hypoplastic and dysplastic cerebellar hemispheres, mildly hypoplastic brainstem, mild posterior simplified cerebral gyral pattern, dysplastic basal ganglia and thalami, hypoplastic optic nerves, and absent olfactory bulbs. RESULTS TUBA1A genetic testing was conducted and revealed a previously unreported heterozygous 808G>T missense mutation. Parental genetic testing was negative, indicating that the child's mutation was de novo. CONCLUSION The TUBA1A gene encodes tubulin alpha-1A, a protein with an important role in microtubule function and stability. Human mutations can result in a wide spectrum of brain malformations including lissencephaly, microlissencephaly, cerebellar hypoplasia, agenesis of the corpus callosum, pachygyria and polymicrogyria. Although TUBA1A is expressed in both developing brain and retinal tissue, there are no reported cases of TUBA1A mutations in association with major developmental ophthalmologic abnormalities.
Collapse
|
33
|
TUBA1A mutation can cause a hydranencephaly-like severe form of cortical dysgenesis. Sci Rep 2015; 5:15165. [PMID: 26493046 PMCID: PMC4615979 DOI: 10.1038/srep15165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/16/2015] [Indexed: 01/25/2023] Open
Abstract
TUBA1A mutations cause a wide spectrum of lissencephaly and brain malformations. Here, we report two patients with severe cortical dysgeneses, one with an extremely thin cerebral parenchyma apparently looking like hydranencephaly and the other with lissencephaly accompanied by marked hydrocephalus, both harbouring novel de novo missense mutations of TUBA1A. To elucidate how the various TUBA1A mutations affect the severity of the phenotype, we examined the capacity of the mutant protein to incorporate into the endogenous microtubule network in transfected COS7 cells by measuring line density using line extraction in an immunofluorescence study. The mutants responsible for severe phenotypes were found to incorporate extensively into the network. To determine how each mutant alters the microtubule stability, we examined cold-induced microtubule depolymerisation in fibroblasts. The depolymerisation of patients’ fibroblasts occurred earlier than that of control fibroblasts, suggesting that microtubules bearing mutated tubulins are unstable. Both mutations are predicted to participate in lateral interactions of microtubules. Our data suggest that the TUBA1A mutations disrupting lateral interactions have pronounced dominant-negative effects on microtubule dynamics that are associated with the severe end of the lissencephaly spectrum.
Collapse
|
34
|
Oegema R, Cushion TD, Phelps IG, Chung SK, Dempsey JC, Collins S, Mullins JGL, Dudding T, Gill H, Green AJ, Dobyns WB, Ishak GE, Rees MI, Doherty D. Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes. Hum Mol Genet 2015; 24:5313-25. [PMID: 26130693 DOI: 10.1093/hmg/ddv250] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
Mutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in only 1-13%. We identified patients with a highly characteristic cerebellar dysplasia but without lissencephaly, pachygyria and polymicrogyria typically associated with tubulin mutations. Remarkably, in seven of nine patients (78%), targeted sequencing revealed mutations in three different tubulin genes (TUBA1A, TUBB2B and TUBB3), occurring de novo or inherited from a mosaic parent. Careful re-review of the cortical phenotype on brain imaging revealed only an irregular pattern of gyri and sulci, for which we propose the term tubulinopathy-related dysgyria. Basal ganglia (100%) and brainstem dysplasia (80%) were common features. On the basis of in silico structural predictions, the mutations affect amino acids in diverse regions of the alpha-/beta-tubulin heterodimer, including the nucleotide binding pocket. Cell-based assays of tubulin dynamics reveal various effects of the mutations on incorporation into microtubules: TUBB3 p.Glu288Lys and p.Pro357Leu do not incorporate into microtubules at all, whereas TUBB2B p.Gly13Ala shows reduced incorporation and TUBA1A p.Arg214His incorporates fully, but at a slower rate than wild-type. The broad range of effects on microtubule incorporation is at odds with the highly stereotypical clinical phenotype, supporting differential roles for the three tubulin genes involved. Identifying this highly characteristic phenotype is important due to the low recurrence risk compared with the other (recessive) cerebellar dysplasias and the apparent lack of non-neurological medical issues.
Collapse
Affiliation(s)
- Renske Oegema
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands,
| | | | | | - Seo-Kyung Chung
- Institute of Life Science, College of Medicine and Wales Epilepsy Research Network (WERN), College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | | | - Sarah Collins
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | - Tracy Dudding
- Hunter Genetics, Waratah, New South Wales, Australia, University of Newcastle, Callaghan, New South Wales, Australia
| | - Harinder Gill
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Dublin 12, Ireland and
| | - Andrew J Green
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Dublin 12, Ireland and School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - William B Dobyns
- Department of Pediatrics, Department of Neurology and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Gisele E Ishak
- Department of Radiology, Seattle Children's Hospital and University of Washington, Seattle, WA 98195, USA
| | - Mark I Rees
- Institute of Life Science, College of Medicine and Wales Epilepsy Research Network (WERN), College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Dan Doherty
- Department of Pediatrics, Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA,
| |
Collapse
|
35
|
Grønborg S, Kjaergaard S, Hove H, Larsen VA, Kirchhoff M. Monozygotic twins with a de novo 0.32 Mb 16q24.3 deletion, including TUBB3 presenting with developmental delay and mild facial dysmorphism but without overt brain malformation. Am J Med Genet A 2015; 167A:2731-6. [PMID: 26109418 DOI: 10.1002/ajmg.a.37227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Nervous system development is highly dependent on the function of microtubules, which are assembled from tubulin heterodimers containing several α- and β-tubulin isotypes encoded by separate genes. A spectrum of neurological disorders with malformations of the central nervous system has recently been associated with missense mutations in this group of genes. Here, we report two patients, monozygotic twins, carrying a de novo 0.32 Mb deletion of chromosome 16q24.3 including the TUBB3 gene. The patients presented with global developmental delay, mild facial dysmorphism, secondary microcephaly, and mild spastic diplegia. Cerebral magnetic resonance imaging of the patients did not reveal cortical malformations, malformations of the corticospinal tracts, basal ganglia, corpus callosum, or optic nerves. This observation is in contrast to the group of neurological disorders that are associated with heterozygous missense mutations in genes encoding different neuronal α- and β-tubulin isotypes, termed tubulinopathies. On the background of current knowledge regarding the function and genotype-phenotype correlations of mutations in the neuronal tubulin isotypes, the clinical and diagnostic findings in these patients are discussed. To our knowledge, this is the first report of patients with a de novo deletion of the TUBB3 gene. The lack of cortical or other cerebral malformations supports the current hypothesis that TUBB3-related tubulinopathies are caused by altered protein function.
Collapse
Affiliation(s)
- Sabine Grønborg
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Susanne Kjaergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Hove
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibeke André Larsen
- Department of Neuroradiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Maria Kirchhoff
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
36
|
Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022392. [PMID: 25934463 DOI: 10.1101/cshperspect.a022392] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malformations of cortical development (MCDs) are an important cause of epilepsy and an extremely interesting group of disorders from the perspective of brain development and its perturbations. Many new MCDs have been described in recent years as a result of improvements in imaging, genetic testing, and understanding of the effects of mutations on the ability of their protein products to correctly function within the molecular pathways by which the brain functions. In this review, most of the major MCDs are reviewed from a clinical, embryological, and genetic perspective. The most recent literature regarding clinical diagnosis, mechanisms of development, and future paths of research are discussed.
Collapse
Affiliation(s)
- A James Barkovich
- Department of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, California 94143-0628
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer, University of Florence, Florence 50139, Italy
| |
Collapse
|
37
|
Song W, Cho Y, Watt D, Cavalli V. Tubulin-tyrosine Ligase (TTL)-mediated Increase in Tyrosinated α-Tubulin in Injured Axons Is Required for Retrograde Injury Signaling and Axon Regeneration. J Biol Chem 2015; 290:14765-75. [PMID: 25911101 DOI: 10.1074/jbc.m114.622753] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Injured peripheral neurons successfully activate a pro-regenerative program to enable axon regeneration and functional recovery. The microtubule-dependent retrograde transport of injury signals from the lesion site in the axon back to the cell soma stimulates the increased growth capacity of injured neurons. However, the mechanisms initiating this retrograde transport remain poorly understood. Here we show that tubulin-tyrosine ligase (TTL) is required to increase the levels of tyrosinated α-tubulin at the axon injury site and plays an important role in injury signaling. Preventing the injury-induced increase in tyrosinated α-tubulin by knocking down TTL impairs retrograde organelle transport and delays activation of the pro-regenerative transcription factor c-Jun. In the absence of TTL, axon regeneration is reduced severely. We propose a model in which TTL increases the levels of tyrosinated α-tubulin locally at the injury site to facilitate the retrograde transport of injury signals that are required to activate a pro-regenerative program.
Collapse
Affiliation(s)
- Wenjun Song
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110
| | - Yongcheol Cho
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110
| | - Dana Watt
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110
| | - Valeria Cavalli
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
38
|
Romaniello R, Arrigoni F, Bassi MT, Borgatti R. Mutations in α- and β-tubulin encoding genes: implications in brain malformations. Brain Dev 2015; 37:273-80. [PMID: 25008804 DOI: 10.1016/j.braindev.2014.06.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2014] [Accepted: 06/02/2014] [Indexed: 12/24/2022]
Abstract
The tubulin gene family is mainly expressed in post-mitotic neurons during cortical development with a specific spatial and temporal expression pattern. Members of this family encode dimeric proteins consisting of two closely related subunits (α and β), representing the major constituents of microtubules. Tubulin genes play a crucial role in the mechanisms of the Central Nervous System development such as neuronal migration and axonal guidance (axon outgrowth and maintenance). Different mutations in α/β-tubulin genes (TUBA1A, TUBA8, TUBB2A, TUBB4A, TUBB2B, TUBB3, and TUBB) might alter the dynamic properties and functions of microtubules in several ways, effecting a reduction in the number of functional tubulin heterodimers and causing alterations in GTP binding and disruptions of the binding of other proteins to microtubules (motor proteins and other microtubule interacting proteins). In recent years an increasing number of brain malformations has been associated with mutations in tubulin genes: malformations of cortical development such as lissencephaly and various grades of gyral disorganization, focal or diffuse polymicrogyria and open or closed-lips schizencephaly as likely consequences of an altered neuronal migration process; abnormalities or agenesis of the midline commissural structures (anterior commissure, corpus callosum and fornix), hypoplasia of the oculomotor and optic nerves, dysmorphisms of the hind-brain as expression of axon guidance disorders. Dysmorphisms of the basal ganglia (fusion between the caudate nucleus and putamen with absence of the anterior limb of the internal capsule) and hippocampi were also observed. A rare form of leukoencephalopathy characterized by hypomyelination with atrophy of the basal ganglia an cerebellum (H-ABC) was also recently described. The present review, describing the structural and functional features of tubulin genes, aims to revise the main cerebral associated malformations and related clinical aspects, suggesting a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Filippo Arrigoni
- Neuroimaging Unit, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Renato Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
39
|
McMichael G, Bainbridge MN, Haan E, Corbett M, Gardner A, Thompson S, van Bon BWM, van Eyk CL, Broadbent J, Reynolds C, O'Callaghan ME, Nguyen LS, Adelson DL, Russo R, Jhangiani S, Doddapaneni H, Muzny DM, Gibbs RA, Gecz J, MacLennan AH. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry 2015; 20:176-82. [PMID: 25666757 DOI: 10.1038/mp.2014.189] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
Cerebral palsy (CP) is a common, clinically heterogeneous group of disorders affecting movement and posture. Its prevalence has changed little in 50 years and the causes remain largely unknown. The genetic contribution to CP causation has been predicted to be ~2%. We performed whole-exome sequencing of 183 cases with CP including both parents (98 cases) or one parent (67 cases) and 18 singleton cases (no parental DNA). We identified and validated 61 de novo protein-altering variants in 43 out of 98 (44%) case-parent trios. Initial prioritization of variants for causality was by mutation type, whether they were known or predicted to be deleterious and whether they occurred in known disease genes whose clinical spectrum overlaps CP. Further, prioritization used two multidimensional frameworks-the Residual Variation Intolerance Score and the Combined Annotation-dependent Depletion score. Ten de novo mutations in three previously identified disease genes (TUBA1A (n=2), SCN8A (n=1) and KDM5C (n=1)) and in six novel candidate CP genes (AGAP1, JHDM1D, MAST1, NAA35, RFX2 and WIPI2) were predicted to be potentially pathogenic for CP. In addition, we identified four predicted pathogenic, hemizygous variants on chromosome X in two known disease genes, L1CAM and PAK3, and in two novel candidate CP genes, CD99L2 and TENM1. In total, 14% of CP cases, by strict criteria, had a potentially disease-causing gene variant. Half were in novel genes. The genetic heterogeneity highlights the complexity of the genetic contribution to CP. Function and pathway studies are required to establish the causative role of these putative pathogenic CP genes.
Collapse
Affiliation(s)
- G McMichael
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - M N Bainbridge
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - E Haan
- 1] South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, Australia [2] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - M Corbett
- 1] Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia [2] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - A Gardner
- 1] Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia [2] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - S Thompson
- 1] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia [2] Department of Pediatric Neurology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - B W M van Bon
- 1] South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, Australia [2] Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C L van Eyk
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - J Broadbent
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - C Reynolds
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - M E O'Callaghan
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - L S Nguyen
- School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - D L Adelson
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - R Russo
- Department of Pediatric Rehabilitation, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - S Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - H Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - D M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - R A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - J Gecz
- 1] Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia [2] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - A H MacLennan
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
40
|
Watrin F, Manent JB, Cardoso C, Represa A. Causes and consequences of gray matter heterotopia. CNS Neurosci Ther 2014; 21:112-22. [PMID: 25180909 DOI: 10.1111/cns.12322] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022] Open
Abstract
The objective of this article is to review the pathophysiological bases of gray matter heterotopia and to appreciate their involvement in brain cortical development and functional consequences, namely epilepsy. The development of the cerebral cortex results from complex sequential processes including cell proliferation, cell migration, cortical organization, and formation of neuronal networks. Disruption of these steps yields different types of cortical malformations including gray matter heterotopia, characterized by the ectopic position of neurons along the ventricular walls or in the deep white matter. Cortical malformations are major causes of epilepsy, being responsible for up to 40% of drug-resistant epilepsy, and the cognitive level of affected patients varies from normal to severely impaired. This review reports data from human patients and animal models highlighting the genetic causes for these disorders affecting not only neuronal migration but also the proliferation of cortical progenitors. Therefore, gray matter heterotopias should not be considered as solely due to an abnormal neuronal migration and classifying them as such may be too restrictive. The review will also summarize literature data indicating that besides ectopic neurons, neighbor cortical areas also play a consistent role in epileptogenesis, supporting the notion that plastic changes secondary to the initial malformation are instrumental in the pathophysiology of epilepsy in affected patients.
Collapse
Affiliation(s)
- Françoise Watrin
- INSERM, INMED, Marseille, France; Aix-Marseille University, UMR 901, Marseille, France
| | | | | | | |
Collapse
|
41
|
Bahi-Buisson N, Poirier K, Fourniol F, Saillour Y, Valence S, Lebrun N, Hully M, Bianco CF, Boddaert N, Elie C, Lascelles K, Souville I, Beldjord C, Chelly J. The wide spectrum of tubulinopathies: what are the key features for the diagnosis? ACTA ACUST UNITED AC 2014; 137:1676-700. [PMID: 24860126 DOI: 10.1093/brain/awu082] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Complex cortical malformations associated with mutations in tubulin genes: TUBA1A, TUBA8, TUBB2B, TUBB3, TUBB5 and TUBG1 commonly referred to as tubulinopathies, are a heterogeneous group of conditions with a wide spectrum of clinical severity. Among the 106 patients selected as having complex cortical malformations, 45 were found to carry mutations in TUBA1A (42.5%), 18 in TUBB2B (16.9%), 11 in TUBB3 (10.4%), three in TUBB5 (2.8%), and three in TUBG1 (2.8%). No mutations were identified in TUBA8. Systematic review of patients' neuroimaging and neuropathological data allowed us to distinguish at least five cortical malformation syndromes: (i) microlissencephaly (n = 12); (ii) lissencephaly (n = 19); (iii) central pachygyria and polymicrogyria-like cortical dysplasia (n = 24); (iv) generalized polymicrogyria-like cortical dysplasia (n = 6); and (v) a 'simplified' gyral pattern with area of focal polymicrogyria (n = 19). Dysmorphic basal ganglia are the hallmark of tubulinopathies (found in 75% of cases) and are present in 100% of central pachygyria and polymicrogyria-like cortical dysplasia and simplified gyral malformation syndromes. Tubulinopathies are also characterized by a high prevalence of corpus callosum agenesis (32/80; 40%), and mild to severe cerebellar hypoplasia and dysplasia (63/80; 78.7%). Foetal cases (n = 25) represent the severe end of the spectrum and show specific abnormalities that provide insights into the underlying pathophysiology. The overall complexity of tubulinopathies reflects the pleiotropic effects of tubulins and their specific spatio-temporal profiles of expression. In line with previous reports, this large cohort further clarifies overlapping phenotypes between tubulinopathies and although current structural data do not allow prediction of mutation-related phenotypes, within each mutated gene there is an associated predominant pattern of cortical dysgenesis allowing some phenotype-genotype correlation. The core phenotype of TUBA1A and TUBG1 tubulinopathies are lissencephalies and microlissencephalies, whereas TUBB2B tubulinopathies show in the majority, centrally predominant polymicrogyria-like cortical dysplasia. By contrast, TUBB3 and TUBB5 mutations cause milder malformations with focal or multifocal polymicrogyria-like cortical dysplasia with abnormal and simplified gyral pattern.
Collapse
Affiliation(s)
- Nadia Bahi-Buisson
- 1 Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France2 Inserm, U1016, Paris, France3 Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France4 INSERM UMR-1163, Embryology and genetics of congenital malformations, Paris, France5 Service de Neurologie pédiatrique, Assistance Publique-Hôpitaux de Paris (AP-HP), hôpital Necker, Paris, France
| | - Karine Poirier
- 1 Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France2 Inserm, U1016, Paris, France
| | | | - Yoann Saillour
- 1 Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France2 Inserm, U1016, Paris, France
| | - Stéphanie Valence
- 1 Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France2 Inserm, U1016, Paris, France
| | - Nicolas Lebrun
- 1 Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France2 Inserm, U1016, Paris, France
| | - Marie Hully
- 5 Service de Neurologie pédiatrique, Assistance Publique-Hôpitaux de Paris (AP-HP), hôpital Necker, Paris, France
| | | | - Nathalie Boddaert
- 8 Service de Radiologie Pédiatrique, AP-HP, hôpital Necker, Paris, France9 Inserm, U797-INSERM-CEA, Service Hospitalier Frédéric Joliot, CEA, 4, place du General Leclerc, 91406, Orsay, France
| | - Caroline Elie
- 10 BioInformatic Department-AP-HP, hôpital Necker-Enfants Malades, Paris, France
| | | | - Isabelle Souville
- 12 Service de Biologie Moleculaire et Genetique, Pavillon Cassini AP-HP, Hôpital Cochin, Paris, France
| | | | - Cherif Beldjord
- 12 Service de Biologie Moleculaire et Genetique, Pavillon Cassini AP-HP, Hôpital Cochin, Paris, France
| | - Jamel Chelly
- 1 Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104), Paris, France2 Inserm, U1016, Paris, France
| |
Collapse
|
42
|
Fallet-Bianco C, Laquerrière A, Poirier K, Razavi F, Guimiot F, Dias P, Loeuillet L, Lascelles K, Beldjord C, Carion N, Toussaint A, Revencu N, Addor MC, Lhermitte B, Gonzales M, Martinovich J, Bessieres B, Marcy-Bonnière M, Jossic F, Marcorelles P, Loget P, Chelly J, Bahi-Buisson N. Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathol Commun 2014; 2:69. [PMID: 25059107 PMCID: PMC4222268 DOI: 10.1186/2051-5960-2-69] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/18/2023] Open
Abstract
Complex cortical malformations associated with mutations in tubulin genes are commonly referred to as “Tubulinopathies”. To further characterize the mutation frequency and phenotypes associated with tubulin mutations, we studied a cohort of 60 foetal cases. Twenty-six tubulin mutations were identified, of which TUBA1A mutations were the most prevalent (19 cases), followed by TUBB2B (6 cases) and TUBB3 (one case). Three subtypes clearly emerged. The most frequent (n = 13) was microlissencephaly with corpus callosum agenesis, severely hypoplastic brainstem and cerebellum. The cortical plate was either absent (6/13), with a 2–3 layered pattern (5/13) or less frequently thickened (2/13), often associated with neuroglial overmigration (4/13). All cases had voluminous germinal zones and ganglionic eminences. The second subtype was lissencephaly (n = 7), either classical (4/7) or associated with cerebellar hypoplasia (3/7) with corpus callosum agenesis (6/7). All foetuses with lissencephaly and cerebellar hypoplasia carried distinct TUBA1A mutations, while those with classical lissencephaly harbored recurrent mutations in TUBA1A (3 cases) or TUBB2B (1 case). The third group was polymicrogyria-like cortical dysplasia (n = 6), consisting of asymmetric multifocal or generalized polymicrogyria with inconstant corpus callosum agenesis (4/6) and hypoplastic brainstem and cerebellum (3/6). Polymicrogyria was either unlayered or 4-layered with neuronal heterotopias (5/6) and occasional focal neuroglial overmigration (2/6). Three had TUBA1A mutations and 3 TUBB2B mutations. Foetal TUBA1A tubulinopathies most often consist in microlissencephaly or classical lissencephaly with corpus callosum agenesis, but polymicrogyria may also occur. Conversely, TUBB2B mutations are responsible for either polymicrogyria (4/6) or microlissencephaly (2/6).
Collapse
|
43
|
Shimojima K, Narita A, Maegaki Y, Saito A, Furukawa T, Yamamoto T. Whole-exome sequencing identifies a de novo TUBA1A mutation in a patient with sporadic malformations of cortical development: a case report. BMC Res Notes 2014; 7:465. [PMID: 25053001 PMCID: PMC4118784 DOI: 10.1186/1756-0500-7-465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 07/14/2014] [Indexed: 12/20/2022] Open
Abstract
Background Owing to the number of genetic mutations that contribute to malformations of cortical development, identification of causative mutations in candidate genes is challenging. To overcome these challenges, we performed whole-exome sequencing in this study. Case presentation A Japanese patient presented with microcephaly and severe developmental delay. Brain magnetic resonance imaging showed the presence of colpocephaly associated with lateral ventricle dilatation and the presence of a simplified gyral pattern. Hypoplasia of the corpus callosum and cerebellar vermis were also noted. Because Sanger sequencing is expensive, laborious, and time-consuming, whole-exome sequencing was performed and a de novo missense mutation in TUBA1A (E27Q) was identified. Conclusion The novel mutation identified in this study was located in the genetic region that encodes the N-terminal domain of TUBA1A, a region of TUBA1A with few reported mutations. Retrospective assessment of the clinical and radiological features of this patient―i.e., microcephaly, lissencephaly (pachygyria) with cerebellar hypoplasia, and corpus callosum hypoplasia―indicated that the TUBA1A mutation did not lead to any contradictions. Because rapid and comprehensive mutation analysis by whole-exome sequencing is time- and cost-effective, it might be useful for genetic counseling of patients with sporadic malformations of cortical development.
Collapse
Affiliation(s)
| | | | | | | | | | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo 162-8666, Japan.
| |
Collapse
|
44
|
Liu G, Dwyer T. Microtubule dynamics in axon guidance. Neurosci Bull 2014; 30:569-83. [PMID: 24968808 DOI: 10.1007/s12264-014-1444-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/10/2014] [Indexed: 12/18/2022] Open
Abstract
Precise modulation of the cytoskeleton is involved in a variety of cellular processes including cell division, migration, polarity, and adhesion. In developing post-mitotic neurons, extracellular guidance cues not only trigger signaling cascades that act at a distance to indirectly regulate microtubule distribution, and assembly and disassembly in the growth cone, but also directly modulate microtubule stability and dynamics through coupling of guidance receptors with microtubules to control growth-cone turning. Microtubule-associated proteins including classical microtubule-associated proteins and microtubule plus-end tracking proteins are required for modulating microtubule dynamics to influence growth-cone steering. Multiple key signaling components, such as calcium, small GTPases, glycogen synthase kinase-3β, and c-Jun N-terminal kinase, link upstream signal cascades to microtubule stability and dynamics in the growth cone to control axon outgrowth and projection. Understanding the functions and regulation of microtubule dynamics in the growth cone provides new insights into the molecular mechanisms of axon guidance.
Collapse
Affiliation(s)
- Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA,
| | | |
Collapse
|
45
|
Stutterd CA, Leventer RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:227-39. [PMID: 24888723 DOI: 10.1002/ajmg.c.31399] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polymicrogyria (PMG) is one of the most common malformations of cortical development. It is characterized by overfolding of the cerebral cortex and abnormal cortical layering. It is a highly heterogeneous malformation with variable clinical and imaging features, pathological findings, and etiologies. It may occur as an isolated cortical malformation, or in association with other malformations within the brain or body as part of a multiple congenital anomaly syndrome. Polymicrogyria shows variable topographic patterns with the bilateral perisylvian pattern being most common. Schizencephaly is a subtype of PMG in which the overfolded cortex lines full-thickness clefts connecting the subarachnoid space with the cerebral ventricles. Both genetic and non-genetic causes of PMG have been identified. Non-genetic causes include congenital cytomegalovirus infection and in utero ischemia. Genetic causes include metabolic conditions such as peroxisomal disorders and the 22q11.2 and 1p36 continguous gene deletion syndromes. Mutations in over 30 genes have been found in association with PMG, especially mutations in the tubulin family of genes. Mutations in the (PI3K)-AKT pathway have been found in association PMG and megalencephaly. Despite recent genetic advances, the mechanisms by which polymicrogyric cortex forms and causes of the majority of cases remain unknown, making diagnostic and prenatal testing and genetic counseling challenging. This review summarizes the clinical, imaging, pathologic, and etiologic features of PMG, highlighting recent genetic advances.
Collapse
|
46
|
Romaniello R, Arrigoni F, Cavallini A, Tenderini E, Baschirotto C, Triulzi F, Bassi MT, Borgatti R. Brain malformations and mutations in α- and β-tubulin genes: a review of the literature and description of two new cases. Dev Med Child Neurol 2014; 56:354-60. [PMID: 24392928 DOI: 10.1111/dmcn.12370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to determine the frequency of mutations in tubulin genes (TUBB2B, TUBA1A, and TUBB3) in patients with malformations of cortical development (MCDs) of unknown origin. METHOD In total, 79 out of 156 patients (41 males, 38 females; age range 8mo-55y (mean age 13y 3mo, SD 11y 2mo) with a neuroradiological diagnosis of MCDs were enrolled in the study. The 77 excluded patients were excluded for the following reasons: suspected or proven diagnosis of pre- or perinatal ischaemic insult (n=13); syndromic disease (n=10); congenital infection (n=14); pregnancy complicated by twin-to-twin transfusion syndrome (n=2); proven mutations in known genes (n=13); poor magnetic resonance imaging (MRI) quality, or lack of informed consent (n=25). A genetic analysis of the TUBA1A, TUBB2B and TUBB3 genes was carried out by direct sequencing of the coding regions of the relevant genes for each participant. Previously described patients with mutations in the TUBB2B and TUBA1A genes were reviewed; clinical and neuroradiological findings were compared and discussed. RESULTS Two novel heterozygous mutations were detected: a heterozygous mutation in exon 4 of the TUBA1A gene (c.1160C>T) in a 5-year-old female with microcephaly, severe intellectual disability, and absence of language, and a c.1080 _1084del CCTGAinsACATCTTC in exon 4 of the TUBB2B gene in a 31-year-old female with microcephaly, spastic tetraparesis, severe intellectual disability, and scoliosis. Different types of cortical abnormalities, cerebellar vermis hypoplasia, and optic nerve hypoplasia/atrophy were detected on MRI. Dysmorphisms of the basal ganglia and the hippocampi with abnormalities of the midline commissural structures were present in both cases. INTERPRETATION The consistent presence of hypoplastic and disorganized white matter tracts suggests that, in addition to defects in neuronal migration, disruption of axon growth and guidance is a peculiar feature of tubulin-related disorders.
Collapse
Affiliation(s)
- Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
A case of TUBA1A mutation presenting with lissencephaly and Hirschsprung disease. Brain Dev 2014; 36:159-62. [PMID: 23528852 DOI: 10.1016/j.braindev.2013.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 11/20/2022]
Abstract
Gene mutation of tubulin alpha-1A (TUBA1A), a critical component of microtubules of the cytoskeleton, impairs neural migration and causes lissencephaly (LIS). The approximately 45 cases of disease-associated TUBA1A mutations reported to date demonstrate a wide spectrum of phenotypes. Here we describe an 8-year-old girl with lissencephaly, microcephaly, and early-onset epileptic seizures associated with a novel mutation in the TUBA1A gene. The patient developed Hirschsprung disease and the syndrome of inappropriate antidiuretic hormone secretion (SIADH), which had not previously been described in TUBA1A mutation-associated disease. Our case provides new insight into the wide spectrum of disease phenotypes associated with TUBA1A mutation.
Collapse
|
48
|
Breuss M, Keays DA. Microtubules and neurodevelopmental disease: the movers and the makers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:75-96. [PMID: 24243101 DOI: 10.1007/978-94-007-7687-6_5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development of the mammalian cortex requires the generation, migration and differentiation of neurons. Each of these cellular events requires a dynamic microtubule cytoskeleton. Microtubules are required for interkinetic nuclear migration, the separation of chromatids in mitosis, nuclear translocation during migration and the outgrowth of neurites. Their importance is underlined by the finding that mutations in a host of microtubule associated proteins cause detrimental neurological disorders. More recently, the structural subunits of microtubules, the tubulin proteins, have been implicated in a spectrum of human diseases collectively known as the tubulinopathies. This chapter reviews the discovery of microtubules, the role they play in neurodevelopment, and catalogues the tubulin isoforms associated with neurodevelopmental disease. Our focus is on the molecular and cellular mechanisms that underlie the pathology of tubulin-associated diseases. Finally, we reflect on whether different tubulin genes have distinct intrinsic functions.
Collapse
Affiliation(s)
- Martin Breuss
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030, Vienna, Austria
| | | |
Collapse
|
49
|
Yin S, Zeng C, Hari M, Cabral F. Paclitaxel resistance by random mutagenesis of α-tubulin. Cytoskeleton (Hoboken) 2013; 70:849-62. [DOI: 10.1002/cm.21154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Shanghua Yin
- Department of Integrative Biology and Pharmacology; University of Texas Medical School; Houston Texas
| | - Changqing Zeng
- Department of Integrative Biology and Pharmacology; University of Texas Medical School; Houston Texas
| | - Malathi Hari
- Department of Integrative Biology and Pharmacology; University of Texas Medical School; Houston Texas
| | - Fernando Cabral
- Department of Integrative Biology and Pharmacology; University of Texas Medical School; Houston Texas
| |
Collapse
|
50
|
Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, Parrini E, Valence S, Pierre BS, Oger M, Lacombe D, Geneviève D, Fontana E, Darra F, Cances C, Barth M, Bonneau D, Bernadina BD, N'guyen S, Gitiaux C, Parent P, des Portes V, Pedespan JM, Legrez V, Castelnau-Ptakine L, Nitschke P, Hieu T, Masson C, Zelenika D, Andrieux A, Francis F, Guerrini R, Cowan NJ, Bahi-Buisson N, Chelly J. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 2013; 45:639-47. [PMID: 23603762 DOI: 10.1038/ng.2613] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/22/2013] [Indexed: 12/18/2022]
Abstract
The genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD. We found a frequent recurrence of mutations in DYNC1H1, implying that this gene is a major locus for unexplained MCD. We further show that the mutations in KIF5C, KIF2A and DYNC1H1 affect ATP hydrolysis, productive protein folding and microtubule binding, respectively. In addition, we show that suppression of mouse Tubg1 expression in vivo interferes with proper neuronal migration, whereas expression of altered γ-tubulin proteins in Saccharomyces cerevisiae disrupts normal microtubule behavior. Our data reinforce the importance of centrosomal and microtubule-related proteins in cortical development and strongly suggest that microtubule-dependent mitotic and postmitotic processes are major contributors to the pathogenesis of MCD.
Collapse
Affiliation(s)
- Karine Poirier
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique CNRS, UMR 8104, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|