1
|
Chan M, Pourrier M, Eldstrom J, Sahakyan H, Vardanyan V, Fedida D. Dual effects of mefenamic acid on the I Ks molecular complex. Br J Pharmacol 2025; 182:1075-1089. [PMID: 39520043 DOI: 10.1111/bph.17389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Mutations in both KCNQ1 and KCNE1, which together form the cardiac IKs current, are associated with inherited conditions such as long and short QT syndromes. Mefenamic acid, a non-steroidal anti-inflammatory drug, is an IKs potentiator and may be utilised as an archetype to design therapeutically useful IKs agonists. However, here we show that mefenamic acid can also act as an IKs inhibitor, and our data reveal its dual effects on KCNQ1/KCNE1 channels. EXPERIMENTAL APPROACH Effects of mefenamic acid on wild type (WT) and mutant KCNQ1/KCNE1 channels expressed in tsA201 cells were studied using whole cell patch clamp. Molecular dynamics simulations were used to determine trajectory clustering. KEY RESULTS Mefenamic acid inhibits WT IKs at high concentrations while preserving some attributes of current potentiation. Inhibitory actions of mefenamic acid are unmasked at lower drug concentrations by KCNE1 and KCNQ1 mutations in the mefenamic acid binding pocket, at the extracellular end of KCNE1 and in the KCNQ1 S6 helix. Mefenamic acid does not inhibit KCNQ1 in the absence of KCNE1 but inhibits IKs current in a concentration-dependent manner in the mutant channels. Inhibition involves modulation of pore kinetics and/or voltage sensor domain-pore coupling in WT and in the KCNE1 E43C mutant. CONCLUSION AND IMPLICATIONS This work highlights the importance of structural motifs at the extracellular inter-subunit interface of KCNQ1 and KCNE1 channels, and their interactions, in determining the nature of drug effects on the IKs channel complex and has important implications for treating patients with specific long QT mutations.
Collapse
Affiliation(s)
- Magnus Chan
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc Pourrier
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, Yerevan, Armenia
- Currently at National Center for Biotechnology Information, National Library of Medicine, National Institutes for Health, Bethesda, Maryland, USA
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan, Armenia
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Conte G, Bergonti M, Probst V, Morita H, Tfelt-Hansen J, Behr ER, Kengo K, Arbelo E, Crotti L, Sarquella-Brugada G, Wilde AAM, Calò L, Sarkozy A, de Asmundis C, Mellor G, Migliore F, Letsas K, Vicentini A, Levinstein M, Berne P, Chen SA, Veltmann C, Biernacka EK, Carvalho P, Kabawata M, Sojema K, Gonzalez MC, Tse G, Thollet A, Svane J, Caputo ML, Scrocco C, Kamakura T, Pardo LF, Lee S, Juárez CK, Martino A, Lo LW, Monaco C, Reyes-Quintero ÁE, Martini N, Oezkartal T, Klersy C, Brugada J, Schwartz PJ, Brugada P, Belhassen B, Auricchio A. aTrial arrhythmias in inhEriTed aRrhythmIa Syndromes: results from the TETRIS study. Europace 2024; 26:euae288. [PMID: 39527076 PMCID: PMC11630530 DOI: 10.1093/europace/euae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS Little is known about the distribution and clinical course of patients with inherited arrhythmia syndrome (IAS) and concomitant atrial arrhythmias (AAs). The aim of the study is (i) to characterize the distribution of AAs in patients with IAS and (ii) evaluate the long-term clinical course of these patients. METHODS AND RESULTS An international multicentre study was performed and involved 28 centres in 16 countries. Inclusion criteria were (i) IAS and (ii) electrocardiographic documentation of AAs. The primary endpoint was a composite of sudden cardiac death, sustained ventricular arrhythmias (VAs), or appropriate implantable cardioverter defibrillator (ICD) interventions. Strokes, inappropriate ICD shocks due to AAs, and the occurrence of sinus node dysfunction were assessed. A total of 522 patients with IAS and AAs were included. Most patients were diagnosed with Brugada syndrome (n = 355, 68%) and long QT syndrome (n = 93, 18%). The remaining patients (n = 71, 14%) presented with short QT syndrome, early repolarization syndrome, catecholaminergic polymorphic ventricular tachycardia, progressive cardiac conduction diseases, or idiopathic ventricular fibrillation. Atrial fibrillation was the most prevalent AA (82%), followed by atrial flutter (9%) and atrial tachycardia (9%). Atrial arrhythmia was the first clinical manifestation of IAS in 52% of patients. More than one type of AA was documented in 23% of patients. Nine patients (3%) experienced VA before the diagnosis of IAS due the use of anti-arrhythmic medications taken for the AA. The incidence of the primary endpoint was 1.4% per year, with a two-fold increase in patients who experienced their first AA before the age of 20 (odds ratio 2.2, P = 0.043). This was consistent across the different forms of IAS. Inappropriate ICD shock due to AAs was reported in 2.8% of patients, strokes in 4.4%, and sinus node dysfunction in 9.6%. CONCLUSION Among patients with IAS and AAs, AA is the first clinical manifestation in about half of the cases, with more than one form of AAs present in one-fourth of the patients. The occurrence of AA earlier in life may be associated with a higher risk of VAs. The occurrence of stroke and sinus node dysfunction is not infrequently in this cohort.
Collapse
MESH Headings
- Humans
- Female
- Male
- Adult
- Middle Aged
- Atrial Fibrillation/diagnosis
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/epidemiology
- Atrial Fibrillation/therapy
- Defibrillators, Implantable
- Electrocardiography
- Prevalence
- Death, Sudden, Cardiac/prevention & control
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/etiology
- Arrhythmias, Cardiac/therapy
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/epidemiology
- Brugada Syndrome/physiopathology
- Brugada Syndrome/therapy
- Brugada Syndrome/complications
- Brugada Syndrome/diagnosis
- Long QT Syndrome/diagnosis
- Long QT Syndrome/physiopathology
- Long QT Syndrome/therapy
- Young Adult
- Europe/epidemiology
- Adolescent
- Risk Factors
- Tachycardia, Ventricular/physiopathology
- Tachycardia, Ventricular/diagnosis
- Tachycardia, Ventricular/therapy
- Atrial Flutter/diagnosis
- Atrial Flutter/physiopathology
- Atrial Flutter/epidemiology
- Atrial Flutter/therapy
- Aged
- Electric Countershock/instrumentation
Collapse
Affiliation(s)
- Giulio Conte
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Via la Santa 1, 6900 Lugano, Switzerland
| | - Marco Bergonti
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
| | - Vincent Probst
- Cardiology Department, L’institut du thorax CHU de Nantes, Nantes, France
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jacob Tfelt-Hansen
- ERN GUARDHEART
- Cardiology Department, Rigshospitalet—Copenhagen University Hospital, Copenhagen, Denmark
| | - Elijah R Behr
- ERN GUARDHEART
- Cardiovascular and Genomics Research Institute, St. George’s, University of London and St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Kusano Kengo
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Elena Arbelo
- ERN GUARDHEART
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Lia Crotti
- IRCCS, Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Medicine and Surgery, University Milano Bicocca, Milan, Italy
| | - Georgia Sarquella-Brugada
- ERN GUARDHEART
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Arthur A M Wilde
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Leonardo Calò
- Cardiology Department, Policlinico Casilino, Rome, Italy
| | - Andrea Sarkozy
- Cardiology Department,University Hospital Antwerp, Antwerp, Belgium
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel—Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Carlo de Asmundis
- ERN GUARDHEART
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel—Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Greg Mellor
- Cardiology Department, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | | | - Moises Levinstein
- Cardiology Department, Nacional de Cardiología ‘Ignacio Chávez’, Mexico City, Mexico
| | - Paola Berne
- Cardiology Department, Ospedale Santissima Annunziata, Azienda Ospedaliera Universitaria, Sassari, Italy
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital and Cardiovascular Center, Taichung Veterans General Hospital, National Yang Ming Chiao Tung University and National Chung Hsing University, Taipei, Taiwan
| | | | | | - Paula Carvalho
- Cardiology Department, University Hospital San Luigi Gonzaga di Orbassano, Orbassano, Italy
| | - Mihoko Kabawata
- Department of Cardiovascular Disease, AOI Universal Hospital, Kanagawa, Japan
| | - Kyoko Sojema
- Department Cardiovascular Medicine, Kyorin University, Kyorin, Japan
| | - Maria Cecilia Gonzalez
- Pediatric Cardiology and Electrophysiology, Sainte Justine—University of Montreal, Montreal, Canada
| | - Gary Tse
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aurélie Thollet
- Cardiology Department, L’institut du thorax CHU de Nantes, Nantes, France
| | - Jesper Svane
- Cardiology Department, Rigshospitalet—Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Luce Caputo
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
| | - Chiara Scrocco
- Cardiovascular and Genomics Research Institute, St. George’s, University of London and St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Tsukasa Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Livia Franchetti Pardo
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
| | - Sharen Lee
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
- Cardiovascular Analytics Department, Hong Kong SAR, China
| | | | | | - Li-Wei Lo
- Heart Rhythm Center, Cardiovascular Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel—Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Álvaro E Reyes-Quintero
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nicolò Martini
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tardu Oezkartal
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
| | - Catherine Klersy
- Biostatistics & Clinical Trial Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Josep Brugada
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Peter J Schwartz
- IRCCS, Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel—Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Bernard Belhassen
- Heart Institute, Hadassah Medical Center, Jerusalem, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Angelo Auricchio
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Via la Santa 1, 6900 Lugano, Switzerland
| |
Collapse
|
3
|
Arabia G, Bellicini MG, Cersosimo A, Memo M, Mazzarotto F, Inciardi RM, Cerini M, Chen LY, Aboelhassan M, Benzoni P, Mitacchione G, Bontempi L, Curnis A. Ion channel dysfunction and fibrosis in atrial fibrillation: Two sides of the same coin. Pacing Clin Electrophysiol 2024; 47:417-428. [PMID: 38375940 DOI: 10.1111/pace.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common heart rhythm disorder that is associated with an increased risk of stroke and heart failure (HF). Initially, an association between AF and ion channel dysfunction was identified, classifying the pathology as a predominantly electrical disease. More recently it has been recognized that fibrosis and structural atrial remodeling play a driving role in the development of this arrhythmia also in these cases. PURPOSE Understanding the role of fibrosis in genetic determined AF could be important to better comprise the pathophysiology of this arrhythmia and to refine its management also in nongenetic forms. In this review we analyze genetic and epigenetic mechanisms responsible for AF and their link with atrial fibrosis, then we will consider analogies with the pathophysiological mechanism in nongenetic AF, and discuss consequent therapeutic options.
Collapse
Affiliation(s)
- Gianmarco Arabia
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Angelica Cersosimo
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London (F.M., J. Ware), London, UK
| | | | - Manuel Cerini
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Lin Yee Chen
- University of Minnesota (L.Y.C.), Minneapolis, USA
| | | | - Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Luca Bontempi
- Unit of Cardiology, Cardiac Electrophysiology and, Electrostimulation Laboratory, "Bolognini" Hospital of Seriate - ASST Bergamo Est, Bergamo, Italy
| | - Antonio Curnis
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Yuan Y, Han X, Zhao X, Zhang H, Vinograd A, Bi X, Duan X, Cao Y, Gao Q, Song J, Sheng L, Li Y. Circulating exosome long non-coding RNAs are associated with atrial structural remodeling by increasing systemic inflammation in atrial fibrillation patients. J Transl Int Med 2024; 12:106-118. [PMID: 38525437 PMCID: PMC10956728 DOI: 10.2478/jtim-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Background Atrial fibrillation (AF) is the most common cardiac arrhythmia with severe clinical sequelae, but its genetic characteristic implicated in pathogenesis has not been completely clarified. Accumulating evidence has indicated that circulating exosomes and their carried cargoes, such as long non-coding RNAs (lncRNAs), involve in the progress of multiple cardiovascular diseases. However, their potential role as clinical biomarkers in AF diagnosis and prognosis remains unknown. Methods Herein, we conducted the sequence and bioinformatic analysis of circulating exosomes harvested from AF and sinus rhythm patients. Results A total of 53 differentially expressed lncRNAs were identified, and a total of 6 significantly changed lncRNAs (fold change > 2.0), including NR0046235, NR003045, NONHSAT167247.1, NONHSAT202361.1, NONHSAT205820.1 and NONHSAT200958.1, were verified by qRT-PCR in 215 participants. Moreover, these circulating exosome lncRNA levels were different between paroxysmal and persistent AF patients, which were dramatically associated with abnormal hemodynamics and atrial diameter. Furthermore, we observed that the area under ROC curve (AUC) of six lncRNAs combination for diagnosis of persistent AF was 80.34%. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment pathway analysis indicated these exosome lncRNAs mainly concerning response to chemokine-chemokine receptor interaction, which induced activated inflammation and structural remodeling. In addition, increased plasma levels of CXCR3 ligands, including CXCL4, CXCL9, CXCL10 and CXCL11, were accumulated in AF patient tissues. Conclusion Our study provides the transcriptome profile revealing pattern of circulating exosome lncRNAs in atrial structural remodeling, which bring valuable insights into improving prognosis and therapeutic targets for AF.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Haiyu Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Asiia Vinograd
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
- Bashkir State Medical University, UFA, Republic Bashkortostan, Russia
| | - Xin Bi
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Xiaoxu Duan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Yukai Cao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Qiang Gao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Jia Song
- Department of Medicine, Division of Atherosclerosis and Vascular Medicine, Baylor College of Medicine, Houston77054, USA
| | - Li Sheng
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin150001, Heilongjiang Province, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin150001, Heilongjiang Province, China
- Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin150001, Heilongjiang Province, China
- Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin150081, Heilongjiang Province, China
- Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin150001, Heilongjiang Province, China
| |
Collapse
|
5
|
Grzeczka A, Graczyk S, Kordowitzki P. DNA Methylation and Telomeres-Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging. Int J Mol Sci 2023; 24:15699. [PMID: 37958686 PMCID: PMC10650750 DOI: 10.3390/ijms242115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in humans. AF is characterized by irregular and increased atrial muscle activation. This high-frequency activation obliterates the synchronous work of the atria and ventricles, reducing myocardial performance, which can lead to severe heart failure or stroke. The risk of developing atrial fibrillation depends largely on the patient's history. Cardiovascular diseases are considered aging-related pathologies; therefore, deciphering the role of telomeres and DNA methylation (mDNA), two hallmarks of aging, is likely to contribute to a better understanding and prophylaxis of AF. In honor of Prof. Elizabeth Blackburn's 75th birthday, we dedicate this review to the discovery of telomeres and her contribution to research on aging.
Collapse
Affiliation(s)
| | | | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Szosa Bydgoska 13, 87-100 Torun, Poland
| |
Collapse
|
6
|
Chan M, Sahakyan H, Eldstrom J, Sastre D, Wang Y, Dou Y, Pourrier M, Vardanyan V, Fedida D. A generic binding pocket for small molecule IKs activators at the extracellular inter-subunit interface of KCNQ1 and KCNE1 channel complexes. eLife 2023; 12:RP87038. [PMID: 37707495 PMCID: PMC10501768 DOI: 10.7554/elife.87038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The cardiac IKs ion channel comprises KCNQ1, calmodulin, and KCNE1 in a dodecameric complex which provides a repolarizing current reserve at higher heart rates and protects from arrhythmia syndromes that cause fainting and sudden death. Pharmacological activators of IKs are therefore of interest both scientifically and therapeutically for treatment of IKs loss-of-function disorders. One group of chemical activators are only active in the presence of the accessory KCNE1 subunit and here we investigate this phenomenon using molecular modeling techniques and mutagenesis scanning in mammalian cells. A generalized activator binding pocket is formed extracellularly by KCNE1, the domain-swapped S1 helices of one KCNQ1 subunit and the pore/turret region made up of two other KCNQ1 subunits. A few residues, including K41, A44 and Y46 in KCNE1, W323 in the KCNQ1 pore, and Y148 in the KCNQ1 S1 domain, appear critical for the binding of structurally diverse molecules, but in addition, molecular modeling studies suggest that induced fit by structurally different molecules underlies the generalized nature of the binding pocket. Activation of IKs is enhanced by stabilization of the KCNQ1-S1/KCNE1/pore complex, which ultimately slows deactivation of the current, and promotes outward current summation at higher pulse rates. Our results provide a mechanistic explanation of enhanced IKs currents by these activator compounds and provide a map for future design of more potent therapeutically useful molecules.
Collapse
Affiliation(s)
- Magnus Chan
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular BiologyYerevanArmenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Daniel Sastre
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Yundi Wang
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Ying Dou
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Marc Pourrier
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular BiologyYerevanArmenia
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British ColumbiaVancouverCanada
| |
Collapse
|
7
|
Chalazan B, Freeth E, Mohajeri A, Ramanathan K, Bennett M, Walia J, Halperin L, Roston T, Lazarte J, Hegele RA, Lehman A, Laksman Z. Genetic testing in monogenic early-onset atrial fibrillation. Eur J Hum Genet 2023; 31:769-775. [PMID: 37217627 PMCID: PMC10325969 DOI: 10.1038/s41431-023-01383-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
A substantial proportion of atrial fibrillation (AF) cases cannot be explained by acquired AF risk factors. Limited guidelines exist that support routine genetic testing. We aim to determine the prevalence of likely pathogenic and pathogenic variants from AF genes with robust evidence in a well phenotyped early-onset AF population. We performed whole exome sequencing on 200 early-onset AF patients. Variants from exome sequencing in affected individuals were filtered in a multi-step process, prior to undergoing clinical classification using current ACMG/AMP guidelines. 200 AF individuals were recruited from St. Paul's Hospital and London Health Sciences Centre who were ≤ 60 years of age and without any acquired AF risk factors at the time of AF diagnosis. 94 of these AF individuals had very early-onset AF ( ≤ 45). Mean age of AF onset was 43.6 ± 9.4 years, 167 (83.5%) were male and 58 (29.0%) had a confirmed family history. There was a 3.0% diagnostic yield for identifying a likely pathogenic or pathogenic variant across AF genes with robust gene-to-disease association evidence. This study demonstrates the current diagnostic yield for identifying a monogenic cause for AF in a well-phenotyped early-onset AF cohort. Our findings suggest a potential clinical utility for offering different screening and treatment regimens in AF patients with an underlying monogenic defect. However, further work is needed to dissect the additional monogenic and polygenic determinants for patients without a genetic explanation for their AF despite the presence of specific genetic indicators such as young age of onset and/or positive family history.
Collapse
Affiliation(s)
- Brandon Chalazan
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Emma Freeth
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Arezoo Mohajeri
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | - Matthew Bennett
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Jagdeep Walia
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Laura Halperin
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Thomas Roston
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Julieta Lazarte
- Department of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A Hegele
- Department of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Zachary Laksman
- Department of Medicine and The School of Biomedical Engineering, University of British Columbia and the Centre for Heart Lung Innovation, Vancouver, Canada.
| |
Collapse
|
8
|
Lin L, Li K, Tian B, Jia M, Wang Q, Xu C, Xiong L, Wang Q, Zeng Y, Wang P. Two Novel Functional Mutations in Promoter Region of SCN3B Gene Associated with Atrial Fibrillation. Life (Basel) 2022; 12:life12111794. [PMID: 36362949 PMCID: PMC9698146 DOI: 10.3390/life12111794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The sodium voltage-gated channel beta subunit 3 (SCN3B) plays a crucial role in electrically excitable cells and conduction tissue in the heart. Some previous studies have established that genetic modification in sodium voltage-channel genes encoding for the cardiac β-subunits, such as SCN1B, SCN2B, SCN3B and SCN4B, can result in atrial fibrillation (AF). In the current study, we identified two rare variants in 5′UTR (NM_018400.4: c.-324C>A, rs976125894 and NM_018400.4: c.-303C>T, rs1284768362) of SCN3B in two unrelated lone AF patients. Our further functional studies discovered that one of them, the A allele of c.-324C>A (rs976125894), can improve transcriptional activity and may raise SCN3B expression levels. The A allele of c.-324C>A (rs976125894) has higher transcriptional activity when it interacts with GATA4, as we confirmed transcription factor GATA4 is a regulator of SCN3B. To the best of our knowledge, the current study is the first to demonstrate that the gain-of-function mutation of SCN3B can produce AF and the first to link a mutation occurring in the non-coding 5′UTR region of SCN3B to lone AF. The work also offers empirical proof that GATA4 is a critical regulator of SCN3B gene regulation. Our findings may serve as an encyclopedia for AF susceptibility variants and can also provide insight into the investigation of the functional mechanisms behind AF variants discovered by genetic methods.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Ke Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Beijia Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengru Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qianyan Wang
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Human Genome Research Center, College of Life and Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yali Zeng
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Correspondence: (Y.Z.); (P.W.)
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Correspondence: (Y.Z.); (P.W.)
| |
Collapse
|
9
|
Nielsen AKM, Ellesøe SG, Larsen LA, Hjortdal V, Nyboe C. Comparison of Outcome in Patients With Familial Versus Spontaneous Atrial Septal Defect. Am J Cardiol 2022; 173:128-131. [PMID: 35361477 DOI: 10.1016/j.amjcard.2022.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Patients with atrial septal defects (ASDs) have increased mortality and morbidity. This can only partly be explained by hemodynamic changes caused by the ASD, suggesting additional underlying causes. Patients with an ASD have an increased burden of pathogenic gene variants in ASD-related genes, indicating genetics as an important factor in etiology. Inheritance of genetic variants with high impact can cause ASD in relatives (familial ASD). This study aimed to investigate whether lifelong outcomes were different in patients with familial ASD compared with patients with sporadic ASD. We used health registries and a nationwide cohort of 2,151 patients with ASD to compare the incidences of atrial fibrillation or flutter (together abbreviated as AF), heart failure, and mortality between patients with familial and sporadic ASD using Cox proportional hazard ratio and Fine and Gray analysis. Patients with familial ASD experienced AF and heart failure earlier in life than patients with sporadic ASD, with hazard ratios of 1.6 and 1.7, respectively. Subdistribution hazard ratios showed an increased risk of AF and heart failure in patients with familial ASD compared with patients with sporadic ASDs (2.3 and 3.1, respectively). Our results suggest that genetic variants with high impact may influence the outcomes of patients with ASD. In conclusion, patients with familial ASD have an increased risk and an earlier onset of AF and heart failure compared with patients with sporadic ASD, hence clinical awareness of arrhythmias and heart failure in patients with familial ASD may lead to timely treatment.
Collapse
Affiliation(s)
| | | | - Lars Allan Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Camilla Nyboe
- Cardiothoracic Anaesthesia, Department of Anaesthesia and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Pessente GD, Sacilotto L, Calil ZO, Olivetti NQS, Wulkan F, de Oliveira TGM, Pedrosa AAA, Wu TC, Hachul DT, Scanavacca MI, Krieger JE, Darrieux FCDC, Pereira ADC. Effect of Occurrence of Lamin A/C (LMNA) Genetic Variants in a Cohort of 101 Consecutive Apparent “Lone AF” Patients: Results and Insights. Front Cardiovasc Med 2022; 9:823717. [PMID: 35449878 PMCID: PMC9016147 DOI: 10.3389/fcvm.2022.823717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveMutations in the Lamin A/C(LMNA) gene are commonly associated with cardiac manifestations, such as dilated cardiomyopathy (DCM) and conduction system disease. However, the overall spectrum and penetrance of rare LMNA variants are unknown. The present study described the presence of LMNAvariants in patients with “lone atrial fibrillation (AF)” as their sole clinical presentation.MethodsOne-hundred and one consecutive patients with “lone AF” criteria were initially screened by genetic testing. Genetic variants were classified according to the American College of Genetic and Genomic criteria. All subjects were evaluated through clinical and familial history, ECG, 24-h Holter monitoring, echocardiogram, cardiac magnetic resonance, treatment response, and the present relatives of LMNA carriers. In addition, whole-exome data from 49,960 UK Biobank (UKB) participants were analyzed to describe the overall penetrance of rare LMNA missense and loss of function (LOF) variants.ResultsThree missense variants in LMNA were identified in probands with AF as their first and unique clinical manifestation. Other five first-degree relatives, after the screening, also presented LMNA gene variants. Among 49,960 analyzed UKB participants, 331 carried rare LMNA missense or LOF variant. Participants who carried a rare LMNA variant were significantly associated with higher odds of arrhythmic events and of an abnormal ECG in the per-protocol ECG exam (p = 0.03 and p = 0.05, respectively).ConclusionAlthough a rare occurrence, our findings emphasize the possibility of an initial presentation of apparently “lone AF” in LMNA gene variant carriers.
Collapse
Affiliation(s)
- Gabrielle D'Arezzo Pessente
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - Luciana Sacilotto
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - Zaine Oliveira Calil
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Fanny Wulkan
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
| | - Théo Gremen Mimary de Oliveira
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Tan Chen Wu
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - Denise Tessariol Hachul
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - Maurício Ibrahim Scanavacca
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
- *Correspondence: Alexandre da Costa Pereira
| |
Collapse
|
11
|
Zaklyazminskaya E, Polyak M, Shestak A, Sadekova M, Komoliatova V, Kiseleva I, Makarov L, Podolyak D, Glukhov G, Zhang H, Abramochkin D, Sokolova OS. Variable Clinical Appearance of the Kir2.1 Rare Variants in Russian Patients with Long QT Syndrome. Genes (Basel) 2022; 13:genes13040559. [PMID: 35456365 PMCID: PMC9025978 DOI: 10.3390/genes13040559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The KCNJ2 gene encodes inward rectifier Kir2.1 channels, maintaining resting potential and cell excitability. Presumably, clinical phenotypes of mutation carriers correlate with ion permeability defects. Loss-of-function mutations lead to QTc prolongation with variable dysmorphic features, whereas gain-of-function mutations cause short QT syndrome and/or atrial fibrillation. Methods: We screened 210 probands with Long QT syndrome for mutations in the KCNJ2 gene. The electrophysiological study was performed for the p.Val93Ile variant in the transfected CHO-K1 cells. Results: We found three rare genetic variants, p.Arg67Trp, p.Val93Ile, and p.R218Q, in three unrelated LQTS probands. Probands with p.Arg67Trp and p.R218Q had a phenotype typical for Andersen-Tawil (ATS), and the p.Val93Ile carrier had lone QTc prolongation. Variant p.Val93Ile was initially described as a gain-of-function pathogenic mutation causing familial atrial fibrillation. We validated electrophysiological features of this variant in CHO-K1 cells, but no family members of these patients had atrial fibrillation. Using ACMG (2015) criteria, we re-assessed this variant as a variant of unknown significance (class III). Conclusions: LQT7 is a rare form of LQTS in Russia, and accounts for 1% of the LQTS cohort. Variant p.Val93Ile leads to a gain-of-function effect in the different cell lines, but its clinical appearance is not so consistent. The clinical significance of this variant might be overestimated.
Collapse
Affiliation(s)
- Elena Zaklyazminskaya
- Medical Genetics Laboratory, B.V. Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (E.Z.); (M.P.); (A.S.); (M.S.); (D.P.)
| | - Margarita Polyak
- Medical Genetics Laboratory, B.V. Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (E.Z.); (M.P.); (A.S.); (M.S.); (D.P.)
| | - Anna Shestak
- Medical Genetics Laboratory, B.V. Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (E.Z.); (M.P.); (A.S.); (M.S.); (D.P.)
| | - Mariam Sadekova
- Medical Genetics Laboratory, B.V. Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (E.Z.); (M.P.); (A.S.); (M.S.); (D.P.)
| | - Vera Komoliatova
- Center for Syncope and Cardiac Arrhythmias in Children and Adolescents, Federal Medical Biological Agency, 115481 Moscow, Russia; (V.K.); (I.K.); (L.M.)
| | - Irina Kiseleva
- Center for Syncope and Cardiac Arrhythmias in Children and Adolescents, Federal Medical Biological Agency, 115481 Moscow, Russia; (V.K.); (I.K.); (L.M.)
| | - Leonid Makarov
- Center for Syncope and Cardiac Arrhythmias in Children and Adolescents, Federal Medical Biological Agency, 115481 Moscow, Russia; (V.K.); (I.K.); (L.M.)
| | - Dmitriy Podolyak
- Medical Genetics Laboratory, B.V. Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (E.Z.); (M.P.); (A.S.); (M.S.); (D.P.)
| | - Grigory Glukhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 517182, China; (G.G.); (H.Z.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Han Zhang
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 517182, China; (G.G.); (H.Z.)
| | - Denis Abramochkin
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 121500 Moscow, Russia
| | - Olga S. Sokolova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 517182, China; (G.G.); (H.Z.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Correspondence:
| |
Collapse
|
12
|
Pensa AV, Baman JR, Puckelwartz MJ, Wilcox JE. Genetically Based Atrial Fibrillation: Current Considerations for Diagnosis and Management. J Cardiovasc Electrophysiol 2022; 33:1944-1953. [PMID: 35262243 DOI: 10.1111/jce.15446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common atrial arrhythmia and is subcategorized into numerous clinical phenotypes. Given its heterogeneity, investigations into the genetic mechanisms underlying AF have been pursued in recent decades, with predominant analyses focusing on early onset or lone AF. Linkage analyses, genome wide association studies (GWAS), and single gene analyses have led to the identification of rare and common genetic variants associated with AF risk. Significant overlap with genetic variants implicated in dilated cardiomyopathy syndromes, including truncating variants of the sarcomere protein titin, have been identified through these analyses, in addition to other genes associated with cardiac structure and function. Despite this, widespread utilization of genetic testing in AF remains hindered by the unclear impact of genetic risk identification on clinical outcomes and the high prevalence of variants of unknown significance (VUS). However, genetic testing is a reasonable option for patients with early onset AF and in those with significant family history of arrhythmia. While many knowledge gaps remain, emerging data support genotyping to inform selection of AF therapeutics. In this review we highlight the current understanding of the complex genetic basis of AF and explore the overlap of AF with inherited cardiomyopathy syndromes. We propose a set of criteria for clinical genetic testing in AF patients and outline future steps for the integration of genetics into AF care. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anthony V Pensa
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jayson R Baman
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jane E Wilcox
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
13
|
Malakootian M, Jalilian M, Kalayinia S, Hosseini Moghadam M, Heidarali M, Haghjoo M. Whole-exome sequencing reveals a rare missense variant in DTNA in an Iranian pedigree with early-onset atrial fibrillation. BMC Cardiovasc Disord 2022; 22:37. [PMID: 35148685 PMCID: PMC8832862 DOI: 10.1186/s12872-022-02485-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is a morbid and heritable irregular cardiac rhythm that affects about 2%–3% of the population. Patients with early-onset AF have a strong genetic association with the disease; nonetheless, the exact underlying mechanisms need clarification. We herein present our evaluation of a 2-generation Iranian pedigree with early-onset AF. Whole-exome sequencing was applied to elucidate the genetic predisposition. Direct DNA sequencing was utilized to confirm and screen the variants in the proband and his available family members. The pathogenicity of the identified nucleotide variations was scrutinized via either segregation analysis in the family or in silico predictive software. The comprehensive variant analysis revealed a missense variant (c.G681C, p.E227D, rs1477078144) in the human α-dystrobrevin gene (DTNA), which is rare in genetic databases. Most in silico analyses have predicted this variant as a disease-causing variant, and the variant is co-segregated with the disease phenotype in the family. Previous studies have demonstrated the association between the DTNA gene and left ventricular noncompaction cardiomyopathy. Taken together, we provide the first evidence of an association between a nucleotide variation in the DTNA gene and early-onset AF in an Iranian family. However, the genetic testing of AF in the Iranian population is still limited. This finding not only further confirms the significant role of genetics in the incidence of early-onset AF but also expands the spectrum of the gene variations that lead to AF. Additionally, it may have further implications for the treatment and prevention of AF.
Collapse
Affiliation(s)
- Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jalilian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Heidarali
- Cardiac Electrophysiology Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr St, Hashemi-Rafsanjani Blvd, Tehran, Iran
| | - Majid Haghjoo
- Cardiac Electrophysiology Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr St, Hashemi-Rafsanjani Blvd, Tehran, Iran.
| |
Collapse
|
14
|
Vad OB, Yan Y, Denti F, Ahlberg G, Refsgaard L, Bomholtz SH, Santos JL, Rasmussen S, Haunsø S, Svendsen JH, Christophersen IE, Schmitt N, Olesen MS, Bentzen BH. Whole-Exome Sequencing Implicates Neuronal Calcium Channel with Familial Atrial Fibrillation. Front Genet 2022; 13:806429. [PMID: 35154276 PMCID: PMC8832975 DOI: 10.3389/fgene.2022.806429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Atrial Fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, responsible for considerable morbidity and mortality. The heterogenic and complex pathogenesis of AF remains poorly understood, which contributes to the current limitation in effective treatments. We aimed to identify rare genetic variants associated with AF in patients with familial AF. Methods and results: We performed whole exome sequencing in a large family with familial AF and identified a rare variant in the gene CACNA1A c.5053G > A which co-segregated with AF. The gene encodes for the protein variants CaV2.1-V1686M, and is important in neuronal function. Functional characterization of the CACNA1A, using patch-clamp recordings on transiently transfected mammalian cells, revealed a modest loss-of-function of CaV2.1-V1686M. Conclusion: We identified a rare loss-of-function variant associated with AF in a gene previously linked with neuronal function. The results allude to a novel link between dysfunction of an ion channel previously associated with neuronal functions and increased risk of developing AF.
Collapse
Affiliation(s)
- Oliver Bundgaard Vad
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, Centre for Cardiac, Vascular-, Pulmonary and Infectious Diseases, Righospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Yannan Yan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Federico Denti
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gustav Ahlberg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, Centre for Cardiac, Vascular-, Pulmonary and Infectious Diseases, Righospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lena Refsgaard
- Laboratory for Molecular Cardiology, Department of Cardiology, Centre for Cardiac, Vascular-, Pulmonary and Infectious Diseases, Righospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sofia Hammami Bomholtz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joana Larupa Santos
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Disease Systems Biology Program, University of Copenhagen, Copenhagen, Denmark
| | - Stig Haunsø
- Laboratory for Molecular Cardiology, Department of Cardiology, Centre for Cardiac, Vascular-, Pulmonary and Infectious Diseases, Righospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jesper Hastrup Svendsen
- Laboratory for Molecular Cardiology, Department of Cardiology, Centre for Cardiac, Vascular-, Pulmonary and Infectious Diseases, Righospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Elizabeth Christophersen
- The Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Rud, Norway
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, Centre for Cardiac, Vascular-, Pulmonary and Infectious Diseases, Righospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- *Correspondence: Morten Salling Olesen,
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Krishnan A, Chilton E, Raman J, Saxena P, McFarlane C, Trollope AF, Kinobe R, Chilton L. Are Interactions between Epicardial Adipose Tissue, Cardiac Fibroblasts and Cardiac Myocytes Instrumental in Atrial Fibrosis and Atrial Fibrillation? Cells 2021; 10:2501. [PMID: 34572150 PMCID: PMC8467050 DOI: 10.3390/cells10092501] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atrial fibrillation is very common among the elderly and/or obese. While myocardial fibrosis is associated with atrial fibrillation, the exact mechanisms within atrial myocytes and surrounding non-myocytes are not fully understood. This review considers the potential roles of myocardial fibroblasts and myofibroblasts in fibrosis and modulating myocyte electrophysiology through electrotonic interactions. Coupling with (myo)fibroblasts in vitro and in silico prolonged myocyte action potential duration and caused resting depolarization; an optogenetic study has verified in vivo that fibroblasts depolarized when coupled myocytes produced action potentials. This review also introduces another non-myocyte which may modulate both myocardial (myo)fibroblasts and myocytes: epicardial adipose tissue. Epicardial adipocytes are in intimate contact with myocytes and (myo)fibroblasts and may infiltrate the myocardium. Adipocytes secrete numerous adipokines which modulate (myo)fibroblast and myocyte physiology. These adipokines are protective in healthy hearts, preventing inflammation and fibrosis. However, adipokines secreted from adipocytes may switch to pro-inflammatory and pro-fibrotic, associated with reactive oxygen species generation. Pro-fibrotic adipokines stimulate myofibroblast differentiation, causing pronounced fibrosis in the epicardial adipose tissue and the myocardium. Adipose tissue also influences myocyte electrophysiology, via the adipokines and/or through electrotonic interactions. Deeper understanding of the interactions between myocytes and non-myocytes is important to understand and manage atrial fibrillation.
Collapse
Affiliation(s)
- Anirudh Krishnan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Emily Chilton
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Jaishankar Raman
- Austin & St Vincent’s Hospitals, Melbourne University, Melbourne, VIC 3010, Australia;
- Applied Artificial Intelligence Institute, Deakin University, Melbourne, VIC 3217, Australia
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239, USA
- School of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, Townsville University Hospital, Townsville, QLD 4814, Australia;
| | - Craig McFarlane
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Alexandra F. Trollope
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert Kinobe
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Lisa Chilton
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
16
|
Atrial fibrillation-a complex polygenetic disease. Eur J Hum Genet 2020; 29:1051-1060. [PMID: 33279945 PMCID: PMC8298566 DOI: 10.1038/s41431-020-00784-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of arrhythmia. Epidemiological studies have documented a substantial genetic component. More than 160 genes have been associated with AF during the last decades. Some of these were discovered by classical linkage studies while the majority relies on functional studies or genome-wide association studies. In this review, we will evaluate the genetic basis of AF and the role of both common and rare genetic variants in AF. Rare variants in multiple ion-channel genes as well as gap junction and transcription factor genes have been associated with AF. More recently, a growing body of evidence has implicated structural genes with AF. An increased burden of atrial fibrosis in AF patients compared with non-AF patients has also been reported. These findings challenge our traditional understanding of AF being an electrical disease. We will focus on several quantitative landmark papers, which are transforming our understanding of AF by implicating atrial cardiomyopathies in the pathogenesis. This new AF research field may enable better diagnostics and treatment in the future.
Collapse
|
17
|
Ang YS, Rajamani S, Haldar SM, Hüser J. A New Therapeutic Framework for Atrial Fibrillation Drug Development. Circ Res 2020; 127:184-201. [DOI: 10.1161/circresaha.120.316576] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia and cause of significant morbidity and mortality. Its increasing prevalence in aging societies constitutes a growing challenge to global healthcare systems. Despite substantial unmet needs in AF prevention and treatment, drug developments hitherto have been challenging, and the current pharmaceutical pipeline is nearly empty. In this review, we argue that current drugs for AF are inadequate because of an oversimplified system for patient classification and the development of drugs that do not interdict underlying disease mechanisms. We posit that an improved understanding of AF molecular pathophysiology related to the continuous identification of novel disease-modifying drug targets and an increased appreciation of patient heterogeneity provide a new framework to personalize AF drug development. Together with recent innovations in diagnostics, remote rhythm monitoring, and big data capabilities, we anticipate that adoption of a new framework for patient subsegmentation based on pathophysiological, genetic, and molecular subsets will improve success rates of clinical trials and advance drugs that reduce the individual patient and public health burden of AF.
Collapse
Affiliation(s)
- Yen-Sin Ang
- From Amgen Research, Cardiometabolic Disorders, South San Francisco, CA (Y.-S.A., S.R., S.M.H.)
| | - Sridharan Rajamani
- From Amgen Research, Cardiometabolic Disorders, South San Francisco, CA (Y.-S.A., S.R., S.M.H.)
| | - Saptarsi M. Haldar
- From Amgen Research, Cardiometabolic Disorders, South San Francisco, CA (Y.-S.A., S.R., S.M.H.)
- Gladstone Institutes, San Francisco, CA (S.M.H.)
- Department of Medicine, Cardiology Division, UCSF School of Medicine, San Francisco, CA (S.M.H.)
| | - Jörg Hüser
- Bayer AG, Pharma-RD-PCR TA Cardiovascular Disease, Wuppertal, Germany (J.H.)
| |
Collapse
|
18
|
Wang Y, Eldstrom J, Fedida D. Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes. Front Physiol 2020; 11:504. [PMID: 32581825 PMCID: PMC7287213 DOI: 10.3389/fphys.2020.00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
The IKs channel complex is formed by the co-assembly of Kv7.1 (KCNQ1), a voltage-gated potassium channel, with its β-subunit, KCNE1 and the association of numerous accessory regulatory molecules such as PIP2, calmodulin, and yotiao. As a result, the IKs potassium current shows kinetic and regulatory flexibility, which not only allows IKs to fulfill physiological roles as disparate as cardiac repolarization and the maintenance of endolymph K+ homeostasis, but also to cause significant disease when it malfunctions. Here, we review new areas of understanding in the assembly, kinetics of activation and inactivation, voltage-sensor pore coupling, unitary events and regulation of this important ion channel complex, all of which have been given further impetus by the recent solution of cryo-EM structural representations of KCNQ1 alone and KCNQ1+KCNE3. Recently, the stoichiometric ratio of KCNE1 to KCNQ1 subunits has been confirmed to be variable up to a ratio of 4:4, rather than fixed at 2:4, and we will review the results and new methodologies that support this conclusion. Significant advances have been made in understanding differences between KCNQ1 and IKs gating using voltage clamp fluorimetry and mutational analysis to illuminate voltage sensor activation and inactivation, and the relationship between voltage sensor translation and pore domain opening. We now understand that the KCNQ1 pore can open with different permeabilities and conductance when the voltage sensor is in partially or fully activated positions, and the ability to make robust single channel recordings from IKs channels has also revealed the complicated pore subconductance architecture during these opening steps, during inactivation, and regulation by 1−4 associated KCNE1 subunits. Experiments placing mutations into individual voltage sensors to drastically change voltage dependence or prevent their movement altogether have demonstrated that the activation of KCNQ1 alone and IKs can best be explained using allosteric models of channel gating. Finally, we discuss how the intrinsic gating properties of KCNQ1 and IKs are highly modulated through the impact of intracellular signaling molecules and co-factors such as PIP2, protein kinase A, calmodulin and ATP, all of which modulate IKs current kinetics and contribute to diverse IKs channel complex function.
Collapse
Affiliation(s)
- Yundi Wang
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Larupa Santos J, Rodríguez I, S. Olesen M, Hjorth Bentzen B, Schmitt N. Investigating gene-microRNA networks in atrial fibrillation patients with mitral valve regurgitation. PLoS One 2020; 15:e0232719. [PMID: 32392228 PMCID: PMC7213724 DOI: 10.1371/journal.pone.0232719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is predicted to affect around 17.9 million individuals in Europe by 2060. The disease is associated with severe electrical and structural remodelling of the heart, and increased the risk of stroke and heart failure. In order to improve treatment and find new drug targets, the field needs to better comprehend the exact molecular mechanisms in these remodelling processes. OBJECTIVES This study aims to identify gene and miRNA networks involved in the remodelling of AF hearts in AF patients with mitral valve regurgitation (MVR). METHODS Total RNA was extracted from right atrial biopsies from patients undergoing surgery for mitral valve replacement or repair with AF and without history of AF to test for differentially expressed genes and miRNAs using RNA-sequencing and miRNA microarray. In silico predictions were used to construct a mRNA-miRNA network including differentially expressed mRNAs and miRNAs. Gene and chromosome enrichment analysis were used to identify molecular pathways and high-density AF loci. RESULTS We found 644 genes and 43 miRNAs differentially expressed in AF patients compared to controls. From these lists, we identified 905 pairs of putative miRNA-mRNA interactions, including 37 miRNAs and 295 genes. Of particular note, AF-associated miR-130b-3p, miR-338-5p and miR-208a-3p were differentially expressed in our AF tissue samples. These miRNAs are predicted regulators of several differentially expressed genes associated with cardiac conduction and fibrosis. We identified two high-density AF loci in chromosomes 14q11.2 and 6p21.3. CONCLUSIONS AF in MVR patients is associated with down-regulation of ion channel genes and up-regulation of extracellular matrix genes. Other AF related genes are dysregulated and several are predicted to be targeted by miRNAs. Our novel miRNA-mRNA regulatory network provides new insights into the mechanisms of AF.
Collapse
Affiliation(s)
- Joana Larupa Santos
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ismael Rodríguez
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Morten S. Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Cardiology, Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen Ø, Denmark
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
20
|
Hou J, Huang S, Long Y, Huang J, Yang S, Yao J, Chen G, Yue Y, Liang M, Mei B, Li J, Wu Z. DACT2 regulates structural and electrical atrial remodeling in atrial fibrillation. J Thorac Dis 2020; 12:2039-2048. [PMID: 32642106 PMCID: PMC7330378 DOI: 10.21037/jtd-19-4206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Atrial fibrillation (AF) is the most common sustained arrhythmia. DACT2 is a novel and important mediator of signaling pathways. The aim of this study was to investigate the clinical significance and functions of DACT2 expression in AF. Methods Immunohistochemistry was used to detect the DACT2 expression pattern in valvular disease patients. DACT2 was overexpressed in HL-1 cells and primary atrial fibroblasts. The expression levels of the potassium channel, the L-type calcium current channel, sodium ion channel proteins and collagen proteins were detected by real-time polymerase chain reaction (RT-PCR). The proteins involved in the Wnt and TGF-β signaling pathways were detected after DACT2 overexpression by western blotting. Results DACT2 expression was significantly associated with AF (P=0.016). The fibrosis ratio in the strong DACT2 expression group was significantly lower than that in the weak DACT2 expression group (weak: 0.198±0.091, strong: 0.129±0.064, P=0.048), and a negative correlation between DACT2 expression levels and fibrosis severity was observed (Spearman rho =−0.476, P=0.010). DACT2 significantly increased the expression levels of KCNE5 and decreased the levels of KCNH2 and SCN5A. Overexpression of DACT2 significantly inhibited the expression of collagen I and collagen III in primary rat atrial fibroblasts. DACT2 could facilitate β-catenin accumulation by reducing its phosphorylation at Thr41/Ser45 in HL-1 cells and inhibit the TGF-β signaling pathway in primary atrial fibroblasts. Conclusions DACT2 played a role in AF by regulating both structural and electrical atrial remodeling and by affecting β-catenin accumulation and TGF-β signaling, and it could serve as a protective factor against AF in valvular heart disease.
Collapse
Affiliation(s)
- Jian Hou
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shaojie Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan Long
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaxing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Song Yang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jianping Yao
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guangxian Chen
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Yue
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengya Liang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Mei
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiawen Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Liu B, Shi X, Ding K, Lv M, Qian Y, Zhu S, Guo C, Zhang Y. The Joint Analysis of Multi-Omics Data Revealed the Methylation-Expression Regulations in Atrial Fibrillation. Front Bioeng Biotechnol 2020; 8:187. [PMID: 32226785 PMCID: PMC7080960 DOI: 10.3389/fbioe.2020.00187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2020] [Indexed: 02/05/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most prevalent heart rhythm disorder. The causes of AF include age, male sex, diabetes, hypertension, valve disease, and systolic/diastolic dysfunction. But on molecular level, its mechanisms are largely unknown. In this study, we collected 10 patients with persistent atrial fibrillation, 10 patients with paroxymal atrial fibrillation and 10 healthy individuals and did Methylation EPICBead Chip and RNA sequencing. By analyzing the methylation and gene expression data using machine learning based feature selection method Boruta, we identified the key genes that were strongly associated with AF and found their interconnections. The results suggested that the methylation of KIF15 may regulate the expression of PSMC3, TINAG, and NUDT6. The identified AF associated methylation-expression regulations may help understand the molecular mechanisms of AF from a multi-omics perspective.
Collapse
Affiliation(s)
- Ban Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Shi
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keke Ding
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengwei Lv
- Shanghai East Hospital of Clinical Medical College, Nanjing Medical University, Shanghai, China.,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Loss-of-Function Variants in Cytoskeletal Genes Are Associated with Early-Onset Atrial Fibrillation. J Clin Med 2020; 9:jcm9020372. [PMID: 32013268 PMCID: PMC7074234 DOI: 10.3390/jcm9020372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and it is associated with an increased risk of heart failure, stroke, dementia, and death. Recently, titin-truncating variants (TTNtv), which are predominantly associated with dilated cardiomyopathy (DCM), were associated with early-onset AF. Furthermore, genome-wide association studies (GWAS) associated AF with other structural genes. In this study, we investigated whether early-onset AF was associated with loss-of-function variants in DCM-associated genes encoding cytoskeletal proteins. Using targeted sequencing, we examined a cohort of 527 Scandinavian individuals with early-onset AF and a control group of individuals free of AF (n = 383). The patients had onset of AF before 50 years of age, normal echocardiogram, and no other cardiovascular disease at onset of AF. We identified six individuals with rare loss-of-function variants in three different genes (dystrophin (DMD), actin-associated LIM protein (PDLIM3), and fukutin (FKTN)), of which two variants were novel. Loss-of-function variants in cytoskeletal genes were significantly associated with early-onset AF when patients were compared with controls (p = 0.044). Using publicly available GWAS data, we performed genetic correlation analyses between AF and 13 other traits, e.g., showing genetic correlation between AF and non-ischemic cardiomyopathy (p = 0.0003). Our data suggest that rare loss-of-function variants in cytoskeletal genes previously associated with DCM may have a role in early-onset AF, perhaps through the development of an atrial cardiomyopathy.
Collapse
|
23
|
Okubo Y, Nakano Y, Ochi H, Onohara Y, Tokuyama T, Motoda C, Amioka M, Hironobe N, Okamura S, Ikeuchi Y, Miyauchi S, Chayama K, Kihara Y. Predicting atrial fibrillation using a combination of genetic risk score and clinical risk factors. Heart Rhythm 2020; 17:699-705. [PMID: 31931171 DOI: 10.1016/j.hrthm.2020.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/02/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) has a genetic basis, and environmental factors can modify its actual pathogenesis. OBJECTIVE The purpose of this study was to construct a combined risk assessment method including both genetic and clinical factors in the Japanese population. METHODS We screened a cohort of 540 AF patients and 520 non-AF controls for single nucleotide polymorphisms (SNPs) previously associated with AF by genome-wide association studies. The most strongly associated SNPs after propensity score analysis were then used to calculate a weighted genetic risk score (WGRS). We also enrolled 1018 non-AF Japanese subjects as a validation cohort and monitored AF emergence over several years. Finally, we constructed a logistic model for AF prediction combining WGRS and clinical risk factors. RESULTS We identified 5 SNPs (in PRRX1, ZFHX3, PITX2, HAND2, and NEURL1) associated with AF after Bonferroni correction. There was a 4.92-fold difference in AF risk between the highest and lowest WGRS calculated using these 5 SNPs (P = 2.32 × 10-10). Receiver operating characteristic analysis of WGRS yielded an area under the curve (AUC) of 0.73 for the screening cohort and 0.72 for the validation cohort. The predictive logistic model constructed using a combination of WGRS and AF clinical risk factors (age, body mass index, sex, and hypertension) demonstrated better discrimination of AF than WGRS alone (AUC = 0.84; sensitivity 75.4%; specificity 80.2%). CONCLUSION This novel predictive model of combined AF-associated SNPs and known clinical risk factors can accurately stratify AF risk in the Japanese population.
Collapse
Affiliation(s)
- Yousaku Okubo
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Hidenori Ochi
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan; Department of Health Management, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Yuko Onohara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takehito Tokuyama
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Chikaaki Motoda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Michitaka Amioka
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoya Hironobe
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Sho Okamura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoshihiro Ikeuchi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Syunsuke Miyauchi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuaki Chayama
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan; Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
24
|
Wu N, Li J, Chen X, Xiang Y, Wu L, Li C, Zhang H, Tong S, Zhong L, Li Y. Identification of Long Non-Coding RNA and Circular RNA Expression Profiles in Atrial Fibrillation. Heart Lung Circ 2019; 29:e157-e167. [PMID: 31843366 DOI: 10.1016/j.hlc.2019.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/24/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) and circular RNA (circRNA) have both been found to play important roles in cardiovascular diseases, including myocardial infarction, heart failure, and atherosclerosis. However, the role of lncRNA and circRNA in atrial fibrillation (AF) has rarely been investigated. This study aimed to identify lncRNA and circRNA expression profiles in AF patients. METHODS Atrial tissues from seven patients with AF and seven matched controls were collected. The lncRNA and circRNA expression profiles of atrial tissues were identified using Hiseq/Proton RNA sequencing. Validation was performed by reverse transcription quantitative real-time PCR (qRT-PCR) on 35 pairs of AF patients and controls. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. A competing endogenous RNA (ceRNA) network was constructed. RESULTS A total of 557 lncRNAs and 280 circRNAs were significantly differentially expressed with fold change >1.5 (p<0.05). An lncRNA Voltage Dependent Anion Channel 2 Pseudogene 2 (VDAC2P2) and two circRNAs chr13_41887361_41865736_-21625 and chr13_100368574_100301460_-67114 were validated, using qRT-PCR, to have significantly different expression levels. GO and KEGG pathway analysis showed that some pathways such as ribosome and chromatin modification, Rap1 signalling and cardiac muscle contraction were involved in the pathogenesis of AF. Competing endogenous RNAs were predicted based on constructional network analysis. The LncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks were constructed by co-expressing lncRNA/circRNA and mRNAs, which were competitively combined with miRNAs. CONCLUSION This study characterised lncRNA and circRNA expression and their interaction with mRNA and miRNA in AF.
Collapse
Affiliation(s)
- Na Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Jun Li
- Thoracic and Cardiac Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xinghua Chen
- Department of Cardiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Chengying Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Huan Zhang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Shifei Tong
- Cardiovascular Disease Center, Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Zhong
- Cardiovascular Disease Center, Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China; Evidence-based Medicine and Clinical Epidemiology Center, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
25
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
26
|
Zhong Y, Tang K, Li H, Zhao D, Kou W, Xu S, Zhang J, Yang H, Li S, Guo R, Peng W, Xu Y. Rs4968309 in Myosin Light Chain 4 (MYL4) Associated With Atrial Fibrillation Onset and Predicts Clinical Outcomes After Catheter Ablation in Atrial Fibrillation Patients Without Structural Heart Disease. Circ J 2019; 83:1994-2001. [PMID: 31406021 DOI: 10.1253/circj.cj-19-0415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia with serious complications and a high rate of recurrence after catheter ablation. Recently, mutation ofMYL4was reported as responsible for familial atrial cardiomyopathy and AF. This study aimed to determine the association between polymorphism inMYL4with the onset and recurrence of AF. METHODS AND RESULTS A total of 7 single-nucleotide polymorphisms were selected by linkage disequilibrium and genotyped in 510 consecutive AF patients and 192 controls without structural heart disease. A total of 246 AF patients who underwent cryoballoon ablation had a 1-year scheduled follow-up study for AF recurrence. C allele and CC genotype of rs4968309 and A allele of rs1515751were associated with AF onset both before and after adjustment of covariation (age, sex, hypertension, and diabetes). AF type and left atrial size were different among the genotypes of rs4968309. Moreover, CC genotype of rs4968309 increased susceptibly of AF recurrence after cryoballoon ablation. The prevalence of hypertension was associated with rs1515752, and left atrial size was associated with the genotype of rs2071438. CONCLUSIONS C allele and CC genotype of rs4968309 inMYL4were associated with AF onset and recurrence. Moreover, the A allele of rs1515751 had a significant association with AF onset. The polymorphisms ofMYL4can predict AF onset and prognosis after ablation in AF patients without structural heart disease.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Shaojie Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Jun Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Haotian Yang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Shuang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| |
Collapse
|
27
|
Devalla HD, Passier R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 2019; 10:10/435/eaah5457. [PMID: 29618562 DOI: 10.1126/scitranslmed.aah5457] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 07/15/2016] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Cellular models comprising cardiac cell types derived from human pluripotent stem cells are valuable for studying heart development and disease. We discuss transcriptional differences that define cellular identity in the heart, current methods for generating different cardiomyocyte subtypes, and implications for disease modeling, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands.
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands. .,Department of Applied Stem Cell Technologies, Technical Medical Center, University of Twente, 7500 AE Enschede, Netherlands
| |
Collapse
|
28
|
Cruz D, Pinto R, Freitas-Silva M, Nunes JP, Medeiros R. GWAS contribution to atrial fibrillation and atrial fibrillation-related stroke: pathophysiological implications. Pharmacogenomics 2019; 20:765-780. [PMID: 31368859 DOI: 10.2217/pgs-2019-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Atrial fibrillation (AF) and stroke are included in a group of complex traits that have been approached regarding of their study by susceptibility genetic determinants. Since 2007, several genome-wide association studies (GWAS) aiming to identify genetic variants modulating AF risk have been conducted. Thus, 11 GWAS have identified 26 SNPs (p < 5 × 10-2), of which 19 reached genome-wide significance (p < 5 × 10-8). From those variants, seven were also associated with cardioembolic stroke and three reached genome-wide significance in stroke GWAS. These associations may shed a light on putative shared etiologic mechanisms between AF and cardioembolic stroke. Additionally, some of these identified variants have been incorporated in genetic risk scores in order to elucidate new approaches of stroke prediction, prevention and treatment.
Collapse
Affiliation(s)
- Diana Cruz
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr António Bernardino de Almeida, 4200-4072 Porto, Portugal.,FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Pinto
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr António Bernardino de Almeida, 4200-4072 Porto, Portugal
| | - Margarida Freitas-Silva
- FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal.,Department of Medicine, Centro Hospitalar São João, Porto, Portugal
| | - José Pedro Nunes
- FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal.,Department of Medicine, Centro Hospitalar São João, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr António Bernardino de Almeida, 4200-4072 Porto, Portugal.,FMUP, Faculty of Medicine, Porto University, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal.,Research Department, Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação, 6657, 4200-172 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| |
Collapse
|
29
|
Szirák K, Soltész B, Hajas O, Urbancsek R, Nagy-Baló E, Penyige A, Csanádi Z, Nagy B. PITX2 and NEURL1 SNP polymorphisms in Hungarian atrial fibrillation patients determined by quantitative real-time PCR and melting curve analysis. J Biotechnol 2019; 299:44-49. [PMID: 31039368 DOI: 10.1016/j.jbiotec.2019.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1-2% of the general population. Some common variants located in or next to PITX2 and NEURL1 genes are proved to play role in the occurrence of AF. The aim of our study was to investigate whether rs2595104 in the 4q25 chromosome region and rs6584555 SNP in the NEURL1 gene on chromosome 10 is associated with AF in a Caucasian population. We genotyped DNA samples of 76 AF patients and 77 healthy controls using quantitative real-time PCR followed by melting curve analysis. The minor A allele frequency of rs2595104 in PITX2 was 0.38 and 0.44 in the control group and in AF patients, respectively. There was no significant difference in allele and genotype distribution between the two groups (p = 0.52). The allele frequency based log additive odds ratio is 1.22 (C.I. = 0.76-1.94; p = 0.42). The frequency of minor rs6584555 C allele in NEURL1 was 0.22 in the control group and 0.23 in AF patients. Again there were no significant differences in allele and genotype frequencies between AF patients and controls (p = 0.92). The log additive odds ratio is 1,15 (C.I. = 0.66-2.01; p = 0,63). The heterozygous genotype of rs2595104 had the highest frequency compared to the other genotypes in both groups. In case of the rs6584555 SNP the homozygous genotype of the major allele (TT) had the highest frequency in both groups (0.59). The frequency of homozygous genotype for risk allele had the lowest frequency for both SNPs [rs2595104 (AA): 0.19 in patients, 0.12 in controls; rs6584555 (CC): 0.05 in patients, 0.03 in controls]. We did not find significant association between SNP rs2595104 and rs6584555 andAF. We performed a protein-protein network analysis to assess functional connection among the protein products. The proteins coded by PITX2 and NEURL1 are connected indirectly via CTNNB1 and either JAG1 or DLL4 proteins. These interactive proteins are components of two major channels of cell communication pathways, the Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Krisztina Szirák
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Orsolya Hajas
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Réka Urbancsek
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Nagy-Baló
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Csanádi
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
30
|
Hunuk B, de Asmundis C, Mugnai G, Velagic V, Ströker E, Moran D, Ruggiero D, Hacioglu E, Umbrain V, Verborgh C, Beckers S, Poelaert J, Brugada P, Chierchia GB. Early repolarization pattern as a predictor of atrial fibrillation recurrence following radiofrequency pulmonary vein isolation. Ann Noninvasive Electrocardiol 2019; 24:e12627. [PMID: 30659704 DOI: 10.1111/anec.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/17/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Early repolarization patterns (ERP) have been found to be associated with poor cardiovascular end points. We aimed to evaluate the ERP prevalence among patients with structurally normal hearts undergoing radiofrequency (RF) pulmonary vein isolation (PVI) for paroxysmal atrial fibrillation (AF) ablation and its association with the AF recurrence. METHODS All consecutive patients who underwent RF-PVI as index procedure for paroxysmal AF in our center were evaluated. EXCLUSION CRITERIA structural heart disease, ongoing use of Class I/III antiarrhythmics, complete-bundle-branch-block. Lateral (I, aVL, V5 -V6 ), inferior (II, III, aVF), or infero-lateral (both) ERP were defined in baseline ECG as horizontal/downsloping J-point elevation ≥1 mm in two consecutive leads with QRS slurring/notching. Documented episodes of AF lasting ≥30 s were considered recurrence. RESULTS Of 701 cases, 434 patients (305 males, 58 ± 11 years) were included for analysis. ERP observed in 67 patients (15.4%) (Infero-lateral n = 26, inferior n = 23, lateral n = 18) which were significantly younger, demonstrating longer PR-interval and lower heart rates. At a mean follow-up of 22.1 ± 9.7 months, AF recurrences were found in 107 patients (24.6%). In middle-aged patients (≥40-<60 years; n = 206, 79% male), those with an infero-lateral ERP had higher recurrence compared with the ones without (56.3% vs. 19%; p = 0.002). Infero-lateral ERP was significantly predicting recurrence (HR 2.42, 95% CI 1.21-4.82; p = 0.01). CONCLUSION Early repolarization patterns was more prevalent in our AF population than in the general population. Infero-lateral ERP in baseline ECG might predict AF recurrence in the follow-up after RF-PVI in middle-aged patients.
Collapse
Affiliation(s)
- Burak Hunuk
- Department of Cardiology, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Giacomo Mugnai
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Vedran Velagic
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Darragh Moran
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Diego Ruggiero
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Ebru Hacioglu
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Vincent Umbrain
- Department of Anesthesiology, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Christian Verborgh
- Department of Anesthesiology, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Beckers
- Department of Anesthesiology, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Poelaert
- Department of Anesthesiology, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Pedro Brugada
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
31
|
Mairesse GH, Moran P, Van Gelder IC, Elsner C, Rosenqvist M, Mant J, Banerjee A, Gorenek B, Brachmann J, Varma N, Glotz de Lima G, Kalman J, Claes N, Lobban T, Lane D, Lip GYH, Boriani G. Screening for atrial fibrillation: a European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLAECE). Europace 2018; 19:1589-1623. [PMID: 29048522 DOI: 10.1093/europace/eux177] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/06/2017] [Indexed: 01/21/2023] Open
Affiliation(s)
- Georges H Mairesse
- Department of Cardiology, Cliniques du Sud-Luxembourg, 137 rue des déportés, B6700 Arlon, Belgium
| | - Patrick Moran
- Health Information and Quality Authority, George's Lane, Dublin 7, D07 E98Y, Ireland
| | - Isabelle C Van Gelder
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| | - Christian Elsner
- University Clinic Of Schleswig Holstein, Maria Goeppert Strasse 7a-b, Luebeck, 23538, Germany
| | | | - Jonathan Mant
- Primary Care Unit, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Amitava Banerjee
- University College London, Farr Institute of Health Informatics Research, 222 Euston Road, London, West Midlands NW1 2DA, United Kingdom
| | - Bulent Gorenek
- Eskisehir Osmangazi University, ESOGÜ Meselik Yerleskesi, 26480 ESKISEHIR, Turkey
| | - Johannes Brachmann
- Klinikum Coburg, Chefarzt der II. Medizinischen Klinik, Ketschendorfer Str. 33, Coburg, DE-96450, Germany
| | - Niraj Varma
- Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, Ohio 44195, USA
| | - Gustavo Glotz de Lima
- Instituto de Cardiologia do RS / FUC, Eletrofisiologia Dept., Av. Princesa Isabel 370, Porto Alegre, 90620-001, Brazil
| | - Jonathan Kalman
- The Royal Melbourne Hospital, Melbourne Heart Center, Royal Parade Suite 1, Parkville, Victoria, 3050, Australia
| | - Neree Claes
- University of Hasselt, Patient Safety in General Practice and Hospitals, Diepenbeek, Belgium, Antwerp Management School, Clinical Leadership, Antwerp, Belgium
| | - Trudie Lobban
- Arrhythmia Alliance & AF Association, Unit 6B, Essex House, Cromwell Business Park, Chipping Norton, Oxfordshire OX7 5SR, UK
| | - Deirdre Lane
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
| | - Gregory Y H Lip
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
| | - Giuseppe Boriani
- Cardiology Division, Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Policlinico di Modena, Largo del Pozzo, 71, 41125 Modena, Italy
| | | |
Collapse
|
32
|
Bai J, Gladding PA, Stiles MK, Fedorov VV, Zhao J. Ionic and cellular mechanisms underlying TBX5/PITX2 insufficiency-induced atrial fibrillation: Insights from mathematical models of human atrial cells. Sci Rep 2018; 8:15642. [PMID: 30353147 PMCID: PMC6199257 DOI: 10.1038/s41598-018-33958-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Transcription factors TBX5 and PITX2 involve in the regulation of gene expression of ion channels and are closely associated with atrial fibrillation (AF), the most common cardiac arrhythmia in developed countries. The exact cellular and molecular mechanisms underlying the increased susceptibility to AF in patients with TBX5/PITX2 insufficiency remain unclear. In this study, we have developed and validated a novel human left atrial cellular model (TPA) based on the ten Tusscher-Panfilov ventricular cell model to systematically investigate how electrical remodeling induced by TBX5/PITX2 insufficiency leads to AF. Using our TPA model, we have demonstrated that spontaneous diastolic depolarization observed in atrial myocytes with TBX5-deletion can be explained by altered intracellular calcium handling and suppression of inward-rectifier potassium current (IK1). Additionally, our computer simulation results shed new light on the novel cellular mechanism underlying AF by indicating that the imbalance between suppressed outward current IK1 and increased inward sodium-calcium exchanger current (INCX) resulted from SR calcium leak leads to spontaneous depolarizations. Furthermore, our simulation results suggest that these arrhythmogenic triggers can be potentially suppressed by inhibiting sarcoplasmic reticulum (SR) calcium leak and reversing remodeled IK1. More importantly, this study has clinically significant implications on the drugs used for maintaining SR calcium homeostasis, whereby drugs such as dantrolene may confer significant improvement for the treatment of AF patients with TBX5/PITX2 insufficiency.
Collapse
Affiliation(s)
- Jieyun Bai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
- School of Computer Science and Technology, Harbin Institute Technology, Harbin, China.
| | - Patrick A Gladding
- Department of Cardiology, Waitemata District Health Board, Auckland, New Zealand
| | | | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, United States of America
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
33
|
Association betweenGREM2 gene polymorphism with osteoporosis and osteopenia in postmenopausal women. Eur J Obstet Gynecol Reprod Biol 2018; 228:238-242. [DOI: 10.1016/j.ejogrb.2018.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/23/2018] [Accepted: 07/07/2018] [Indexed: 11/20/2022]
|
34
|
Rani U, Praveen Kumar KS, Munisamaiah M, Rajesh D, Balakrishna S. Atrial fibrillation associated genetic variation near PITX2 gene increases the risk of preeclampsia. Pregnancy Hypertens 2018; 13:214-217. [PMID: 30177054 DOI: 10.1016/j.preghy.2018.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/20/2018] [Accepted: 06/30/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVES SNP rs2200733 located near PITX2 gene is associated with the risk of atrial fibrillation. Preeclamptic women are at increased risk of developing cardiovascular disease like atrial fibrillation. Whether this translates into an association between SNP rs2200733 and preeclampsia is not known. Therefore, we determined the association of SNP rs2200733 (C/T) with the risk of preeclampsia. STUDY DESIGN A hospital based prospective case-control study involving 585 pregnant women of whom 285 were preeclamptic and 300 were normotensive. SNP rs2200733 was genotyped by PCR-RFLP method. MAIN OUTCOME MEASURES Statistical significance of the difference in the minor allele frequency between case and control groups was determined by Fisher's exact test. RESULTS Minor allele frequency was 21.4% among preeclamptic pregnant women and 13.7% among normotensive pregnant women (P = 0.00064; odds ratio = 1.72 (0.95 CI: 1.23-2.41). The measures of association were heterogeneous when compared after categorisation of the preeclamptic group into clinical sub-groups. The association was not significant with the eclampsia sub-group (P = 0.39) but relatively higher with the sub-group not superimposed by eclampsia (P = 0.0000048; odds ratio = 2.10 [0.95CI: 1.50-2.92]). Furthermore, the association was relatively higher with the sub-group involving intrauterine growth retardation and intrauterine death (P = 0.00017; odds ratio = 2.89 (0.95CI: 1.65-4.94)]. CONCLUSIONS Minor allele of SNP rs2200733 is associated with the risk of preeclampsia. SNP rs220073 may represent a common risk factor that predispose women to develop both preeclampsia during pregnancy and cardiovascular disease later on.
Collapse
Affiliation(s)
- Usha Rani
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka 563103, India
| | - K S Praveen Kumar
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka 563103, India
| | - Munikrishna Munisamaiah
- Department of Obstetrics and Gynaecology, Sri Devaraj Urs Medical College, Kolar, Karnataka 563103, India
| | - Deepa Rajesh
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka 563103, India.
| | - Sharath Balakrishna
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka 563103, India.
| |
Collapse
|
35
|
Value of multilocus genetic risk score for atrial fibrillation in end-stage kidney disease patients in a Polish population. Sci Rep 2018; 8:9284. [PMID: 29915175 PMCID: PMC6006310 DOI: 10.1038/s41598-018-27382-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic factors play a key role in the pathogenesis of atrial fibrillation (AF). We would like to establish an association between previously described single-nucleotide polymorphisms (SNPs) and AF in haemodialysed patients with end-stage kidney disease (ESKD-HD) as well as to assess the cumulative effect of all genotyped SNPs on AF risk. Sixteen SNPs were genotyped in 113 patients with AF-ESKD-HD and in 157 controls: without AF (NAF) and with ESKD-HD. The distribution of the risk alleles was compared in both groups and between different sub-phenotypes. The multilocus genetic risk score (GRS) was calculated to estimate the cumulative risk conferred by all SNPs. Several loci showed a trend toward an association with permanent AF (perm-AF): CAV1, Cx40 and PITX2. However, GRS was significantly higher in the AF and perm-AF groups, as compared to NAF. Three of the tested variables were independently associated with AF: male sex, history of myocardial infarction (MI) and GRS. The GRS, which combined 13 previously described SNPs, showed a significant and independent association with AF in a Polish population of patients with ESKD-HD and concomitant AF. Further studies on larger groups of patients are needed to confirm the associations.
Collapse
|
36
|
Abstract
The field of sports cardiology has advanced significantly over recent times. It has incorporated clinical and research advances in cardiac imaging, electrophysiology and exercise physiology to enable better diagnostic and therapeutic management of our patients. One important endeavour has been to try and better differentiate athletic cardiac remodelling from inherited cardiomyopathies and other pathologies. Whilst our diagnostic tools have improved, there have also been errors resulting from assumptions that the pathological traits observed in the general population would be generalisable to athletic populations. However, we have learnt that athletes with hypertrophic cardiomyopathy, for example, have many unique features when compared with non-athletic patients with hypertrophic cardiomyopathy. We are learning the limitations of cross-sectional observations and a greater number of prospective studies have been initiated which should enable us to more confidently interrogate the associations between exercise, cardiac remodelling and clinical outcomes. This review of the field enables some of the world's experts in sports cardiology to reflect on where there is a need for research focus to advance knowledge and clinical care in sports cardiology.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To describe recent findings regarding the role of rare and common genetic variants in atrial fibrillation. RECENT FINDINGS Atrial fibrillation is associated with several clinical risk factors and its development is affected by genetic background. To date, rare variants from more than 30 genes have been identified from studies of familial cases or individuals with lone atrial fibrillation. In addition to using the candidate gene approach for the identification of rare variants, next-generation sequencing approaches such as genomic, whole exome and targeted sequencing have been employed. Furthermore, evidence of association between common variants and atrial fibrillation has been discovered through genome-wide association studies. Although the power of any one single-nucleotide polymorphism (SNP) associated with atrial fibrillation is weak, a genetic risk score comprising 12 SNPs may identify individuals at an increased risk for atrial fibrillation. This SNP panel may also delineate genotypes to enable stratification of atrial fibrillation ablation therapy or periinterventional management. SUMMARY Although studies have demonstrated that atrial fibrillation is highly heritable, many aspects of atrial fibrillation remain unknown. Rigorous research efforts continue with the expectation that the contribution of variants and candidate genes that contribute to the overall genetic architecture of atrial fibrillation will be identified and characterized in the coming years.
Collapse
|
38
|
Preston CC, Wyles SP, Reyes S, Storm EC, Eckloff BW, Faustino RS. NUP155 insufficiency recalibrates a pluripotent transcriptome with network remodeling of a cardiogenic signaling module. BMC SYSTEMS BIOLOGY 2018; 12:62. [PMID: 29848314 PMCID: PMC5977756 DOI: 10.1186/s12918-018-0590-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 12/03/2022]
Abstract
BACKGROUND Atrial fibrillation is a cardiac disease driven by numerous idiopathic etiologies. NUP155 is a nuclear pore complex protein that has been identified as a clinical driver of atrial fibrillation, yet the precise mechanism is unknown. The present study employs a systems biology algorithm to identify effects of NUP155 disruption on cardiogenicity in a model of stem cell-derived differentiation. METHODS Embryonic stem (ES) cell lines (n = 5) with truncated NUP155 were cultured in parallel with wild type (WT) ES cells (n = 5), and then harvested for RNAseq. Samples were run on an Illumina HiSeq 2000. Reads were analyzed using Strand NGS, Cytoscape, DAVID and Ingenuity Pathways Analysis to deconvolute the NUP155-disrupted transcriptome. Network topological analysis identified key features that controlled framework architecture and functional enrichment. RESULTS In NUP155 truncated ES cells, significant expression changes were detected in 326 genes compared to WT. These genes segregated into clusters that enriched for specific gene ontologies. Deconvolution of the collective framework into discrete sub-networks identified a module with the highest score that enriched for Cardiovascular System Development, and revealed NTRK1/TRKA and SRSF2/SC35 as critical hubs within this cardiogenic module. CONCLUSIONS The strategy of pluripotent transcriptome deconvolution used in the current study identified a novel association of NUP155 with potential drivers of arrhythmogenic AF. Here, NUP155 regulates cardioplasticity of a sub-network embedded within a larger framework of genome integrity, and exemplifies how transcriptome cardiogenicity in an embryonic stem cell genome is recalibrated by nucleoporin dysfunction.
Collapse
Affiliation(s)
- Claudia C. Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N, Sioux Falls, SD 57104 USA
| | - Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Santiago Reyes
- Department of Surgery, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Emily C. Storm
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N, Sioux Falls, SD 57104 USA
| | - Bruce W. Eckloff
- Medical Genome Facility, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Randolph S. Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N, Sioux Falls, SD 57104 USA
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD 57105 USA
| |
Collapse
|
39
|
Büttner P, Ueberham L, Shoemaker MB, Roden DM, Dinov B, Hindricks G, Bollmann A, Husser D. Identification of Central Regulators of Calcium Signaling and ECM-Receptor Interaction Genetically Associated With the Progression and Recurrence of Atrial Fibrillation. Front Genet 2018; 9:162. [PMID: 29868113 PMCID: PMC5964985 DOI: 10.3389/fgene.2018.00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/20/2018] [Indexed: 01/04/2023] Open
Abstract
Atrial fibrillation (AF) is a multifactorial disease with a strong genetic background. It is assumed that common and rare genetic variants contribute to the progression and recurrence of AF. The pathophysiological impact of those variants, especially when they are synonymous or non-coding, is often elusive and translation into functional experiments is difficult. In this study, we propose a method to go straight from genetic variants to defined gene targets. We focused on 55 genes from calcium signaling and 26 genes from extra cellular matrix ECM–receptor interaction that we found to be associated with the progression and recurrence of AF. These genes were mapped on protein–protein interaction data from three different databases. Based on the concept that central regulators are highly connected with their neighbors, we identified central hub proteins according to random walk analysis derived scores representing interaction grade. Our approach resulted in the identification of EGFR, RYR2, and PRKCA (calcium signaling) and FN1 and LAMA1 (ECM–receptor interaction) which represent promising targets for further functional characterization or pharmaceutical intervention.
Collapse
Affiliation(s)
- Petra Büttner
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Laura Ueberham
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - M B Shoemaker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| |
Collapse
|
40
|
Denti F, Paludan-Müller C, Olesen SP, Haunsø S, Svendsen JH, Olesen MS, Bentzen BH, Schmitt N. Functional consequences of genetic variation in sodium channel modifiers in early onset lone atrial fibrillation. Per Med 2018; 15:93-102. [DOI: 10.2217/pme-2017-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: We investigated the effect of variants in genes encoding sodium channel modifiers SNTA1 and GPD1L found in early onset atrial fibrillation (AF) patients. Patients & methods: Genetic screening in patients with early onset lone AF revealed three variants in GPD1L and SNTA1 in three AF patients. Functional analysis was performed by patch-clamp electrophysiology. Results: Co-expression of GPD1L or its p.A326E variant with NaV1.5 did not alter INa density or current kinetics. SNTA1 shifted the peak-current by -5 mV. The SNTA1-p.A257G variant significantly increased INa. SNTA1-p.P74L did not produce functional changes. Conclusion: Although genetic variation of sodium channel modifiers may contribute to development of AF at a molecular level, it is unlikely a monogenic cause of the disease.
Collapse
Affiliation(s)
- Federico Denti
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Paludan-Müller
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Søren-Peter Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stig Haunsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health & Medical Sciences, University of Copenhagen, Denmark
| | - Jesper Hastrup Svendsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health & Medical Sciences, University of Copenhagen, Denmark
| | - Morten Salling Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Bo Hjorth Bentzen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Schmitt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Nielsen JB, Fritsche LG, Zhou W, Teslovich TM, Holmen OL, Gustafsson S, Gabrielsen ME, Schmidt EM, Beaumont R, Wolford BN, Lin M, Brummett CM, Preuss MH, Refsgaard L, Bottinger EP, Graham SE, Surakka I, Chu Y, Skogholt AH, Dalen H, Boyle AP, Oral H, Herron TJ, Kitzman J, Jalife J, Svendsen JH, Olesen MS, Njølstad I, Løchen ML, Baras A, Gottesman O, Marcketta A, O'Dushlaine C, Ritchie MD, Wilsgaard T, Loos RJF, Frayling TM, Boehnke M, Ingelsson E, Carey DJ, Dewey FE, Kang HM, Abecasis GR, Hveem K, Willer CJ. Genome-wide Study of Atrial Fibrillation Identifies Seven Risk Loci and Highlights Biological Pathways and Regulatory Elements Involved in Cardiac Development. Am J Hum Genet 2018; 102:103-115. [PMID: 29290336 DOI: 10.1016/j.ajhg.2017.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023] Open
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. The pathogenesis of AF remains poorly understood, which contributes to the current lack of highly effective treatments. To understand the genetic variation and biology underlying AF, we undertook a genome-wide association study (GWAS) of 6,337 AF individuals and 61,607 AF-free individuals from Norway, including replication in an additional 30,679 AF individuals and 278,895 AF-free individuals. Through genotyping and dense imputation mapping from whole-genome sequencing, we tested almost nine million genetic variants across the genome and identified seven risk loci, including two novel loci. One novel locus (lead single-nucleotide variant [SNV] rs12614435; p = 6.76 × 10-18) comprised intronic and several highly correlated missense variants situated in the I-, A-, and M-bands of titin, which is the largest protein in humans and responsible for the passive elasticity of heart and skeletal muscle. The other novel locus (lead SNV rs56202902; p = 1.54 × 10-11) covered a large, gene-dense chromosome 1 region that has previously been linked to cardiac conduction. Pathway and functional enrichment analyses suggested that many AF-associated genetic variants act through a mechanism of impaired muscle cell differentiation and tissue formation during fetal heart development.
Collapse
Affiliation(s)
- Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lars G Fritsche
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger 7600, Norway; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Wei Zhou
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Oddgeir L Holmen
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger 7600, Norway; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim 7491, Norway; Department of Cardiology, St. Olav's University Hospital, Trondheim 7030, Norway
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 75237, Sweden
| | - Maiken E Gabrielsen
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger 7600, Norway; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Ellen M Schmidt
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin Beaumont
- Royal Devon & Exeter NHS Foundation Trust and University of Exeter Barrack Road Exeter, Exeter EX2 5WD, UK
| | - Brooke N Wolford
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maoxuan Lin
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chad M Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael H Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lena Refsgaard
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunhan Chu
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger 7600, Norway; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Anne Heidi Skogholt
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger 7600, Norway; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Håvard Dalen
- Department of Cardiology, St. Olav's University Hospital, Trondheim 7030, Norway; Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger 7600, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hakan Oral
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Todd J Herron
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacob Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - José Jalife
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA; Fundacion Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Jesper H Svendsen
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Morten S Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark; Department of Biomedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Inger Njølstad
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Maja-Lisa Løchen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | | | | | | | | | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timothy M Frayling
- Royal Devon & Exeter NHS Foundation Trust and University of Exeter Barrack Road Exeter, Exeter EX2 5WD, UK
| | - Michael Boehnke
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 75237, Sweden; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Hyun M Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gonçalo R Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger 7600, Norway; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim 7491, Norway; Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger 7600, Norway.
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, Norwegian University of Science and Technology, Trondheim 7491, Norway; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Jabbari R, Jabbari J, Glinge C, Risgaard B, Sattler S, Winkel BG, Terkelsen CJ, Tilsted HH, Jensen LO, Hougaard M, Haunsø S, Engstrøm T, Albert CM, Tfelt-Hansen J. Association of common genetic variants related to atrial fibrillation and the risk of ventricular fibrillation in the setting of first ST-elevation myocardial infarction. BMC MEDICAL GENETICS 2017; 18:138. [PMID: 29162046 PMCID: PMC5699191 DOI: 10.1186/s12881-017-0497-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023]
Abstract
Background Cohort studies have revealed an increased risk for ventricular fibrillation (VF) and sudden cardiac death (SCD) in patients with atrial fibrillation (AF). In this study, we hypothesized that single nucleotide polymorphisms (SNP) previously associated with AF may be associated with the risk of VF caused by first ST-segment elevation myocardial infarction (STEMI). Methods We investigated association of 24 AF-associated SNPs with VF in the prospectively assembled case–control study among first STEMI-patients of Danish ancestry. Results We included 257 cases (STEMI with VF) and 537 controls (STEMI without VF). The median age at index infarction was 60 years for the cases and 61 years for the controls (p = 0.100). Compared to the control group, the case group was more likely to be male (86% vs. 75%, p = 0.001), have a history of AF (7% vs. 2%, p = 0.006) or hypercholesterolemia (39% vs. 31%, p = 0.023), and a family history of sudden death (40% vs. 25%, p < 0.001). All 24 selected SNPs have previously been associated with AF. None of the 24 SNPs were associated with the risk of VF after adjustment for age and sex under additive genetic model of inheritance in the logistic regression model. Conclusion In this study, we found that the 24 AF-associated SNPs may not be involved in increasing the risk of VF. Larger VF cohorts and use of new next generation sequencing and epigenetic may in future identify additional AF and VF risk loci and improve our understanding of genetic pathways behind the two arrhythmias.
Collapse
Affiliation(s)
- Reza Jabbari
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.
| | - Javad Jabbari
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Charlotte Glinge
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Bjarke Risgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Stefan Sattler
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Bo Gregers Winkel
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Christian Juhl Terkelsen
- Department of Cardiology, Aarhus University Hospital, Skejby, Nørrebrogade, 44, 8000, Aarhus C, Denmark
| | - Hans-Henrik Tilsted
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9100, Aalborg, Denmark
| | - Lisette Okkels Jensen
- Department of Cardiology, Odense University Hospital, Søndre Blvd. 29, 5000, Odense C, Denmark
| | - Mikkel Hougaard
- Department of Cardiology, Odense University Hospital, Søndre Blvd. 29, 5000, Odense C, Denmark
| | - Stig Haunsø
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,Laboratory of Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Juliane Mariesvej 20, 2100, Copenhagen Ø, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,Department of Cardiology, University of Lund, Lund, Sweden
| | - Christine M Albert
- Center for Arrhythmia Prevention, Division of Preventive Medicine, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jacob Tfelt-Hansen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
43
|
Jiang YY, Hou HT, Yang Q, Liu XC, He GW. Chloride Channels are Involved in the Development of Atrial Fibrillation - A Transcriptomic and proteomic Study. Sci Rep 2017; 7:10215. [PMID: 28860555 PMCID: PMC5579191 DOI: 10.1038/s41598-017-10590-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/11/2017] [Indexed: 11/23/2022] Open
Abstract
Electrical and structural remodeling processes are contributors to the self-perpetuating nature of atrial fibrillation (AF). However, their correlation has not been clarified. In this study, human atrial tissues from the patients with rheumatic mitral valve disease in either sinus rhythm or persistent AF were analyzed using a combined transcriptomic and proteomic approach. An up-regulation in chloride intracellular channel (CLIC) 1, 4, 5 and a rise in type IV collagen were revealed. Combined with the results from immunohistochemistry and electron microscope analysis, the distribution of type IV collagen and effects of fibrosis on myocyte membrane indicated the possible interaction between CLIC and type IV collagen, confirmed by protein structure prediction and co-immunoprecipitation. These results indicate that CLICs play an important role in the development of atrial fibrillation and that CLICs and structural type IV collagen may interact on each other to promote the development of AF in rheumatic mitral valve disease.
Collapse
Affiliation(s)
- Yi-Yao Jiang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
- The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China
| | - Hai-Tao Hou
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
| | - Qin Yang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
| | - Xiao-Cheng Liu
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, The Chinese Academy of Medical Sciences & Peking Union Medical College, & Nankai University, Tianjin, China.
- The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China.
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
44
|
Heijman J, Ghezelbash S, Dobrev D. Investigational antiarrhythmic agents: promising drugs in early clinical development. Expert Opin Investig Drugs 2017; 26:897-907. [PMID: 28691539 PMCID: PMC6324729 DOI: 10.1080/13543784.2017.1353601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Although there have been important technological advances for the treatment of cardiac arrhythmias (e.g., catheter ablation technology), antiarrhythmic drugs (AADs) remain the cornerstone therapy for the majority of patients with arrhythmias. Most of the currently available AADs were coincidental findings and did not result from a systematic development process based on known arrhythmogenic mechanisms and specific targets. During the last 20 years, our understanding of cardiac electrophysiology and fundamental arrhythmia mechanisms has increased significantly, resulting in the identification of new potential targets for mechanism-based antiarrhythmic therapy. Areas covered: Here, we review the state-of-the-art in arrhythmogenic mechanisms and AAD therapy. Thereafter, we focus on a number of antiarrhythmic targets that have received significant attention recently: atrial-specific K+-channels, the late Na+-current, the cardiac ryanodine-receptor channel type-2, and the small-conductance Ca2+-activated K+-channel. We highlight for each of these targets available antiarrhythmic agents and the evidence for their antiarrhythmic effect in animal models and early clinical development. Expert opinion: Targeting AADs to specific subgroups of well-phenotyped patients is likely necessary to detect improved outcomes that may be obscured in the population at large. In addition, specific combinations of selective AADs may have synergistic effects and may enable a mechanism-based tailored antiarrhythmic therapy.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Lourenço AP, Leite-Moreira AF. Cardiovascular precision medicine: Bad news from the front? Porto Biomed J 2017; 2:99-101. [PMID: 32258597 PMCID: PMC6806969 DOI: 10.1016/j.pbj.2017.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022] Open
Affiliation(s)
- André P Lourenço
- Department of Surgery and Physiology, Cardiovascular Research Centre, Faculty of Medicine of the University of Porto, Portugal
- Department of Anaesthesiology, São João Hospital Centre, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular Research Centre, Faculty of Medicine of the University of Porto, Portugal
- Department of Cardiothoracic Surgery, São João Hospital Centre, Porto, Portugal
| |
Collapse
|
46
|
Trenkwalder T, Kessler T, Schunkert H. [Genetic testing in polygenic diseases : Atrial fibrillation, arterial hypertension and coronary artery disease]. Herz 2017; 42:440-448. [PMID: 28536780 DOI: 10.1007/s00059-017-4576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic testing plays an increasing role in cardiovascular medicine. Advances in technology and the development of novel and more affordable (high throughput) methods have led to the identification of genetic risk factors in research and clinical practice. Also, this progress has simplified the screening of patients and individuals at risk. In case of rare monogenic diseases, diagnostics, risk stratification, and, in some cases, treatment decisions have become easier. For common, polygenic cardiovascular diseases, the situation is more complex due to interaction of modifiable external risk factors and nonmodifiable factors like genetic predisposition. Over the last few years, it has been shown that multiple genes are involved in the pathophysiology of these cardiovascular diseases rather than one single gene. In the following article, we give an overview of the genetic risk factors in polygenic cardiovascular diseases as atrial fibrillation, arterial hypertension and coronary artery disease. Furthermore, we aim to illustrate in which cases genetic testing is recommended in these diseases.
Collapse
Affiliation(s)
- T Trenkwalder
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstr. 36, 80636, München, Deutschland
| | - T Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstr. 36, 80636, München, Deutschland.
| | - H Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstr. 36, 80636, München, Deutschland
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e. V., Munich Heart Alliance, München, Deutschland
| |
Collapse
|
47
|
Gregers E, Ahlberg G, Christensen T, Jabbari J, Larsen KO, Herfelt CB, Henningsen KM, Andreasen L, Thiis JJ, Lund J, Holme S, Haunsø S, Bentzen BH, Schmitt N, Svendsen JH, Olesen MS. Deep sequencing of atrial fibrillation patients with mitral valve regurgitation shows no evidence of mosaicism but reveals novel rare germline variants. Heart Rhythm 2017; 14:1531-1538. [PMID: 28549997 DOI: 10.1016/j.hrthm.2017.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common cardiac arrhythmia. Valvular heart disease is a strong predictor, yet the underlying molecular mechanisms are unknown. OBJECTIVE The purpose of this study was to investigate the prevalence of somatic variants in AF candidate genes in an AF patient population undergoing surgery for mitral valve regurgitation (MVR) to determine whether these patients are genetically predisposed to AF. METHODS DNA was extracted from blood and left atrial tissue from 44 AF patients with MVR. Using next-generation sequencing, we investigated 110 genes using the HaloPlex Target Enrichment System. MuTect software was used for identification of somatic point variants. We functionally characterized selected variants using electrophysiologic techniques. RESULTS No somatic variants were identified in the cardiac tissue. Thirty-three patients (75%) had a rare germline variation in ≥1 candidate genes. Fourteen variants were novel. Fifteen variants were predicted damaging or likely damaging in ≥6 in silico predictions. We identified rare variants in genes never directly associated with AF: KCNE4, SCN4B, NEURL1, and CAND2. Interestingly, 7 patients (16%) had variants in genes involved in cellular potassium handling. The variants KCNQ1 (p.G272S) and KCNH2 (p.A913V) resulted in gain of function due to faster activation (KCNQ1) and slowed deactivation kinetics (KCNQ1, KCNH2). CONCLUSION We did not find any somatic variants in patients with AF and MVR. Surprisingly, we found that our cohort of non-lone AF patients might, like lone AF patients, be predisposed to AF by rare germline variants. Our findings emphasize the extent of still unknown factors in the pathogenesis of AF.
Collapse
Affiliation(s)
- Emilie Gregers
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gustav Ahlberg
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thea Christensen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Javad Jabbari
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine O Larsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie B Herfelt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer M Henningsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Andreasen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Thiis
- Department of Cardiothoracic Surgery, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Department of Cardiothoracic Surgery, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Holme
- Department of Cardiothoracic Surgery, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stig Haunsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo H Bentzen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Schmitt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper H Svendsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Morten S Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Sigurdsson MI, Saddic L, Heydarpour M, Chang TW, Shekar P, Aranki S, Couper GS, Shernan SK, Muehlschlegel JD, Body SC. Post-operative atrial fibrillation examined using whole-genome RNA sequencing in human left atrial tissue. BMC Med Genomics 2017; 10:25. [PMID: 28464817 PMCID: PMC5414158 DOI: 10.1186/s12920-017-0270-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/25/2017] [Indexed: 01/02/2023] Open
Abstract
Background Both ambulatory atrial fibrillation (AF) and post-operative AF (poAF) are associated with substantial morbidity and mortality. Analyzing the tissue-specific gene expression in the left atrium (LA) can identify novel genes associated with AF and further the understanding of the mechanism by which previously identified genetic variants associated with AF mediate their effects. Methods LA free wall samples were obtained intraoperatively immediately prior to mitral valve surgery in 62 Caucasian individuals. Gene expression was quantified on mRNA harvested from these samples using RNA sequencing. An expression quantitative trait loci (eQTL) analysis was performed, comparing gene expression between different genotypes of 1.0 million genetic markers, emphasizing genomic regions and genes associated with AF. Results Comparison of whole-genome expression between patients who later developed poAF and those who did not identified 23 differentially expressed genes. These included genes associated with the resting membrane potential modified by potassium currents, as well as genes within Wnt signaling and cyclic GMP metabolism. The eQTL analysis identified 16,139 cis eQTL relationships in the LA, including several involving genes and single nucleotide polymorphisms (SNPs) linked to AF. A previous relationship between rs3744029 and MYOZ1 expression was confirmed, and a novel relationship between rs6795970 and the expression of the SCN10A gene was identified. Conclusions The current study is the first analysis of the human LA expression landscape using high-throughput RNA sequencing. Several novel genes and variants likely involved in AF pathogenesis were identified, thus furthering the understanding of how variants associated with AF mediate their effects via altered gene expression. Trial registration ClinicalTrials.gov ID: NCT00833313, registered 5. January 2009 Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0270-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin I Sigurdsson
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Louis Saddic
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Tzuu-Wang Chang
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Prem Shekar
- Division of Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Sary Aranki
- Division of Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Gregory S Couper
- Division of Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Stanton K Shernan
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|
49
|
Proost D, Saenen J, Vandeweyer G, Rotthier A, Alaerts M, Van Craenenbroeck EM, Van Crombruggen J, Mortier G, Wuyts W, Vrints C, Del Favero J, Loeys B, Van Laer L. Targeted Next-Generation Sequencing of 51 Genes Involved in Primary Electrical Disease. J Mol Diagn 2017; 19:445-459. [DOI: 10.1016/j.jmoldx.2017.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 01/18/2023] Open
|
50
|
Lee JY, Kim TH, Yang PS, Lim HE, Choi EK, Shim J, Shin E, Uhm JS, Kim JS, Joung B, Oh S, Lee MH, Kim YH, Pak HN. Korean atrial fibrillation network genome-wide association study for early-onset atrial fibrillation identifies novel susceptibility loci. Eur Heart J 2017; 38:2586-2594. [DOI: 10.1093/eurheartj/ehx213] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 04/06/2017] [Indexed: 11/14/2022] Open
|