1
|
Zenker M, Mohnike K, Palm K. Syndromic forms of congenital hyperinsulinism. Front Endocrinol (Lausanne) 2023; 14:1013874. [PMID: 37065762 PMCID: PMC10098214 DOI: 10.3389/fendo.2023.1013874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Congenital hyperinsulinism (CHI), also called hyperinsulinemic hypoglycemia (HH), is a very heterogeneous condition and represents the most common cause of severe and persistent hypoglycemia in infancy and childhood. The majority of cases in which a genetic cause can be identified have monogenic defects affecting pancreatic β-cells and their glucose-sensing system that regulates insulin secretion. However, CHI/HH has also been observed in a variety of syndromic disorders. The major categories of syndromes that have been found to be associated with CHI include overgrowth syndromes (e.g. Beckwith-Wiedemann and Sotos syndromes), chromosomal and monogenic developmental syndromes with postnatal growth failure (e.g. Turner, Kabuki, and Costello syndromes), congenital disorders of glycosylation, and syndromic channelopathies (e.g. Timothy syndrome). This article reviews syndromic conditions that have been asserted by the literature to be associated with CHI. We assess the evidence of the association, as well as the prevalence of CHI, its possible pathophysiology and its natural course in the respective conditions. In many of the CHI-associated syndromic conditions, the mechanism of dysregulation of glucose-sensing and insulin secretion is not completely understood and not directly related to known CHI genes. Moreover, in most of those syndromes the association seems to be inconsistent and the metabolic disturbance is transient. However, since neonatal hypoglycemia is an early sign of possible compromise in the newborn, which requires immediate diagnostic efforts and intervention, this symptom may be the first to bring a patient to medical attention. As a consequence, HH in a newborn or infant with associated congenital anomalies or additional medical issues remains a differential diagnostic challenge and may require a broad genetic workup.
Collapse
Affiliation(s)
- Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Martin Zenker,
| | - Klaus Mohnike
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katja Palm
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Fashina A, Busch T, Young M, Adamson O, Awotoye W, Alade A, Adeleke C, Hassan M, Oladayo AM, Gowans LJJ, Eshete M, Naicker T, Olotu J, Adeyemo WL, Butali A. Investigating the relationship between cancer and orofacial clefts using GWAS significant loci for cancers: A case-control and case-triad study. FRONTIERS IN ORAL HEALTH 2022; 3:915361. [PMID: 35990505 PMCID: PMC9388935 DOI: 10.3389/froh.2022.915361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSeveral population-based case-control studies have reported concurrent presentation of cancer and congenital malformations. Many associations have been made between oral clefting and cancers, though some of these results are conflicting. Some studies have reported an increased risk of cancer among 1st-degree relatives of cleft cases and vice versa, and also an excess risk of cancers of the breast, lung, and brain among those with oral clefts. This study aimed to determine if the genetic polymorphisms found in some cancers are also associated with orofacial cleft in an African cohort.MethodsThe study was a case-control and case-triad study in which cases were 400 individuals clinically diagnosed with non-syndromic cleft lip and/or palate (CL/P), while controls were 450 individuals without CL/P. Samples were obtained from three African countries while DNA extraction, PCR, and genotyping were carried out at the University of Iowa, US. Eleven SNPs in genes coding for SWI/SNF subunits and 13 GWAS significant SNPs for cancers associated with orofacial cleft were selected. Case-control analysis, transmission disequilibrium test (TDT), and DFAM to combine the parent-offspring trio data and unrelated case/control data in a single analysis were carried out using PLINK.ResultsFor the case-control analyses that included all the clefts and for the CLP subtype, none of the SNPs were statistically significant. Statistically increased risk for the following SNPs rs34775372 (p = 0.02; OR = 1.54, CI:1.07–2.22), rs55658222 (p = 0.009; OR = 2.64, CI:1.28–5.45) and rs72728755 (p = 0.02; OR=2.27, CI:1.17–4.45) was observed with the CL only sub-group. None of these were significant after Bonferoni correction. In the TDT analyses, a significantly reduced risk with rs10941679 (p = 0.003; OR = 0.43, CI:0.24–0.75) was observed and this was significant after Bonferroni correction. The rs10941679 was also significant (p = 0.003) in the DFAM analyses as well even after Bonferroni correction.ConclusionThe results from this study represent an important starting point for understanding the concurrent presentation of some cancers in orofacial clefts, and cancer risks in cleft patients. The associations observed warrant further investigation in a larger cohort and will set the stage for a more mechanistic approach toward understanding the risk for cancers in families with clefts.
Collapse
Affiliation(s)
- Azeez Fashina
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
- *Correspondence: Azeez Fashina
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, IA, United States
| | - Mary Young
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
| | - Olawale Adamson
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Waheed Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, IA, United States
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, IA, United States
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
| | - Mohaned Hassan
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
| | - Abimbola M. Oladayo
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, IA, United States
| | - Lord J. J. Gowans
- Komfo Anokye Teaching Hospital, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mekonen Eshete
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thirona Naicker
- School of Clinical Medicine, KwaZulu-Natal University, Durban, South Africa
| | - Joy Olotu
- Department of Anatomy, University of Port Harcourt, Port Harcourt, Nigeria
| | - Wasiu L. Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Paulsen B, Velasco S, Kedaigle AJ, Pigoni M, Quadrato G, Deo AJ, Adiconis X, Uzquiano A, Sartore R, Yang SM, Simmons SK, Symvoulidis P, Kim K, Tsafou K, Podury A, Abbate C, Tucewicz A, Smith SN, Albanese A, Barrett L, Sanjana NE, Shi X, Chung K, Lage K, Boyden ES, Regev A, Levin JZ, Arlotta P. Autism genes converge on asynchronous development of shared neuron classes. Nature 2022; 602:268-273. [PMID: 35110736 PMCID: PMC8852827 DOI: 10.1038/s41586-021-04358-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Genetic risk for autism spectrum disorder (ASD) is associated with hundreds of genes spanning a wide range of biological functions1-6. The alterations in the human brain resulting from mutations in these genes remain unclear. Furthermore, their phenotypic manifestation varies across individuals7,8. Here we used organoid models of the human cerebral cortex to identify cell-type-specific developmental abnormalities that result from haploinsufficiency in three ASD risk genes-SUV420H1 (also known as KMT5B), ARID1B and CHD8-in multiple cell lines from different donors, using single-cell RNA-sequencing (scRNA-seq) analysis of more than 745,000 cells and proteomic analysis of individual organoids, to identify phenotypic convergence. Each of the three mutations confers asynchronous development of two main cortical neuronal lineages-γ-aminobutyric-acid-releasing (GABAergic) neurons and deep-layer excitatory projection neurons-but acts through largely distinct molecular pathways. Although these phenotypes are consistent across cell lines, their expressivity is influenced by the individual genomic context, in a manner that is dependent on both the risk gene and the developmental defect. Calcium imaging in intact organoids shows that these early-stage developmental changes are followed by abnormal circuit activity. This research uncovers cell-type-specific neurodevelopmental abnormalities that are shared across ASD risk genes and are finely modulated by human genomic context, finding convergence in the neurobiological basis of how different risk genes contribute to ASD pathology.
Collapse
Affiliation(s)
- Bruna Paulsen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Silvia Velasco
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Amanda J Kedaigle
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martina Pigoni
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Giorgia Quadrato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anthony J Deo
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Rutgers University Behavioral Health Care, Piscataway, NJ, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ana Uzquiano
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rafaela Sartore
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sung Min Yang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Panagiotis Symvoulidis
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Kwanho Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kalliopi Tsafou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Archana Podury
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Harvard-MIT Health Sciences & Technology Program (HST), Harvard Medical School, Boston, MA, USA
| | - Catherine Abbate
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley Tucewicz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samantha N Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandre Albanese
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lindy Barrett
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neville E Sanjana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Xi Shi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Departments of Chemical Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- New York Genome Center, New York, NY, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Edward S Boyden
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Harvard-MIT Health Sciences & Technology Program (HST), Harvard Medical School, Boston, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Department of Brain of Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Pagliaroli L, Trizzino M. The Evolutionary Conserved SWI/SNF Subunits ARID1A and ARID1B Are Key Modulators of Pluripotency and Cell-Fate Determination. Front Cell Dev Biol 2021; 9:643361. [PMID: 33748136 PMCID: PMC7969888 DOI: 10.3389/fcell.2021.643361] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Organismal development is a process that requires a fine-tuned control of cell fate and identity, through timely regulation of lineage-specific genes. These processes are mediated by the concerted action of transcription factors and protein complexes that orchestrate the interaction between cis-regulatory elements (enhancers, promoters) and RNA Polymerase II to elicit transcription. A proper understanding of these dynamics is essential to elucidate the mechanisms underlying developmental diseases. Many developmental disorders, such as Coffin-Siris Syndrome, characterized by growth impairment and intellectual disability are associated with mutations in subunits of the SWI/SNF chromatin remodeler complex, which is an essential regulator of transcription. ARID1B and its paralog ARID1A encode for the two largest, mutually exclusive, subunits of the complex. Mutations in ARID1A and, especially, ARID1B are recurrently associated with a very wide array of developmental disorders, suggesting that these two SWI/SNF subunits play an important role in cell fate decision. In this mini-review we therefore discuss the available scientific literature linking ARID1A and ARID1B to cell fate determination, pluripotency maintenance, and organismal development.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Barish S, Barakat TS, Michel BC, Mashtalir N, Phillips JB, Valencia AM, Ugur B, Wegner J, Scott TM, Bostwick B, Murdock DR, Dai H, Perenthaler E, Nikoncuk A, van Slegtenhorst M, Brooks AS, Keren B, Nava C, Mignot C, Douglas J, Rodan L, Nowak C, Ellard S, Stals K, Lynch SA, Faoucher M, Lesca G, Edery P, Engleman KL, Zhou D, Thiffault I, Herriges J, Gass J, Louie RJ, Stolerman E, Washington C, Vetrini F, Otsubo A, Pratt VM, Conboy E, Treat K, Shannon N, Camacho J, Wakeling E, Yuan B, Chen CA, Rosenfeld JA, Westerfield M, Wangler M, Yamamoto S, Kadoch C, Scott DA, Bellen HJ. BICRA, a SWI/SNF Complex Member, Is Associated with BAF-Disorder Related Phenotypes in Humans and Model Organisms. Am J Hum Genet 2020; 107:1096-1112. [PMID: 33232675 PMCID: PMC7820627 DOI: 10.1016/j.ajhg.2020.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.
Collapse
Affiliation(s)
- Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Brittany C Michel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nazar Mashtalir
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Alfredo M Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology Program, Harvard University, Cambridge, MA 02138, USA
| | - Berrak Ugur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeremy Wegner
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Tiana M Scott
- Department of Microbiology and Molecular Biology, College of Life Science, Brigham Young University, Provo, UT 84602, USA
| | - Brett Bostwick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique and Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, 75006 Paris, France
| | - Caroline Nava
- APHP Sorbonne Université, Département de Génétique and Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, 75006 Paris, France
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique and Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, 75006 Paris, France
| | - Jessica Douglas
- Department of Pediatrics, Boston Children's at Waltham, Waltham, MA 02453, USA
| | - Lance Rodan
- Department of Pediatrics, Boston Children's at Waltham, Waltham, MA 02453, USA
| | - Catherine Nowak
- Department of Pediatrics, Boston Children's at Waltham, Waltham, MA 02453, USA
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK
| | - Sally Ann Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin D12 N512, Ireland
| | - Marie Faoucher
- Department of Medical Genetics, Lyon University Hospital, Université Claude bernard Lyon 1, Lyon 69100, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Université Claude bernard Lyon 1, Lyon 69100, France
| | - Patrick Edery
- Department of Medical Genetics, Lyon University Hospital, Université Claude bernard Lyon 1, Lyon 69100, France
| | - Kendra L Engleman
- Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Dihong Zhou
- Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Isabelle Thiffault
- Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - John Herriges
- Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Jennifer Gass
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Raymond J Louie
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Elliot Stolerman
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Camerun Washington
- Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646, USA
| | - Francesco Vetrini
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Aiko Otsubo
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Victoria M Pratt
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Erin Conboy
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Kayla Treat
- Department of Clinical Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Nora Shannon
- Regional Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
| | - Jose Camacho
- Pediatric Genetics and Metabolism, Loma Linda University Children's Hospital, Loma Linda, CA 92354, USA
| | - Emma Wakeling
- Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Monte Westerfield
- Department of Biology, University of Oregon, Eugene, OR 97403, USA; Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Michael Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Beighley JS, Hudac CM, Arnett AB, Peterson JL, Gerdts J, Wallace AS, Mefford HC, Hoekzema K, Turner TN, O'Roak BJ, Eichler EE, Bernier RA. Clinical Phenotypes of Carriers of Mutations in CHD8 or Its Conserved Target Genes. Biol Psychiatry 2020; 87:123-131. [PMID: 31526516 PMCID: PMC6925323 DOI: 10.1016/j.biopsych.2019.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Variants disruptive to CHD8 (which codes for the protein CHD8 [chromodomain-helicase-DNA-binding protein 8]) are among the most common mutations revealed by exome sequencing in autism spectrum disorder (ASD). Recent work has indicated that CHD8 plays a role in the regulation of other ASD-risk genes. However, it is unclear whether a possible shared genetic ontology extends to the phenotype. METHODS This study (N = 143; 42.7% female participants) investigated clinical and behavioral features of individuals ascertained for the presence of a known disruptive ASD-risk mutation that is 1) CHD8 (CHD8 group) (n = 15), 2) a gene targeted by CHD8 (target group) (n = 22), or 3) a gene without confirmed evidence of being targeted by CHD8 (other gene group) (n = 106). RESULTS Results indicated shared features between the CHD8 and target groups that included less severe adaptive deficits in communication skills, similar functional language, more social motivation challenges in those with ASD, larger head circumference, higher weight, and lower seizure prevalence relative to the other gene group. CONCLUSIONS These similarities suggest broader genetic ontology accounts for aspects of phenotypic heterogeneity. Improved understanding of the relationships between related disruptive gene events may lead us to improved understanding of shared mechanisms and lead to more focused treatments for individuals with known genetic mutations.
Collapse
Affiliation(s)
- Jennifer S Beighley
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington.
| | - Caitlin M Hudac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Anne B Arnett
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Jessica L Peterson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Arianne S Wallace
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Tychele N Turner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Brian J O'Roak
- Department of Molecular & Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington; Howard Hughes Medical Institute, Seattle Children's Autism Center, Seattle, Washington
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington; Center for Child Health, Behavior, and Disabilities, Seattle Children's Autism Center, Seattle, Washington.
| |
Collapse
|
7
|
Pascolini G, Valiante M, Bottillo I, Laino L, Fleischer N, Ferraris A, Grammatico P. Striking phenotypic overlap between Nicolaides-Baraitser and Coffin-Siris syndromes in monozygotic twins with ARID1B intragenic deletion. Eur J Med Genet 2019; 63:103739. [PMID: 31421289 DOI: 10.1016/j.ejmg.2019.103739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/05/2019] [Accepted: 08/13/2019] [Indexed: 11/15/2022]
Abstract
The chromatin remodeling AT-Rich interaction domain containing 1B protein (ARID1B) also known as BAF-associated factor, 250-KD, B (BAF250B) codified by the ARID1B gene (MIM#614556), is a small subunit of the mammalian SWI/SNF or BAF complex, an ATP-dependent protein machinery which is able to activate or repress gene transcription, allowing protein access to histones through DNA relaxed conformation. ARID1B gene mutations have been associated with two hereditary syndromic conditions, namely Coffin-Siris (CSS, MIM#135900) and Nicolaides-Baraitser syndromes (NCBRS, MIM#601358), characterized by neurodevelopment delay, craniofacial dysmorphisms and skeletal anomalies. Furthermore, intellectual impairment and central nervous system (CNS) alterations, comprising abnormal corpus callosum, have been associated with mutations in this gene. Moreover, ARID1B anomalies resulted to be involved in neoplastic events and Hirschprung disease. Here we report on two monozygotic male twins, displaying clinical appearance strikingly resembling NCBRS and CSS phenotype, who resulted carriers of a novel 6q25.3 microdeletion, encompassing only part of the ARID1B gene. The deleted segment was not inherited from the only parent tested and afflicted the first exons of the gene, coding for protein disordered region. We also provide, for the first time, a review of previously published ARID1B mutated patients with NCBRS and CSS phenotype and a computer-assisted dysmorphology analysis of NCBRS and ARID1B related CSS individuals, through the Face2Gene suite, confirming the existence of highly overlapping facial gestalt of both conditions. The present findings indicate that ARID1B could be considered a contributing gene not only in CSS but also in NCBRS phenotype, although the main gene related to this latter condition is the SMARCA2 gene (MIM#600014), another component of the BAF complex. So, ARID1B study should be considered in such individuals.
Collapse
Affiliation(s)
- Giulia Pascolini
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Michele Valiante
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Irene Bottillo
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Luigi Laino
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | | | - Alessandro Ferraris
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Paola Grammatico
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
8
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Marques P, Korbonits M. Pseudoacromegaly. Front Neuroendocrinol 2019; 52:113-143. [PMID: 30448536 DOI: 10.1016/j.yfrne.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023]
Abstract
Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly - usually affecting the face and extremities -, or gigantism - accelerated growth/tall stature - will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
10
|
van der Sluijs PJ, Jansen S, Vergano SA, Adachi-Fukuda M, Alanay Y, AlKindy A, Baban A, Bayat A, Beck-Wödl S, Berry K, Bijlsma EK, Bok LA, Brouwer AFJ, van der Burgt I, Campeau PM, Canham N, Chrzanowska K, Chu YWY, Chung BHY, Dahan K, De Rademaeker M, Destree A, Dudding-Byth T, Earl R, Elcioglu N, Elias ER, Fagerberg C, Gardham A, Gener B, Gerkes EH, Grasshoff U, van Haeringen A, Heitink KR, Herkert JC, den Hollander NS, Horn D, Hunt D, Kant SG, Kato M, Kayserili H, Kersseboom R, Kilic E, Krajewska-Walasek M, Lammers K, Laulund LW, Lederer D, Lees M, López-González V, Maas S, Mancini GMS, Marcelis C, Martinez F, Maystadt I, McGuire M, McKee S, Mehta S, Metcalfe K, Milunsky J, Mizuno S, Moeschler JB, Netzer C, Ockeloen CW, Oehl-Jaschkowitz B, Okamoto N, Olminkhof SNM, Orellana C, Pasquier L, Pottinger C, Riehmer V, Robertson SP, Roifman M, Rooryck C, Ropers FG, Rosello M, Ruivenkamp CAL, Sagiroglu MS, Sallevelt SCEH, Sanchis Calvo A, Simsek-Kiper PO, Soares G, Solaeche L, Sonmez FM, Splitt M, Steenbeek D, Stegmann APA, Stumpel CTRM, Tanabe S, Uctepe E, Utine GE, Veenstra-Knol HE, Venkateswaran S, Vilain C, Vincent-Delorme C, Vulto-van Silfhout AT, Wheeler P, Wilson GN, Wilson LC, Wollnik B, Kosho T, Wieczorek D, et alvan der Sluijs PJ, Jansen S, Vergano SA, Adachi-Fukuda M, Alanay Y, AlKindy A, Baban A, Bayat A, Beck-Wödl S, Berry K, Bijlsma EK, Bok LA, Brouwer AFJ, van der Burgt I, Campeau PM, Canham N, Chrzanowska K, Chu YWY, Chung BHY, Dahan K, De Rademaeker M, Destree A, Dudding-Byth T, Earl R, Elcioglu N, Elias ER, Fagerberg C, Gardham A, Gener B, Gerkes EH, Grasshoff U, van Haeringen A, Heitink KR, Herkert JC, den Hollander NS, Horn D, Hunt D, Kant SG, Kato M, Kayserili H, Kersseboom R, Kilic E, Krajewska-Walasek M, Lammers K, Laulund LW, Lederer D, Lees M, López-González V, Maas S, Mancini GMS, Marcelis C, Martinez F, Maystadt I, McGuire M, McKee S, Mehta S, Metcalfe K, Milunsky J, Mizuno S, Moeschler JB, Netzer C, Ockeloen CW, Oehl-Jaschkowitz B, Okamoto N, Olminkhof SNM, Orellana C, Pasquier L, Pottinger C, Riehmer V, Robertson SP, Roifman M, Rooryck C, Ropers FG, Rosello M, Ruivenkamp CAL, Sagiroglu MS, Sallevelt SCEH, Sanchis Calvo A, Simsek-Kiper PO, Soares G, Solaeche L, Sonmez FM, Splitt M, Steenbeek D, Stegmann APA, Stumpel CTRM, Tanabe S, Uctepe E, Utine GE, Veenstra-Knol HE, Venkateswaran S, Vilain C, Vincent-Delorme C, Vulto-van Silfhout AT, Wheeler P, Wilson GN, Wilson LC, Wollnik B, Kosho T, Wieczorek D, Eichler E, Pfundt R, de Vries BBA, Clayton-Smith J, Santen GWE. The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin-Siris syndrome. Genet Med 2018; 21:1295-1307. [PMID: 30349098 PMCID: PMC6752273 DOI: 10.1038/s41436-018-0330-z] [Show More Authors] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/26/2018] [Indexed: 01/09/2023] Open
Abstract
Purpose Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin–Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. Methods Clinicians entered clinical data in an extensive web-based survey. Results 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. Conclusion There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features.
Collapse
Affiliation(s)
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samantha A Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of the King's Daughters, Norfolk, VA, USA
| | - Miho Adachi-Fukuda
- Department of Pediatrics, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yasemin Alanay
- School of Medicine, Department of Pediatrics, Pediatric Genetics Unit, Acibadem University, Istanbul, Turkey
| | - Adila AlKindy
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Anwar Baban
- Pediatric Cardiology and Cardiac Surgery Department, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy
| | - Allan Bayat
- Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Stefanie Beck-Wödl
- Department of Molecular Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Katherine Berry
- Department of Medical Genetics, Shodair Hospital, Helena, MT, USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Levinus A Bok
- Department of Pediatrics, Màxima Medical Centre, Veldhoven, The Netherlands
| | - Alwin F J Brouwer
- Department of Paediatrics, Nij Smellinghe Hospital, Drachten, The Netherlands
| | - Ineke van der Burgt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Natalie Canham
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, United Kingdom.,Cheshire and Merseyside Regional Genetics Service, Liverpool Women's Hospital, Crown Street, Liverpool, United Kingdom
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Yoyo W Y Chu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Brain H Y Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Karin Dahan
- Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | | | - Anne Destree
- Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Tracy Dudding-Byth
- Hunter Genetics and University of Newcastle, GrowUpWell Priority Research Centre, Newcastle, Australia
| | - Rachel Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Nursel Elcioglu
- Department of Pediatric Genetics, Marmara University Pendik Hospital, Istanbul, Turkey
| | - Ellen R Elias
- Department of Pediatrics and Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Alice Gardham
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, United Kingdom
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biocruces Health Research Institute, Vizcayam, Spain
| | - Erica H Gerkes
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ute Grasshoff
- Department of Molecular Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin R Heitink
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna C Herkert
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | | | - Denise Horn
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSoM), İstanbul, Turkey
| | - Rogier Kersseboom
- Department of Clinical Genetics, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
| | - Esra Kilic
- Department of Pediatric Genetics, Hematology Oncology Research & Training Children's Hospital, Ankara, Turkey
| | | | - Kylin Lammers
- Department of Medical Genetics, Dayton Children's Hospital, Dayton, OH, USA
| | - Lone W Laulund
- Department of Paediatrics, Odense University Hospital, Odense, Denmark
| | - Damien Lederer
- Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Melissa Lees
- Department of Clinical Genetics, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Vanesa López-González
- Sección de Genética Médica, Servicio de Pediatria, Hospital Clinico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, CIBERER-ISCIII, Murcia, Spain
| | - Saskia Maas
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
| | - Carlo Marcelis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Francisco Martinez
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Isabelle Maystadt
- Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Marianne McGuire
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Shane McKee
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, Ireland
| | - Sarju Mehta
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | | | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - John B Moeschler
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Christian Netzer
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Charlotte W Ockeloen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Sharon N M Olminkhof
- Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Carmen Orellana
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Laurent Pasquier
- CRMR Déficiences intellectuelles, Service de Génétique Médicale, CLAD Ouest CHU Hôpital Sud, Rennes, France
| | - Caroline Pottinger
- All Wales Medical Genetics Service, Glan Clwyd Hospital, Rhyl, United Kingdom
| | - Vera Riehmer
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | | | - Maian Roifman
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Fabienne G Ropers
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Monica Rosello
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Suzanne C E H Sallevelt
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Pelin O Simsek-Kiper
- Department of Pediatric Genetics, Ihsan Dogramaci Children's Hospital, Hacettepe University School of Medicine, Ankara, Turkey
| | - Gabriela Soares
- Jacinto de Magalhães Medical Genetics Center, Centro Hospitalar do Porto, Porto, Portugal
| | - Lucia Solaeche
- Departamento de neurometabólicas, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Fatma Mujgan Sonmez
- Karadeniz Technical University, Faculty of Medicine, Dept of Child Neurology, Retired Professor, Trabzon, Turkey
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetics Medicine, Newcastle upon Tyne, United Kingdom
| | - Duco Steenbeek
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Saori Tanabe
- Division of Pediatrics, Yamagata Prefectural and Sakata Munici pal Hospital Organization Nihon-Kai General Hospital, Sakata, Japan
| | | | - G Eda Utine
- Department of Pediatric Genetics, Ihsan Dogramaci Children's Hospital, Hacettepe University School of Medicine, Ankara, Turkey
| | - Hermine E Veenstra-Knol
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Sunita Venkateswaran
- Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Medical Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme. ULB Center of Medical Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Anneke T Vulto-van Silfhout
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Golder N Wilson
- KinderGenome Genetics, Medical City Hospital Dallas, Dallas, TX, USA
| | - Louise C Wilson
- Department of Clinical Genetics, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Evan Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Natsume T, Takano K, Motobayashi M, Kosho T. Hepatomegaly in a boy with ARID1B-related Coffin-Siris syndrome. Pediatr Int 2018; 60:378-380. [PMID: 29504208 DOI: 10.1111/ped.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/05/2017] [Accepted: 12/26/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Takenori Natsume
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kyoko Takano
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| | - Mitsuo Motobayashi
- Department of Neonatology and Developmental Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan.,Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
12
|
Sonmez FM, Uctepe E, Gunduz M, Gormez Z, Erpolat S, Oznur M, Sagiroglu MS, Demirci H, Gunduz E. Coffin-Siris syndrome with café-au-lait spots, obesity and hyperinsulinism caused by a mutation in the ARID1B gene. Intractable Rare Dis Res 2016; 5:222-6. [PMID: 27672547 PMCID: PMC4995424 DOI: 10.5582/irdr.2014.01040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Coffin-Siris syndrome (CSS) (MIM 135900) is characterized by developmental delay, severe speech impairment, distinctive facial features, hypertrichosis, aplasia or hypoplasia of the distal phalanx or nail of the fifth digit and agenesis of the corpus callosum. Recently, it was shown that mutations in the ARID1B gene are the main cause of CSS, accounting for 76% of identified mutations. Here, we report a 15 year-old female patient who was admitted to our clinic with seizures, speech problems, dysmorphic features, bilaterally big, large thumb, café-au-lait (CAL) spots, obesity and hyperinsulinism. First, the patient was thought to have an association of neurofibromatosis and Rubinstein Taybi syndrome. Because of the large size of the NF1 gene for neurofibromatosis and CREBBP gene for Rubinstein Taybi syndrome, whole exome sequence analysis (WES) was conducted and a novel ARID1B mutation was identified. The proband WES test identified a novel heterozygous frameshift mutation c.3394_3395insTA in exon 13 of ARID1B (NM_017519.2) predicting a premature stop codon p.(Tyr1132Leufs*67). Sanger sequencing confirmed the heterozygous c.3394_3395insTA mutation in the proband and that it was not present in her parents indicating de novo mutation. Further investigation and new cases will help to understand this phenomenon better.
Collapse
Affiliation(s)
- Fatma Mujgan Sonmez
- Department of Child Neurology, Turgut Özal University Faculty of Medicine, Ankara, Turkey
- Address correspondence to: Dr. Fatma Mujgan Sonmez, Department of Child Neurology, Turgut Ozal University Faculty of Medicine, Alparslan Turkes Caddesi No: 57 06510, Ankara, Turkey. E-mail:
| | - Eyyup Uctepe
- Department of Medical Genetics, Health Sciences University, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Mehmet Gunduz
- Department of Medical Genetics, Turgut Özal University Faculty of Medicine, Ankara, Turkey
- Department of Otolaryngology, Turgut Özal University Faculty of Medicine, Ankara, Turkey
| | - Zeliha Gormez
- Advanced Genomics and Bioinformatics Research Center, The Scientific and Technological Research Council of Turkey (TUBITAK-BILGEM), Kocaeli, Turkey
| | - Seval Erpolat
- Department of Dermatology, Turgut Özal University Faculty of Medicine, Ankara, Turkey
| | - Murat Oznur
- Department of Medical Genetics, Turgut Özal University Faculty of Medicine, Ankara, Turkey
| | - Mahmut Samil Sagiroglu
- Advanced Genomics and Bioinformatics Research Center, The Scientific and Technological Research Council of Turkey (TUBITAK-BILGEM), Kocaeli, Turkey
| | - Huseyin Demirci
- Advanced Genomics and Bioinformatics Research Center, The Scientific and Technological Research Council of Turkey (TUBITAK-BILGEM), Kocaeli, Turkey
| | - Esra Gunduz
- Department of Medical Genetics, Turgut Özal University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
13
|
Huvenne H, Dubern B, Clément K, Poitou C. Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obes Facts 2016; 9:158-73. [PMID: 27241181 PMCID: PMC5644891 DOI: 10.1159/000445061] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Obesity results from a synergistic relationship between genes and the environment. The phenotypic expression of genetic factors involved in obesity is variable, allowing to distinguish several clinical pictures of obesity. Monogenic obesity is described as rare and severe early-onset obesity with abnormal feeding behavior and endocrine disorders. This is mainly due to autosomal recessive mutations in genes of the leptin-melanocortin pathway which plays a key role in the hypothalamic control of food intake. Melanocortin 4 receptor(MC4R)-linked obesity is characterized by the variable severity of obesity and no notable additional phenotypes. Mutations in the MC4R gene are involved in 2-3% of obese children and adults; the majority of these are heterozygous. Syndromic obesity is associated with mental retardation, dysmorphic features, and organ-specific developmental abnormalities. Additional genes participating in the development of hypothalamus and central nervous system have been regularly identified. But to date, not all involved genes have been identified so far. New diagnostic tools, such as whole-exome sequencing, will probably help to identify other genes. Managing these patients is challenging. Indeed, specific treatments are available only for specific types of monogenic obesity, such as leptin deficiency. Data on bariatric surgery are limited and controversial. New molecules acting on the leptin-melanocortin pathway are currently being developed.
Collapse
Affiliation(s)
- Hélène Huvenne
- GHICL, Saint-Vincent de Paul Hospital, Department of Pediatrics, Lille, France
| | | | | | | |
Collapse
|
14
|
Vals MA, Yakoreva M, Kahre T, Mee P, Muru K, Joost K, Teek R, Soellner L, Eggermann T, Õunap K. The Frequency of Methylation Abnormalities Among Estonian Patients Selected by Clinical Diagnostic Scoring Systems for Silver-Russell Syndrome and Beckwith-Wiedemann Syndrome. Genet Test Mol Biomarkers 2015; 19:684-91. [PMID: 26505556 DOI: 10.1089/gtmb.2015.0163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS To study the frequency of methylation abnormalities among Estonian patients selected according to published clinical diagnostic scoring systems for Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS). MATERIALS AND METHODS Forty-eight patients with clinical suspicion of SRS (n = 20) or BWS (n = 28) were included in the study group, to whom methylation-specific multiplex ligation-dependant probe amplification analysis of 11p15 region was made. In addition, to patients with minimal diagnostic score for either SRS or BWS, multilocus methylation-specific single nucleotide primer extension assay was performed. RESULTS Five (38%) SRS patients with positive clinical scoring had abnormal methylation pattern at chromosome 11p15, whereas in the BWS group, only one patient was diagnosed with imprinting control region 2 (ICR2) hypomethylation (8%). An unexpected hypomethylation of the PLAGL1 (6q24) and IGF2R (6q25) genes in the patient with the highest BWS scoring was found. CONCLUSIONS Compared to BWS, diagnostic criteria used for selecting SRS patients gave us a similar detection rate of 11p15 imprinting disorders as seen in other studies. A more careful selection of patients with possible BWS should be considered to improve the detection of molecularly confirmed cases. Genome-wide multilocus methylation tests could be used in routine clinical practice as it increases the detection rates of imprinting disorders.
Collapse
Affiliation(s)
- Mari-Anne Vals
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia .,3 Children's Clinic, Tartu University Hospital , Tartu, Estonia
| | - Maria Yakoreva
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| | - Tiina Kahre
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| | - Pille Mee
- 4 United Laboratories, Tartu University Hospital , Tartu, Estonia
| | - Kai Muru
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| | - Kairit Joost
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia
| | - Rita Teek
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| | - Lukas Soellner
- 5 Institute of Human Genetics , RWTH Aachen, Aachen, Germany
| | | | - Katrin Õunap
- 1 Department of Genetics, United Laboratories, Tartu University Hospital , Tartu, Estonia .,2 Department of Pediatrics, University of Tartu , Tartu, Estonia
| |
Collapse
|
15
|
Sim JCH, White SM, Lockhart PJ. ARID1B-mediated disorders: Mutations and possible mechanisms. Intractable Rare Dis Res 2015; 4:17-23. [PMID: 25674384 PMCID: PMC4322591 DOI: 10.5582/irdr.2014.01021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/22/2022] Open
Abstract
Mutations in the gene encoding AT-rich interactive domain-containing protein 1B (ARID1B) were recently associated with multiple syndromes characterized by developmental delay and intellectual disability, in addition to nonsyndromic intellectual disability. While the majority of ARID1B mutations identified to date are predicted to result in haploinsufficiency, the underlying pathogenic mechanisms have yet to be fully understood. ARID1B is a DNA-binding subunit of the Brahma-associated factor chromatin remodelling complexes, which play a key role in the regulation of gene activity. The function of remodelling complexes can be regulated by their subunit composition, and there is some evidence that ARID1B is a component of the neuron-specific chromatin remodelling complex. This complex is involved in the regulation of stem/progenitor cells exiting the cell cycle and differentiating into postmitotic neurons. Recent research has indicated that alterations in the cell cycle contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency in fibroblasts derived from affected individuals. This review describes studies linking ARID1B to neurodevelopmental disorders and it summarizes the function of ARID1B to provide insights into the pathogenic mechanisms underlying ARID1B-mediated disorders. In conclusion, ARID1B is likely to play a key role in neurodevelopment and reduced levels of wild-type protein compromise normal brain development. Additional studies are required to determine the mechanisms by which impaired neural development contributes to the intellectual disability and speech impairment that are consistently observed in individuals with ARID1B haploinsufficiency.
Collapse
Affiliation(s)
- Joe C. H. Sim
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Susan M White
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Address correspondence to: Dr. Paul J. Lockhart, Murdoch Childrens Research Institute, The Royal Children's Hospital, Flemington Road Parkville, Victoria 3052, Australia. E-mail:
| |
Collapse
|
16
|
Santen GWE, Clayton-Smith J. The ARID1B phenotype: what we have learned so far. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:276-89. [PMID: 25169814 DOI: 10.1002/ajmg.c.31414] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evidence is now accumulating from a number of sequencing studies that ARID1B not only appears to be one of the most frequently mutated intellectual disability (ID) genes, but that the range of phenotypes caused by ARID1B mutations seems to be extremely wide. Thus, it is one of the most interesting ID genes identified so far in the exome sequencing era. In this article, we review the literature surrounding ARID1B and attempt to delineate the ARID1B phenotype. The vast majority of published ARID1B patients have been ascertained through studies of Coffin-Siris syndrome (CSS), which leads to bias when documenting the frequencies of phenotypic features. Additional observations of those individuals ascertained through exome sequencing studies helps in delineation of the broader clinical phenotype. We are currently establishing an ARID1B consortium, aimed at collecting ARID1B patients identified through genome-wide sequencing strategies. We hope that this endeavor will eventually lead to a more comprehensive view of the ARID1B phenotype.
Collapse
|
17
|
Zweier C, Rittinger O, Bader I, Berland S, Cole T, Degenhardt F, Di Donato N, Graul-Neumann L, Hoyer J, Lynch SA, Vlasak I, Wieczorek D. Females with de novo aberrations in PHF6: clinical overlap of Borjeson-Forssman-Lehmann with Coffin-Siris syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:290-301. [PMID: 25099957 DOI: 10.1002/ajmg.c.31408] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, de novo aberrations in PHF6 were identified in females with intellectual disability and with a distinct phenotype including a characteristic facial gestalt with bitemporal narrowing, prominent supraorbital ridges, synophrys, a short nose and dental anomalies, tapering fingers with brachytelephalangy, clinodactyly and hypoplastic nails, short toes with hypoplastic nails, and linear skin hyperpigmentation. In adolescent or older patients, this phenotype overlaps but is not identical with Borjeson-Forssman-Lehmann syndrome in males, caused by X-linked recessive mutations in PHF6. In younger girls there seems to be a striking phenotypic overlap with Coffin-Siris syndrome, which is characterized by intellectual disability, sparse hair and hypoplastic nails. This review will summarize and characterize the female phenotype caused by de novo aberrations in PHF6 and will discuss the overlapping and distinguishing features with Coffin-Siris syndrome.
Collapse
|