1
|
Beucher L, Gabillard-Lefort C, Baris OR, Mialet-Perez J. Monoamine oxidases: A missing link between mitochondria and inflammation in chronic diseases ? Redox Biol 2024; 77:103393. [PMID: 39405979 PMCID: PMC11525629 DOI: 10.1016/j.redox.2024.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
The role of mitochondria spans from the regulation of the oxidative phosphorylation, cell metabolism and survival/death pathways to a more recently identified function in chronic inflammation. In stress situations, mitochondria release some pro-inflammatory mediators such as ATP, cardiolipin, reactive oxygen species (ROS) or mitochondrial DNA, that are believed to participate in chronic diseases and aging. These mitochondrial Damage-Associated Molecular Patterns (mito-DAMPs) can modulate specific receptors among which TLR9, NLRP3 and cGAS-STING, triggering immune cells activation and sterile inflammation. In order to counter the development of chronic diseases, a better understanding of the underlying mechanisms of low grade inflammation induced by mito-DAMPs is needed. In this context, monoamine oxidases (MAO), the mitochondrial enzymes that degrade catecholamines and serotonin, have recently emerged as potent regulators of chronic inflammation in obesity-related disorders, cardiac diseases, cancer, rheumatoid arthritis and pulmonary diseases. The role of these enzymes in inflammation embraces their action in both immune and non-immune cells, where they regulate monoamines levels and generate toxic ROS and aldehydes, as by-products of enzymatic reaction. Here, we discuss the more recent advances on the role and mechanisms of action of MAOs in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lise Beucher
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | | | - Olivier R Baris
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | - Jeanne Mialet-Perez
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
2
|
Tran N, Mills EL. Redox regulation of macrophages. Redox Biol 2024; 72:103123. [PMID: 38615489 PMCID: PMC11026845 DOI: 10.1016/j.redox.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions that remain.
Collapse
Affiliation(s)
- Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wang S, Li X, Liu G, Qiu Z, Wang J, Yang D, Qiao Z, Ma Z, Liu Z, Yang X. Advances in the understanding of circRNAs that influence viral replication in host cells. Med Microbiol Immunol 2024; 213:1. [PMID: 38329596 DOI: 10.1007/s00430-023-00784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/25/2023] [Indexed: 02/09/2024]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs discovered in recent years, which are produced by back-splicing involving the 3' and 5' ends of RNA molecules. There is increasing evidence that circRNAs have important roles in cancer, neurological diseases, cardiovascular and cerebrovascular diseases, and other diseases. In addition, host circRNAs and virus-encoded circRNAs participate in the body's immune response, with antiviral roles. This review summarizes the mechanisms by which host and viral circRNAs interact during the host immune response. Comprehensive investigations have revealed that host circRNAs function as miRNA sponges in a particular manner, primarily by inhibiting viral replication. Viral circRNAs have more diverse functions, which generally involve promoting viral replication. In addition, in contrast to circRNAs from RNA viruses, circRNAs from DNA viruses can influence host cell migration, proliferation, and apoptosis, along with their effects on viral replication. In summary, circRNAs have potential as diagnostic and therapeutic targets, offering a foundation for the diagnosis and treatment of viral diseases.
Collapse
Affiliation(s)
- Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Geng Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenyu Qiu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China.
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- China National Biotech Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
4
|
Li L, Luo J, Zhu Z, Wang P, Xu Q, Chang B, Wang D, Yu L, Lu X, Zhou J, Chen Q, Zuo D. Macrophage-expressed SRA ameliorates alcohol-induced liver injury by suppressing S-glutathionylation of Notch1 via recruiting thioredoxin. J Leukoc Biol 2024; 115:322-333. [PMID: 37726110 DOI: 10.1093/jleuko/qiad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Scavenger receptor A (SRA) is preferentially expressed in macrophages and implicated as a multifunctional pattern recognition receptor for innate immunity. Hepatic macrophages play a primary role in the pathogenesis of alcoholic liver disease. Herein, we observed that SRA expression was significantly increased in the liver tissues of mice with alcohol-related liver injury. SRA-deficient (SRA-/-) mice developed more severe alcohol-induced liver disease than wild-type mice. Enhanced liver inflammation existed in alcohol-challenged SRA-/- mice and was associated with increased Notch activation in hepatic macrophages compared with wild-type control animals. Mechanistically, SRA directly bound with Notch1 and suppressed its S-glutathionylation, thereby inhibiting Notch pathway activation. Further, we determined that the SRA interacted with thioredoxin-1 (Trx-1), a redox-active protein. SRA inhibited Trx-1 dimerization and facilitated the interaction of Trx-1 with Notch1. Application of a Trx-1-specific inhibitory agent during macrophage stimulation abolished SRA-mediated regulation of the Notch pathway and its downstream targets. In summary, our study revealed that SRA plays a critical role in macrophage inflammatory response by targeting Notch1 for its glutathionylation. SRA-mediated negative regulation of Notch activation might serve as a novel therapeutic strategy for alcohol-induced liver injury.
Collapse
Affiliation(s)
- Lei Li
- Institute of Immunology, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Jialiang Luo
- Institute of Immunology, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
- Department of Dermatology, Fifth Hospital of Southern Medical University, Southern Medical University, No.566 Congcheng Avenue, Conghua District, Guangzhou, Guangdong 510515, China
| | - Zhengyumeng Zhu
- Institute of Immunology, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Ping Wang
- Department of Medical Research, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No.106 Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong 510080, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Qishan Xu
- Institute of Immunology, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou, Guangdong 510091, China
| | - Lu Yu
- Institute of Immunology, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Qingyun Chen
- Department of Medical Research, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No.106 Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Daming Zuo
- Institute of Immunology, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Wei Z, Wang Y, Ma W, Xing W, Lu P, Shang Z, Li F, Li H, Wang Y. Serine-arginine splicing factor 2 promotes oesophageal cancer progression by regulating alternative splicing of interferon regulatory factor 3. RNA Biol 2023; 20:359-367. [PMID: 37335045 PMCID: PMC10281462 DOI: 10.1080/15476286.2023.2223939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Often, alternative splicing is used by cancer cells to produce or increase proteins that promote growth and survival through alternative splicing. Although RNA-binding proteins are known to regulate alternative splicing events associated with tumorigenesis, their role in oesophageal cancer (EC) has rarely been explored. METHODS We analysed the expression pattern of several relatively well characterized splicing regulators on 183 samples from TCGA cohort of oesophageal cancer; the effectiveness of the knockdown of SRSF2 was subsequently verified by immunoblotting; we measured the ability of cells treated with lenti-sh-SRSF2/lenti-sh2-SRSF2 to invade through an extracellular matrix coating by transwell invasion assay; using RNA-seq data to identify its potential target genes; we performed qRT-PCR to detect the changes of exon 2 usage in lenti-sh-SRSF2 transduced KYSE30 cells to determine the possible effect of SRSF2 on splicing regulation of IRF3; RNA Electrophoretic mobility shift assay (RNA-EMSA) was performed by the incubation of purified SRSF2 protein and biotinylated RNA probes; we performed luciferase assay to confirm the effect of SRSF2 on IFN1 promoter activity. RESULTS We found upregulation of SRSF2 is correlated with the development of EC; Knock-down of SRSF2 inhibits EC cell proliferation, migration, and invasion; SRSF2 regulates the splicing pattern of IRF3 in EC cells; SRSF2 interacts with exon 2 of IRF3 to regulate its exclusion; SRSF2 inhibits the transcription of IFN1 in EC cells. CONCLUSION This study identified a novel regulatory axis involved in EC from the various aspects of splicing regulation.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuyao Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Wenyuan Ma
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Wenqing Xing
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Peng Lu
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhijie Shang
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Feng Li
- Department of Molecular Biology, Shanxi Cancer Hospital/Institute, Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Huiyu Li
- Department of General Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuxuan Wang
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
6
|
Cheng CH, Ma HL, Liu GX, Fan SG, Deng YQ, Feng J, Jiang JJ, Guo ZX. Identification and functional characterization of glutaredoxin 5 from the mud crab (Scylla paramamosain) in response to cadmium and bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 130:472-478. [PMID: 36162776 DOI: 10.1016/j.fsi.2022.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Glutaredoxin (Grx) is a class molecule oxidoreductase, which plays a key role in maintaining redox homeostasis and regulating cell survival pathways. However, the expression pattern and function of Grx remain unknown in the mud crab (Scylla paramamosain). In the present study, a novel full-length of Grx 5 from the mud crab (designated as Sp-Grx 5) was cloned and characterized. The open reading frame of Sp-Grx 5 was 441 bp, which encoded a putative protein of 146 amino acids. The amino acid sequence of Sp-Grx 5 contained a typical C-G-F-S redox active motif and several GSH binding sites. Sp-Grx 5 widely existed in all tested tissues with a high-level expression in hepatopancreas. Subcellular localization showed that Sp-Grx 5 was located in the cytoplasm and nucleus. The expression of Sp-Grx 5 was significantly up-regulated after Vibrio parahaemolyticus infection and cadmium exposure, suggesting that Sp-Grx 5 was involved in innate immunity and detoxification. Furthermore, overexpression of Sp-Grx 5 could improve cells viability after H2O2 exposure. All these results indicated that Sp-Grx 5 played important roles in the redox homeostasis and innate immune response in crustaceans.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| |
Collapse
|
7
|
Li TW, Kenney AD, Park JG, Fiches GN, Liu H, Zhou D, Biswas A, Zhao W, Que J, Santoso N, Martinez-Sobrido L, Yount JS, Zhu J. SARS-CoV-2 Nsp14 protein associates with IMPDH2 and activates NF-κB signaling. Front Immunol 2022; 13:1007089. [PMID: 36177032 PMCID: PMC9513374 DOI: 10.3389/fimmu.2022.1007089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.
Collapse
Affiliation(s)
- Tai-Wei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Guillaume N. Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Helu Liu
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ayan Biswas
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Weiqiang Zhao
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Jian Zhu,
| |
Collapse
|
8
|
Martinez-Banaclocha M. Interfering Reactive Cysteine Proteome in Covid-19 Disease. Curr Med Chem 2021; 29:1657-1663. [PMID: 34165401 DOI: 10.2174/0929867328666210623142811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
Although vaccination against SARS-CoV-2 infection has been initiated, effective therapies for severe Covid-19 disease are still needed. A promising therapeutic strategy is using FDA-approved drugs that have the biological potential to interfere with or modify some of the viral proteins capable of changing the disease's course. Recent studies highlight that some clinically safe drugs can suppress the viral life cycle while potentially promoting an adequate host inflammatory/immune response by interfering with the disease's cysteine proteome.
Collapse
|
9
|
Li T, Kenney AD, Liu H, Fiches GN, Zhou D, Biswas A, Que J, Santoso N, Yount JS, Zhu J. SARS-CoV-2 Nsp14 activates NF-κB signaling and induces IL-8 upregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.26.445787. [PMID: 34075374 PMCID: PMC8168382 DOI: 10.1101/2021.05.26.445787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) protein, which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and found that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14-mediated NF-κB activation and cytokine induction. Furthermore, IMDPH2 inhibitors (RIB, MPA) efficiently blocked SARS-CoV-2 infection, indicating that IMDPH2, and possibly NF-κB signaling, is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in causing the activation of NF-κB.
Collapse
Affiliation(s)
- Taiwei Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Helu Liu
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Guillaume N. Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dawei Zhou
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ayan Biswas
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Netty Santoso
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Transcriptional and Non-Transcriptional Activation, Posttranslational Modifications, and Antiviral Functions of Interferon Regulatory Factor 3 and Viral Antagonism by the SARS-Coronavirus. Viruses 2021; 13:v13040575. [PMID: 33805458 PMCID: PMC8066409 DOI: 10.3390/v13040575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends against invading pathogens through the rapid activation of innate immune signaling pathways. Interferon regulatory factor 3 (IRF3) is a key transcription factor activated in response to virus infection and is largely responsible for establishing an antiviral state in the infected host. Studies in Irf3−/− mice have demonstrated the absence of IRF3 imparts a high degree of susceptibility to a wide range of viral infections. Virus infection causes the activation of IRF3 to transcribe type-I interferon (e.g., IFNβ), which is responsible for inducing the interferon-stimulated genes (ISGs), which act at specific stages to limit virus replication. In addition to its transcriptional function, IRF3 is also activated to trigger apoptosis of virus-infected cells, as a mechanism to restrict virus spread within the host, in a pathway called RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA). These dual functions of IRF3 work in concert to mediate protective immunity against virus infection. These two pathways are activated differentially by the posttranslational modifications (PTMs) of IRF3. Moreover, PTMs regulate not only IRF3 activation and function, but also protein stability. Consequently, many viruses utilize viral proteins or hijack cellular enzymes to inhibit IRF3 functions. This review will describe the PTMs that regulate IRF3′s RIPA and transcriptional activities and use coronavirus as a model virus capable of antagonizing IRF3-mediated innate immune responses. A thorough understanding of the cellular control of IRF3 and the mechanisms that viruses use to subvert this system is critical for developing novel therapies for virus-induced pathologies.
Collapse
|
11
|
Li P, Zhu Z, Cao W, Yang F, Ma X, Tian H, Zhang K, Liu X, Zheng H. Dysregulation of the RIG-I-like Receptor Pathway Signaling by Peste des Petits Ruminants Virus Phosphoprotein. THE JOURNAL OF IMMUNOLOGY 2020; 206:566-579. [PMID: 33380495 DOI: 10.4049/jimmunol.2000432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Peste des petits ruminants virus (PPRV) is a Morbillivirus that causes highly contagious and severe disease in various ruminants. PPRV infection leads to a severe inhibition of host antiviral immune response. Our previous study demonstrated that PPRV V protein blocks IFN response by targeting STAT proteins. In the current study, we identified the phosphoprotein (P) as a novel antagonistic factor of PPRV to counteract host antiviral innate immune response. PPRV P protein significantly suppressed RIG-I-like receptor pathway signaling and impaired IFN-β and ISGs expression by targeting IFN regulatory factor (IRF)3 in both human embryonic kidney 293T cells and primary goat fibroblasts. The 1-102 region of P protein was critical for the antagonistic function of P protein. P protein interacted with IRF association domain (IAD) of IRF3 to block the interaction between TBK1 and IRF3. The interaction between TBK1 and the IAD of IRF3 is responsible for triggering the phosphorylation of IRF3. P protein competed with TBK1 to bind to the IAD of IRF3 that contributed to the decreased phosphorylation of IRF3, which, in turn, interfered with the dimerization of IRF3 and blocked IRF3 nuclear transportation. Besides, we also found that P protein interacted with IRF5 and IRF8. However, the involved mechanism remains unknown. Taken together, our results reveal a novel mechanism by which PPRV P protein antagonizes host antiviral innate immune response by interacting with the transcription factor IRF3, thereby inhibiting the type I IFN production and promoting viral replication.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Xusheng Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and.,National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; and
| |
Collapse
|
12
|
Schwanke H, Stempel M, Brinkmann MM. Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses 2020; 12:E733. [PMID: 32645843 PMCID: PMC7411613 DOI: 10.3390/v12070733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
13
|
Madusanka RK, Tharuka MDN, Liyanage DS, Sirisena DMKP, Lee J. Role of rockfish (Sebastes schlegelii) glutaredoxin 1 in innate immunity, and alleviation of cellular oxidative stress: Insights into localization, molecular characteristics, transcription, and function. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110432. [PMID: 32119919 DOI: 10.1016/j.cbpb.2020.110432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/30/2022]
Abstract
Glutaredoxins are a group of heat stable oxidoreductases ubiquitously found in prokaryotes and eukaryotes. They are widely known for GSH (glutathione)-dependent protein disulfide reduction and cellular redox homeostasis. This study was performed to identify and characterize rockfish (Sebastes schlegelii) glutaredoxin 1 (SsGrx1) at molecular, transcriptional, and functional levels. The coding sequence of SsGrx1 was 318 bp in length and encoded a protein containing 106 amino acids. The molecular weight and theoretical isoelectric point of the putative SsGrx1 protein were 11.6 kDa and 6.71 kDa, respectively. The amino acid sequence of SsGrx1 comprised a CPYC redox active motif surrounded by several conserved GSH binding sites. The modeled protein structure was found to consist of five α-helices and four β-sheets, similar to human Grx1. SsGrx1 showed a tissue specific expression in all the tissues tested, with the highest expression in the kidney. Immune stimulation by lipopolysaccharides (LPS), polyinosinic:polycytidylic acid (polyI:C), and Streptococcus iniae (S. iniae) could significantly modulate the SsGrx1 expression pattern in the blood and gills. Analysis of its subcellular localization disclosed that SsGrx1 was prominently localized in the cytosol. Recombinant SsGrx1 (rSsGrx1) exhibited significant activity in insulin disulfide reduction assay and HED (β-Hydroxyethyl Disulfide) assay. Furthermore, transient overexpression of SsGrx1 in FHM (fathead minnow) cells significantly enhanced cell survival upon H2O2-induced apoptosis. Collectively, our findings strongly suggest that SsGrx1 plays a crucial role in providing rockfish immune protection against pathogens and oxidative stress.
Collapse
Affiliation(s)
- Rajamanthrilage Kasun Madusanka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
14
|
Qin Z, Bonifati S, St Gelais C, Li TW, Kim SH, Antonucci JM, Mahboubi B, Yount JS, Xiong Y, Kim B, Wu L. The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells. J Biol Chem 2020; 295:1575-1586. [PMID: 31914403 PMCID: PMC7008377 DOI: 10.1074/jbc.ra119.010360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-β, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus-infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-β mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.
Collapse
Affiliation(s)
- Zhihua Qin
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Serena Bonifati
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Corine St Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Tai-Wei Li
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Sun-Hee Kim
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Jenna M Antonucci
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Bijan Mahboubi
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242; Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
15
|
Xu J, Zhang L, Xu Y, Zhang H, Gao J, Wang Q, Tian Z, Xuan L, Chen H, Wang Y. PP2A Facilitates Porcine Reproductive and Respiratory Syndrome Virus Replication by Deactivating irf3 and Limiting Type I Interferon Production. Viruses 2019; 11:v11100948. [PMID: 31618847 PMCID: PMC6832233 DOI: 10.3390/v11100948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a major serine/threonine phosphatase in mammalian cells, is known to regulate the kinase-driven intracellular signaling pathways. Emerging evidences have shown that the PP2A phosphatase functions as a bona-fide therapeutic target for anticancer therapy, but it is unclear whether PP2A affects a porcine reproductive and respiratory syndrome virus infection. In the present study, we demonstrated for the first time that inhibition of PP2A activity by either inhibitor or small interfering RNA duplexes in target cells significantly reduced their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Further analysis revealed that inhibition of PP2A function resulted in augmented production of type I interferon (IFN). The mechanism is that inhibition of PP2A activity enhances the levels of phosphorylated interferon regulatory factor 3, which activates the transcription of IFN-stimulated genes. Moreover, inhibition of PP2A activity mainly blocked PRRSV replication in the early stage of viral life cycle, after virus entry but before virus release. Using type I IFN receptor 2 specific siRNA in combination with PP2A inhibitor, we confirmed that the effect of PP2A on viral replication within target cells was an interferon-dependent manner. Taken together, these findings demonstrate that PP2A serves as a negative regulator of host cells antiviral responses and provides a novel therapeutic target for virus infection.
Collapse
Affiliation(s)
- Jiayu Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yunfei Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - He Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Junxin Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lv Xuan
- Department of public health policy, University of California, Irvine, CA 92697, USA
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
16
|
Role of Glutathionylation in Infection and Inflammation. Nutrients 2019; 11:nu11081952. [PMID: 31434242 PMCID: PMC6723385 DOI: 10.3390/nu11081952] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by different cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses.
Collapse
|
17
|
Abstract
Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.
Collapse
|
18
|
Wang C, Wang Q, Xu X, Xie B, Zhao Y, Li N, Cao X. The methyltransferase NSD3 promotes antiviral innate immunity via direct lysine methylation of IRF3. J Exp Med 2017; 214:3597-3610. [PMID: 29101251 PMCID: PMC5716042 DOI: 10.1084/jem.20170856] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/18/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022] Open
Abstract
Lysine methylation is an important posttranslational modification, implicated in various biological pathological conditions. The transcription factor interferon regulatory factor 3 (IRF3) is essential for antiviral innate immunity, yet the mechanism for methylation control of IRF3 activation remains unclear. In this paper, we discovered monomethylation of IRF3 at K366 is critical for IRF3 transcription activity in antiviral innate immunity. By mass spectrometry analysis of IRF3-associated proteins, we identified nuclear receptor-binding SET domain 3 (NSD3) as the lysine methyltransferase that directly binds to the IRF3 C-terminal region through its PWWP1 domain and methylates IRF3 at K366 via its SET domain. Deficiency of NSD3 impairs the antiviral innate immune response in vivo. Mechanistically, NSD3 enhances the transcription activity of IRF3 dependent on K366 monomethylation, which maintains IRF3 phosphorylation by promoting IRF3 dissociation of protein phosphatase PP1cc and consequently promotes type I interferon production. Our study reveals a critical role of NSD3-mediated IRF3 methylation in enhancing antiviral innate immunity.
Collapse
Affiliation(s)
- Chunmei Wang
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Qinlan Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Xu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Xie
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Kwon D, Park E, Kang SJ. Stimulator of IFN genes-mediated DNA-sensing pathway is suppressed by NLRP3 agonists and regulated by mitofusin 1 and TBC1D15, mitochondrial dynamics mediators. FASEB J 2017; 31:4866-4878. [PMID: 28729291 DOI: 10.1096/fj.201700328r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/05/2017] [Indexed: 11/11/2022]
Abstract
The stimulator of IFN genes (STING)-mediated DNA-sensing pathway plays an important role in the innate immune response to pathogen infection, autoimmunity, and cancer; however, its regulatory mechanism has not been fully elucidated, and we do not yet know whether the STING pathway is counter-regulated by other innate immune pathways. Here, we show that the NLRP3-activating agonists, ATP and nigericin, prevent STING pathway activation in association with mitochondrial fragmentation; however, the suppression of the STING pathway and mitochondria fission were not dependent on NLRP3 or potassium efflux. Although nigericin-induced mitochondria fission was rescued by knockdown of either dynamin-related protein 1 or TBC1 domain family member 15 (TBC1D15), which are two distinct mitochondria fission regulators, only TBC1D15 restored the activity of the STING pathway, which indicates that inflammasome-activating signals curtail STING pathway activation via TBC1D15. Finally, we found that deficiency of mitofusin (MFN) 1, a mediator of mitochondrial fusion, inhibited STING pathway activation, which leads to a decrease in the induction of IFN-β and its inducible gene, ISG56, in conjunction with diminished activation of the signaling molecules, TANK-binding kinase 1 and IFN regulatory factor 3, that are downstream of STING. These results highlight the crucial role of MFN1 in maintaining the competency of the STING pathway. Collectively, our findings reveal that mitochondrial dynamics regulators modulate the activation of the STING signaling pathway.-Kwon, D., Park, E., Kang, S.-J. Stimulator of IFN genes-mediated DNA-sensing pathway is suppressed by NLRP3 agonists and regulated by mitofusin 1 and TBC1D15, mitochondrial dynamics mediators.
Collapse
Affiliation(s)
- Dohyeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eunbyeol Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
20
|
Wang XH, Shu J, Jiang CM, Zhuang LL, Yang WX, Zhang HW, Wang LL, Li L, Chen XQ, Jin R, Zhou GP. Mechanisms and roles by which IRF-3 mediates the regulation of ORMDL3 transcription in respiratory syncytial virus infection. Int J Biochem Cell Biol 2017; 87:8-17. [PMID: 28336364 DOI: 10.1016/j.biocel.2017.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in infancy, which is a major risk factor for recurrent wheezing and asthma. Orosomucoid 1-like protein 3 (ORMDL3) has been reported to associate with virus-triggered recurrent wheezing and asthma in children. However, little is known about how ORMDL3 is involved into RSV infection. In this study, we showed that the mRNA expression of ORMDL3 is significantly increased in the peripheral blood lymphocytes of infants with RSV-induced bronchiolitis compared with uninfected controls, also increased in bronchial epithelial cells and lung fibroblasts following RSV infection in vitro. To investigate the underlying mechanisms of RSV-induced ORMDL3 expression, we performed in silico analysis of the binding sites of several transcription factors in the ORMDL3 promoter. The proximal interferon-regulatory factor-3 (IRF-3) binding site positively regulated ORMDL3 transcription following exposure to RSV, as determined through mutational analysis. Overexpression and RNA interference experiments targeting IRF-3 showed that it regulates the expression of ORMDL3 following RSV exposure. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay showed that IRF-3 binds directly to the promoter of the ORMDL3 gene. Furthermore, we confirmed that expression of IRF-3 is significantly increased and shows a strong linear correlation with increased ORMDL3 in the peripheral blood lymphocytes from infants with RSV-induced bronchiolitis. Our results indicate that IRF-3 is an important regulator of ORMDL3 induction following RSV infection by binding directly to the promoter of ORMDL3, which may be implicated in the inflammatory and immune reactions involved in bronchiolitis and wheezing diseases.
Collapse
Affiliation(s)
- Xiao-Hua Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China; Department of Pediatrics, Nanjing First Hospital, Nanjing Medical University, 68 Chang Le Road, Nanjing, Jiangsu Province 210006, China
| | - Jin Shu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Chun-Ming Jiang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Wei-Xia Yang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Hui-Weng Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Lu-Lu Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Lin Li
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China.
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
21
|
Saisawang C, Kuadkitkan A, Smith DR, Ubol S, Ketterman AJ. Glutathionylation of chikungunya nsP2 protein affects protease activity. Biochim Biophys Acta Gen Subj 2016; 1861:106-111. [PMID: 27984114 DOI: 10.1016/j.bbagen.2016.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/24/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Chikungunya fever is an emerging disease caused by the chikungunya virus and is now being spread worldwide by the mosquito Aedes albopictus. The infection can cause a persistent severe joint pain and recent reports link high levels of viremia to neuropathologies and fatalities. The viral protein nsP2 is a multifunctional enzyme that plays several critical roles in virus replication. Virus infection induces oxidative stress in host cells which the virus utilizes to aid viral propagation. Cellular oxidative stress also triggers glutathionylation which is a post-translational protein modification that can modulate physiological roles of affected proteins. METHODS The nsP2 protease is necessary for processing of the virus nonstructural polyprotein generated during replication. We use the recombinant nsP2 protein to measure protease activity before and after glutathionylation. Mass spectrometry allowed the identification of the glutathione-modified cysteines. Using immunoblots, we show that the glutathionylation of nsP2 occurs in virus-infected cells. RESULTS We show that in virus-infected cells, the chikungunya nsP2 can be glutathionylated and we show this modification can impact on the protease activity. We also identify 6 cysteine residues that are glutathionylated of the 20 cysteines in the protein. CONCLUSIONS The virus-induced oxidative stress causes modification of viral proteins which appears to modulate virus protein function. GENERAL SIGNIFICANCE Viruses generate oxidative stress to regulate and hijack host cell systems and this environment also appears to modulate virus protein function. This may be a general target for intervention in viral pathogenesis.
Collapse
Affiliation(s)
- Chonticha Saisawang
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand
| | - Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Thailand
| | - Albert J Ketterman
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand.
| |
Collapse
|
22
|
Pal D, Sharma D, Kumar M, Sandur SK. Prediction of glutathionylation sites in proteins using minimal sequence information and their experimental validation. Free Radic Res 2016; 50:1011-21. [DOI: 10.1080/10715762.2016.1216551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Zhu JD, Meng W, Wang XJ, Wang HCR. Broad-spectrum antiviral agents. Front Microbiol 2015; 6:517. [PMID: 26052325 PMCID: PMC4440912 DOI: 10.3389/fmicb.2015.00517] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/09/2015] [Indexed: 12/24/2022] Open
Abstract
Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Jun-Da Zhu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Wen Meng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Hwa-Chain R Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville TN, USA
| |
Collapse
|
24
|
Li X, Zhang W, Lencz T, Darvasi A, Alkelai A, Lerer B, Jiang HY, Zhang DF, Yu L, Xu XF, Li M, Yao YG. Common variants of IRF3 conferring risk of schizophrenia. J Psychiatr Res 2015; 64:67-73. [PMID: 25843157 DOI: 10.1016/j.jpsychires.2015.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 01/17/2023]
Abstract
Schizophrenia is a brain disorder with high heritability. Recent studies have implicated genes involved in the immune response pathway in the pathogenesis of schizophrenia. Interferon regulatory factor 3 (IRF3), a virus-immune-related gene, activates the transcription of several interferon-induced genes, and functionally interacts with several schizophrenia susceptibility genes. To test whether IRF3 is a schizophrenia susceptibility gene, we analyzed the associations of its SNPs with schizophrenia in independent population samples as well as reported data from expression quantitative trait loci (eQTL) in healthy individuals. We observed multiple independent SNPs in IRF3 showing nominally significant associations with schizophrenia (P < 0.05); more intriguingly, a SNP (rs11880923), which is significantly correlated with IRF3 expression in independent samples (P < 0.05), is also consistently associated with schizophrenia across different cohorts and in combined samples (odds ratio = 1.075, Pmeta = 2.08 × 10(-5)), especially in Caucasians (odds ratio = 1.078, Pmeta = 2.46 × 10(-5)). These results suggested that IRF3 is likely a risk gene for schizophrenia, at least in Caucasians. Although the clinical associations of IRF3 with diagnosis did not achieve genome-wide level of statistical significance, the observed odds ratio is comparable with other susceptibility loci identified through large-scale genetic association studies on schizophrenia, which could be regarded simply as small but detectable effects.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Todd Lencz
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY, USA; Feinstein Institute for Medical Research, 350 Community Drive Manhasset, NY, USA
| | - Ariel Darvasi
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Anna Alkelai
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Hong-Yan Jiang
- Laboratory for Conservation and Utilization of Bio-resource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China; Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Deng-feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li Yu
- Laboratory for Conservation and Utilization of Bio-resource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Xiu-Feng Xu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ming Li
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China; CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
25
|
Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases. Arch Toxicol 2015; 89:1439-67. [DOI: 10.1007/s00204-015-1496-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 01/05/2023]
|
26
|
Chou CC, Chiang BY, Lin JCY, Pan KT, Lin CH, Khoo KH. Characteristic tandem mass spectral features under various collision chemistries for site-specific identification of protein S-glutathionylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:120-132. [PMID: 25374333 DOI: 10.1007/s13361-014-1014-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/27/2014] [Accepted: 10/02/2014] [Indexed: 06/04/2023]
Abstract
Protein S-glutathionylation is a reversible post-translational modification widely implicated in redox regulated biological functions. Conventional biochemical methods, however, often do not allow such a mixed disulfide modification to be reliably identified on specific cysteine residues or be distinguished from other related oxidized forms. To develop more efficient mass spectrometry (MS)-based analytical strategies for this purpose, we first investigated the MS/MS fragmentation pattern of S-glutathionylated peptides under various dissociation modes, including collision-induced dissociation (CID), higher-energy C-trap dissociation (HCD), and electron transfer dissociation (ETD), using synthetic peptides derived from protein tyrosine phosphatase as models. Our results indicate that a MALDI-based high energy CID MS/MS on a TOF/TOF affords the most distinctive spectral features that would facilitate rapid and unambiguous identification of site-specific S-glutathionylation. For more complex proteomic samples best tackled by LC-MS/MS approach, we demonstrate that HCD performed on an LTQ-Orbitrap hybrid instrument fairs better than trap-based CID and ETD in allowing more protein site-specific S-glutathionylation to be confidently identified by direct database searching of the generated MS/MS dataset using Mascot. Overall, HCD afforded more peptide sequence-informative fragment ions retaining the glutathionyl modification with less neutral losses of side chains to compromise scoring. In conjunction with our recently developed chemo-enzymatic tagging strategy, our nanoLC-HCD-MS/MS approach is sufficiently sensitive to identify endogenous S-glutathionylated peptides prepared from non-stressed cells. It is anticipated that future applications to global scale analysis of protein S-glutathionylation will benefit further from current advances in both speed and mass accuracy afforded by HCD MS/MS mode on the Orbitrap series.
Collapse
Affiliation(s)
- Chi-Chi Chou
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, 11529, Taiwan,
| | | | | | | | | | | |
Collapse
|
27
|
Lin L, Pan S, Zhao J, Liu C, Wang P, Fu L, Xu X, Jin M, Zhang A. HSPD1 interacts with IRF3 to facilitate interferon-beta induction. PLoS One 2014; 9:e114874. [PMID: 25506707 PMCID: PMC4266637 DOI: 10.1371/journal.pone.0114874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023] Open
Abstract
The production of IFN- I (IFN-α/β) is one of the earliest and most important host-protective responses. Interferon regulatory factor 3 (IRF3) is a critical transcriptional factor in the IFN-β signaling pathway. Although significant progress has been achieved in the regulation of IRF3, the process may be more complicated than previously considered. In the present study, heat shock protein 60 (HSP60, HSPD1) was identified as a novel IRF3-interacting protein. Overexpression of HSPD1 facilitated the phosphorylation and dimerization of IRF3 and enhanced IFN-β induction induced by SeV infection. In contrast, knockdown of endogenous HSPD1 significantly inhibited the signaling pathway. Furthermore, HSPD1 enhanced activation of the IFN-β promoter mediated by RIG-I, MDA-5, MAVS, TBK1 and IKKε but not IRF3/5D, a mock phosphorylated form of IRF3. The present study indicated that HSPD1 interacted with IRF3 and it contributed to the induction of IFN-β.
Collapse
Affiliation(s)
- Lan Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shan Pan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianqing Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Cheng Liu
- College of Agriculture, Liaocheng University, Liaocheng, Shandong, China
| | - Pingan Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Fu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinlin Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
28
|
Cheng ML, Weng SF, Kuo CH, Ho HY. Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS One 2014; 9:e113234. [PMID: 25401329 PMCID: PMC4234665 DOI: 10.1371/journal.pone.0113234] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/22/2014] [Indexed: 12/16/2022] Open
Abstract
Redox homeostasis is an important host factor determining the outcome of infectious disease. Enterovirus 71 (EV71) infection has become an important endemic disease in Southeast Asia and China. We have previously shown that oxidative stress promotes viral replication, and progeny virus induces oxidative stress in host cells. The detailed mechanism for reactive oxygen species (ROS) generation in infected cells remains elusive. In the current study, we demonstrate that mitochondria were a major ROS source in EV71-infected cells. Mitochondria in productively infected cells underwent morphologic changes and exhibited functional anomalies, such as a decrease in mitochondrial electrochemical potential ΔΨm and an increase in oligomycin-insensitive oxygen consumption. Respiratory control ratio of mitochondria from infected cells was significantly lower than that of normal cells. The total adenine nucleotide pool and ATP content of EV71-infected cells significantly diminished. However, there appeared to be a compensatory increase in mitochondrial mass. Treatment with mito-TEMPO reduced eIF2α phosphorylation and viral replication, suggesting that mitochondrial ROS act to promote viral replication. It is plausible that EV71 infection induces mitochondrial ROS generation, which is essential to viral replication, at the sacrifice of efficient energy production, and that infected cells up-regulate biogenesis of mitochondria to compensate for their functional defect.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Metabolomics Core Laboratory, Chang Gung University, Tao-Yuan, Taiwan
| | - Shiue-Fen Weng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chih-Hao Kuo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hung-Yao Ho
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Office of Research and Development, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Abstract
The interaction between antioxidant glutathione and the free thiol in susceptible cysteine residues of proteins leads to reversible protein S-glutathionylation. This reaction ensures cellular homeostasis control (as a common redox-dependent post-translational modification associated with signal transduction) and intervenes in oxidative stress-related cardiovascular pathology (as initiated by redox imbalance). The purpose of this review is to evaluate the recent knowledge on protein S-glutathionylation in terms of chemistry, broad cellular intervention, specific quantification, and potential for therapeutic exploitation. The data bases searched were Medline and PubMed, from 2009 to 2014 (term: glutathionylation). Protein S-glutathionylation ensures protection of protein thiols against irreversible over-oxidation, operates as a biological redox switch in both cell survival (influencing kinases and protein phosphatases pathways) and cell death (by potentiation of apoptosis), and cross-talks with phosphorylation and with S-nitrosylation. Collectively, protein S-glutathionylation appears as a valuable biomarker for oxidative stress, with potential for translation into novel therapeutic strategies.
Collapse
Affiliation(s)
- Doina Popov
- Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , 8, B.P. Hasdeu Street, Bucharest 050568 , Romania
| |
Collapse
|
30
|
Acting locally: innate mucosal immunity in resistance to HIV-1 infection in Kenyan commercial sex workers. Mucosal Immunol 2014; 7:268-79. [PMID: 23801306 DOI: 10.1038/mi.2013.44] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/20/2013] [Indexed: 02/04/2023]
Abstract
Cohort studies of female commercial sex workers (CSWs) in Kenya were among the first to identify highly HIV-1-exposed seronegative (HESN) individuals. As natural resistance is usually mediated by innate immune mechanisms, we focused on determining whether expression and function of innate signaling pathways were altered locally in the genital mucosa of HESN CSWs. Our results demonstrated that selected pattern-recognition receptors (PRRs) were significantly reduced in expression in cervical mononuclear cells (CMCs) from HESN compared with the new HIV-negative (HIV-N) and HIV-positive (HIV-P) groups. Although baseline levels of secreted cytokines were reduced in CMCs of HESN, they were highly stimulated following exposure to ssRNA40 in vitro. Importantly, cervical epithelial cells from HESN also expressed reduced levels of PRRs, but Toll-like receptor 3 (TLR3) and TLR7 as well as nuclear factor-κB and activator protein 1 were highly expressed and activated. Lastly, inflammatory cytokines interleukin (IL)-1β, IL-8, and RANTES (regulated and normal T cell expressed and secreted) were detected at lower levels in cervicovaginal lavage of HESN compared with the HIV-N and HIV-P groups. Overall, our study reveals a local microenvironment of HIV resistance in the genital mucosa consisting of a finely controlled balance of basal immune quiescence with a focused and potent innate anti-viral response critical to resistance to sexual transmission of HIV-1.
Collapse
|
31
|
Pastore A, Piemonte F. Protein glutathionylation in cardiovascular diseases. Int J Mol Sci 2013; 14:20845-76. [PMID: 24141185 PMCID: PMC3821647 DOI: 10.3390/ijms141020845] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023] Open
Abstract
The perturbation of thiol-disulfide homeostasis is an important consequence of many diseases, with redox signals implicated in several physio-pathological processes. A prevalent form of cysteine modification is the reversible formation of protein mixed disulfides with glutathione (S-glutathionylation). The abundance of glutathione in cells and the ready conversion of sulfenic acids to S-glutathione mixed disulfides supports the reversible protein S-glutathionylation as a common feature of redox signal transduction, able to regulate the activities of several redox sensitive proteins. In particular, protein S-glutathionylation is emerging as a critical signaling mechanism in cardiovascular diseases, because it regulates numerous physiological processes involved in cardiovascular homeostasis, including myocyte contraction, oxidative phosphorylation, protein synthesis, vasodilation, glycolytic metabolism and response to insulin. Thus, perturbations in protein glutathionylation status may contribute to the etiology of many cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy and atherosclerosis. Various reports show the importance of oxidative cysteine modifications in modulating cardiovascular function. In this review, we illustrate tools and strategies to monitor protein S-glutathionylation and describe the proteins so far identified as glutathionylated in myocardial contraction, hypertrophy and inflammation.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; E-Mail:
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
32
|
Novel paradigms of innate immune sensing of viral infections. Cytokine 2013; 63:219-24. [DOI: 10.1016/j.cyto.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 12/15/2022]
|
33
|
Paulsen C, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 2013; 113:4633-79. [PMID: 23514336 PMCID: PMC4303468 DOI: 10.1021/cr300163e] [Citation(s) in RCA: 868] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Candice
E. Paulsen
- Department of Chemistry, The Scripps Research
Institute, Jupiter, Florida, 33458, United States
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research
Institute, Jupiter, Florida, 33458, United States
| |
Collapse
|
34
|
Jabaut J, Ather JL, Taracanova A, Poynter ME, Ckless K. Mitochondria-targeted drugs enhance Nlrp3 inflammasome-dependent IL-1β secretion in association with alterations in cellular redox and energy status. Free Radic Biol Med 2013; 60:233-45. [PMID: 23376234 PMCID: PMC3705582 DOI: 10.1016/j.freeradbiomed.2013.01.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 01/17/2013] [Accepted: 01/23/2013] [Indexed: 01/26/2023]
Abstract
The Nlrp3 inflammasome is activated in response to an array of environmental and endogenous molecules leading to caspase-1-dependent IL-1β processing and secretion by myeloid cells. Several identified Nlrp3 inflammasome activators also trigger reactive oxygen species (ROS) production. However, the initial concept that NADPH oxidases are the primary source of ROS production during inflammasome activation is becoming less accepted. Therefore, the importance of mitochondria-derived ROS has been recently explored. In this study, we explore the impact of mitochondria dysfunction and ROS production on Nlrp3 inflammasome stimulation and IL-1β secretion induced by serum amyloid A (SAA) in primary mouse peritoneal macrophages. To induce mitochondrial dysfunction, we utilized antimycin A, which blocks electron flow at complex III, and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation uncoupler. We also utilized a superoxide dismutase mimetic, MnTBAP, which targets the mitochondria, as well as the broad-spectrum antioxidants DPI (diphenyleneiodonium chloride) and ebselen. Our findings demonstrate that SAA alone induces mitochondrial ROS in a time-dependent manner. We observed that MnTBAP and ebselen blocked IL-1β secretion caused by SAA only when added before stimulation, and DPI augmented IL-1β secretion. Surprisingly, these effects were not directly related to intracellular or mitochondrial ROS levels. We also found that mitochondria-targeted drugs increased IL-1β secretion regardless of their impact on mitochondrial function and ROS levels, suggesting that mitochondrial ROS-dependent and -independent mechanisms play a role in the Nlrp3 inflammasome/IL-1β secretion axis in SAA-stimulated cells. Finally, we found that FCCP significantly sustained the association of the Nlrp3 inflammasome complex, which could explain the most robust effect among the drugs tested in enhancing IL-1β secretion in SAA-treated cells. Overall, our data suggest that the Nlrp3 inflammasome/IL-1β secretion axis is a very highly regulated inflammatory pathway that is susceptible not only to changes in mitochondrial or intracellular ROS, but also to changes in overall mitochondrial function.
Collapse
Affiliation(s)
- Joshua Jabaut
- Chemistry Department, State University of New York, at Plattsburgh. Plattsburgh NY 12901
- Department of Medicine, Vermont Lung Center, University of Vermont, Burlington VT 05405
| | - Jennifer L. Ather
- Department of Medicine, Vermont Lung Center, University of Vermont, Burlington VT 05405
| | - Alexandra Taracanova
- Chemistry Department, State University of New York, at Plattsburgh. Plattsburgh NY 12901
| | - Matthew E. Poynter
- Department of Medicine, Vermont Lung Center, University of Vermont, Burlington VT 05405
| | - Karina Ckless
- Chemistry Department, State University of New York, at Plattsburgh. Plattsburgh NY 12901
- To whom correspondence should be addressed: Karina Ckless, Chemistry Department, State University of New York at Plattsburgh, Ward Hall, Room 224, 101 Broad Street, Plattsburgh, NY, Phone: 518 564 4118,
| |
Collapse
|
35
|
Abstract
SIGNIFICANCE Glutaredoxins (Grxs) are small oxidoreductases of the thioredoxin family of proteins regulating the thiol redox state of several proteins. Thereby, Grxs are key elements in redox signaling. RECENT ADVANCES Redox signaling via protein thiols depends on reversible oxidative modifications induced mainly by reactive oxygen/nitrogen species and glutathione (GSH) in form of its oxidized disulfide or S-nitroso-glutathione. Grxs contribute to redox signaling by the catalysis of glutathionylation, de-glutathionylation, as well as reduction of disulfide bridges via two distinct enzymatic mechanisms. The dithiol mechanism utilizes both active site cysteines to reduce disulfides, whereas the monothiol mechanism utilizes only the N-terminal active site cysteine for the reduction of GSH mixed disulfides. The sphere of action of Grxs continues to grow with the recent identification of novel targets. CRITICAL ISSUES Because of limited methodological tools, the identification of new substrates for oxidoreductases in general is one of the biggest challenges in this research area. FUTURE DIRECTIONS With this review, we provide a condensed summary of the current knowledge of thiol/disulfide exchange reactions catalyzed by Grxs regarding the mechanistic, structural, and functional aspects. The latter will be of high importance for future research directions, gaining novel insights into redox signaling in general, and the role of Grxs in particular.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst Moritz Arndt-Universität Greifswald, Greifswald, Germany
| | | |
Collapse
|
36
|
Sin WX, Li P, Yeong JPS, Chin KC. Activation and regulation of interferon-β in immune responses. Immunol Res 2012; 53:25-40. [PMID: 22411096 DOI: 10.1007/s12026-012-8293-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interferons (IFNs) were discovered more than half a century ago, and extensive research has since identified multifarious roles for type I IFN in human immune responses. Here, we review the functions of IFN-β in innate and adaptive immunity. We also discuss the activation and influence of IFN-β on myeloid cell types, including monocytes and dendritic cells, as well as address the effects of IFN-β on T cells and B cells. Findings from our own laboratory, which explores the molecular mechanisms of IFN-β activation by LPS and viruses, as well as from other groups investigating the regulation of IFN-β by viral proteins and endogenous factors are described. The effects of post-translational modifications of the interferon regulatory factor (IRF)-3 on IFN-β induction are also highlighted. Many unanswered questions remain concerning the regulation of the type I IFN response in inflammation, especially the role of transcription factors in the modulation of inflammatory gene expression, and these questions will form the basis for exciting avenues of future research.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Laboratory of Gene Regulation and Inflammation, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04 Immunos, Biopolis, Singapore
| | | | | | | |
Collapse
|
37
|
Zucchini N, Williams V, Grandvaux N. Individual interferon regulatory factor-3 thiol residues are not critical for its activation following virus infection. J Interferon Cytokine Res 2012; 32:393-400. [PMID: 22817838 DOI: 10.1089/jir.2012.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The interferon regulatory factor (IRF)-3 transcription factor plays a central role in the capacity of the host to mount an efficient innate antiviral immune defense, mainly through the regulation of type I Interferon genes. A tight regulation of IRF-3 is crucial for an adapted intensity and duration of the response. Redox-dependent processes are now well known to regulate signaling cascades. Recent reports have revealed that signaling molecules upstream of IRF-3, including the mitochondrial antiviral-signalling protein (MAVS) and the TNF receptor associated factors (TRAFs) adaptors, are sensitive to redox regulation. In the present study, we assessed whether redox regulation of thiol residues contained in IRF-3, which are priviledged redox sensors, play a role in its regulation following Sendai virus infection, using a combination of mutation of Cysteine (Cys) residues into Alanine and thiols alkylation using N-ethyl maleimide. Alkylation of IRF-3 on Cys289 appears to destabilize IRF-3 dimer in vitro. However, a detailed analysis of IRF-3 phosphorylation, dimerization, nuclear accumulation, and induction of target gene promoter in vivo led us to conclude that IRF-3 specific, individual Cys residues redox status does not play an essential role in its activation in vivo.
Collapse
Affiliation(s)
- Nicolas Zucchini
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | | | | |
Collapse
|
38
|
Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 2012; 16:524-42. [PMID: 22010840 PMCID: PMC3270052 DOI: 10.1089/ars.2011.4336] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. RECENT ADVANCES The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. CRITICAL ISSUES Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. FUTURE DIRECTIONS The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed.
Collapse
Affiliation(s)
- David Pimentel
- Myocardial Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kippner LE, Finn NA, Shukla S, Kemp ML. Systemic remodeling of the redox regulatory network due to RNAi perturbations of glutaredoxin 1, thioredoxin 1, and glucose-6-phosphate dehydrogenase. BMC SYSTEMS BIOLOGY 2011; 5:164. [PMID: 21995976 PMCID: PMC3199260 DOI: 10.1186/1752-0509-5-164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cellular clearance of reactive oxygen species is dependent on a network of tightly coupled redox enzymes; this network rapidly adapts to oxidative conditions such as aging, viral entry, or inflammation. Current widespread use of shRNA as a means to perturb specific redox couples may be misinterpreted if the targeted effects are not monitored in the context of potential global remodeling of the redox enzyme network. RESULTS Stable cell lines containing shRNA targets for glutaredoxin 1, thioredoxin 1, or glucose-6-phosphate dehydrogenase were generated in order to examine the changes in expression associated with altering cytosolic redox couples. A qRT PCR array revealed systemic off-target effects of altered antioxidant capacity and reactive oxygen species formation. Empty lentiviral particles generated numerous enzyme expression changes in comparison to uninfected cells, indicating an alteration in antioxidant capacity irrespective of a shRNA target. Of the three redox couples perturbed, glutaredoxin 1, attenuation produced the most numerous off-target effects with 10/28 genes assayed showing statistically significant changes. A multivariate analysis extracted strong co-variance between glutaredoxin 1 and peroxiredoxin 2 which was subsequently experimentally verified. Computational modeling of the peroxide clearance dynamics associated with the remodeling of the redox network indicated that the compromised antioxidant capacity compared across the knockdown cell lines was unequally affected by the changes in expression of off-target proteins. CONCLUSIONS Our results suggest that targeted reduction of redox enzyme expression leads to widespread changes in off-target protein expression, changes that are well-insulated between sub-cellular compartments, but compensatory in both the production of and protection against intracellular reactive oxygen species. Our observations suggest that the use of lentivirus can in itself have off-target effects on dynamic responses to oxidative stress due to the changes in species concentrations.
Collapse
Affiliation(s)
- Linda E Kippner
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
40
|
Sears N, Sen GC, Stark GR, Chattopadhyay S. Caspase-8-mediated cleavage inhibits IRF-3 protein by facilitating its proteasome-mediated degradation. J Biol Chem 2011; 286:33037-44. [PMID: 21816816 PMCID: PMC3190878 DOI: 10.1074/jbc.m111.257022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/01/2011] [Indexed: 12/23/2022] Open
Abstract
Interferon regulatory factor 3 (IRF-3) plays a central role in inducing the expression of cellular antiviral genes, including the interferon-β gene, in response to Pattern Recognition Receptors. IRF-3 is targeted for proteasome-mediated degradation, which modulates the strength and duration of the innate immune responses that depend on it. We have found that caspase-8, which is activated by cytosolic RIG-I-dependent signaling, catalyzes an essential intermediate step in the ubiquitination and proteasome-mediated degradation of IRF-3. Mutation of a consensus cleavage site within IRF-3 generates a form that is not cleaved by caspase-8 and that is protected from ubiquitination and degradation. An in vitro assay confirms the direct action of caspase-8 cleavage on IRF-3. We also show that caspase-8-mediated cleavage of IRF-3 helps to modulate dsRNA-dependent gene induction.
Collapse
Affiliation(s)
- Nathaniel Sears
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ganes C. Sen
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - George R. Stark
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Saurabh Chattopadhyay
- From the Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
41
|
Thiol regulation of pro-inflammatory cytokines and innate immunity: protein S-thiolation as a novel molecular mechanism. Biochem Soc Trans 2011; 39:1268-72. [DOI: 10.1042/bst0391268] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inflammation or inflammatory cytokines and oxidative stress have often been associated, and thiol antioxidants, particularly glutathione, have often been seen as possible anti-inflammatory mediators. However, whereas several cytokine inhibitors have been approved for drug use in chronic inflammatory diseases, this has not happened with antioxidant molecules. We outline the complexity of the role of protein thiol–disulfide oxidoreduction in the regulation of immunity and inflammation, the underlying molecular mechanisms (such as protein glutathionylation) and the key enzyme players such as Trx (thioredoxin) or Grx (glutaredoxin).
Collapse
|
42
|
Gonzalez-Dosal R, Horan KA, Rahbek SH, Ichijo H, Chen ZJ, Mieyal JJ, Hartmann R, Paludan SR. HSV infection induces production of ROS, which potentiate signaling from pattern recognition receptors: role for S-glutathionylation of TRAF3 and 6. PLoS Pathog 2011; 7:e1002250. [PMID: 21949653 PMCID: PMC3174249 DOI: 10.1371/journal.ppat.1002250] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 07/18/2011] [Indexed: 12/20/2022] Open
Abstract
The innate immune response constitutes the first line of defense against infections. Pattern recognition receptors recognize pathogen structures and trigger intracellular signaling pathways leading to cytokine and chemokine expression. Reactive oxygen species (ROS) are emerging as an important regulator of some of these pathways. ROS directly interact with signaling components or induce other post-translational modifications such as S-glutathionylation, thereby altering target function. Applying live microscopy, we have demonstrated that herpes simplex virus (HSV) infection induces early production of ROS that are required for the activation of NF-κB and IRF-3 pathways and the production of type I IFNs and ISGs. All the known receptors involved in the recognition of HSV were shown to be dependent on the cellular redox levels for successful signaling. In addition, we provide biochemical evidence suggesting S-glutathionylation of TRAF family proteins to be important. In particular, by performing mutational studies we show that S-glutathionylation of a conserved cysteine residue of TRAF3 and TRAF6 is important for ROS-dependent activation of innate immune pathways. In conclusion, these findings demonstrate that ROS are essential for effective activation of signaling pathways leading to a successful innate immune response against HSV infection. Herpes simplex virus (HSV) type 1 and 2 are important human pathogens, which can give rise to severe diseases during both primary and recurrent infections. In addition to activating “classical” innate and adaptive immune responses, many infections stimulate other cellular activities such as and production of reactive oxygen species (ROS). However, there is little knowledge on the cross-talk between ROS and the innate antiviral response. In this article we show that HSV infection leads to production of ROS, and that ROS play a critical role in activation of innate immune responses to these viruses. At the mechanistic level, we show that ROS stimulate glutathionylation (a protein modification) of the signaling molecules TRAF3 and 6, which promotes redox-sensitive signaling. Our data support the idea that the innate immune system not only detects specific HSV molecules but also senses the cellular oxidative stress level, and integrates this into the innate immune response to infections.
Collapse
Affiliation(s)
| | - Kristy A. Horan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Stine H. Rahbek
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hidenori Ichijo
- Center of Excellence Program, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John J. Mieyal
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
- The Louis B. Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio, United States of America
| | - Rune Hartmann
- Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Søren R. Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
43
|
Hill BG, Bhatnagar A. Protein S-glutathiolation: redox-sensitive regulation of protein function. J Mol Cell Cardiol 2011; 52:559-67. [PMID: 21784079 DOI: 10.1016/j.yjmcc.2011.07.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/05/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These "activated" thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione "cap" to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein "encryption" to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Bradford G Hill
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
44
|
Cooper AJ, Pinto JT, Callery PS. Reversible and irreversible protein glutathionylation: biological and clinical aspects. Expert Opin Drug Metab Toxicol 2011; 7:891-910. [PMID: 21557709 DOI: 10.1517/17425255.2011.577738] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Depending in part on the glutathione:glutathione disulfide ratio, reversible protein glutathionylation to a mixed disulfide may occur. Reversible glutathionylation is important in protecting proteins against oxidative stress, guiding correct protein folding, regulating protein activity and modulating proteins critical to redox signaling. The potential also exists for irreversible protein glutathionylation via Michael addition of an -SH group to a dehydroalanyl residue, resulting in formation of a stable, non-reducible thioether linkage. AREAS COVERED This article reviews factors contributing to reversible and irreversible protein glutathionylation and their biomedical implications. It also examines the possibility that certain drugs such as busulfan may be toxic by promoting irreversible glutathionylation. The reader will gain an appreciation of the protective nature and control of function resulting from reversible protein glutathionylation. The reader is also introduced to the recently identified phenomenon of irreversible protein glutathionylation and its possible deleterious effects. EXPERT OPINION The process of reversible protein glutathionylation is now well established but these findings need to be substantiated at the tissue and organ levels, and also with disease state. That being said, irreversible protein glutathionylation can also occur and this has implications in disease and aging. Toxicologists should consider this when evaluating the possible side effects of certain drugs such as busulfan that may generate a glutathionylating species in vivo.
Collapse
Affiliation(s)
- Arthur Jl Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
45
|
Jin L, Lenz LL, Cambier JC. Cellular reactive oxygen species inhibit MPYS induction of IFNβ. PLoS One 2010; 5:e15142. [PMID: 21170271 PMCID: PMC3000824 DOI: 10.1371/journal.pone.0015142] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/22/2010] [Indexed: 11/25/2022] Open
Abstract
Many inflammatory diseases, as well as infections, are accompanied by elevation in cellular levels of Reactive Oxygen Species (ROS). Here we report that MPYS, a.k.a. STING, which was recently shown to mediate activation of IFNβ expression during infection, is a ROS sensor. ROS induce intermolecular disulfide bonds formation in MPYS homodimer and inhibit MPYS IFNβ stimulatory activity. Cys-64, -148, -292, -309 and the potential C88xxC91 redox motif in MPYS are indispensable for IFNβ stimulation and IRF3 activation. Thus, our results identify a novel mechanism for ROS regulation of IFNβ stimulation.
Collapse
Affiliation(s)
- Lei Jin
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, Colorado, United States of America
| | - Laurel L. Lenz
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, Colorado, United States of America
| | - John C. Cambier
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
46
|
Chantzoura E, Prinarakis E, Panagopoulos D, Mosialos G, Spyrou G. Glutaredoxin-1 regulates TRAF6 activation and the IL-1 receptor/TLR4 signalling. Biochem Biophys Res Commun 2010; 403:335-9. [PMID: 21078302 DOI: 10.1016/j.bbrc.2010.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 12/24/2022]
Abstract
Glutaredoxin-1 (GRX-1) is a cytoplasmic enzyme that highly contributes to the antioxidant defense system. It catalyzes the reversible reduction of glutathione-protein mixed disulfides, a process called deglutathionylation. Here, we investigated the role of GRX-1 in the pathway triggered by interleukin-1/Toll-like receptor 4 (IL-1R/TLR4) by using RNA interference (RNAi) in HEK293 and HeLa cells. TNF receptor-associated factor 6 (TRAF6) is an intermediate signalling molecule involved in the signal transduction by members of the interleukin-1/Toll-like receptor (IL-1R/TLR) family. TRAF6 has an E3 ubiquitin ligase activity which depends on the integrity of an amino-terminal really interesting new gene (RING) finger motif. Upon receptor activation, TRAF6 undergoes K63-linked auto-polyubiquitination which mediates protein-protein interactions and signal propagation. Our data showed that IL-1R and TLR4-mediated NF-κB induction was severely reduced in GRX-1 knockdown cells. We found that the RING-finger motif of TRAF6 is S-glutathionylated under normal conditions. Moreover, upon IL-1 stimulation TRAF6 undergoes deglutathionylation catalyzed by GRX-1. The deglutathionylation of TRAF6 is essential for its auto-polyubiquitination and subsequent activation. Taken together, our findings reveal another signalling molecule affected by S-glutathionylation and uncover a crucial role for GRX-1 in the TRAF6-dependent activation of NF-κB by IL-1R/TLRs.
Collapse
Affiliation(s)
- Eleni Chantzoura
- Center of Basic Research I, Biochemistry Division, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | | | | | | | | |
Collapse
|
47
|
Dalle-Donne I, Colombo G, Gagliano N, Colombo R, Giustarini D, Rossi R, Milzani A. S-glutathiolation in life and death decisions of the cell. Free Radic Res 2010; 45:3-15. [PMID: 20815784 DOI: 10.3109/10715762.2010.515217] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reversible S-glutathiolation of specific proteins at sensitive cysteines provides a powerful mechanism for the dynamic, post-translational regulation of many cellular processes, including apoptosis. Critical in ascribing any regulatory function to S-glutathiolation is its reversibility, mainly regulated by glutaredoxins. Apoptosis is a controlled form of cell death that plays fundamental roles during embryonic development, tissue homeostasis and some diseases. Much of what happens during the demolition phase of apoptosis is orchestrated primarily by caspases, the final executioners of cell death. Recent findings support an essential role for S-glutathiolation in apoptosis, often at the level of caspases or their inactive precursors, and several studies have demonstrated the importance of glutaredoxins in protecting against apoptosis. These observations have contributed to recent advances in apoptosis research. However, the effective relevance of protein S-glutathiolation and the precise molecular targets in apoptotic signalling remain unresolved and a key challenge for future research.
Collapse
|
48
|
Kubosaki A, Lindgren G, Tagami M, Simon C, Tomaru Y, Miura H, Suzuki T, Arner E, Forrest ARR, Irvine KM, Schroder K, Hasegawa Y, Kanamori-Katayama M, Rehli M, Hume DA, Kawai J, Suzuki M, Suzuki H, Hayashizaki Y. The combination of gene perturbation assay and ChIP-chip reveals functional direct target genes for IRF8 in THP-1 cells. Mol Immunol 2010; 47:2295-302. [PMID: 20573402 DOI: 10.1016/j.molimm.2010.05.289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/24/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Gene regulatory networks in living cells are controlled by the interaction of multiple cell type-specific transcription regulators with DNA binding sites in target genes. Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence binding protein (ICSBP), is a transcription factor expressed predominantly in myeloid and lymphoid cell lineages. To find the functional direct target genes of IRF8, the gene expression profiles of siRNA knockdown samples and genome-wide binding locations by ChIP-chip were analyzed in THP-1 myelomonocytic leukemia cells. Consequently, 84 genes were identified as functional direct targets. The ETS family transcription factor PU.1, also known as SPI1, binds to IRF8 and regulates basal transcription in macrophages. Using the same approach, we identified 53 direct target genes of PU.1; these overlapped with 19 IRF8 targets. These 19 genes included key molecules of IFN signaling such as OAS1 and IRF9, but excluded other IFN-related genes amongst the IRF8 functional direct target genes. We suggest that IRF8 and PU.1 can have both combined, and independent actions on different promoters in myeloid cells.
Collapse
Affiliation(s)
- Atsutaka Kubosaki
- RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chung S, Sundar IK, Yao H, Ho YS, Rahman I. Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of I{kappa}B kinases in mice: impact on histone acetylation. Am J Physiol Lung Cell Mol Physiol 2010; 299:L192-203. [PMID: 20472709 DOI: 10.1152/ajplung.00426.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glutaredoxin 1 (Glrx1) is a small dithiol protein that regulates the cellular redox state and redox-dependent signaling pathways via modulation of protein glutathionylation. IkappaB kinase (IKK), an essential enzyme for NF-kappaB activation, can be subjected to S-glutathionylation leading to alteration of its activity. However, the role of Glrx1 in cigarette smoke (CS)-induced lung inflammation and chromatin modifications are not known. We hypothesized that Glrx1 regulates the CS-induced lung inflammation and chromatin modifications via differential regulation of IKKs by S-glutathionylation in mouse lung. Glrx1 knockout (KO) and wild-type (WT) mice were exposed to CS for 3 days and determined the role of Glrx1 in regulation of proinflammatory response in the lung. Neutrophil influx in bronchoalveolar lavage fluid and proinflammatory cytokine release in lung were increased in Glrx1 KO mice compared with WT mice exposed to CS, which was associated with augmented nuclear translocation of RelA/p65 and its phospho-acetylation. Interestingly, phosphorylated and total levels of IKKalpha, but not total and phosphorylated IKKbeta levels, were increased in lungs of Glrx1 KO mice compared with WT mice exposed to CS. Ablation of Glrx1 leads to increased CS-induced IKKbeta glutathionylation rendering it inactive, whereas IKKalpha was activated resulting in increased phospho-acetylation of histone H3 in mouse lung. Thus, targeted disruption of Glrx1 regulates the lung proinflammatory response via histone acetylation specifically by activation of IKKalpha in response to CS exposure. Overall, our study suggests that S-glutathionylation and phosphorylation of IKKalpha plays an important role in histone acetylation on proinflammatory gene promoters and NF-kappaB-mediated abnormal and sustained lung inflammation in pathogenesis of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Sangwoon Chung
- Dept. of Environmental Medicine, Univ. of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
50
|
Murine coronavirus delays expression of a subset of interferon-stimulated genes. J Virol 2010; 84:5656-69. [PMID: 20357099 DOI: 10.1128/jvi.00211-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The importance of the type I interferon (IFN-I) system in limiting coronavirus replication and dissemination has been unequivocally demonstrated by rapid lethality following infection of mice lacking the alpha/beta IFN (IFN-alpha/beta) receptor with mouse hepatitis virus (MHV), a murine coronavirus. Interestingly, MHV has a cell-type-dependent ability to resist the antiviral effects of IFN-alpha/beta. In primary bone-marrow-derived macrophages and mouse embryonic fibroblasts, MHV replication was significantly reduced by the IFN-alpha/beta-induced antiviral state, whereas IFN treatment of cell lines (L2 and 293T) has only minor effects on replication (K. M. Rose and S. R. Weiss, Viruses 1:689-712, 2009). Replication of other RNA viruses, including Theiler's murine encephalitis virus (TMEV), vesicular stomatitis virus (VSV), Sindbis virus, Newcastle disease virus (NDV), and Sendai virus (SeV), was significantly inhibited in L2 cells treated with IFN-alpha/beta, and MHV had the ability to rescue only SeV replication. We present evidence that MHV infection can delay interferon-stimulated gene (ISG) induction mediated by both SeV and IFN-beta but only when MHV infection precedes SeV or IFN-beta exposure. Curiously, we observed no block in the well-defined IFN-beta signaling pathway that leads to STAT1-STAT2 phosphorylation and translocation to the nucleus in cultures infected with MHV. This observation suggests that MHV must inhibit an alternative IFN-induced pathway that is essential for early induction of ISGs. The ability of MHV to delay SeV-mediated ISG production may partially involve limiting the ability of IFN regulatory factor 3 (IRF-3) to function as a transcription factor. Transcription from an IRF-3-responsive promoter was partially inhibited by MHV; however, IRF-3 was transported to the nucleus and bound DNA in MHV-infected cells superinfected with SeV.
Collapse
|