1
|
Ciardo D, Haccard O, de Carli F, Hyrien O, Goldar A, Marheineke K. Dual DNA replication modes: varying fork speeds and initiation rates within the spatial replication program in Xenopus. Nucleic Acids Res 2025; 53:gkaf007. [PMID: 39883014 PMCID: PMC11781033 DOI: 10.1093/nar/gkaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping. The analysis revealed two independent spatiotemporal processes that regulate the replication dynamics in the Xenopus model system. These mechanisms are referred to as a fast and a slow replication mode, differing by their opposite replication fork speed and rate of origin firing. We found that Polo-like kinase 1 (Plk1) depletion abolished the spatial separation of these two replication modes. In contrast, neither replication checkpoint inhibition nor Rap1-interacting factor (Rif1) depletion affected the distribution of these replication patterns. These results suggest that Plk1 plays an essential role in the local coordination of the spatial replication program and the initiation-elongation coupling along the chromosomes in Xenopus, ensuring the timely completion of the S phase.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Haccard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay(NeuroPsi), F-91400 Saclay, France
| | - Francesco de Carli
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91190 Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
2
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
3
|
Yan R, Song Y, Liu D, Yu W, Sun Y, Tang C, Yang X, Ding W, Yu N, Zhang Z, Ling M, Li X, Zhao C, Xing Y. Multi-omics reveals the role of MCM2 and hnRNP K phosphorylation in mouse renal aging through genomic instability. Exp Cell Res 2024; 440:114115. [PMID: 38844260 DOI: 10.1016/j.yexcr.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
The process of aging is characterized by structural degeneration and functional decline, as well as diminished adaptability and resistance. The aging kidney exhibits a variety of structural and functional impairments. In aging mice, thinning and graying of fur were observed, along with a significant increase in kidney indices compared to young mice. Biochemical indicators revealed elevated levels of creatinine, urea nitrogen and serum uric acid, suggesting impaired kidney function. Histological analysis unveiled glomerular enlargement and sclerosis, severe hyaline degeneration, capillary occlusion, lymphocyte infiltration, tubular and glomerular fibrosis, and increased collagen deposition. Observations under electron microscopy showed thickened basement membranes, altered foot processes, and increased mesangium and mesangial matrix. Molecular marker analysis indicated upregulation of aging-related β-galactosidase, p16-INK4A, and the DNA damage marker γH2AX in the kidneys of aged mice. In metabolomics, a total of 62 significantly different metabolites were identified, and 10 pathways were enriched. We propose that citrulline, dopamine, and indoxyl sulfate have the potential to serve as markers of kidney damage related to aging in the future. Phosphoproteomics analysis identified 6656 phosphosites across 1555 proteins, annotated to 62 pathways, and indicated increased phosphorylation at the Ser27 site of Minichromosome maintenance complex component 2 (Mcm2) and decreased at the Ser284 site of heterogeneous nuclear ribonucleoprotein K (hnRNP K), with these modifications being confirmed by western blotting. The phosphorylation changes in these molecules may contribute to aging by affecting genome stability. Eleven common pathways were detected in both omics, including arginine biosynthesis, purine metabolism and biosynthesis of unsaturated fatty acids, etc., which are closely associated with aging and renal insufficiency.
Collapse
Affiliation(s)
- Rong Yan
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yiping Song
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Di Liu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenzhuo Yu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Sun
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Congmin Tang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuechun Yang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenjing Ding
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan, China
| | - Zhen Zhang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Mingying Ling
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuehui Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Chuanli Zhao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqiu Xing
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Rankin BD, Rankin S. The MCM2-7 Complex: Roles beyond DNA Unwinding. BIOLOGY 2024; 13:258. [PMID: 38666870 PMCID: PMC11048021 DOI: 10.3390/biology13040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The MCM2-7 complex is a hexameric protein complex that serves as a DNA helicase. It unwinds the DNA double helix during DNA replication, thereby providing the single-stranded replication template. In recent years, it has become clear that the MCM2-7 complex has additional functions that extend well beyond its role in DNA replication. Through physical and functional interactions with different pathways, it impacts other nuclear events and activities, including folding of the genome, histone inheritance, chromosome segregation, DNA damage sensing and repair, and gene transcription. Collectively, the diverse roles of the MCM2-7 complex suggest it plays a critical role in maintaining genome integrity by integrating the regulation of DNA replication with other pathways in the nucleus.
Collapse
Affiliation(s)
- Brooke D. Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
He L, Lu Z, Zhang Y, Yan L, Ma L, Dong X, Wu Z, Dai Z, Tan B, Sun R, Sun S, Li C. The effect of polystyrene nanoplastics on arsenic-induced apoptosis in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115814. [PMID: 38100851 DOI: 10.1016/j.ecoenv.2023.115814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Microplastics are detrimental to the environment. However, the combined effects of microplastics and arsenic (As) remain unclear. In this study, we investigated the combined effects of polystyrene (PS) microplastics and As on HepG2 cells. The results showed that PS microplastics 20, 50, 200, and 500 nm in size were taken up by HepG2 cells, causing a decrease in cellular mitochondrial membrane potential. The results of lactate dehydrogenase release and flow cytometry showed that PS microplastics, especially those of 50 nm, enhanced As-induced apoptosis. In addition, transcriptome analysis revealed that TP53, AKT1, CASP3, ACTB, BCL2L1, CASP8, XIAP, MCL1, NFKBIA, and CASP7 were the top 10 hub genes for PS that enhanced the role of As in HepG2 cell apoptosis. Our results suggest that nano-PS enhances As-induced apoptosis. Furthermore, this study is important for a better understanding of the role of microplastics in As-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Yuanyuan Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Xiaoling Dong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zijie Wu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Baoyi Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
6
|
Saldanha J, Rageul J, Patel JA, Kim H. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork. Int J Mol Sci 2023; 24:10488. [PMID: 37445667 PMCID: PMC10341514 DOI: 10.3390/ijms241310488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells.
Collapse
Affiliation(s)
- Joanne Saldanha
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jinal A. Patel
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
8
|
Zaffar E, Ferreira P, Sanchez-Pulido L, Boos D. The Role of MTBP as a Replication Origin Firing Factor. BIOLOGY 2022; 11:biology11060827. [PMID: 35741348 PMCID: PMC9219753 DOI: 10.3390/biology11060827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
The initiation step of replication at replication origins determines when and where in the genome replication machines, replisomes, are generated. Tight control of replication initiation helps facilitate the two main tasks of genome replication, to duplicate the genome accurately and exactly once each cell division cycle. The regulation of replication initiation must ensure that initiation occurs during the S phase specifically, that no origin fires more than once per cell cycle, that enough origins fire to avoid non-replicated gaps, and that the right origins fire at the right time but only in favorable circumstances. Despite its importance for genetic homeostasis only the main molecular processes of eukaryotic replication initiation and its cellular regulation are understood. The MTBP protein (Mdm2-binding protein) is so far the last core replication initiation factor identified in metazoan cells. MTBP is the orthologue of yeast Sld7. It is essential for origin firing, the maturation of pre-replicative complexes (pre-RCs) into replisomes, and is emerging as a regulation focus targeted by kinases and by regulated degradation. We present recent insight into the structure and cellular function of the MTBP protein in light of recent structural and biochemical studies revealing critical molecular details of the eukaryotic origin firing reaction. How the roles of MTBP in replication and other cellular processes are mutually connected and are related to MTBP's contribution to tumorigenesis remains largely unclear.
Collapse
Affiliation(s)
- Eman Zaffar
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Pedro Ferreira
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGC, University of Edinburgh, Edinburgh EH9 3JR, UK;
| | - Dominik Boos
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
- Correspondence: ; Tel.: +49-201-183-4132
| |
Collapse
|
9
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
10
|
Ciardo D, Haccard O, Narassimprakash H, Cornu D, Guerrera IC, Goldar A, Marheineke K. Polo-like kinase 1 (Plk1) regulates DNA replication origin firing and interacts with Rif1 in Xenopus. Nucleic Acids Res 2021; 49:9851-9869. [PMID: 34469577 PMCID: PMC8464078 DOI: 10.1093/nar/gkab756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of eukaryotic DNA replication origins needs to be strictly controlled at multiple steps in order to faithfully duplicate the genome and to maintain its stability. How the checkpoint recovery and adaptation protein Polo-like kinase 1 (Plk1) regulates the firing of replication origins during non-challenged S phase remained an open question. Using DNA fiber analysis, we show that immunodepletion of Plk1 in the Xenopus in vitro system decreases replication fork density and initiation frequency. Numerical analyses suggest that Plk1 reduces the overall probability and synchrony of origin firing. We used quantitative chromatin proteomics and co-immunoprecipitations to demonstrate that Plk1 interacts with firing factors MTBP/Treslin/TopBP1 as well as with Rif1, a known regulator of replication timing. Phosphopeptide analysis by LC/MS/MS shows that the C-terminal domain of Rif1, which is necessary for its repressive action on origins through protein phosphatase 1 (PP1), can be phosphorylated in vitro by Plk1 on S2058 in its PP1 binding site. The phosphomimetic S2058D mutant interrupts the Rif1-PP1 interaction and modulates DNA replication. Collectively, our study provides molecular insights into how Plk1 regulates the spatio-temporal replication program and suggests that Plk1 controls origin activation at the level of large chromatin domains in vertebrates.
Collapse
Affiliation(s)
- Diletta Ciardo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Hemalatha Narassimprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ida Chiara Guerrera
- Proteomics platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Organization of DNA Replication Origin Firing in Xenopus Egg Extracts: The Role of Intra-S Checkpoint. Genes (Basel) 2021; 12:genes12081224. [PMID: 34440398 PMCID: PMC8394201 DOI: 10.3390/genes12081224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
During cell division, the duplication of the genome starts at multiple positions called replication origins. Origin firing requires the interaction of rate-limiting factors with potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1 over-expressed replication pattern of single DNA molecules from Xenopus sperm chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of data requires: (1) a segmentation of the genome into regions of low and high probability of origin firing; (2) that regions with high probability of origin firing escape intra-S checkpoint regulation and (3) the variability of the rate of DNA synthesis close to replication forks is a necessary ingredient that should be taken in to account in order to describe the dynamic of replication origin firing. This model implies that the observed origin clustering emerges from the apparent synchrony of origin firing in regions with high probability of origin firing and challenge the assumption that the intra-S checkpoint is the main regulator of origin clustering.
Collapse
|
12
|
Abstract
The DNA damage response (DDR) is a coordinated cellular response to a variety of insults to the genome. DDR initiates the activation of cell cycle checkpoints preventing the propagation of damaged DNA followed by DNA repair, which are both critical in maintaining genome integrity. Several model systems have been developed to study the mechanisms and complexity of checkpoint function. Here we describe the application of cell-free extracts derived from Xenopus eggs as a model system to investigate signaling from DNA damage, modulation of DNA replication, checkpoint activation, and ultimately DNA repair. We outline the preparation of cell-free extracts, DNA substrates, and their subsequent use in assays aimed at understanding the cellular response to DNA damage. Cell-free extracts derived from the eggs of Xenopus laevis remain a robust and versatile system to decipher the biochemical steps underlying this essential characteristic of all cells, critical for genome stability.
Collapse
|
13
|
Ciardo D, Haccard O, Narassimprakash H, Chiodelli V, Goldar A, Marheineke K. Polo-like kinase 1 (Plk1) is a positive regulator of DNA replication in the Xenopus in vitro system. Cell Cycle 2020; 19:1817-1832. [PMID: 32573322 PMCID: PMC7469467 DOI: 10.1080/15384101.2020.1782589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/24/2020] [Accepted: 06/07/2020] [Indexed: 12/18/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a cell cycle kinase essential for mitosis progression, but also important for checkpoint recovery and adaptation in response to DNA damage and replication stress. However, although Plk1 is expressed in S phase, little is known about its function during unperturbed DNA replication. Using Xenopus laevis egg extracts, mimicking early embryonic replication, we demonstrate that Plk1 is simultaneously recruited to chromatin with pre-replication proteins where it accumulates throughout S phase. Further, we found that chromatin-bound Plk1 is phosphorylated on its activating site T201, which appears to be sensitive to dephosphorylation by protein phosphatase 2A. Extracts immunodepleted of Plk1 showed a decrease in DNA replication, rescued by wild type recombinant Plk1. Inversely, modest Plk1 overexpression accelerated DNA replication. Plk1 depletion led to an increase in Chk1 phosphorylation and to a decrease in Cdk2 activity, which strongly suggests that Plk1 could inhibit the ATR/Chk1-dependent intra-S phase checkpoint during normal S phase. In addition, we observed that phosphorylated Plk1 levels are high during the rapid, early cell cycles of Xenopus development but decrease after the mid-blastula transition when the cell cycle and the replication program slow down along with more active checkpoints. These data shed new light on the role of Plk1 as a positive regulating factor for DNA replication in early, rapidly dividing embryos.
Collapse
Affiliation(s)
- Diletta Ciardo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hemalatha Narassimprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginie Chiodelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
14
|
Abstract
Mechanisms that limit origin firing are essential as the ˜50,000 origins that replicate the human genome in unperturbed cells are chosen from an excess of ˜500,000 licensed origins. Computational models of the spatiotemporal pattern of replication foci assume that origins fire stochastically with a domino-like progression that places later firing origins near recent fired origins. These stochastic models of origin firing require dormant origin signaling that inhibits origin firing and suppresses licensed origins for passive replication at a distance of ∼7-120 kbp around replication forks. ATR and CHK1 kinase inhibitors increase origin firing and increase origin density in unperturbed cells. Thus, basal ATR and CHK1 kinase-dependent dormant origin signaling inhibits origin firing and there appear to be two thresholds of ATR kinase signaling. A minority of ATR molecules are activated for ATR and CHK1 kinase-dependent dormant origin signaling and this is essential for DNA replication in unperturbed cells. A majority of ATR molecules are activated for ATR and CHK1 kinase-dependent checkpoint signaling in cells treated with DNA damaging agents that target replication forks. Since ATR and CHK1 kinase inhibitors increase origin firing and this is associated with fork stalling and extensive regions of single-stranded DNA, they are DNA damaging agents. Accordingly, the sequence of administration of ATR and CHK1 kinase inhibitors and DNA damaging agents may impact the DNA damage induced by the combination and the efficacy of cell killing by the combination.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, United States.
| | - Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, United States.
| |
Collapse
|
15
|
An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication. Proc Natl Acad Sci U S A 2019; 116:13374-13383. [PMID: 31209037 PMCID: PMC6613105 DOI: 10.1073/pnas.1903418116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The 50,000 origins that replicate the human genome are selected from an excess of licensed origins. Firing licensed origins that would otherwise be passively replicated is a simple mechanism to recover DNA replication between stalled replication forks. This plasticity in origin use promotes genome stability if an unknown mechanism prevents a subset of origins from firing during unperturbed DNA replication. We describe ATR and CHK1 kinase signaling that suppresses a CDK1 kinase-dependent phosphorylation on the chromatin protein RIF1. The CDK1 kinase-dependent phosphorylation of RIF1 disrupts its interaction with PP1 phosphatase. Thus, ATR and CHK1 stabilize an interaction between RIF1 and PP1 that counteracts CDC7 and CDK2 kinase signaling at licensed origins. This mechanism limits origin firing during unperturbed DNA replication. DNA damage-induced signaling by ATR and CHK1 inhibits DNA replication, stabilizes stalled and collapsed replication forks, and mediates the repair of multiple classes of DNA lesions. We and others have shown that ATR kinase inhibitors, three of which are currently undergoing clinical trials, induce excessive origin firing during unperturbed DNA replication, indicating that ATR kinase activity limits replication initiation in the absence of damage. However, the origins impacted and the underlying mechanism(s) have not been described. Here, we show that unperturbed DNA replication is associated with a low level of ATR and CHK1 kinase signaling and that inhibition of this signaling induces dormant origin firing at sites of ongoing replication throughout the S phase. We show that ATR and CHK1 kinase inhibitors induce RIF1 Ser2205 phosphorylation in a CDK1-dependent manner, which disrupts an interaction between RIF1 and PP1 phosphatase. Thus, ATR and CHK1 signaling suppresses CDK1 kinase activity throughout the S phase and stabilizes an interaction between RIF1 and PP1 in replicating cells. PP1 dephosphorylates key CDC7 and CDK2 kinase substrates to inhibit the assembly and activation of the replicative helicase. This mechanism limits origin firing during unperturbed DNA replication in human cells.
Collapse
|
16
|
Li W, Wang HY, Zhao X, Duan H, Cheng B, Liu Y, Zhao M, Shu W, Mei Y, Wen Z, Tang M, Guo L, Li G, Chen Q, Liu X, Du HN. A methylation-phosphorylation switch determines Plk1 kinase activity and function in DNA damage repair. SCIENCE ADVANCES 2019; 5:eaau7566. [PMID: 30854428 PMCID: PMC6402851 DOI: 10.1126/sciadv.aau7566] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/23/2019] [Indexed: 05/27/2023]
Abstract
Polo-like kinase 1 (Plk1) is a crucial regulator of cell cycle progression; but the mechanism of regulation of Plk1 activity is not well understood. We present evidence that Plk1 activity is controlled by a balanced methylation and phosphorylation switch. The methyltransferase G9a monomethylates Plk1 at Lys209, which antagonizes phosphorylation of T210 to inhibit Plk1 activity. We found that the methyl-deficient Plk1 mutant K209A affects DNA replication, whereas the methyl-mimetic Plk1 mutant K209M prolongs metaphase-to-anaphase duration through the inability of sister chromatids separation. We detected accumulation of Plk1 K209me1 when cells were challenged with DNA damage stresses. Ablation of K209me1 delays the timely removal of RPA2 and RAD51 from DNA damage sites, indicating the critical role of K209me1 in guiding the machinery of DNA damage repair. Thus, our study highlights the importance of a methylation-phosphorylation switch of Plk1 in determining its kinase activity and functioning in DNA damage repair.
Collapse
Affiliation(s)
- Weizhe Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hong-Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongguo Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Binghua Cheng
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yafei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Mengjie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenjie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuchao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences ,Beijing 100101, China
| | - Mingliang Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences ,Beijing 100101, China
| | - Qiang Chen
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
17
|
Ciardo D, Goldar A, Marheineke K. On the Interplay of the DNA Replication Program and the Intra-S Phase Checkpoint Pathway. Genes (Basel) 2019; 10:E94. [PMID: 30700024 PMCID: PMC6410103 DOI: 10.3390/genes10020094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
DNA replication in eukaryotes is achieved by the activation of multiple replication origins which needs to be precisely coordinated in space and time. This spatio-temporal replication program is regulated by many factors to maintain genome stability, which is frequently threatened through stresses of exogenous or endogenous origin. Intra-S phase checkpoints monitor the integrity of DNA synthesis and are activated when replication forks are stalled. Their activation leads to the stabilization of forks, to the delay of the replication program by the inhibition of late firing origins, and the delay of G2/M phase entry. In some cell cycles during early development these mechanisms are less efficient in order to allow rapid cell divisions. In this article, we will review our current knowledge of how the intra-S phase checkpoint regulates the replication program in budding yeast and metazoan models, including early embryos with rapid S phases. We sum up current models on how the checkpoint can inhibit origin firing in some genomic regions, but allow dormant origin activation in other regions. Finally, we discuss how numerical and theoretical models can be used to connect the multiple different actors into a global process and to extract general rules.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | | | | |
Collapse
|
18
|
Cupello S, Richardson C, Yan S. Cell-free Xenopus egg extracts for studying DNA damage response pathways. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 60:229-236. [PMID: 27160070 DOI: 10.1387/ijdb.160113sy] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In response to a variety of DNA replication stress or DNA damaging agents, the DNA damage response (DDR) pathways are triggered for cells to coordinate DNA repair, cell cycle checkpoints, apoptosis, and senescence. Cell-free Xenopus egg extracts, derived from the eggs of African clawed frogs (Xenopus laevis), have been widely used for studies concerning DDR pathways. In this review, we focus on how different experimental systems have been established using Xenopus egg extracts to investigate the DDR pathways that are activated in response to DNA replication stress, double-strand breaks (DSBs), inter-strand crosslinks (ICLs), and oxidative stress. We summarize how molecular details of DDR pathways are dissected by the mechanistic studies with Xenopus egg extracts. We also provide an update on the regulation of translesion DNA synthesis (TLS) polymerases (Pol ĸ and REV1) in the DDR pathways. A better understanding of DDR pathways using Xenopus egg extracts has opened new avenues for future cancer therapeutics. Finally, we offer our perspectives of future directions for studies of DDR pathways with Xenopus egg extracts.
Collapse
Affiliation(s)
- Steven Cupello
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | |
Collapse
|
19
|
Zellweger R, Lopes M. Dynamic Architecture of Eukaryotic DNA Replication Forks In Vivo, Visualized by Electron Microscopy. Methods Mol Biol 2018; 1672:261-294. [PMID: 29043630 DOI: 10.1007/978-1-4939-7306-4_19] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The DNA replication process can be heavily perturbed by several different conditions of genotoxic stress, particularly relevant for cancer onset and therapy. The combination of psoralen crosslinking and electron microscopy has proven instrumental to reveal the fine architecture of in vivo DNA replication intermediates and to uncover their remodeling upon specific conditions of genotoxic stress. The replication structures are stabilized in vivo (by psoralen crosslinking) prior to extraction and enrichment procedures, allowing their visualization at the transmission electron microscope. This chapter outlines the procedures required to visualize and interpret in vivo replication intermediates of eukaryotic genomic DNA, and includes an improved method for enrichment of replication intermediates, compared to previously used BND-cellulose columns.
Collapse
Affiliation(s)
- Ralph Zellweger
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Massimo Lopes
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland.
| |
Collapse
|
20
|
Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol 2017; 18:622-636. [PMID: 28811666 DOI: 10.1038/nrm.2017.67] [Citation(s) in RCA: 592] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| | - David Cortez
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| |
Collapse
|
21
|
Ritter A, Friemel A, Kreis NN, Louwen F, Yuan J. Impact of Polo-like kinase 1 inhibitors on human adipose tissue-derived mesenchymal stem cells. Oncotarget 2016; 7:84271-84285. [PMID: 27713178 PMCID: PMC5356661 DOI: 10.18632/oncotarget.12482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
Polo-like kinase 1 (Plk1) has been established as one of the most promising targets for molecular anticancer intervention. In fact, various Plk1 inhibitors have been identified and characterized. While the data derived from the bench are prospective, the clinical outcomes are less encouraging by showing modest efficacy. One of the explanations for this discrepancy could be unintendedly targeting of non-malignant cells by Plk1 inhibitors. In this work, we have addressed the effect of Plk1 inhibition in adipose tissue-derived mesenchymal stem cells (ASCs). We show that both visceral and subcutaneous ASCs display monopolar spindles, reduced viability and strong apoptosis induction upon treatment with BI 2536 and BI 6727, the Plk1 kinase domain inhibitors, and with Poloxin, the regulatory Polo-box domain inhibitor. While Poloxin triggers quickly apoptosis, BI 2536 and BI 6727 result in mitotic arrest in ASCs. Importantly, survived ASCs exhibit DNA damage and a pronounced senescent phenotype. In addition, Plk1 inhibition impairs ASCs' motility and homing ability. These results show that Plk1 inhibitors target slowly proliferating ASCs, an important population of anti-inflammation and immune modulation. The toxic effects on primary cells like ASCs could be partially responsible for the reported moderate antitumor activity in patients treated with Plk1 inhibitors.
Collapse
Affiliation(s)
- Andreas Ritter
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Alexandra Friemel
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
22
|
Chen JLY, Chen JP, Huang YS, Tsai YC, Tsai MH, Jaw FS, Cheng JCH, Kuo SH, Shieh MJ. Radiosensitization in esophageal squamous cell carcinoma: Effect of polo-like kinase 1 inhibition. Strahlenther Onkol 2016; 192:260-268. [PMID: 26952039 DOI: 10.1007/s00066-016-0951-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE This study examined the efficacy of polo-like kinase 1 (PLK1) inhibition on radiosensitivity in vitro and in vivo by a pharmacologic approach using the highly potent PLK1 inhibitor volasertib. METHODS AND MATERIALS Human esophageal squamous cell carcinoma (ESCC) cell lines KYSE 70 and KYSE 150 were used to evaluate the synergistic effect of volasertib and irradiation in vitro using cell viability assay, colony formation assay, cell cycle phase analysis, and western blot, and in vivo using ectopic tumor models. RESULTS Volasertib decreased ESCC cell proliferation in a dose- and time-dependent manner. Combination of volasertib and radiation caused G2/M cell cycle arrest, increased cyclin B levels, and induced apoptosis. Volasertib significantly enhanced radiation-induced death in ESCC cells by a mechanism involving the enhancement of histone H3 phosphorylation and significant cell cycle interruption. The combination of volasertib plus irradiation delayed the growth of ESCC tumor xenografts markedly compared with either treatment modality alone. CONCLUSIONS The in vitro results suggested that targeting PLK1 might be a viable approach to improve the effects of radiation in ESCC. In vivo studies showed that PLK1 inhibition with volasertib during irradiation significantly improved local tumor control when compared to irradiation or drug treatment alone.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Jo-Pai Chen
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Yu-Sen Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
- Department of Medical Imaging, National Taiwan University Hospital, No.7, Chung-Shan South Road, 100, Taipei, Taiwan.
- Department of Medical Imaging, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan.
| | - Yuan-Chun Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Fu-Shan Jaw
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Jason Chia-Hsien Cheng
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| |
Collapse
|
23
|
Talati C, Griffiths EA, Wetzler M, Wang ES. Polo-like kinase inhibitors in hematologic malignancies. Crit Rev Oncol Hematol 2016; 98:200-10. [PMID: 26597019 DOI: 10.1016/j.critrevonc.2015.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 10/12/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Polo-like kinases (Plk) are key regulators of the cell cycle and multiple aspects of mitosis. Two agents that inhibit the Plk signaling pathway have shown promising activity in patients with hematologic malignancies and are currently in phase III trials. Volasertib is a Plk inhibitor under evaluation combined with low-dose cytarabine in older patients with acute myeloid leukemia (AML) ineligible for intensive induction therapy. Rigosertib, a dual inhibitor of the Plk and phosphatidylinositol 3-kinase pathways, is under investigation in patients with myelodysplastic syndrome (MDS) who have failed azacitidine or decitabine treatment. The prognosis for patients with AML, who are ineligible for intensive induction therapy, and for those with MDS refractory/relapsed after a hypomethylating agent, remains poor. Novel approaches, such as Plk inhibitors, are urgently needed for these patients. Here, we provide a comprehensive overview of the current state of development of Plk inhibitors for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Chetasi Talati
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Elizabeth A Griffiths
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Meir Wetzler
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Eunice S Wang
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
24
|
Muñoz S, Méndez J. DNA replication stress: from molecular mechanisms to human disease. Chromosoma 2016; 126:1-15. [PMID: 26797216 DOI: 10.1007/s00412-016-0573-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/29/2022]
Abstract
The genome of proliferating cells must be precisely duplicated in each cell division cycle. Chromosomal replication entails risks such as the possibility of introducing breaks and/or mutations in the genome. Hence, DNA replication requires the coordinated action of multiple proteins and regulatory factors, whose deregulation causes severe developmental diseases and predisposes to cancer. In recent years, the concept of "replicative stress" (RS) has attracted much attention as it impinges directly on genomic stability and offers a promising new avenue to design anticancer therapies. In this review, we summarize recent progress in three areas: (1) endogenous and exogenous factors that contribute to RS, (2) molecular mechanisms that mediate the cellular responses to RS, and (3) the large list of diseases that are directly or indirectly linked to RS.
Collapse
Affiliation(s)
- Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| |
Collapse
|
25
|
Platel M, Goldar A, Wiggins JM, Barbosa P, Libeau P, Priam P, Narassimprakash H, Grodzenski X, Marheineke K. Tight Chk1 Levels Control Replication Cluster Activation in Xenopus. PLoS One 2015; 10:e0129090. [PMID: 26046346 PMCID: PMC4457610 DOI: 10.1371/journal.pone.0129090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/05/2015] [Indexed: 12/03/2022] Open
Abstract
DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the temporal program is stochastic at the level of single origins and replication clusters. It is unclear how the replication checkpoint inhibits late origins but permits origin activation in early clusters. Here, we analyze the role of Chk1 in the replication program in sperm nuclei replicating in Xenopus egg extracts by a combination of experimental and modelling approaches. After Chk1 inhibition or immunodepletion, we observed an increase of the replication extent and fork density in the presence or absence of external stress. However, overexpression of Chk1 in the absence of external replication stress inhibited DNA replication by decreasing fork densities due to lower Cdk2 kinase activity. Thus, Chk1 levels need to be tightly controlled in order to properly regulate the replication program even during normal S phase. DNA combing experiments showed that Chk1 inhibits origins outside, but not inside, already active clusters. Numerical simulations of initiation frequencies in the absence and presence of Chk1 activity are consistent with a global inhibition of origins by Chk1 at the level of clusters but need to be combined with a local repression of Chk1 action close to activated origins to fit our data.
Collapse
Affiliation(s)
- Marie Platel
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Arach Goldar
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Jennifer M. Wiggins
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Pedro Barbosa
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Pierre Libeau
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Pierre Priam
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Hemalatha Narassimprakash
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Xenia Grodzenski
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Kathrin Marheineke
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
26
|
Abstract
Billions of base pairs of DNA must be replicated trillions of times in a human lifetime. Complete and accurate replication once and only once per cell division cycle is essential to maintain genome integrity and prevent disease. Impediments to replication fork progression including difficult to replicate DNA sequences, conflicts with transcription, and DNA damage further add to the genome maintenance challenge. These obstacles frequently cause fork stalling, but only rarely cause a failure to complete replication. Robust mechanisms ensure that stalled forks remain stable and capable of either resuming DNA synthesis or being rescued by converging forks. However, when failures do happen the fork collapses leading to genome rearrangements, cell death and disease. Despite intense interest, the mechanisms to repair damaged replication forks, stabilize them, and ensure successful replication remain only partly understood. Different models of fork collapse have been proposed with varying descriptions of what happens to the DNA and replisome. Here, I will define fork collapse and describe what is known about how the replication checkpoint prevents it to maintain genome stability.
Collapse
|
27
|
Kotsantis P, Jones RM, Higgs MR, Petermann E. Cancer therapy and replication stress: forks on the road to perdition. Adv Clin Chem 2015; 69:91-138. [PMID: 25934360 DOI: 10.1016/bs.acc.2014.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deregulated DNA replication occurs in cancer where it contributes to genomic instability. This process is a target of cytotoxic therapies. Chemotherapies exploit high DNA replication in cancer cells by modifying the DNA template or by inhibiting vital enzymatic activities that lead to slowing or stalling replication fork progression. Stalled replication forks can be converted into toxic DNA double-strand breaks resulting in cell death, i.e., replication stress. While likely crucial for many cancer treatments, replication stress is poorly understood due to its complexity. While we still know relatively little about the role of replication stress in cancer therapy, technical advances in recent years have shed new light on the effect that cancer therapeutics have on replication forks and the molecular mechanisms that lead from obstructed fork progression to cell death. This chapter will give an overview of our current understanding of replication stress in the context of cancer therapy.
Collapse
Affiliation(s)
- Panagiotis Kotsantis
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Rebecca M Jones
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martin R Higgs
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Eva Petermann
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| |
Collapse
|
28
|
Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, Gerber DE, Goldberg SB, Hammerman PS, Heist R, Hensing T, Horn L, Ramalingam SS, Rudin CM, Salgia R, Sequist L, Shaw AT, Simon GR, Somaiah N, Spigel DR, Wrangle J, Johnson D, Herbst RS, Bunn P, Govindan R. Molecularly targeted therapies in non-small-cell lung cancer annual update 2014. J Thorac Oncol 2015; 10:S1-63. [PMID: 25535693 PMCID: PMC4346098 DOI: 10.1097/jto.0000000000000405] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There have been significant advances in the understanding of the biology and treatment of non-small-cell lung cancer (NSCLC) during the past few years. A number of molecularly targeted agents are in the clinic or in development for patients with advanced NSCLC. We are beginning to understand the mechanisms of acquired resistance after exposure to tyrosine kinase inhibitors in patients with oncogene addicted NSCLC. The advent of next-generation sequencing has enabled to study comprehensively genomic alterations in lung cancer. Finally, early results from immune checkpoint inhibitors are very encouraging. This review summarizes recent advances in the area of cancer genomics, targeted therapies, and immunotherapy.
Collapse
Affiliation(s)
- Daniel Morgensztern
- Department of Medical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Meghan J. Campo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Suzanne E. Dahlberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston MA
| | - Robert C. Doebele
- Department of Medical Oncology, University of Colorado School of Medicine and University of Colorado Cancer Center, Aurora, CO
| | - Edward Garon
- UCLA Santa Monica Hematology Oncology, Santa Monica, CA
| | - David E. Gerber
- Division of Hematology-Oncology, Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sarah B. Goldberg
- Department of Medical Oncology, Yale School of Medicine and Cancer Center, New Haven, CT
| | | | - Rebecca Heist
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - Thomas Hensing
- Department of Oncology, The University of Chicago Medicine, Chicago, IL
| | - Leora Horn
- Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA
| | | | - Ravi Salgia
- Department of Oncology, The University of Chicago Medicine, Chicago, IL
| | - Lecia Sequist
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - Alice T. Shaw
- Department of Oncology, Massachusetts General Hospital, Boston, MA
| | - George R. Simon
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC
| | - Neeta Somaiah
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC
| | | | - John Wrangle
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - David Johnson
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Roy S. Herbst
- Department of Medical Oncology, Yale School of Medicine and Cancer Center, New Haven, CT
| | - Paul Bunn
- Division of Medical Oncology, University of Colorado Denver School of Medicine, Denver, CO
| | - Ramaswamy Govindan
- Department of Medical Oncology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
29
|
Shao T, Liu X. Identification of rictor as a novel substrate of Polo-like kinase 1. Cell Cycle 2015; 14:755-60. [PMID: 25714006 PMCID: PMC4615041 DOI: 10.1080/15384101.2014.998050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 10/23/2022] Open
Abstract
Plk1 has been essentially described as a critical regulator of many mitotic events. However, increasing evidence supports the notion that its molecular functions are not restricted to the cell cycle. In particular, recent reports suggest the existence of a molecular and functional link between Plk1 and the mammalian target of rapamycin (mTOR) pathway, which controls cell growth and proliferation via the raptor-mTOR (TORC1) and rictor-mTOR (TORC2) protein complexes. Herein, we have identified rapamycin-insensitive companion of mTOR (Rictor), a core component of mTORC2, as a new Plk1 substrate and have shown that Plk1 phosphorylates Rictor at Ser1162 in vitro and in vivo. Surprisingly, cells expressing the unphosphorylatable mutant (S1162A) of Rictor did not show any effect on well characterized canonical PI3K-mTOR pathway. However, we found that cells expressing the unphosphorylatable form of Rictor have an elevated level of mSin1 isoform (mSin1.5). Considering that mSin1.5-containing mTORC2 was reported to associate with stress signaling, we propose that phosphorylation of Rictor at Ser1162 by Plk1 might be involved in a novel signaling pathway by regulating the mSin1.5-defined mTORC2.
Collapse
Key Words
- 4E-BP1, eIF4E-binding protein 1
- GST, glutathione S-transferase
- IB, immunoblotting.
- IP, immunoprecipitation
- PDK1, 3-phophoinositide-dependent protein kinase 1 (PDK1)
- Plk1
- Plk1, polo-like kinase 1
- Raptor, regulatory-associated protein of mTOR
- Rictor
- Rictor, rapamycin-insensitive companion of mTOR
- S6K, S6 Kinase
- WT, wild type
- aa, amino acids
- cell cycle
- mSin1
- mSin1, mammalian stress-activated map kinase-interacting protein 1 (mSin1)
- mTOR, mammalian target of rapamycin
- mTORC
- mTORC1, mTOR complex 1
- mTORC2, mTOR complex 2
- phosphorylation
Collapse
Affiliation(s)
- Tian Shao
- Department of Biochemistry; Purdue University; West Lafayette, IN USA
| | - Xiaoqi Liu
- Department of Biochemistry; Purdue University; West Lafayette, IN USA
- Purdue Center for Cancer Research; Purdue University; West Lafayette, IN USA
| |
Collapse
|
30
|
Chastain PD, Brylawski BP, Zhou YC, Rao S, Chu H, Ibrahim JG, Kaufmann WK, Cordeiro-Stone M. DNA damage checkpoint responses in the S phase of synchronized diploid human fibroblasts. Photochem Photobiol 2014; 91:109-16. [PMID: 25316620 PMCID: PMC4303954 DOI: 10.1111/php.12361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/08/2014] [Indexed: 01/05/2023]
Abstract
We investigated the hypothesis that the strength of the activation of the intra-S DNA damage checkpoint varies within the S phase. Synchronized diploid human fibroblasts were exposed to either 0 or 2.5 J m−2 UVC in early, mid- and late-S phase. The endpoints measured were the following: (1) radio-resistant DNA synthesis (RDS), (2) induction of Chk1 phosphorylation, (3) initiation of new replicons and (4) length of replication tracks synthesized after irradiation. RDS analysis showed that global DNA synthesis was inhibited by approximately the same extent (30 ± 12%), regardless of when during S phase the fibroblasts were exposed to UVC. Western blot analysis revealed that the UVC-induced phosphorylation of checkpoint kinase 1 (Chk1) on serine 345 was high in early and mid S but 10-fold lower in late S. DNA fiber immunostaining studies indicated that the replication fork displacement rate decreased in irradiated cells at the three time points examined; however, replicon initiation was inhibited strongly in early and mid S, but this response was attenuated in late S. These results suggest that the intra-S checkpoint activated by UVC-induced DNA damage is not as robust toward the end of S phase in its inhibition of the latest firing origins in human fibroblasts.
Collapse
Affiliation(s)
- Paul D Chastain
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Driscoll DL, Chakravarty A, Bowman D, Shinde V, Lasky K, Shi J, Vos T, Stringer B, Amidon B, D'Amore N, Hyer ML. Plk1 inhibition causes post-mitotic DNA damage and senescence in a range of human tumor cell lines. PLoS One 2014; 9:e111060. [PMID: 25365521 PMCID: PMC4218841 DOI: 10.1371/journal.pone.0111060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/21/2014] [Indexed: 01/17/2023] Open
Abstract
Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens.
Collapse
Affiliation(s)
- Denise L. Driscoll
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Arijit Chakravarty
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Doug Bowman
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Vaishali Shinde
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Kerri Lasky
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Judy Shi
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Tricia Vos
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Bradley Stringer
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Ben Amidon
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Natalie D'Amore
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Marc L. Hyer
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| |
Collapse
|
32
|
Martínez TF, Phillips JW, Karanja KK, Polaczek P, Wang CM, Li BC, Campbell JL, Dervan PB. Replication stress by Py-Im polyamides induces a non-canonical ATR-dependent checkpoint response. Nucleic Acids Res 2014; 42:11546-59. [PMID: 25249630 PMCID: PMC4191428 DOI: 10.1093/nar/gku866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pyrrole–imidazole polyamides targeted to the androgen response element were cytotoxic in multiple cell lines, independent of intact androgen receptor signaling. Polyamide treatment induced accumulation of S-phase cells and of PCNA replication/repair foci. Activation of a cell cycle checkpoint response was evidenced by autophosphorylation of ATR, the S-phase checkpoint kinase, and by recruitment of ATR and the ATR activators RPA, 9-1-1, and Rad17 to chromatin. Surprisingly, ATR activation was accompanied by only a slight increase in single-stranded DNA, and the ATR targets RPA2 and Chk1, a cell cycle checkpoint kinase, were not phosphorylated. However, ATR activation resulted in phosphorylation of the replicative helicase subunit MCM2, an ATR effector. Polyamide treatment also induced accumulation of monoubiquitinated FANCD2, which is recruited to stalled replication forks and interacts transiently with phospho-MCM2. This suggests that polyamides induce replication stress that ATR can counteract independently of Chk1 and that the FA/BRCA pathway may also be involved in the response to polyamides. In biochemical assays, polyamides inhibit DNA helicases, providing a plausible mechanism for S-phase inhibition.
Collapse
Affiliation(s)
- Thomas F Martínez
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John W Phillips
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kenneth K Karanja
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chieh-Mei Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin C Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter B Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
33
|
Processive DNA demethylation via DNA deaminase-induced lesion resolution. PLoS One 2014; 9:e97754. [PMID: 25025377 PMCID: PMC4098905 DOI: 10.1371/journal.pone.0097754] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022] Open
Abstract
Base modifications of cytosine are an important aspect of chromatin biology, as they can directly regulate gene expression, while DNA repair ensures that those modifications retain genome integrity. Here we characterize how cytosine DNA deaminase AID can initiate DNA demethylation. In vitro, AID initiated targeted DNA demethylation of methyl CpGs when in combination with DNA repair competent extracts. Mechanistically, this is achieved by inducing base alterations at or near methyl-cytosine, with the lesion being resolved either via single base substitution or a more efficient processive polymerase dependent repair. The biochemical findings are recapitulated in an in vivo transgenic targeting assay, and provide the genetic support of the molecular insight into DNA demethylation. This targeting approach supports the hypothesis that mCpG DNA demethylation can proceed via various pathways and mCpGs do not have to be targeted to be demethylated.
Collapse
|
34
|
Yata K, Bleuyard JY, Nakato R, Ralf C, Katou Y, Schwab RA, Niedzwiedz W, Shirahige K, Esashi F. BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability. Cell Rep 2014; 7:1547-1559. [PMID: 24835992 PMCID: PMC4062933 DOI: 10.1016/j.celrep.2014.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 03/11/2014] [Accepted: 04/13/2014] [Indexed: 02/06/2023] Open
Abstract
Numerous human genome instability syndromes, including cancer, are closely associated with events arising from malfunction of the essential recombinase Rad51. However, little is known about how Rad51 is dynamically regulated in human cells. Here, we show that the breast cancer susceptibility protein BRCA2, a key Rad51 binding partner, coordinates the activity of the central cell-cycle drivers CDKs and Plk1 to promote Rad51-mediated genome stability control. The soluble nuclear fraction of BRCA2 binds Plk1 directly in a cell-cycle- and CDK-dependent manner and acts as a molecular platform to facilitate Plk1-mediated Rad51 phosphorylation. This phosphorylation is important for enhancing the association of Rad51 with stressed replication forks, which in turn protects the genomic integrity of proliferating human cells. This study reveals an elaborate but highly organized molecular interplay between Rad51 regulators and has significant implications for understanding tumorigenesis and therapeutic resistance in patients with BRCA2 deficiency.
Collapse
Affiliation(s)
- Keiko Yata
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jean-Yves Bleuyard
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 113-0032, Japan; CREST, Japan Science and Technology Agency (JST), K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Christine Ralf
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Yuki Katou
- Research Center for Epigenetic Disease, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Rebekka A Schwab
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Wojciech Niedzwiedz
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 113-0032, Japan; CREST, Japan Science and Technology Agency (JST), K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Fumiko Esashi
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
35
|
Errico A, Aze A, Costanzo V. Mta2 promotes Tipin-dependent maintenance of replication fork integrity. Cell Cycle 2014; 13:2120-8. [PMID: 24830473 PMCID: PMC4111703 DOI: 10.4161/cc.29157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Orderly progression of S phase requires the action of replisome-associated Tipin and Tim1 proteins, whose molecular function is poorly understood. Here, we show that Tipin deficiency leads to the accumulation of aberrant replication intermediates known as reversed forks. We identified Mta2, a subunit of the NuRD chromatin remodeler complex, as a novel Tipin binding partner and mediator of its function. Mta2 is required for Tipin-dependent Polymerase α binding to replicating chromatin, and this function is essential to prevent the accumulation of reversed forks. Given the role of the Mta2-NuRD complex in the maintenance of heterochromatin, which is usually associated with hard-to-replicate DNA sequences, we tested the role of Tipin in the replication of such regions. Using a novel assay we developed to monitor replication of specific genomic loci in Xenopus laevis egg extract we demonstrated that Tipin is directly required for efficient replication of vertebrate centromeric DNA. Overall these results suggest that Mta2 and Tipin cooperate to maintain replication fork integrity, especially on regions that are intrinsically difficult to duplicate.
Collapse
Affiliation(s)
- Alessia Errico
- Genome Stability Laboratory; London Research Institute; South Mimms, UK; 2The FIRC Institute of Molecular Oncology (IFOM) Foundation; Milan, Italy
| | - Antoine Aze
- Genome Stability Laboratory; London Research Institute; South Mimms, UK; 2The FIRC Institute of Molecular Oncology (IFOM) Foundation; Milan, Italy
| | - Vincenzo Costanzo
- Genome Stability Laboratory; London Research Institute; South Mimms, UK; 2The FIRC Institute of Molecular Oncology (IFOM) Foundation; Milan, Italy
| |
Collapse
|
36
|
Plk1-targeted therapies in TP53- or RAS-mutated cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:31-39. [PMID: 24630986 DOI: 10.1016/j.mrrev.2014.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/23/2022]
Abstract
Despite advances in treatment, prognosis for many types of carcinoma remains poor. Polo-like kinase 1 (Plk1) has been explored as a target for the development of anticancer drugs. As a mitotic master Ser/Thr kinase, Plk1 is involved in centrosomal maturation, microtubule nucleation, chromosomal segregation, and cytokinesis. Additional functions in interphase and in response to DNA damage have been revealed. The multiple locations of Plk1 correspond to distinct functions, mediated by phosphorylation of multiple substrates. Since it is highly expressed in several carcinomas, and expression of Plk1 is inversely correlated with the survival rate of patients in non-small cell lung, head and neck, and esophageal cancer, Plk1 is recognized as a valid prognostic marker. Connections between Plk1 and p53 or KRAS in carcinoma provide a rationale and several possible routes to the development of therapies. Tumors with both p53-deficiency and high Plk1 expression may be particularly sensitive to Plk1 inhibitors, although some controversial data exist. In KRAS-mutant cancers, on the other hand, Plk1 may be essential for tumor cell survival, but detailed studies as to whether Plk1 inhibitors are more effective in KRAS-mutant cancers must be performed in order to determine whether this is the case. Here, we present evidence for Plk1 as a prognostic marker and potentially effective target for the treatment of patients with carcinoma, to demonstrate the value of Plk1 as a target for the development of cancer treatment, especially for patients with solid tumors. In addition, the effects of Plk1 inhibition in p53- or KRAS-mutated cancer are discussed with respect to clinical implications. Structural specifics of Plk1 are presented, as well as current strategies for discovering new Plk1 inhibitors by targeting the conserved ATP binding site or polo-box domain of Plk1, in order to develop Plk1-specific anticancer drugs.
Collapse
|
37
|
Visualization and interpretation of eukaryotic DNA replication intermediates in vivo by electron microscopy. Methods Mol Biol 2014; 1094:177-208. [PMID: 24162989 DOI: 10.1007/978-1-62703-706-8_15] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The detailed understanding of the DNA replication process requires structural insight. The combination of psoralen cross-linking and electron microscopy has been extensively exploited to reveal the fine architecture of in vivo DNA replication intermediates. This approach proved instrumental to uncover the basic mechanisms of DNA duplication, as well as the perturbation of this process by various forms of replication stress. The replication structures are stabilized in vivo (by psoralen cross-linking) prior to extraction and enrichment procedures, allowing their visualization at the transmission electron microscope. This chapter outlines the procedures required to visualize and interpret in vivo replication intermediates of genomic DNA, extracted from budding yeast, Xenopus egg extracts, or cultured mammalian cells.
Collapse
|
38
|
Interplay between the cell cycle and double-strand break response in mammalian cells. Methods Mol Biol 2014; 1170:41-59. [PMID: 24906308 DOI: 10.1007/978-1-4939-0888-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cell cycle is intimately associated with the ability of cells to sense and respond to and repair DNA damage. Understanding how cell cycle progression, particularly DNA replication and cell division, are regulated and how DNA damage can affect these processes has been the subject of intense research. Recent evidence suggests that the repair of DNA damage is regulated by the cell cycle, and that cell cycle factors are closely associated with repair factors and participate in cellular decisions regarding how to respond to and repair damage. Precise regulation of cell cycle progression in the presence of DNA damage is essential to maintain genomic stability and avoid the accumulation of chromosomal aberrations that can promote tumor formation. In this review, we discuss the current understanding of how mammalian cells induce cell cycle checkpoints in response to DNA double-strand breaks. In addition, we discuss how cell cycle factors modulate DNA repair pathways to facilitate proper repair of DNA lesions.
Collapse
|
39
|
Franchini DM, Incorvaia E, Rangam G, Coker HA, Petersen-Mahrt SK. Simultaneous in vitro characterisation of DNA deaminase function and associated DNA repair pathways. PLoS One 2013; 8:e82097. [PMID: 24349193 PMCID: PMC3857227 DOI: 10.1371/journal.pone.0082097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/25/2013] [Indexed: 02/02/2023] Open
Abstract
During immunoglobulin (Ig) diversification, activation-induced deaminase (AID) initiates somatic hypermutation and class switch recombination by catalysing the conversion of cytosine to uracil. The synergy between AID and DNA repair pathways is fundamental for the introduction of mutations, however the molecular and biochemical mechanisms underlying this process are not fully elucidated. We describe a novel method to efficiently decipher the composition and activity of DNA repair pathways that are activated by AID-induced lesions. The in vitro resolution (IVR) assay combines AID based deamination and DNA repair activities from a cellular milieu in a single assay, thus avoiding synthetically created DNA-lesions or genetic-based readouts. Recombinant GAL4-AID fusion protein is targeted to a plasmid containing GAL4 binding sites, allowing for controlled cytosine deamination within a substrate plasmid. Subsequently, the Xenopus laevis egg extract provides a source of DNA repair proteins and functional repair pathways. Our results demonstrated that DNA repair pathways which are in vitro activated by AID-induced lesions are reminiscent of those found during AID-induced in vivo Ig diversification. The comparative ease of manipulation of this in vitro systems provides a new approach to dissect the complex DNA repair pathways acting on defined physiologically lesions, can be adapted to use with other DNA damaging proteins (e.g. APOBECs), and provide a means to develop and characterise pharmacological agents to inhibit these potentially oncogenic processes.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
| | - Elisabetta Incorvaia
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Gopinath Rangam
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
| | - Heather A. Coker
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
| | - Svend K. Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Shen M, Cai Y, Yang Y, Yan X, Liu X, Zhou T. Centrosomal protein FOR20 is essential for S-phase progression by recruiting Plk1 to centrosomes. Cell Res 2013; 23:1284-95. [PMID: 24018379 PMCID: PMC3817547 DOI: 10.1038/cr.2013.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 12/28/2022] Open
Abstract
Centrosomes are required for efficient cell cycle progression mainly by orchestrating microtubule dynamics and facilitating G1/S and G2/M transitions. However, the role of centrosomes in S-phase progression is largely unknown. Here, we report that depletion of FOR20 (FOP-related protein of 20 kDa), a conserved centrosomal protein, inhibits S-phase progression and prevents targeting of Plk1 (polo-like kinase 1) to centrosomes, where FOR20 interacts with Plk1. Ablation of Plk1 also significantly induces S-phase defects, which are reversed by ectopic expression of Plk1, even a kinase-dead mutant, but not a mutant that fails to localize to centrosomes. Exogenous expression of centrosome-tethered Plk1, but not wild-type Plk1, overrides FOR20 depletion-induced S-phase defects independently of its kinase activity. Thus, these data indicate that recruitment of Plk1 to centrosomes by FOR20 may act as a signal to license efficient progression of S-phase. This represents a hitherto uncharacterized role of centrosomes in cell cycle regulation.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuqi Cai
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiaoyi Yan
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
41
|
Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel) 2013; 4:388-434. [PMID: 24705211 PMCID: PMC3924824 DOI: 10.3390/genes4030388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/01/2022] Open
Abstract
Checkpoints monitor critical cell cycle events such as chromosome duplication and segregation. They are highly conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. During S phase, cells also provide a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication forks. The DNA replication checkpoint is crucial for maintaining genome stability, because replication forks become vulnerable to collapse when they encounter obstacles such as nucleotide adducts, nicks, RNA-DNA hybrids, or stable protein-DNA complexes. These can be exogenously induced or can arise from endogenous cellular activity. Here, we summarize the initiation and transduction of the replication checkpoint as well as its targets, which coordinate cell cycle events and DNA replication fork stability.
Collapse
|
42
|
Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 2013; 5:a012724. [PMID: 23813586 DOI: 10.1101/cshperspect.a012724] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome integrity is challenged by DNA damage from both endogenous and environmental sources. This damage must be repaired to allow both RNA and DNA polymerases to accurately read and duplicate the information in the genome. Multiple repair enzymes scan the DNA for problems, remove the offending damage, and restore the DNA duplex. These repair mechanisms are regulated by DNA damage response kinases including DNA-PKcs, ATM, and ATR that are activated at DNA lesions. These kinases improve the efficiency of DNA repair by phosphorylating repair proteins to modify their activities, by initiating a complex series of changes in the local chromatin structure near the damage site, and by altering the overall cellular environment to make it more conducive to repair. In this review, we focus on these three levels of regulation to illustrate how the DNA damage kinases promote efficient repair to maintain genome integrity and prevent disease.
Collapse
Affiliation(s)
- Bianca M Sirbu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | | |
Collapse
|
43
|
Yekezare M, Gómez-González B, Diffley JFX. Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally. J Cell Sci 2013; 126:1297-306. [PMID: 23645160 DOI: 10.1242/jcs.096701] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA replication in eukaryotic cells initiates from multiple replication origins that are distributed throughout the genome. Coordinating the usage of these origins is crucial to ensure complete and timely replication of the entire genome precisely once in each cell cycle. Replication origins fire according to a cell-type-specific temporal programme, which is established in the G1 phase of each cell cycle. In response to conditions causing the slowing or stalling of DNA replication forks, the programme of origin firing is altered in two contrasting ways, depending on chromosomal context. First, inactive or 'dormant' replication origins in the vicinity of the stalled replication fork become activated and, second, the S phase checkpoint induces a global shutdown of further origin firing throughout the genome. Here, we review our current understanding on the role of dormant origins and the S phase checkpoint in the rescue of stalled forks and the completion of DNA replication in the presence of replicative stress.
Collapse
Affiliation(s)
- Mona Yekezare
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
44
|
Hatzimichael E, Georgiou G, Benetatos L, Briasoulis E. Gene mutations and molecularly targeted therapies in acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2013; 3:29-51. [PMID: 23358589 PMCID: PMC3555190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations.
Collapse
|
45
|
Bøe CA, Knutsen JHJ, Boye E, Grallert B. Hpz1 modulates the G1-S transition in fission yeast. PLoS One 2012; 7:e44539. [PMID: 22970243 PMCID: PMC3435320 DOI: 10.1371/journal.pone.0044539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/03/2012] [Indexed: 11/29/2022] Open
Abstract
Here we characterize a novel protein in S. pombe. It has a high degree of homology with the Zn-finger domain of the human Poly(ADP-ribose) polymerase (PARP). Surprisingly, the gene for this protein is, in many fungi, fused with and in the same reading frame as that encoding Rad3, the homologue of the human ATR checkpoint protein. We name the protein Hpz1 (Homologue of PARP-type Zn-finger). Hpz1 does not possess PARP activity, but is important for resistance to ultraviolet light in the G1 phase and to treatment with hydroxyurea, a drug that arrests DNA replication forks in the S phase. However, we find no evidence of a checkpoint function of Hpz1. Furthermore, absence of Hpz1 results in an advancement of S-phase entry after a G1 arrest as well as earlier recovery from a hydroxyurea block. The hpz1 gene is expressed mainly in the G1 phase and Hpz1 is localized to the nucleus. We conclude that Hpz1 regulates the initiation of the S phase and may cooperate with Rad3 in this function.
Collapse
Affiliation(s)
- Cathrine A. Bøe
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Jon Halvor J. Knutsen
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Erik Boye
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
| | - Beáta Grallert
- Department of Cell Biology, Institute for Cancer Research, Oslo, Norway
- Institute for Molecular Biosciences, University of Oslo, Norway
- * E-mail:
| |
Collapse
|
46
|
Llopis A, Salvador N, Ercilla A, Guaita-Esteruelas S, Barrantes IDB, Gupta J, Gaestel M, Davis RJ, Nebreda AR, Agell N. The stress-activated protein kinases p38α/β and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest. Cell Cycle 2012; 11:3627-37. [PMID: 22935704 DOI: 10.4161/cc.21917] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G 2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.
Collapse
Affiliation(s)
- Alba Llopis
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wu C, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinformatics 2012; 13:182. [PMID: 22838965 PMCID: PMC3464615 DOI: 10.1186/1471-2105-13-182] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/17/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND To understand the roles they play in complex diseases, genes need to be investigated in the networks they are involved in. Integration of gene expression and network data is a promising approach to prioritize disease-associated genes. Some methods have been developed in this field, but the problem is still far from being solved. RESULTS In this paper, we developed a method, Networked Gene Prioritizer (NGP), to prioritize cancer-associated genes. Applications on several breast cancer and lung cancer datasets demonstrated that NGP performs better than the existing methods. It provides stable top ranking genes between independent datasets. The top-ranked genes by NGP are enriched in the cancer-associated pathways. The top-ranked genes by NGP-PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2 might coordinate to promote cell cycle related processes in cancer but not normal cells. CONCLUSIONS In this paper, we have developed a method named NGP, to prioritize cancer-associated genes. Our results demonstrated that NGP performs better than the existing methods.
Collapse
Affiliation(s)
- Chao Wu
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing 100084, PR China.
| | | | | |
Collapse
|
48
|
Abstract
Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.
Collapse
|
49
|
Yoon HE, Kim SA, Choi HS, Ahn MY, Yoon JH, Ahn SG. Inhibition of Plk1 and Pin1 by 5'-nitro-indirubinoxime suppresses human lung cancer cells. Cancer Lett 2012; 316:97-104. [PMID: 22115795 DOI: 10.1016/j.canlet.2011.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/15/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
A novel indirubin derivative, 5'-nitro-indirubinoxime (5'-NIO), exhibits a strong anti-cancer activity against human cancer cells. Here, the 5'-NIO-mediated G1 cell cycle arrest in lung cancer cells was associated with a decrease in protein levels of polo-like kinase 1 (Plk1) and peptidyl-prolyl cis/trans isomerase Pin1. Treatment with Plk1 siRNA or Pin1 inhibitor effectively inhibited the Rb phosphorylation, suggesting their regulatory role at G1 phase. In addition, the overexpression of Plk1 or Pin1 inhibited apoptotic signals following the cleavage of PARP in 5'-NIO-treated cells. These findings suggest that 5'-NIO have potential anti-cancer efficacy through the inhibition of Plk1 or/and Pin1 expression.
Collapse
Affiliation(s)
- Hyo-Eun Yoon
- Department of Pathology, Chosun University College of Dentistry, Gwangju 501-759, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Song B, Liu XS, Liu X. Polo-like kinase 1 (Plk1): an Unexpected Player in DNA Replication. Cell Div 2012; 7:3. [PMID: 22309699 PMCID: PMC3359159 DOI: 10.1186/1747-1028-7-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/06/2012] [Indexed: 12/16/2022] Open
Abstract
Regulation of cell cycle progression is important for the maintenance of genome integrity, and Polo-like kinases (Plks) have been identified as key regulators of this process. It is well established that Polo-like kinase 1 (Plk1) plays critical roles in mitosis but little is known about its functions at other stages of the cell cycle. Here we summarize the functions of Plk1 during DNA replication, focusing on the molecular events related to Origin Recognition Complex (ORC), the complex that is essential for the initiation of DNA replication. Within the context of Plk1 phosphorylation of Orc2, we also emphasize regulation of Orc2 in different organisms. This review is intended to provide some insight into how Plk1 coordinates DNA replication in S phase with chromosome segregation in mitosis, and orchestrates the cell cycle as a whole.
Collapse
Affiliation(s)
- Bing Song
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|