1
|
Avila A, Thakur V, Vincent N, Valencia P, Möller MG, Khurana R, Yan G, Tang JC, Bedogni B, Jaimes N. Melanoma on Chronically Sun-Damaged Skin: Deciphering Gene Expression Signatures. Dermatol Pract Concept 2025; 15:dpc.1502a4952. [PMID: 40401865 DOI: 10.5826/dpc.1502a4952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 05/23/2025] Open
Abstract
INTRODUCTION Melanoma of the skin is responsible for most skin cancer-related deaths. It is well known that exposure to ultraviolet radiation is the most common and modifiable risk factor for melanoma. Melanomas arising on chronically sun-damaged skin (CSDS) have shown a higher mutational burden. OBJECTIVES To analyze skin samples of patients with melanoma on CSDS to identify possible gene expression signatures that may contribute to melanomagenesis. METHODS This experimental observational analysis, conducted at the Dermatology Melanoma and Pigmented Lesion Clinic at University of Miami Hospitals/Sylvester Comprehensive Cancer Center, Miami, Florida, included a total of 10 patients over 18 years of age with a recent diagnosis of melanoma on CSDS. For each patient, two skin samples were obtained using a 2-mm punch (one from CSDS within 2 cm of the primary melanoma, another from sun-protected skin). Skin samples were sent to the Sylvester Onco-genomics Shared Resource (OGSR) for library preparation and RNA sequencing. Main outcome was the identification of differentially expressed genes between CSDS and non-CSDS of patients with a recent diagnosis of melanoma. RESULTS A total of four skin samples met the necessary quality standards for molecular analyses. Significant differences were observed between the CSDS and non-CSDS samples. Pathways involved in inflammation (e.g., IL-17 signaling), immune responses (e.g., ABC transporters), and oxidative phosphorylation were overexpressed in CSDS. CONCLUSIONS CSDS can be an adequate milieu for the development and progression of melanoma. CSDS reveals overexpression of pathways involved in inflammation, immune responses, and oxidative phosphorylation, all of which may facilitate interactions between the skin microenvironment and melanocytes/melanoma cells, predisposing to melanoma development and progression.
Collapse
Affiliation(s)
- Alejandra Avila
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Varsha Thakur
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Natalie Vincent
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Pilar Valencia
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mecker G Möller
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Pritzker School of Medicine, University of Chicago, Illinois, USA
| | - Rimpi Khurana
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Guo Yan
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Jennifer C Tang
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Barbara Bedogni
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Natalia Jaimes
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| |
Collapse
|
2
|
Zhang H, Xiao X, Wang L, Shi X, Fu N, Wang S, Zhao RC. Human adipose and umbilical cord mesenchymal stem cell-derived extracellular vesicles mitigate photoaging via TIMP1/Notch1. Signal Transduct Target Ther 2024; 9:294. [PMID: 39472581 PMCID: PMC11522688 DOI: 10.1038/s41392-024-01993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
UVB radiation induces oxidative stress, DNA damage, and inflammation, leading to skin wrinkling, compromised barrier function, and an increased risk of carcinogenesis. Addressing or preventing photoaging may offer a promising therapeutic avenue for these conditions. Recent research indicated that mesenchymal stem cells (MSCs) exhibit significant therapeutic potential for various skin diseases. Given that extracellular vesicles (EV) can deliver diverse cargo to recipient cells and elicit similar therapeutic effects, we investigated the roles and underlying mechanisms of both adipose-derived MSC-derived EV (AMSC-EV) and umbilical cord-derived MSC-derived EV (HUMSC-EV) in photoaging. Our findings indicated that in vivo, treatment with AMSC-EV and HUMSC-EV resulted in improvements in wrinkles and skin hydration while also mitigating skin inflammation and thickness alterations in both the epidermis and dermis. Additionally, in vitro studies using human keratinocytes (HaCaTs), human dermal fibroblast cells (HDFs), and T-Skin models revealed that AMSC-EV and HUMSC-EV attenuated senescence, reduced levels of reactive oxygen species (ROS) and DNA damage, and alleviated inflammation induced by UVB. Furthermore, EV treatment enhanced cell viability and migration capacity in the epidermis and promoted extracellular matrix (ECM) remodeling in the dermis in photoaged cell models. Mechanistically, proteomics results showed that TIMP1 was highly expressed in both AMSC-EV and HUMSC-EV and could exert similar effects as MSC-EV. In addition, we found that EV and TIMP1 could inhibit Notch1 and downstream targets Hes1, P16, P21, and P53. Collectively, our data suggests that both AMSC-EV and HUMSC-EV attenuate skin photoaging through TIMP1/Notch1.
Collapse
Affiliation(s)
- Huan Zhang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xian Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liping Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xianhao Shi
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Nan Fu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- Department of Cell Biology, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
3
|
Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073478. [PMID: 35408839 PMCID: PMC8998533 DOI: 10.3390/ijms23073478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies.
Collapse
|
4
|
Loureiro JB, Ribeiro R, Nazareth N, Ferreira T, Lopes EA, Gama A, Machuqueiro M, Alves MG, Marabini L, Oliveira PA, Santos MMM, Saraiva L. Mutant p53 reactivator SLMP53-2 hinders ultraviolet B radiation-induced skin carcinogenesis. Pharmacol Res 2022; 175:106026. [PMID: 34890775 DOI: 10.1016/j.phrs.2021.106026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
The growing incidence of skin cancer (SC) has prompted the search for additional preventive strategies to counteract this global health concern. Mutant p53 (mutp53), particularly with ultraviolet radiation (UVR) signature, has emerged as a promising target for SC prevention based on its key role in skin carcinogenesis. Herein, the preventive activity of our previously disclosed mutp53 reactivator SLMP53-2 against UVR-induced SC was investigated. The pre-treatment of keratinocyte HaCaT cells with SLMP53-2, before UVB exposure, depleted mutp53 protein levels with restoration of wild-type-like p53 DNA-binding ability and subsequent transcriptional activity. SLMP53-2 increased cell survival by promoting G1-phase cell cycle arrest, while reducing UVB-induced apoptosis through inhibition of c-Jun N-terminal kinase (JNK) activity. SLMP53-2 also protected cells from reactive oxygen species and oxidative damage induced by UVB. Moreover, it enhanced DNA repair through upregulation of nucleotide excision repair pathway and depletion of UVB-induced DNA damage, as evidenced by a reduction of DNA in comet tails, γH2AX staining and cyclobutane pyrimidine dimers (CPD) levels. SLMP53-2 further suppressed UVB-induced inflammation by inhibiting the nuclear translocation and DNA-binding ability of NF-κB, and promoted the expression of key players involved in keratinocytes differentiation. Consistently, the topical application of SLMP53-2 in mice skin, prior to UVB irradiation, reduced cell death and DNA damage. It also decreased the expression of inflammatory-related proteins and promoted cell differentiation, in UVB-exposed mice skin. Notably, SLMP53-2 did not show signs of skin toxicity for cumulative topical use. Overall, these results support a promising protective activity of SLMP53-2 against UVB-induced SC.
Collapse
Affiliation(s)
- Joana B Loureiro
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-31b Porto, Portugal
| | - Rita Ribeiro
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-31b Porto, Portugal
| | - Nair Nazareth
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-31b Porto, Portugal
| | - Tiago Ferreira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Elizabeth A Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Miguel Machuqueiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Laura Marabini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Paula A Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-31b Porto, Portugal.
| |
Collapse
|
5
|
El Yaagoubi OM, Oularbi L, Bouyahya A, Samaki H, El Antri S, Aboudkhil S. The role of the ubiquitin-proteasome pathway in skin cancer development: 26S proteasome-activated NF-κB signal transduction. Cancer Biol Ther 2021; 22:479-492. [PMID: 34583610 DOI: 10.1080/15384047.2021.1978785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Ubiquitin-Proteasome System plays a central role in signal transduction associated with stress, in the skin in particular by the control of NF-κB pathways. Under normal conditions, the inhibitory protein IκB is phosphorylated by kinases, then ubiquitinated and ends up at the proteasome to be degraded. The present short review discusses recent progress in the inhibition of NF-κB activation by proteasome inhibitors prevents the degradation of protein IκB, which accumulates in the cytosol, and there by the activation of NF-κB. Moreover, would not only limit the expression of adhesion molecules and cytokines involved in metastatic processes, but also increase the sensitivity of cancer cells to apoptosis. Considering this fact, the activity of NF-κB is regulated by the phosphorylation and proteasome-dependent degradation of its inhibitor Iκb. In this scenario, the use of a proteasome inhibitor might be an effective strategy in the treatment of skin cancer with constitutive activation of NF-κB.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials, Membranes, and Environment, Faculty of Science and Technology-Mohammedia, Hassan II University, Casablanca, Morocco.,Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.,Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Said El Antri
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
6
|
Brahmbhatt HD, Gupta R, Gupta A, Rastogi S, Misri R, Mobeen A, Ghosh A, Kothari P, Sitaniya S, Scaria V, Singh A. The long noncoding RNA MALAT1 suppresses miR-211 to confer protection from ultraviolet-mediated DNA damage in vitiligo epidermis by upregulating sirtuin 1. Br J Dermatol 2020; 184:1132-1142. [PMID: 33152110 DOI: 10.1111/bjd.19666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The absence of melanocytes poses a challenge for long-term tissue homeostasis in vitiligo. Surprisingly, while individuals with Fitzpatrick phototypes I-II (low melanin content) have a higher incidence of melanoma and nonmelanoma skin cancer, people with vitiligo are at a decreased risk for the same. OBJECTIVES To understand the molecular mechanisms that protect vitiligo skin from ultraviolet (UV)-induced DNA damage by (i) characterizing differentially expressed microRNAs in lesional vs. nonlesional epidermis and (ii) identifying their upstream regulators and downstream gene targets. METHODS Genome-wide microRNA profiling of nonlesional and lesional epidermis was performed on five individuals with stable nonsegmental vitiligo using next-generation RNA sequencing. The relevance of the upstream regulator and downstream target gene of the most differentially expressed microRNA was studied. RESULTS Our study found sirtuin1 (SIRT1), an NAD-dependent deacetylase, to be a direct target of miR-211 - the most significantly downregulated microRNA in lesional epidermis. Inhibition of SIRT1 with EX-527 downregulated keratin 10 and involucrin, suggesting that SIRT1 promotes keratinocyte differentiation. Overexpression of miR-211 mimic led to a significant increase in γ-H2AX positivity and cyclobutane pyrimidine dimer (CPD) formation, hallmarks of UVB-mediated DNA damage. These effects could be ameliorated by the addition of resveratrol, a SIRT1 activator. Furthermore, a long noncoding RNA, MALAT1, was identified as a negative upstream regulator of miR-211. Overexpression of MALAT1 resulted in increased expression of SIRT1 and a concomitant removal of UVB-induced CPDs in primary keratinocytes. CONCLUSIONS These findings establish a novel MALAT1-miR-211-SIRT1 signalling axis that potentially confers protection to the 'amelanotic' keratinocytes in vitiligo.
Collapse
Affiliation(s)
- H D Brahmbhatt
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - R Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - A Gupta
- D.Y. Patil Medical College, Dr D.Y. Patil University, Pimpri, Pune, Maharashtra, 411018, India
| | - S Rastogi
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - R Misri
- Hindu Rao Hospital, New Delhi, India
| | - A Mobeen
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - A Ghosh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P Kothari
- D.Y. Patil Medical College, Dr D.Y. Patil University, Pimpri, Pune, Maharashtra, 411018, India
| | - S Sitaniya
- D.Y. Patil Medical College, Dr D.Y. Patil University, Pimpri, Pune, Maharashtra, 411018, India
| | - V Scaria
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - A Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Pan L, Lemieux ME, Thomas T, Rogers JM, Lipper CH, Lee W, Johnson C, Sholl LM, South AP, Marto JA, Adelmant GO, Blacklow SC, Aster JC. IER5, a DNA damage response gene, is required for Notch-mediated induction of squamous cell differentiation. eLife 2020; 9:e58081. [PMID: 32936072 PMCID: PMC7529455 DOI: 10.7554/elife.58081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Notch signaling regulates squamous cell proliferation and differentiation and is frequently disrupted in squamous cell carcinomas, in which Notch is tumor suppressive. Here, we show that conditional activation of Notch in squamous cells activates a context-specific gene expression program through lineage-specific regulatory elements. Among direct Notch target genes are multiple DNA damage response genes, including IER5, which we show is required for Notch-induced differentiation of squamous carcinoma cells and TERT-immortalized keratinocytes. IER5 is epistatic to PPP2R2A, a gene that encodes the PP2A B55α subunit, which we show interacts with IER5 in cells and in purified systems. Thus, Notch and DNA-damage response pathways converge in squamous cells on common genes that promote differentiation, which may serve to eliminate damaged cells from the proliferative pool. We further propose that crosstalk involving Notch and PP2A enables tuning and integration of Notch signaling with other pathways that regulate squamous differentiation.
Collapse
Affiliation(s)
- Li Pan
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | | | - Tom Thomas
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Julia M Rogers
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Winston Lee
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Carl Johnson
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Jarrod A Marto
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
- Departmentof Oncologic Pathology and Blais Proteomics Center, Dana FarberCancer Institute, HarvardMedical SchoolBostonUnited States
| | - Guillaume O Adelmant
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
- Departmentof Oncologic Pathology and Blais Proteomics Center, Dana FarberCancer Institute, HarvardMedical SchoolBostonUnited States
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
8
|
Detrimental Effects of UVB on Retinal Pigment Epithelial Cells and Its Role in Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1904178. [PMID: 32855763 PMCID: PMC7443017 DOI: 10.1155/2020/1904178] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022]
Abstract
Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.
Collapse
|
9
|
Kim J, Kang Y, Choi D, Cho Y, Cho S, Choi H, Kim H. The natural phytochemical trans‐communic acid inhibits cellular senescence and pigmentation through FoxO3a activation. Exp Dermatol 2019; 28:1270-1278. [DOI: 10.1111/exd.14025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Dong‐hwa Choi
- Biocenter, Gyeonggido Business & Science Accelerator Suwon Korea
| | | | | | | | | |
Collapse
|
10
|
Zhang C, Martinez-Ledesma E, Gao F, Zhang W, Ding J, Wu S, Li X, Wu J, Yuan Y, Koul D, Alfred Yung WK. Wild-type TP53 defined gamma-secretase inhibitor sensitivity and synergistic activity with doxorubicin in GSCs. Am J Cancer Res 2019; 9:1734-1745. [PMID: 31497354 PMCID: PMC6726980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary intracranial tumor. Aggressive surgical resection plus radiotherapy and temozolomide have prolonged patients' median survival to only 14.6 months. Therefore, there is a critical need to develop novel therapeutic strategies for GBM. In this study, we evaluated the effect of NOTCH signaling intervention by gamma-secretase inhibitors (GSIs) on glioma sphere-forming cells (GSCs). GSI sensitivity exhibited remarkable selectivity among wild-type TP53 (wt-p53) GSCs. GSIs significantly impaired the sphere formation of GSCs harboring wt-p53. We also identified a concurrence between GSI sensitivity, NOTCH1 expression, and wt-p53 activity in GSCs. Through a series of gene editing and drug treatment experiments, we found that wt-p53 did not modulate NOTCH1 pathway, whereas NOTCH1 signaling positively regulated wt-p53 expression and activity in GSCs. Finally, GSIs (targeting NOTCH signaling) synergized with doxorubicin (activating wt-p53) to inhibit proliferation and induce apoptosis in wt-p53 GSCs. Taken together, we identified wt-p53 as a potential marker for GSI sensitivity in GSCs. Combining GSI with doxorubicin synergistically inhibited the proliferation and survival of GSCs harboring wt-p53.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la SaludMonterrey, Nuevo Leon, Mexico
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Wei Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Jie Ding
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Shaofang Wu
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Jimin Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - WK Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| |
Collapse
|
11
|
Notch1 inhibition enhances DNA damage induced by cisplatin in cervical cancer. Exp Cell Res 2019; 376:27-38. [PMID: 30690027 DOI: 10.1016/j.yexcr.2019.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
The expression of Notch1 plays an important role in the occurrence and development of various tumors. Previous studies have shown that Notch1 plays a negative regulatory role in response to radiation-induced DNA damage responses. It also has been reported that Notch1 was highly expressed in cervical cancer. It is well known that the first-line chemotherapy drug for treating cervical cancer, cisplatin, targets double-stranded DNA and induces apoptosis in the cells. However, the tolerability of cisplatin is an issue to overcome in the treatment of cervical cancer. Cisplatin has been reported to induce the up-regulation of Notch1 intracellular domain (NICD) through the γ-proteolytic enzyme complex, a complex that mediates Notch1 activation. Therefore, whether Notch1 is highly expressed in the cells or cisplatin induced high expression of NICD in cervical cancer has not been specifically discussed in these studies. More importantly, whether the inhibition of Notch1 activation would enhance DNA damage induced by cisplatin and/or cellular apoptosis mediated via ATM/CHK2/P53 pathway has not been reported in cervical cancer. In this study, we observed an enhanced DNA damage and cellular apoptosis via the ATM/CHK2/P53 pathway(s) in HeLa and SiHa cells treated with cisplatin combined with DAPT of Notch1 inhibitor. Our findings provide an alternative therapeutic strategy for the treatment of cervical cancer in the clinic.
Collapse
|
12
|
Barysch MJ, Braun RP, Kolm I, Ahlgrimm-Siesz V, Hofmann-Wellenhof R, Duval C, Warrick E, Bernerd F, Nouveau S, Dummer R. Keratinocytic Malfunction as a Trigger for the Development of Solar Lentigines. Dermatopathology (Basel) 2019; 6:1-11. [PMID: 30800656 PMCID: PMC6381907 DOI: 10.1159/000495404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022] Open
Abstract
Introduction Solar lentigines (SL) affect chronically UV-radiated skin. Treatment is often refractory. Deeper knowledge on its pathogenesis might improve therapeutic effects. Material and Methods Morphological characterization of 190 SL was performed and epidermal thickness, pigment distribution, dendricity, and cornification grade were measured. Immunoreactivity was investigated using Melan A, Tyrosinase, MITF, p53, and CD20, as well as Notch1 using immunofluorescence. Results We found 2 groups of histological patterns, i.e., either acanthotic or atrophic epidermis. Lesions with basket-woven cornification and atrophic epidermis were observed in 6 out of 9 and 14 out of 16 cases from the face, respectively. Consistency of areas with a high pigmentation was observed in 96-97% of the cases. Hyperpigmentation grade and acanthosis or cornification disorders correlated positively in 88.5% of the cases. Overexpressed of p53 was found in 19 out of 20 lesions, presenting in a scattered distribution. A significant correlation of p53 and acanthosis (p = 0.003) and cornification grade (p = 0.0008) was observed. Notch1 was expressed in all SL, with the highest immunoreactivity in atrophic facial lesions. Lesions from the hands expressed Notch1 mainly in acanthotic areas with elongated rete ridges and less compact cornification. Discussion We suggest that Notch1-dependent keratinocytic malfunction causes the development of SL. Consequently, hyperpigmentation would be a result and not the primary cause of the pathogenesis. Confirmation of these findings might have clinical implications as hitherto treatment has mainly focused on melanocytes and pigmentation and not on the proliferation/differentiation balance of keratinocytes.
Collapse
Affiliation(s)
| | - Ralph Peter Braun
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | - Emilie Warrick
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| | | | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Sun Y, Wang P, Li H, Dai J. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes. J Cell Physiol 2018; 233:9563-9574. [PMID: 29943823 PMCID: PMC6185778 DOI: 10.1002/jcp.26859] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
| | - Peiling Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI 53705 USA
| | - Hongyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
| | - Jun Dai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI 53705 USA
| |
Collapse
|
14
|
Kim J, Toda T, Watanabe K, Shibuya S, Ozawa Y, Izuo N, Cho S, Seo DB, Yokote K, Shimizu T. Syringaresinol Reverses Age-Related Skin Atrophy by Suppressing FoxO3a-Mediated Matrix Metalloproteinase-2 Activation in Copper/Zinc Superoxide Dismutase-Deficient Mice. J Invest Dermatol 2018; 139:648-655. [PMID: 30798853 DOI: 10.1016/j.jid.2018.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023]
Abstract
Aging is characterized by accumulation of chronic and irreversible oxidative damage, chronic inflammation, and organ dysfunction. Superoxide dismutase (SOD) serves as a major enzyme for cellular superoxide radical metabolism and physiologically regulates cellular redox balance throughout the body. Copper/zinc superoxide dismutase-deficient (SOD1-/-) mice showed diverse phenotypes associated with enhanced oxidative damage in whole organs. Here, we found that oral treatment with syringaresinol (also known as lirioresinol B), which is the active component in the berries of Korean ginseng (Panax ginseng C.A. Meyer), attenuated the age-related changes in Sod1-/- skin. Interestingly, syringaresinol morphologically normalized skin atrophy in Sod1-/- mice and promoted fibroblast outgrowth from Sod1-/- skin in vitro. These protective effects were mediated by the suppression of matrix metalloproteinase-2 overproduction in Sod1-/- skin, but not by increased collagen expression. Syringaresinol also decreased the oxidative damage and the phosphorylation of FoxO3a protein, which was a transcriptional factor of matrix metalloproteinase-2, in Sod1-/- skin. These results strongly suggest that syringaresinol regulates the FoxO3-matrix metalloproteinase-2 axis in oxidative damaged skin and exhibits beneficial effects on age-related skin involution in Sod1-/- mice.
Collapse
Affiliation(s)
- Juewon Kim
- Vital Beautie Research Division, Amorepacific R&D Center, Giheung-gu, Yongin-si, Gyeonggi-do, Korea; Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan; Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Toshihiko Toda
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Kenji Watanabe
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Shuichi Shibuya
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Yusuke Ozawa
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Naotaka Izuo
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Siyoung Cho
- Vital Beautie Research Division, Amorepacific R&D Center, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Dae Bang Seo
- Vital Beautie Research Division, Amorepacific R&D Center, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan; Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan.
| |
Collapse
|
15
|
Naveed M, Imran K, Mushtaq A, Mumtaz AS, Janjua HA, Khalid N. In silico functional and tumor suppressor role of hypothetical protein PCNXL2 with regulation of the Notch signaling pathway. RSC Adv 2018; 8:21414-21430. [PMID: 35539910 PMCID: PMC9080940 DOI: 10.1039/c8ra00589c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Since the last decade, various genome sequencing projects have led to the accumulation of an enormous set of genomic data; however, numerous protein-coding genes still need to be functionally characterized. These gene products are called "hypothetical proteins". The hypothetical protein pecanex-like protein 2 Homo sapiens (PCNXL2) is found to be mutated in colorectal carcinoma with microsatellite instability; therefore, annotation of the function of PCNXL2 in tumorigenesis is very important. In the present study, bioinformatics analysis of PCNXL2 was performed at the molecular level to assess its role in the progression of cancer for designing new anti-cancer drugs. The retrieved sequence of PCNXL2 was functionally and structurally characterized through the web tools Pfam, Batch CD (conserved domain) search, ExPASy, COACH and I-TASSER directed for pathway analysis and design to explore the intercellular interactions of PCNXL2 involved in cancer development. The present study has shown that PCNXL2 encodes multi-pass transmembrane proteins whose tumor suppressor function may involve regulating Notch signaling by transporting protons across the membrane to provide suitable membrane potential for γ secretase function, which may liberate the Notch intracellular domain NICD from the receptor to inside the cell. Furthermore, domain A of PCNXL2 may exhibit nuclear transport activity of NICD from the cytoplasm to the nucleus through interaction with a nuclear localization signal that may act as an activator for Notch signaling in the nucleus. Conclusively, the tumor suppressor role of PCNXL2 by regulation of the Notch signaling pathway and its functional and structural characteristics are important findings. However, further studies are required to validate the putative role of PCNXL2 as a cancer biomarker in cancer development.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab Lahore 5400 Pakistan +92 301 5524624
- Department of Biotechnology and Biochemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Komal Imran
- Department of Biotechnology and Biochemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Ayesha Mushtaq
- Department of Biotechnology and Biochemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Quaid-i-Azam University Islamabad 44500 Pakistan
| | - Hussnain A Janjua
- Department of Industrial Biotechnology, Att-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology H-12 Islamabad Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology Lahore 54000 Pakistan +92 42 3518478 +92 333 5278329
| |
Collapse
|
16
|
Yu L, Fan Z, Fang S, Yang J, Gao T, Simões BM, Eyre R, Guo W, Clarke RB. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling. Oncotarget 2018; 7:33055-68. [PMID: 27102300 PMCID: PMC5078075 DOI: 10.18632/oncotarget.8849] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/27/2016] [Indexed: 12/30/2022] Open
Abstract
Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance.
Collapse
Affiliation(s)
- Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengfu Fan
- Department of Orthopedic Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuo Fang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tian Gao
- Department of Orthopedic Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bruno M Simões
- Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rachel Eyre
- Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Robert B Clarke
- Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Abstract
Cellular senescence, previously thought of as an autonomous tumour suppressor mechanism, is emerging as a phenotype and effector present throughout the life of an organism from embryogenesis to senile decline. Senescent cells have powerful non-autonomous effects upon multiple players within their microenvironment mainly through their secretory phenotype. How senescent cells co-ordinate numerous, sometimes functionally contrasting outputs through their secretome had previously been unclear. The Notch pathway, originally identified for its involvement in Drosophila wing development, has more recently been found to underpin diverse effects in human cancer. Here we discuss recent findings that suggest that Notch is intimately involved in the development of senescence and how it acts to co-ordinate the composition and functional effects of the senescence secretome. We also highlight the complex physical and functional interplay between Notch and p53, critical to both senescence and cancer. Understanding the interplay between Notch, p53 and senescence could allow us develop the therapeutics of the future for cancer and ageing.
Collapse
Affiliation(s)
- Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Liu L, Zhou X, Kuang X, Long C, Liu W, Tang Y, Liu H, He J, Huang Z, Fan Y, Zhang Q, Shen H. The inhibition of NOTCH2 reduces UVB-induced damage in retinal pigment epithelium cells. Mol Med Rep 2017; 16:730-736. [PMID: 28560393 PMCID: PMC5482198 DOI: 10.3892/mmr.2017.6625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 03/08/2017] [Indexed: 01/26/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly. The pathogenesis of dry AMD remains indistinct and the mechanism of retinal pigment epithelium (RPE) cells death in dry AMD is controversial. The aim of the present study was to investigate the functions of Notch signaling in ultraviolet B (UVB)-induced damage of RPE cells. It was identified that, in RPE cells, UVB increased intracellular reactive oxygen species (ROS) and induced cell apoptosis. In addition, UVB activated Notch signaling in a dose dependent manner. Surprisingly, NOTCH2, but not NOTCH1, was demonstrated to be the major Notch receptor in RPE cells. Under normal conditions, the inhibition of NOTCH2 reduced cell growth and cell migration, but had no impact on intracellular ROS and cell apoptosis. However, in the presence of UVB, the inhibition of NOTCH2, but not NOTCH1, attenuated intracellular ROS and cell apoptosis. The function of Notch signaling involved in UVB damage of RPE cells may not only be significant to understanding the pathogenesis of AMD (especially dry AMD), but also useful for designing effective therapeutic agents for dry AMD.
Collapse
Affiliation(s)
- Lanying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Weiwei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yan Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Huijun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jia He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zixin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yuting Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
19
|
Lauriol J, Cabrera JR, Roy A, Keith K, Hough SM, Damilano F, Wang B, Segarra GC, Flessa ME, Miller LE, Das S, Bronson R, Lee KH, Kontaridis MI. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines. J Clin Invest 2016; 126:2989-3005. [PMID: 27348588 PMCID: PMC4966304 DOI: 10.1172/jci80396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/09/2016] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy.
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Janel R. Cabrera
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ashbeel Roy
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kimberly Keith
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sara M. Hough
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Federico Damilano
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Bonnie Wang
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gabriel C. Segarra
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Meaghan E. Flessa
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren E. Miller
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Saumya Das
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Kyu-Ho Lee
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maria I. Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Kim J, Cho SY, Kim SH, Cho D, Kim S, Park CW, Shimizu T, Cho JY, Seo DB, Shin SS. Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation. J Ginseng Res 2016; 41:277-283. [PMID: 28701867 PMCID: PMC5489743 DOI: 10.1016/j.jgr.2016.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
Background The ginseng berry has various bioactivities, including antidiabetic, anticancer, antiinflammatory, and antioxidative properties. Moreover, we have revealed that the active antiaging component of the ginseng berry, syringaresinol, has the ability to stimulate longevity via gene activation. Despite the many known beneficial effects of ginseng, its effects on skin aging are poorly understood. In this study, we investigated the effects of ginseng and the ginseng berry on one of the skin aging processes, melanogenesis, and age-related pigment lipofuscin accumulation, to elucidate the mechanism of action with respect to antiaging. Methods The human melanoma MNT1 cell line was treated with ginseng root extract, ginseng berry extract, or syringaresinol. Then, the cells were analyzed using a melanin assay, and the tyrosinase activity was estimated. The Caenorhabditis elegans wild type N2 strain was used for the life span assay to analyze the antiaging effects of the samples. A lipofuscin fluorescence assay was performed during 10 passages with the syringaresinol treatment. Results A 7-d treatment with ginseng berry extract reduced melanin accumulation and tyrosinase activity more than ginseng root extract. These results may be due to the active compound of the ginseng berry, syringaresinol. The antimelanogenic activity was strongly coordinated with the activation of the longevity gene foxo3a. Moreover, the ginseng berry extract had more potent antiaging effects, caused a life span extension, and reduced lipofuscin accumulation. Conclusion Taken together, our results suggest that these antimelanogenic effects and antiaging effects of ginseng berry mediate the activation of antioxidation–FoxO3a signaling.
Collapse
Affiliation(s)
- Juewon Kim
- R&D Unit, AmorePacific Corporation, Gyeonggi-do, Republic of Korea.,Department of Integrated Biosciences, University of Tokyo, Chiba, Japan
| | - Si Young Cho
- R&D Unit, AmorePacific Corporation, Gyeonggi-do, Republic of Korea
| | - Su Hwan Kim
- R&D Unit, AmorePacific Corporation, Gyeonggi-do, Republic of Korea
| | - Donghyun Cho
- R&D Unit, AmorePacific Corporation, Gyeonggi-do, Republic of Korea
| | - Sunmi Kim
- R&D Unit, AmorePacific Corporation, Gyeonggi-do, Republic of Korea
| | - Chan-Woong Park
- R&D Unit, AmorePacific Corporation, Gyeonggi-do, Republic of Korea
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dae Bang Seo
- R&D Unit, AmorePacific Corporation, Gyeonggi-do, Republic of Korea
| | - Song Seok Shin
- R&D Unit, AmorePacific Corporation, Gyeonggi-do, Republic of Korea
| |
Collapse
|
21
|
Dotto GP, Rustgi AK. Squamous Cell Cancers: A Unified Perspective on Biology and Genetics. Cancer Cell 2016; 29:622-637. [PMID: 27165741 PMCID: PMC4870309 DOI: 10.1016/j.ccell.2016.04.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinomas (SCCs) represent the most frequent human solid tumors and are a major cause of cancer mortality. These highly heterogeneous tumors arise from closely interconnected epithelial cell populations with intrinsic self-renewal potential inversely related to the stratified differentiation program. SCCs can also originate from simple or pseudo-stratified epithelia through activation of quiescent cells and/or a switch in cell-fate determination. Here, we focus on specific determinants implicated in the development of SCCs by recent large-scale genomic, genetic, and epigenetic studies, and complementary functional analysis. The evidence indicates that SCCs from various body sites, while clinically treated as separate entities, have common determinants, pointing to a unified perspective of the disease and potential new avenues for prevention and treatment.
Collapse
Affiliation(s)
- G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Palazzo E, Morandi P, Lotti R, Saltari A, Truzzi F, Schnebert S, Dumas M, Marconi A, Pincelli C. Notch Cooperates with Survivin to Maintain Stemness and to Stimulate Proliferation in Human Keratinocytes during Ageing. Int J Mol Sci 2015; 16:26291-302. [PMID: 26540052 PMCID: PMC4661807 DOI: 10.3390/ijms161125948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 01/01/2023] Open
Abstract
The Notch signaling pathway orchestrates cell fate by either inducing cell differentiation or maintaining cells in an undifferentiated state. This study aims to evaluate Notch expression and function in normal human keratinocytes. Notch1 is expressed in all epidermal layers, though to a different degree of intensity, with a dramatic decrease during ageing. Notch1 intracellular domain (N1ICD) levels are decreased during transit from keratinocyte stem cells (KSC) to transit amplifying (TA) cells, mimicking survivin expression in samples from donors of all ages. Calcium markedly reduces N1ICD levels in keratinocytes. N1ICD overexpression induces the up-regulation of survivin and the down-regulation of keratin 10 and involucrin, while increasing the S phase of the cell cycle. On the other hand, Notch1 inhibition (DAPT) dose-dependently decreases survivin, stimulates differentiation, and reduces keratinocyte proliferation in samples from donors of all ages. Silencing Notch downgrades survivin and increases keratin 10. In addition, Notch1 inhibition decreases survivin levels and proliferation both in KSC and TA cells. Finally, while survivin overexpression decreases keratinocyte differentiation and increases N1ICD expression both in KSC and TA cells, silencing survivin results in N1ICD down-regulation and an increase in differentiation markers. These results suggest that the Notch1/survivin crosstalk contributes to the maintenance of stemness in human keratinocytes.
Collapse
Affiliation(s)
- Elisabetta Palazzo
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Paolo Morandi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Roberta Lotti
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Annalisa Saltari
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Francesca Truzzi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | | | - Marc Dumas
- LVMH Recherche, 185 Avenue de Verdun, Saint Jean de Braye 45800, France.
| | - Alessandra Marconi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| |
Collapse
|
23
|
Ido Y, Duranton A, Lan F, Weikel KA, Breton L, Ruderman NB. Resveratrol prevents oxidative stress-induced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human keratinocytes. PLoS One 2015; 10:e0115341. [PMID: 25647160 PMCID: PMC4315597 DOI: 10.1371/journal.pone.0115341] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/21/2014] [Indexed: 01/27/2023] Open
Abstract
The aging process is perceived as resulting from a combination of intrinsic factors such as changes in intracellular signaling and extrinsic factors, most notably environmental stressors. In skin, the relationship between intrinsic changes and keratinocyte function is not clearly understood. Previously, we found that increasing the activity of AMP-activated protein kinase (AMPK) suppressed senescence in hydrogen peroxide (H2O2)-treated human primary keratinocytes, a model of oxidative stress-induced cellular aging. Using this model in the present study, we observed that resveratrol, an agent that increases the activities of both AMPK and sirtuins, ameliorated two age-associated phenotypes: cellular senescence and proliferative dysfunction. In addition, we found that treatment of keratinocytes with Ex527, a specific inhibitor of sirtuin 1 (SIRT1), attenuated the ability of resveratrol to suppress senescence. In keeping with the latter observation, we noted that compared to non-senescent keratinocytes, senescent cells lacked SIRT1. In addition to these effects on H2O2-induced senescence, resveratrol also prevented the H2O2-induced decrease in proliferation (as indicated by 3H-thymidine incorporation) in the presence of insulin. This effect was abrogated by inhibition of AMPK but not SIRT1. Compared to endothelium, we found that human keratinocytes expressed relatively high levels of Forkhead box O3 (FOXO3), a downstream target of both AMPK and SIRT1. Treatment of keratinocytes with resveratrol transactivated FOXO3 and increased the expression of its target genes including catalase. Resveratrol’s effects on both senescence and proliferation disappeared when FOXO3 was knocked down. Finally, we performed an exploratory study which showed that skin from humans over 50 years old had lower AMPK activity than skin from individuals under age 20. Collectively, these findings suggest that the effects of resveratrol on keratinocyte senescence and proliferation are regulated by the AMPK-FOXO3 pathway and in some situations, but not all, by SIRT1.
Collapse
Affiliation(s)
- Yasuo Ido
- Diabetes and Metabolism Unit, Boston University Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | | | - Fan Lan
- Endocrinology, Second Affiliated Hospital Chongqing Medical University, Chongqing, China
| | - Karen A. Weikel
- Diabetes and Metabolism Unit, Boston University Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lionel Breton
- L’OREAL Research and Innovation, Aulnay sous bois, France
| | - Neil B. Ruderman
- Diabetes and Metabolism Unit, Boston University Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
Sollberger G, Strittmatter GE, Grossi S, Garstkiewicz M, Auf dem Keller U, French LE, Beer HD. Caspase-1 activity is required for UVB-induced apoptosis of human keratinocytes. J Invest Dermatol 2015; 135:1395-1404. [PMID: 25562666 DOI: 10.1038/jid.2014.551] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/30/2014] [Accepted: 12/13/2014] [Indexed: 12/20/2022]
Abstract
Caspase-1 has a crucial role in innate immunity as the protease activates the proinflammatory cytokine prointerleukin(IL)-1β. Furthermore, caspase-1 induces pyroptosis, a lytic form of cell death that supports inflammation. Activation of caspase-1 occurs in multi-protein complexes termed inflammasomes, which assemble upon sensing of stress signals. In the skin and in skin-derived keratinocytes, UVB irradiation induces inflammasome-dependent IL-1 secretion and sunburn. Here we present evidence that caspase-1 and caspase-4 are required for UVB-induced apoptosis. In UVB-irradiated human primary keratinocytes, apoptosis occurs significantly later than inflammasome activation but depends on caspase-1 activity. However, it proceeds independently of inflammasome activation. By a proteomics approach, we identified the antiapoptotic Bap31 as a putative caspase-1 substrate. Caspase-1-dependent apoptosis is possibly a recent process in evolution as it was not detected in mice. These results suggest a protective role of caspase-1 in keratinocytes during UVB-induced skin cancer development through the induction of apoptosis.
Collapse
Affiliation(s)
- Gabriel Sollberger
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Serena Grossi
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ulrich Auf dem Keller
- Department of Biology, Institute for Molecular Health Science, ETH Zurich, Zurich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
TIMP3 controls cell fate to confer hepatocellular carcinoma resistance. Oncogene 2014; 34:4098-108. [PMID: 25347747 DOI: 10.1038/onc.2014.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Inflammation enables human cancers and is a critical promoter of hepatocellular carcinoma (HCC). TIMP3 (Tissue inhibitor of metalloproteinase 3), a natural metalloproteinase inhibitor, controls cytokine and growth factor bioavailability to keep inflammation in check and regulate cell survival in the liver. TIMP3 is also found silenced in human cancers. We therefore tested whether Timp3 affects HCC predisposition. Remarkably, genetic loss of Timp3 protected from carcinogen-induced HCC through the immediate engagement of several tumor suppressor pathways, while tumor necrosis factor (TNF) signaling was dispensable for this protection. All wild-type mice developed HCC by 12 months, whereas HCC incidence was reduced to 33% at 12 months and 57% at 15 months in Timp3 null mice. Upon acute carcinogen treatment the deficient livers exhibited greater cytokine expression, but lower cell death and higher hepatocyte senescence. We found that precocious activation of p53, p38 and Notch preceded senescence and hepatic cell differentiation, and these events were conserved throughout tumorigenesis. Timp3-deficient mouse embryo fibroblasts also responded to carcinogen by favoring senescence over apoptosis. We conclude that Timp3 status determines p53, p38 and Notch coactivation to instruct hepatic cell fate and transformation and uncover mechanisms that are protective even within a pro-inflammatory microenvironment.
Collapse
|
26
|
Quercetin attenuates cell apoptosis of oxidant-stressed SK-N-MC cells while suppressing up-regulation of the defensive element, HIF-1α. Neuroscience 2014; 277:780-93. [PMID: 25108166 DOI: 10.1016/j.neuroscience.2014.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 01/25/2023]
Abstract
Evidence is emerging that reactive oxygen species (ROS)-induced oxidative stress has a crucial role in the pathogenesis of neurodegenerative diseases. To find the effective therapies for neurodegenerative diseases, evaluation of the relevant molecular mechanisms is necessary. In the current study, we investigated the effects of hydrogen peroxide (H2O2)-induced oxidative stress on SK-N-MC cell death with focus on HIF-1α, Foxo3a and Notch1 signaling factors. Our results revealed that H2O2 reduced viability of cells through up-regulation of p53 followed by increase in Bax/Bcl2 ratio. In addition, H2O2 increased intracellular levels of HIF-1α, Foxo-3a and Notch intracellular domain (NICD). However, Quercetin decreased cell contents of HIF-1α, Foxo-3a and NICD as well as pro-apoptotic factors including p53 and Bax compared to H2O2-treated cells. Additionally, we found that HIF-1α down-regulation reduced Foxo3a and NICD contents parallel to up-regulation of p53 and Bax and led to further vulnerability to oxidative stress-induced cell death. In contrast, Notch inhibition resulted in HIF-1α/Foxo3a signaling pathway up-regulation, suggesting the bidirectional crosstalk between HIF-1α and Notch1. These results collectively suggest that ROS are involved in activation of both the defensive and pro-apoptotic pathways encompassing HIF-1α and p53, respectively. Regarding the HIF-1α-mediated neuroprotection role, elucidation of the molecular mechanism would certainly be essential for effective drug design against neurodegenerative diseases.
Collapse
|
27
|
Melnik BC. Does therapeutic intervention in atopic dermatitis normalize epidermal Notch deficiency? Exp Dermatol 2014; 23:696-700. [DOI: 10.1111/exd.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück Germany
| |
Collapse
|
28
|
Jouandin P, Ghiglione C, Noselli S. Starvation induces FoxO-dependent mitotic-to-endocycle switch pausing during Drosophila oogenesis. Development 2014; 141:3013-21. [PMID: 24993942 DOI: 10.1242/dev.108399] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
When exposed to nutrient challenge, organisms have to adapt their physiology in order to balance reproduction with adult fitness. In mammals, ovarian follicles enter a massive growth phase during which they become highly dependent on gonadotrophic factors and nutrients. Somatic tissues play a crucial role in integrating these signals, controlling ovarian follicle atresia and eventually leading to the selection of a single follicle for ovulation. We used Drosophila follicles as a model to study the effect of starvation on follicle maturation. Upon starvation, Drosophila vitellogenic follicles adopt an 'atresia-like' behavior, in which some slow down their development whereas others enter degeneration. The mitotic-to-endocycle (M/E) transition is a critical step during Drosophila oogenesis, allowing the entry of egg chambers into vitellogenesis. Here, we describe a specific and transient phase during M/E switching that is paused upon starvation. The Insulin pathway induces the pausing of the M/E switch, blocking the entry of egg chambers into vitellogenesis. Pausing of the M/E switch involves a previously unknown crosstalk between FoxO, Cut and Notch that ensures full reversion of the process and rapid resumption of oogenesis upon refeeding. Our work reveals a novel genetic mechanism controlling the extent of the M/E switch upon starvation, thus integrating metabolic cues with development, growth and reproduction.
Collapse
Affiliation(s)
- Patrick Jouandin
- Université Nice Sophia Antipolis, Institut de Biologie Valrose, iBV, Nice 06100, France CNRS, Institut de Biologie Valrose, iBV, UMR 7277, Nice 06100, France INSERM, Institut de Biologie Valrose, iBV, U1091, Nice 06100, France
| | - Christian Ghiglione
- Université Nice Sophia Antipolis, Institut de Biologie Valrose, iBV, Nice 06100, France CNRS, Institut de Biologie Valrose, iBV, UMR 7277, Nice 06100, France INSERM, Institut de Biologie Valrose, iBV, U1091, Nice 06100, France
| | - Stéphane Noselli
- Université Nice Sophia Antipolis, Institut de Biologie Valrose, iBV, Nice 06100, France CNRS, Institut de Biologie Valrose, iBV, UMR 7277, Nice 06100, France INSERM, Institut de Biologie Valrose, iBV, U1091, Nice 06100, France
| |
Collapse
|
29
|
Zhu Z, Todorova K, Lee KK, Wang J, Kwon E, Kehayov I, Kim HG, Kolev V, Dotto GP, Lee SW, Mandinova A. Small GTPase RhoE/Rnd3 is a critical regulator of Notch1 signaling. Cancer Res 2014; 74:2082-93. [PMID: 24525741 DOI: 10.1158/0008-5472.can-12-0452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aberrations of Notch signaling have been implicated in a variety of human cancers. Oncogenic mutations in NOTCH1 are common in human T-cell leukemia and lymphomas. However, loss-of-function somatic mutations in NOTCH1 arising in solid tumors imply a tumor suppressor function, which highlights the need to understand Notch signaling more completely. Here, we describe the small GTPase RhoE/Rnd3 as a downstream mediator of Notch signaling in squamous cell carcinomas (SCC) that arise in skin epithelia. RhoE is a transcriptional target of activated Notch1, which is attenuated broadly in SCC cells. RhoE depletion suppresses Notch1-mediated signaling in vitro, rendering primary keratinocytes resistant to Notch1-mediated differentiation and thereby favoring a proliferative cell fate. Mechanistic investigations indicated that RhoE controls a key step in Notch1 signaling by mediating nuclear translocation of the activated portion of Notch1 (N1IC) through interaction with importins. Our results define RhoE as a Notch1 target that is essential for recruitment of N1IC to the promoters of Notch1 target genes, establishing a regulatory feedback loop in Notch1 signaling. This molecular circuitry may inform distinct cell fate decisions to Notch1 in epithelial tissues, where carcinomas such as SCC arise.
Collapse
Affiliation(s)
- Zehua Zhu
- Authors' Affiliations: Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown; Broad Institute of Harvard and MIT, Cambridge Center, Massachusetts; Institute of Immunology, Sofia, Bulgaria; and Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Russo R, Bonaventura R, Matranga V. Time- and dose-dependent gene expression in sea urchin embryos exposed to UVB. MARINE ENVIRONMENTAL RESEARCH 2014; 93:85-92. [PMID: 24011617 DOI: 10.1016/j.marenvres.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
The increase of UVB radiation reaching marine environment has harmful effects on living organisms. Paracentrotus lividus sea urchin embryos living in shallow water are exposed to radiations, providing a good model for studying the molecular mechanisms activated upon UV stress. Here, we report the modulated time- and dose-dependent expression of six genes, known to be involved in stress response, in embryos exposed at cleavage to 400 and 800 J/m(2) UVB, and collected at early (morula) and later (gastrula) stages. We analyzed their mRNA levels by QPCR and found that Pl-14-3-3 showed a dose-dependent induction, both early and late in development; Pl-c-jun was up-regulated proportionally to the UVB dose at early stages and only at 800 J/m(2) UVB at later stages; Pl-XPB-ERCC3, Pl-MT and Pl-NF-kB were highly up-regulated later in development at the high dose, with the exception of Pl-XPB-ERCC3 whose mRNA levels were high also at the lower dose; Pl-FOXO expression was not affected by UVB radiation. We believe that the identification of UVB-responsive genes in irradiated sea urchin embryos, reported for the first time in this study, will be helpful for the understanding of the involved molecular pathways. The correlation between the impaired morphogenesis, affecting endo-mesoderm differentiation, and gene modulations described herewith is also discussed.
Collapse
Affiliation(s)
- Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
31
|
FoxO3a is an antimelanogenic factor that mediates antioxidant-induced depigmentation. J Invest Dermatol 2013; 134:1378-1388. [PMID: 24284420 DOI: 10.1038/jid.2013.510] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
Abstract
Forkhead box-O (FoxO) family transcriptional factors control the expression of many genes involved in a variety of cellular processes. Melanogenesis is an oxidizing process; therefore, many antioxidants are used to inhibit melanin production. However, their mechanism of action is poorly understood. In this study, we investigated the role of FoxO3a, which is a key factor in oxidative stress-related cellular responses in melanogenesis. When FoxO3a expression was inhibited, the expression of melanogenic genes and melanin levels increased. In contrast, the overexpression of wild-type FoxO3a and the increased nuclear translocation induced by the phosphoinositide 3-kinase inhibitors or by Akt inhibition reversed these phenomena. This effect was not observed when FoxO3a harbored a deletion in the nuclear localization signal, indicating that its nuclear translocation is important for the regulation of melanogenesis. When antioxidants such as vitamin C, N-acetylcysteine, and Trolox were applied to MNT1 cells, melanin levels decreased in parallel with FoxO3a nuclear translocation, and this effect disappeared with FoxO3a-directed small interfering RNA treatment. Because FoxO3a orchestrates the expression of many genes in order to regulate cellular phenotypes in a variety of environmental states, this gene, a factor involved in melanogenesis regulation, may represent a good target for studying antimelanogenic signaling pathways and for designing pharmacological or antimelanogenic agents that regulate melanin synthesis.
Collapse
|
32
|
Noncanonical NOTCH signaling limits self-renewal of human epithelial and induced pluripotent stem cells through ROCK activation. Mol Cell Biol 2013; 33:4434-47. [PMID: 24019071 DOI: 10.1128/mcb.00577-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NOTCH plays essential roles in cell fate specification during embryonic development and in adult tissue maintenance. In keratinocytes, it is a key inducer of differentiation. ROCK, an effector of the small GTPase Rho, is also implicated in keratinocyte differentiation, and its inhibition efficiently potentiates immortalization of human keratinocytes and greatly improves survival of dissociated human pluripotent stem cells. However, the molecular basis for ROCK activation is not fully established in these contexts. Here we provide evidence that intracellular forms of NOTCH1 trigger the immediate activation of ROCK1 independent of its transcriptional activity, promoting differentiation and resulting in decreased clonogenicity of normal human keratinocytes. Knockdown of NOTCH1 abrogated ROCK1 activation and conferred sustained clonogenicity upon differentiation stimuli. Treatment with a ROCK inhibitor, Y-27632, or ROCK1 silencing substantially rescued the growth defect induced by activated NOTCH1. Furthermore, we revealed that impaired self-renewal of human induced pluripotent stem cells upon dissociation is, at least in part, attributable to NOTCH-dependent ROCK activation. Thus, the present study unveils a novel NOTCH-ROCK pathway critical for cellular differentiation and loss of self-renewal capacity in a subset of immature cells.
Collapse
|
33
|
Yang SA, Wang WD, Chen CT, Tseng CY, Chen YN, Hsu HJ. FOXO/Fringe is necessary for maintenance of the germline stem cell niche in response to insulin insufficiency. Dev Biol 2013; 382:124-35. [PMID: 23895933 DOI: 10.1016/j.ydbio.2013.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 12/27/2022]
Abstract
The stem cell niche houses and regulates stem cells by providing both physical contact and local factors that regulate stem cell identity. The stem cell niche also plays a role in integrating niche-local and systemic signals, thereby ensuring that the balance of stem cells meets the needs of the organism. However, it is not clear how these signals are merged within the niche. Nutrient-sensing insulin/FOXO signaling has been previously shown to directly control Notch activation in the Drosophila female germline stem cell (GSC) niche, which maintains the niche and GSC identity. Here, we demonstrate that FOXO directly activates transcription of fringe, a gene encoding a glycosyltransferase that modulates Notch glycosylation. Fringe facilitates Notch inactivation in the GSC niche when insulin signaling is low. We also show that the Notch ligand predominantly involved is GSC niche-derived Delta. These results reveal that FOXO-mediated regulation of fringe links the insulin and Notch signaling pathways in the GSC niche in response to nutrition, and emphasize that stem cells are regulated by complex interactions between niche-local and systemic signals.
Collapse
Affiliation(s)
- Sheng-An Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO J 2013; 32:2248-63. [PMID: 23860128 DOI: 10.1038/emboj.2013.156] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/17/2013] [Indexed: 01/15/2023] Open
Abstract
Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA-34a (miR-34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR-34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild-type p53 expression. In normal HKCs, the pro-differentiation effects of increased p53 activity or UVB exposure are miR-34a-dependent, and increased miR-34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR-34a function, is a direct target of this miRNA in HKCs, and SIRT6 down-modulation is sufficient to reproduce the miR-34a pro-differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR-34a in normal keratinocytes and keratinocyte-derived tumours.
Collapse
|
35
|
Chaudhary SC, Singh T, Kapur P, Weng Z, Arumugam A, Elmets CA, Kopelovich L, Athar M. Nitric oxide-releasing sulindac is a novel skin cancer chemopreventive agent for UVB-induced photocarcinogenesis. Toxicol Appl Pharmacol 2013; 268:249-55. [PMID: 23274568 PMCID: PMC3780591 DOI: 10.1016/j.taap.2012.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO)-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) which have been synthesized to reduce gastro-intestinal and cardiovascular toxicities of NSAIDs, possess anti-proliferative, pro-apoptotic and anti-cancer activities. Here, we show that NO-sulindac inhibited UVB-induced skin tumorigenesis in SKH-1 hairless mice. Topical application of NO-sulindac reduced tumor incidence, number (p<0.05) and volume (p<0.005) as compared to UVB (alone)-irradiated vehicle-treated mice. An increase in TUNEL-positive cells in skin lesions was accompanied by the enhanced Bax:Bcl-2 ratio. The expression of pro-apoptotic Bax was increased whereas anti-apoptotic Bcl-2 reduced. However, proliferation was identified as the major target of NO-sulindac in this study. A reduced expression of PCNA and cyclin D1 associated with the dampening of cell cycle progression was observed. The mechanism of this inhibition was related to the reduction in UVB-induced Notch signaling pathway. UVB-induced inflammatory responses were diminished by NO-sulindac as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases Erk1/2, p38 and JNK1/2. In this regard, NO-sulindac also inhibited NFκB by enhancing IκBα as evidenced by the reduced expression of iNOS and COX-2, the direct NFκB transcription target proteins. NO-sulindac significantly diminished the progression of benign lesions to invasive carcinomas by suppressing the tumor aggressiveness and retarding epithelial-mesenchymal transition. A marked decrease in the expression of mesenchymal markers such as Fibronectin, N-cadherin, SNAI, Slug and Twist and an increase in epithelial cell polarity marker E-cadherin were noted in NO-sulindac-treated tumors. Our data suggest that NO-sulindac is a potent inhibitor of UVB-induced skin carcinogenesis and acts by targeting proliferation-regulatory pathways.
Collapse
Affiliation(s)
- Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH509, Birmingham, AL 35294-0019
| | - Tripti Singh
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH509, Birmingham, AL 35294-0019
| | - Puneet Kapur
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH509, Birmingham, AL 35294-0019
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH509, Birmingham, AL 35294-0019
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH509, Birmingham, AL 35294-0019
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH509, Birmingham, AL 35294-0019
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd, Suite 2114, Bethesda, MD 20892
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, 1530 3 Avenue South, VH509, Birmingham, AL 35294-0019
| |
Collapse
|
36
|
Abstract
Normal cells require adhesion to extracellular matrix for survival. Cell detachment causes a drastic increase in reactive oxygen species (ROS) that promotes anoikis. In the present study, we observed that upon detachment from matrix, human mammary epithelial cells strongly upregulate manganese superoxide dismutase (MnSOD, or SOD2), a principal mitochondrial antioxidant enzyme that detoxifies ROS through dismutation of superoxide. Induction of MnSOD by cell detachment is dependent on the NFκB transcription factor. Detachment of mammary epithelial cells potently increases mitochondrial superoxide levels, which are further elevated by depletion of MnSOD in suspended cells. Consequently, cells depleted of MnSOD are hypersensitive to matrix detachment and exhibit increased anoikis. These results suggest that detachment-induced MnSOD counters mitochondrial superoxide accumulation and confers anoikis resistance. Taken together with our previous finding that detached cells evade excessive ROS production by attenuating oxidative metabolism of glucose, we conclude that mammary epithelial cells coordinate their responses to detachment through increasing MnSOD and decreasing ROS generation from mitochondrial glucose oxidation, thereby mitigating anoikis. Anoikis is a barrier to tumor metastasis. Indeed, MnSOD expression is elevated in human breast cancer metastases compared with primary tumors. Expression of MnSOD correlates with histologic tumor grades in human cancer and contributes to cancer cell's resistance to anoikis. Our study suggests that inhibition of ROS detoxification coupled with stimulation of glucose oxidative metabolism may be an efficient strategy to enhance anoikis and block metastasis.
Collapse
|
37
|
Liu YP, Yang CJ, Huang MS, Yeh CT, Wu ATH, Lee YC, Lai TC, Lee CH, Hsiao YW, Lu J, Shen CN, Lu PJ, Hsiao M. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res 2012; 73:406-16. [PMID: 23135908 DOI: 10.1158/0008-5472.can-12-1733] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platinum-based chemotherapy is the first-line treatment for non-small cell lung cancer, but recurrence occurs in most patients. Recent evidence suggests that CD133(+) cells are the cause of drug resistance and tumor recurrence. However, the correlation between chemotherapy and regulation of CD133(+) cells has not been investigated methodically. In this study, we revealed that CD133(+) lung cancer cells labeled by a human CD133 promoter-driven GFP reporter exhibited drug resistance and stem cell characteristics. Treatment of H460 and H661 cell lines with low-dose cisplatin (IC(20)) was sufficient to enrich CD133(+) cells, to induce DNA damage responses, and to upregulate ABCG2 and ABCB1 expression, which therefore increased the cross-resistance to doxorubicin and paclitaxel. This cisplatin-induced enrichment of CD133(+) cells was mediated through Notch signaling as judged by increased levels of cleaved Notch1 (NICD1). Pretreatment with the γ-secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT), or Notch1 short hairpin RNAs (shRNA) remarkably reduced the cisplatin-induced enrichment of CD133(+) cells and increased the sensitivity to doxorubicin and paclitaxel. Ectopic expression of NICD1 reversed the action of DAPT on drug sensitivity. Immunohistochemistry showed that CD133(+) cells were significantly increased in the relapsed tumors in three of six patients with lung cancer who have received cisplatin treatment. A similar effect was observed in animal experiments as cisplatin treatment increased Notch1 cleavage and the ratio of CD133(+) cells in engrafted tumors. Intratumoral injection of DAPT with cisplatin treatment significantly reduced CD133(+) cell number. Together, our results showed that cisplatin induces the enrichment of CD133(+) cells, leading to multidrug resistance by the activation of Notch signaling.
Collapse
Affiliation(s)
- Yu-Peng Liu
- Institute of Clinical Medicine, National Cheng Kung University, Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mortensen LJ, Ravichandran S, Delouise LA. The impact of UVB exposure and differentiation state of primary keratinocytes on their interaction with quantum dots. Nanotoxicology 2012; 7:1244-54. [PMID: 22998293 DOI: 10.3109/17435390.2012.733437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we utilised an in vitro model system to gain insight into the potential cellular interactions that quantum dot (QD) nanoparticles may experience while transiting the viable skin epidermis, and we consider the effects of UVB exposure. UVB skin exposure is known to induce a skin barrier defect that facilitates QD stratum corneum penetration. Primary human keratinocytes were cultured in low and high calcium to induce basal and differentiated phenotypes, respectively. Results suggest that differentiation state plays a role in keratinocyte response to UVB exposure and exposure to negatively charged CdSe/ZnS core/shell QD. QD cell uptake increased with QD dose but association with differentiated cells was significantly lower than the basal keratinocyte phenotype. Differentiated keratinocytes were also less sensitive to the cytotoxic effects of UVB exposure. We did not observe an effect of UVB preexposure on QD cytotoxicity level despite the fact that fluorescent microscopy and flow cytometry data suggest that UVB may slightly increase QD uptake in the basal cell phenotype. The implications of these findings for assessing potential risk of human skin exposure are discussed.
Collapse
Affiliation(s)
- Luke J Mortensen
- Department of Biomedical Engineering, University of Rochester , Rochester, NY , USA
| | | | | |
Collapse
|
39
|
Bertrand FE, Angus CW, Partis WJ, Sigounas G. Developmental pathways in colon cancer: crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle 2012; 11:4344-51. [PMID: 23032367 DOI: 10.4161/cc.22134] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A hallmark of cancer is reactivation/alteration of pathways that control cellular differentiation during developmental processes. Evidence indicates that WNT, Notch, BMP and Hedgehog pathways have a role in normal epithelial cell differentiation, and that alterations in these pathways accompany establishment of the tumorigenic state. Interestingly, there is recent evidence that these pathways are intertwined at the molecular level, and these nodes of intersection may provide opportunities for effective targeted therapies. This review will highlight the role of the WNT, Notch, BMP and Hedgehog pathways in colon cancer.
Collapse
Affiliation(s)
- Fred E Bertrand
- Division of Cancer Biology, Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC USA.
| | | | | | | |
Collapse
|
40
|
Hu B, Castillo E, Harewood L, Ostano P, Reymond A, Dummer R, Raffoul W, Hoetzenecker W, Hofbauer GFL, Dotto GP. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell 2012; 149:1207-20. [PMID: 22682244 DOI: 10.1016/j.cell.2012.03.048] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 03/08/2012] [Accepted: 03/23/2012] [Indexed: 12/21/2022]
Abstract
It is currently unclear whether tissue changes surrounding multifocal epithelial tumors are a cause or consequence of cancer. Here, we provide evidence that loss of mesenchymal Notch/CSL signaling causes tissue alterations, including stromal atrophy and inflammation, which precede and are potent triggers for epithelial tumors. Mice carrying a mesenchymal-specific deletion of CSL/RBP-Jκ, a key Notch effector, exhibit spontaneous multifocal keratinocyte tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal fibroblasts promote increased tumor cell proliferation through upregulation of c-Jun and c-Fos expression and consequently higher levels of diffusible growth factors, inflammatory cytokines, and matrix-remodeling enzymes. In human skin samples, stromal fields adjacent to multifocal premalignant actinic keratosis lesions exhibit decreased Notch/CSL signaling and associated molecular changes. Importantly, these changes in gene expression are also induced by UVA, a known environmental cause of cutaneous field cancerization and skin cancer.
Collapse
Affiliation(s)
- Bing Hu
- Department of Biochemistry, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ro SH, Liu D, Yeo H, Paik JH. FoxOs in neural stem cell fate decision. Arch Biochem Biophys 2012; 534:55-63. [PMID: 22902436 DOI: 10.1016/j.abb.2012.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 02/07/2023]
Abstract
Neural stem cells (NSCs) persist over the lifespan of mammals to give rise to committed progenitors and their differentiated cells in order to maintain the brain homeostasis. To this end, NSCs must be able to self-renew and otherwise maintain their quiescence. Suppression of aberrant proliferation or undesired differentiation is crucial to preclude either malignant growth or precocious depletion of NSCs. The PI3K-Akt-FoxO signaling pathway plays a central role in the regulation of multiple stem cells including one in the mammalian brain. In particular, members of FoxO family transcription factors are highly expressed in these stem cells. As an important downstream effector of growth, differentiation, and stress stimuli, mammalian FoxO transcription factor family controls cellular proliferation, oxidative stress response, homeostasis, and eventual maintenance of long-term repopulating potential. The review will focus on the current understanding of FoxO function in NSCs as well as discuss their biological activities that contribute to determining neural stem cell fate.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | |
Collapse
|
42
|
Opposing functions of Fbxw7 in keratinocyte growth, differentiation and skin tumorigenesis mediated through negative regulation of c-Myc and Notch. Oncogene 2012; 32:1921-32. [DOI: 10.1038/onc.2012.213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Notch and the p53 clan of transcription factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:223-40. [PMID: 22399351 DOI: 10.1007/978-1-4614-0899-4_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Notch 1 to 4 and the p53 clan, comprising p53, p63 and p73 plus numerous isoforms thereof, are gene transcription regulators that are critically involved in various aspects of cell differentiation, stem cell maintenance and tumour suppression. It is thus perhaps no surprise that extensive crosstalk between the Notch and p53 pathways is implemented during these processes. Typically, Notch together with p53 and even more so with transactivation competent p63 or p73, drives differentiation, whereas Notch combined with transactivation impaired p63 or p73 helps maintain undifferentiated stem cell compartments. With regard to cancer, it seems that Notch acts as a tumour suppressor in cellular contexts where Notch signalling supports p53 activation and both together can bring on its way an anti-proliferative programme of differentiation, senescence or apoptosis. In contrast, Notch often acts as an oncoprotein in contexts where it suppresses p53 activation and activity and where differentiation is unwanted. It is no accident that the latter pathways-the inhibition by Notch of p53 and differentiation-are operative in somatic stem cells as well as in tumour cells.
Collapse
|
44
|
Zhang Y, Kao WWY, Pelosi E, Schlessinger D, Liu CY. Notch gain of function in mouse periocular mesenchyme downregulates FoxL2 and impairs eyelid levator muscle formation, leading to congenital blepharophimosis. J Cell Sci 2011; 124:2561-72. [PMID: 21730020 DOI: 10.1242/jcs.085001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Notch signaling is pivotal for the morphogenesis and homeostasis of many tissues. We found that aberrant Notch activation in mouse neural-crest-derived periocular mesenchymal cells (POMCs), which contribute to the formation of corneal and eyelid stroma, results in blepharophimosis. Compound transgenic mice overexpressing the Notch1 intracellular domain (N1-ICD) in POMCs (POMC(N1-ICD)) showed relatively minor effects on the cornea, but increased cell apoptosis and decreased cell proliferation during eyelid morphogenesis. Eyelid closure at E15.5 and eyelid formation at birth were incomplete. In further analyses, overexpression of N1-ICD impaired eyelid levator smooth muscle formation by downregulating the transcription factor FoxL2. This is similar to the effect of haploinsufficiency of FOXL2 in humans, which results in type II BPES (blepharophimosis, ptosis and epicanthus inversus syndrome). In vitro studies showed that FoxL2 expression is augmented by a low dose of N1-ICD but was downregulated by a high dose, depending on the extent of Hes-1 and Hey-1 activation. Moreover, transfection of CMV-FoxL2 enhanced α-SMA promoter activity. These data strongly imply that a physiologically low level of Notch1 is crucial for proper FoxL2 expression in POMCs, which is, in turn, essential for Müeller muscle formation and normal eyelid development.
Collapse
Affiliation(s)
- Yujin Zhang
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
45
|
Kim HG, Hwang SY, Aaronson SA, Mandinova A, Lee SW. DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J Biol Chem 2011; 286:17672-81. [PMID: 21398698 DOI: 10.1074/jbc.m111.236612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DDR1 (discoidin domain receptor tyrosine kinase 1) kinase s highly expressed in a variety of human cancers and occasionally mutated in lung cancer and leukemia. It is now clear that aberrant signaling through the DDR1 receptor is closely associated with various steps of tumorigenesis, although little is known about the molecular mechanism(s) underlying the role of DDR1 in cancer. Besides the role of DDR1 in tumorigenesis, we previously identified DDR1 kinase as a transcriptional target of tumor suppressor p53. DDR1 is functionally activated as determined by its tyrosine phosphorylation, in response to p53-dependent DNA damage. In this study, we report the characterization of the Notch1 protein as an interacting partner of DDR1 receptor, as determined by tandem affinity protein purification. Upon ligand-mediated DDR1 kinase activation, Notch1 was activated, bound to DDR1, and activated canonical Notch1 targets, including Hes1 and Hey2. Moreover, DDR1 ligand (collagen I) treatment significantly increased the active form of Notch1 receptor in the nuclear fraction, whereas DDR1 knockdown cells show little or no increase of the active form of Notch1 in the nuclear fraction, suggesting a novel intracellular mechanism underlying autocrine activation of wild-type Notch signaling through DDR1. DDR1 activation suppressed genotoxic-mediated cell death, whereas Notch1 inhibition by a γ-secretase inhibitor, DAPT, enhanced cell death in response to stress. Moreover, the DDR1 knockdown cancer cells showed the reduced transformed phenotypes in vitro and in vivo xenograft studies. The results suggest that DDR1 exerts prosurvival effect, at least in part, through the functional interaction with Notch1.
Collapse
Affiliation(s)
- Hyung-Gu Kim
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
46
|
|
47
|
The Notch signaling pathway: molecular basis of cell context dependency. Eur J Cell Biol 2010; 90:572-81. [PMID: 21126799 DOI: 10.1016/j.ejcb.2010.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 11/21/2022] Open
Abstract
Notch receptor signaling controls cell-fate specification, self-renewal, differentiation, proliferation and apoptosis throughout development and regeneration in all animal species studied to date. Its dysfunction causes several developmental defects and diseases in the adult. A key feature of Notch signaling is its remarkable cell-context dependency. In this review, we summarize the influences of the cellular context that regulate Notch activity and propose a model how the interplay between the cell-intrinsically established chromatin state and the cell-extrinsic signals that modify chromatin may select for Notch target accessibility and activation in different cellular contexts.
Collapse
|
48
|
Schäfer M, Dütsch S, auf dem Keller U, Navid F, Schwarz A, Johnson DA, Johnson JA, Werner S. Nrf2 establishes a glutathione-mediated gradient of UVB cytoprotection in the epidermis. Genes Dev 2010; 24:1045-58. [PMID: 20478997 DOI: 10.1101/gad.568810] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ultraviolet (UV) B irradiation can severely damage the skin and even induce tumorigenesis. It exerts its effects by direct DNA modification and by formation of reactive oxygen species (ROS). We developed a strategy to genetically activate target gene expression of the transcription factor NF-E2-related factor 2 (Nrf2) in keratinocytes in vivo based on expression of a constitutively active Nrf2 mutant. Activation of Nrf2 target genes strongly reduced UVB cytotoxicity through enhancement of ROS detoxification. Remarkably, the protective effect was extended to neighboring cells. Using different combinations of genetically modified mice, we demonstrate that Nrf2 activates the production, recycling, and release of glutathione and cysteine by suprabasal keratinocytes, resulting in protection of basal cells in a paracrine, glutathione/cysteine-dependent manner. Most importantly, we found that endogenous Nrf2 controls selective protection of suprabasal keratinocytes from UVB-induced apoptosis through activation of cytoprotective genes. This finding explains the preferential UVB-induced apoptosis of basal cells, which is important for elimination of mutated stem cells as well as for preservation of skin integrity. Taken together, our results identify Nrf2 as a key regulator in the UV response of the skin.
Collapse
Affiliation(s)
- Matthias Schäfer
- Department of Biology, Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yugawa T, Narisawa-Saito M, Yoshimatsu Y, Haga K, Ohno SI, Egawa N, Fujita M, Kiyono T. DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Res 2010; 70:4034-44. [PMID: 20442293 DOI: 10.1158/0008-5472.can-09-4063] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p53 family member p63 is a master regulator of epithelial development. One of its isoforms, DeltaNp63alpha, is predominantly expressed in the basal cells of stratified epithelia and plays a fundamental role in control of regenerative potential and epithelial integrity. In contrast to p53, p63 is rarely mutated in human cancers, but it is frequently overexpressed in squamous cell carcinomas (SCC). However, its functional relevance to tumorigenesis remains largely unclear. We previously identified the Notch1 gene as a novel transcriptional target of p53. Here, we show that DeltaNp63alpha functions as a transcriptional repressor of the Notch1 gene through the p53-responsive element. Knockdown of p63 caused upregulation of Notch1 expression and marked reduction in proliferation and clonogenicity of both normal human keratinocytes and cervical cancer cell lines overexpressing DeltaNp63alpha. Concomitant silencing of Notch1 significantly rescued this phenotype, indicating the growth defect induced by p63 deficiency to be, at least in part, attributable to Notch1 function. Conversely, overexpression of DeltaNp63alpha decreased basal levels of Notch1, increased proliferative potential of normal human keratinocytes, and inhibited both p53-dependent and p53-independent induction of Notch1 and differentiation markers upon genotoxic stress and serum exposure, respectively. These results suggest that DeltaNp63alpha maintains the self-renewing capacity of normal human keratinocytes and cervical cancer cells partly through transcriptional repression of the Notch1 gene and imply a novel pathogenetical significance of frequently observed overexpression of DeltaNp63alpha together with p53 inactivation in SCCs.
Collapse
Affiliation(s)
- Takashi Yugawa
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lambertini C, Pantano S, Dotto GP. Differential control of Notch1 gene transcription by Klf4 and Sp3 transcription factors in normal versus cancer-derived keratinocytes. PLoS One 2010; 5:e10369. [PMID: 20442780 PMCID: PMC2860992 DOI: 10.1371/journal.pone.0010369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/22/2010] [Indexed: 11/22/2022] Open
Abstract
In specific cell types like keratinocytes, Notch signaling plays an important pro-differentiation and tumor suppressing function, with down-modulation of the Notch1 gene being associated with cancer development. Besides being controlled by p53, little else is known on regulation of Notch1 gene expression in this context. We report here that transcription of this gene is driven by a TATA-less “sharp peak” promoter and that the minimal functional region of this promoter, which extends from the −342 bp position to the initiation codon, is differentially active in normal versus cancer cells. This GC rich region lacks p53 binding sites, but binds Klf4 and Sp3. This finding is likely to be of biological significance, as Klf4 and, to a lesser extent, Sp3 are up-regulated in a number of cancer cells where Notch1 expression is down-modulated, and Klf4 over-expression in normal cells is sufficient to down-modulate Notch1 gene transcription. The combined knock-down of Klf4 and Sp3 was necessary for the reverse effect of increasing Notch1 transcription, consistent with the two factors exerting an overlapping repressor function through their binding to the Notch1 promoter.
Collapse
Affiliation(s)
- Chiara Lambertini
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Serafino Pantano
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - G. Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|