1
|
Gómez-Santacana X, Boutonnet M, Martínez-Juvés C, Cimadevila M, Catena J, Moutin E, Roux T, Trinquet E, Lamarque L, Perroy J, Prézeau L, Zwier JM, Pin JP, Llebaria A. A modular click ligand-directed approach to label endogenous dopamine D 1 receptors in live cells. Commun Chem 2025; 8:113. [PMID: 40216891 PMCID: PMC11992035 DOI: 10.1038/s42004-025-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Most luminescence-based technologies to determine the pharmacological properties of G Protein-Coupled Receptors (GPCRs) rely on the overexpression of genetically modified receptors. However, it is essential to develop approaches allowing the specific labelling of native receptors. Here we report an innovative approach based on the use of molecular modules to build fluorescent ligand-directed probes that can label aminergic GPCRs. Such probes are readily prepared with a click reaction between a ligand that may include nucleophilic groups and a fluorescent electrophilic linker. The rapidity of click reaction before receptor labelling prevents a side reaction between the nucleophilic ligand and the electrophile. This approach allowed us to label D1 receptor in transfected cells and native receptors in neural cell lines, leaving the receptor fully functional. This approach will pave the way to develop new reagents and assays with which to monitor endogenous GPCRs' distribution, trafficking, activity or binding properties in their native environment.
Collapse
Affiliation(s)
- Xavier Gómez-Santacana
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France.
- Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.
| | - Marin Boutonnet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Carles Martínez-Juvés
- Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Marta Cimadevila
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Juanlo Catena
- Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Enora Moutin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | | | | | | | - Julie Perroy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Jurriaan M Zwier
- Revvity, Codolet, France
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS and INSERM, Montpellier, France.
| | - Amadeu Llebaria
- Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.
| |
Collapse
|
2
|
Makiyama F, Kawase S, Omi AW, Tanikawa Y, Kotani T, Shirayama T, Nishimura N, Kurihara T, Saito N, Takahashi J, Uemura T. Differential effects of structurally different lysophosphatidylethanolamine species on proliferation and differentiation in pre-osteoblast MC3T3-E1 cells. Sci Rep 2025; 15:466. [PMID: 39747517 PMCID: PMC11696160 DOI: 10.1038/s41598-024-84176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2. MAPK/ERK1/2 activation by 16:0 LPE and 18:1 LPE was inhibited by the Gq/11 inhibitor YM-254890, while activation by 18:0 LPE was blocked by the Gi/o inhibitor pertussis toxin. Intracellular Ca2+ transients were triggered by 16:0 LPE and 18:1 LPE but not by 18:0 LPE, with YM-254890 suppressing these responses. These results suggest that 16:0 and 18:1 LPE act via Gq/11-coupled G protein coupled receptors (GPCRs), and 18:0 LPE acts via Gi/o-coupled GPCRs. Furthermore, receptor desensitization experiments suggested that each LPE acts through distinct GPCRs. Interestingly, 18:0 LPE suppressed osteogenic differentiation, reducing mineralization, alkaline phosphatase activity, and osteogenic gene expression, whereas 16:0 LPE and 18:1 LPE had no such effects. These results suggest the physiological significance of LPEs in bone formation and indicate that different LPE species and their receptors play distinctive roles in this process.
Collapse
Affiliation(s)
- Fumiaki Makiyama
- Department of Orthopedic Surgery, Shinshu University School of Medicine, Nagano, 390-8621, Japan
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan
| | - Shiori Kawase
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Nagano, 390-8621, Japan
| | - Aoi William Omi
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan
| | - Yusuke Tanikawa
- Department of Orthopedic Surgery, Shinshu University School of Medicine, Nagano, 390-8621, Japan
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan
| | - Taishi Kotani
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, 390-8621, Japan
| | - Teruki Shirayama
- Department of Orthopedic Surgery, Shinshu University School of Medicine, Nagano, 390-8621, Japan
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan
| | - Naoyuki Nishimura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan
| | - Taiga Kurihara
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Saitama, 362- 0806, Japan
- Division of Physiology, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan
| | - Jun Takahashi
- Department of Orthopedic Surgery, Shinshu University School of Medicine, Nagano, 390-8621, Japan
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan
| | - Takeshi Uemura
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan.
- Division of Gene Research, Research Center for Advanced Science and Technology, Shinshu University, Nagano, 390-8621, Japan.
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, 390-8621, Japan.
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, 390-8621, Japan.
| |
Collapse
|
3
|
Bossi S, Daniel H, McLean H. Interplay between metabotropic glutamate type 4 and adenosine type 1 receptors modulate synaptic transmission in the cerebellar cortex. Front Pharmacol 2024; 15:1406238. [PMID: 39211784 PMCID: PMC11358600 DOI: 10.3389/fphar.2024.1406238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The synapses between parallel fibers and Purkinje cells play a pivotal role in cerebellar function. They are intricately governed by a variety of presynaptic receptors, notably by type 4 metabotropic glutamate (mGlu4) receptors and type 1 adenosine (A1) receptors both of which curtail glutamate release upon activation. Despite their pivotal role in regulating synaptic transmission within the cerebellar cortex, functional interactions between mGlu4 and A1 receptors have remained relatively unexplored. To bridge this gap, our study delves into how mGlu4 receptor activity influences A1 receptor-mediated alterations in excitatory transmission. Employing a combination of whole-cell patch clamp recordings of Purkinje cells and parallel fiber presynaptic fluorometric calcium measurements in acute rat and mouse cerebellar cortical slices, our results reveal functional interactions between these receptor types. These findings hold implications for understanding potential roles of these presynaptic receptors in neuroprotection during pathophysiological conditions characterized by elevated glutamate and adenosine levels.
Collapse
Affiliation(s)
- Simon Bossi
- *Correspondence: Simon Bossi, ; Heather McLean,
| | | | - Heather McLean
- Institut des Neurosciences (NeuroPSI) UMR9197 CNRS, Université Paris-Saclay, Saclay, France
| |
Collapse
|
4
|
Gonzalez-Hernandez AJ, Munguba H, Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci 2024; 47:635-650. [PMID: 38862331 PMCID: PMC11324403 DOI: 10.1016/j.tins.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
In the nervous system, G protein-coupled receptors (GPCRs) control neuronal excitability, synaptic transmission, synaptic plasticity, and, ultimately, behavior through spatiotemporally precise initiation of a variety of signaling pathways. However, despite their critical importance, there is incomplete understanding of how these receptors are regulated to tune their signaling to specific neurophysiological contexts. A deeper mechanistic picture of neuromodulatory GPCR function is needed to fully decipher their biological roles and effectively harness them for the treatment of neurological and psychiatric disorders. In this review, we highlight recent progress in identifying novel modes of regulation of neuromodulatory GPCRs, including G protein- and receptor-targeting mechanisms, receptor-receptor crosstalk, and unique features that emerge in the context of chemical synapses. These emerging principles of neuromodulatory GPCR tuning raise critical questions to be tackled at the molecular, cellular, synaptic, and neural circuit levels in the future.
Collapse
Affiliation(s)
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
5
|
Khodaie B, Edelmann E, Leßmann V. Distinct GABAergic modulation of timing-dependent LTP in CA1 pyramidal neurons along the longitudinal axis of the mouse hippocampus. iScience 2024; 27:109320. [PMID: 38487018 PMCID: PMC10937841 DOI: 10.1016/j.isci.2024.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Synaptic plasticity in the hippocampus underlies episodic memory formation, with dorsal hippocampus being instrumental for spatial memory whereas ventral hippocampus is crucial for emotional learning. Here, we studied how GABAergic inhibition regulates physiologically relevant low repeat spike timing-dependent LTP (t-LTP) at Schaffer collateral-CA1 synapses along the dorsoventral hippocampal axis. We used two t-LTP protocols relying on only 6 repeats of paired spike-firing in pre- and postsynaptic cells within 10 s that differ in postsynaptic firing patterns. GABAA receptor mechanisms played a greater role in blocking 6× 1:1 t-LTP that recruits single postsynaptic action potentials. 6× 1:4 t-LTP that depends on postsynaptic burst-firing unexpectedly required intact GABAB receptor signaling. The magnitude of both t-LTP-forms decreased along the dorsoventral axis, despite increasing excitability and basal synaptic strength in this direction. This suggests that GABAergic inhibition contributes to the distinct roles of dorsal and ventral hippocampus in memory formation.
Collapse
Affiliation(s)
- Babak Khodaie
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, 39120 Magdeburg, Germany
- OVGU International ESF-funded Graduate School ABINEP, 39104 Magdeburg, Germany
| | - Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39104 Magdeburg, Germany
- OVGU International ESF-funded Graduate School ABINEP, 39104 Magdeburg, Germany
| | - Volkmar Leßmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39104 Magdeburg, Germany
- OVGU International ESF-funded Graduate School ABINEP, 39104 Magdeburg, Germany
- DZPG (German Center of Mental Health), partner site Halle/Jena/Magdeburg (CIRC), Magdeburg, Germany
| |
Collapse
|
6
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk. Cell Rep 2024; 43:113595. [PMID: 38117654 PMCID: PMC10844890 DOI: 10.1016/j.celrep.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gαq-GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk.
Collapse
Affiliation(s)
| | - Guoqing Xiang
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexandra B Fall
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Danielle M Gerhard
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Piia Kohtala
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Daegeon Kim
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joshua Levitz
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA.
| |
Collapse
|
7
|
Taketo M. Activation of adenosine A 1 receptor potentiates metabotropic glutamate receptor 1-mediated Ca 2+ mobilization in the rat hippocampal marginal zone. Brain Res 2023; 1821:148581. [PMID: 37714421 DOI: 10.1016/j.brainres.2023.148581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Two subtypes of group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, participate in the regulation of cell excitability and synaptic plasticity in the central nervous system. They couple to the Gq/11 protein and release Ca2+ from the intracellular stores. In the marginal zone of the neonatal hippocampus, Cajal-Retzius (CR) cells, which control radial migration of neurons, express the subtype mGluR1. The adenosine A1 receptor (A1R) is also G-protein coupled and is extensively expressed in the central nervous system. The interactions among G-protein-coupled receptors have been predicted previously, however, there is insufficient evidence of functional interactions between naturally occurring receptors. In this study, potentiation of the mGluR1-mediated response by A1R activation was demonstrated in hippocampal CR cells. Fluorescence imaging revealed that the application of A1R agonists intensified mGluR1-induced elevation of intracellular Ca2+ concentration ([Ca2+]i). Activation of A1R did not change [Ca2+]i. The potentiated responses were independent of extracellular Ca2+ and prevented by the Gi inhibitor. The potentiation of mGluR1-induced [Ca2+]i. elevation was also enhanced by mGluR2/3 activation. These results suggest that mGluR1 and A1R cooperatively influence postnatal hippocampal development by facilitating Ca2+ mobilization in CR cells.
Collapse
Affiliation(s)
- Megumi Taketo
- Department of Physiology Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
8
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555210. [PMID: 37693535 PMCID: PMC10491144 DOI: 10.1101/2023.08.28.555210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca 2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gα q -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.
Collapse
|
9
|
Saha S, González-Maeso J. The crosstalk between 5-HT 2AR and mGluR2 in schizophrenia. Neuropharmacology 2023; 230:109489. [PMID: 36889432 PMCID: PMC10103009 DOI: 10.1016/j.neuropharm.2023.109489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. First generation or typical antipsychotics such as haloperidol and second generation or atypical antipsychotics such as clozapine and risperidone remain the current standard for schizophrenia treatment. In some patients with schizophrenia, antipsychotics produce complete remission of positive symptoms, such as hallucinations and delusions. However, antipsychotic drugs are ineffective against cognitive deficits and indeed treated schizophrenia patients have small improvements or even deterioration in several cognitive domains. This underlines the need for novel and more efficient therapeutic targets for schizophrenia treatment. Serotonin and glutamate have been identified as key parts of two neurotransmitter systems involved in fundamental brain processes. Serotonin (or 5-hydroxytryptamine) 5-HT2A receptor (5-HT2AR) and metabotropic glutamate 2 receptor (mGluR2) are G protein-coupled receptors (GPCRs) that interact at epigenetic and functional levels. These two receptors can form GPCR heteromeric complexes through which their pharmacology, function and trafficking becomes affected. Here we review past and current research on the 5-HT2AR-mGluR2 heterocomplex and its potential implication in schizophrenia and antipsychotic drug action. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Somdatta Saha
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
10
|
Mansouri M, Kremser L, Nguyen TP, Kasugai Y, Caberlotto L, Gassmann M, Sarg B, Lindner H, Bettler B, Carboni L, Ferraguti F. Protein Networks Associated with Native Metabotropic Glutamate 1 Receptors (mGlu 1) in the Mouse Cerebellum. Cells 2023; 12:1325. [PMID: 37174725 PMCID: PMC10177021 DOI: 10.3390/cells12091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
The metabotropic glutamate receptor 1 (mGlu1) plays a pivotal role in synaptic transmission and neuronal plasticity. Despite the fact that several interacting proteins involved in the mGlu1 subcellular trafficking and intracellular transduction mechanisms have been identified, the protein network associated with this receptor in specific brain areas remains largely unknown. To identify novel mGlu1-associated protein complexes in the mouse cerebellum, we used an unbiased tissue-specific proteomic approach, namely co-immunoprecipitation followed by liquid chromatography/tandem mass spectrometry analysis. Many well-known protein complexes as well as novel interactors were identified, including G-proteins, Homer, δ2 glutamate receptor, 14-3-3 proteins, and Na/K-ATPases. A novel putative interactor, KCTD12, was further investigated. Reverse co-immunoprecipitation with anti-KCTD12 antibodies revealed mGlu1 in wild-type but not in KCTD12-knock-out homogenates. Freeze-fracture replica immunogold labeling co-localization experiments showed that KCTD12 and mGlu1 are present in the same nanodomain in Purkinje cell spines, although at a distance that suggests that this interaction is mediated through interposed proteins. Consistently, mGlu1 could not be co-immunoprecipitated with KCTD12 from a recombinant mammalian cell line co-expressing the two proteins. The possibility that this interaction was mediated via GABAB receptors was excluded by showing that mGlu1 and KCTD12 still co-immunoprecipitated from GABAB receptor knock-out tissue. In conclusion, this study identifies tissue-specific mGlu1-associated protein clusters including KCTD12 at Purkinje cell synapses.
Collapse
Affiliation(s)
- Mahnaz Mansouri
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| | - Leopold Kremser
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | | | - Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| | - Laura Caberlotto
- Centre for Computational and Systems Biology (COSBI), The Microsoft Research University of Trento, 38068 Rovereto, Italy;
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland; (M.G.); (B.B.)
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | - Herbert Lindner
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland; (M.G.); (B.B.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| |
Collapse
|
11
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
12
|
Nicoletti F, Di Menna L, Iacovelli L, Orlando R, Zuena AR, Conn PJ, Dogra S, Joffe ME. GPCR interactions involving metabotropic glutamate receptors and their relevance to the pathophysiology and treatment of CNS disorders. Neuropharmacology 2023; 235:109569. [PMID: 37142158 DOI: 10.1016/j.neuropharm.2023.109569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the βγ subunits released from G proteins in response to receptor activation or other mechanisms. Here, we discuss the interactions between (i) mGlu1 and GABAB receptors in cerebellar Purkinje cells; (ii) mGlu2 and 5-HT2Aserotonergic receptors in the prefrontal cortex; (iii) mGlu5 and A2A receptors or mGlu5 and D1 dopamine receptors in medium spiny projection neurons of the indirect and direct pathways of the basal ganglia motor circuit; (iv) mGlu5 and A2A receptors in relation to the pathophysiology of Alzheimer's disease; and (v) mGlu7 and A1 adenosine or α- or β1 adrenergic receptors. In addition, we describe in detail a novel form of non-heterodimeric interaction between mGlu3 and mGlu5 receptors, which appears to be critically involved in mechanisms of activity-dependent synaptic plasticity in the prefrontal cortex and hippocampus. Finally, we highlight the potential implication of these interactions in the pathophysiology and treatment of cerebellar disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, l-DOPA-induced dyskinesias, stress-related disorders, and cognitive dysfunctions.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - P Jeffrey Conn
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shalini Dogra
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
13
|
Domanegg K, Sommer WH, Meinhardt MW. Psychedelic Targeting of Metabotropic Glutamate Receptor 2 and Its Implications for the Treatment of Alcoholism. Cells 2023; 12:963. [PMID: 36980303 PMCID: PMC10047550 DOI: 10.3390/cells12060963] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Alcohol abuse is a leading risk factor for the public health burden worldwide. Approved pharmacotherapies have demonstrated limited effectiveness over the last few decades in treating alcohol use disorders (AUD). New therapeutic approaches are therefore urgently needed. Historical and recent clinical trials using psychedelics in conjunction with psychotherapy demonstrated encouraging results in reducing heavy drinking in AUD patients, with psilocybin being the most promising candidate. While psychedelics are known to induce changes in gene expression and neuroplasticity, we still lack crucial information about how this specifically counteracts the alterations that occur in neuronal circuits throughout the course of addiction. This review synthesizes well-established knowledge from addiction research about pathophysiological mechanisms related to the metabotropic glutamate receptor 2 (mGlu2), with findings and theories on how mGlu2 connects to the major signaling pathways induced by psychedelics via serotonin 2A receptors (2AR). We provide literature evidence that mGlu2 and 2AR are able to regulate each other's downstream signaling pathways, either through monovalent crosstalk or through the formation of a 2AR-mGlu2 heteromer, and highlight epigenetic mechanisms by which 2ARs can modulate mGlu2 expression. Lastly, we discuss how these pathways might be targeted therapeutically to restore mGlu2 function in AUD patients, thereby reducing the propensity to relapse.
Collapse
Affiliation(s)
- Kevin Domanegg
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
- Bethanien Hospital for Psychiatry, Psychosomatics, and Psychotherapy Greifswald, 17489 Greifswald, Germany
| | - Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
| |
Collapse
|
14
|
Wang C, Liu Y, Cui M, Liu B. Systematic analysis reveals novel insight into the molecular determinants of function, diversity and evolution of sweet taste receptors T1R2/T1R3 in primates. Front Mol Biosci 2023; 10:1037966. [PMID: 36762208 PMCID: PMC9905694 DOI: 10.3389/fmolb.2023.1037966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Sweet taste is a primary sensation for the preference and adaption of primates to diet, which is crucial for their survival and fitness. It is clear now that the sweet perception is mediated by a G protein-coupled receptor (GPCR)-sweet taste receptor T1R2/T1R3, and many behavioral or physiological experiments have described the diverse sweet taste sensitivities in primates. However, the structure-function relationship of T1R2s/T1R3s in primates, especially the molecular basis for their species-dependent sweet taste, has not been well understood until now. In this study, we performed a comprehensive sequence, structural and functional analysis of sweet taste receptors in primates to elucidate the molecular determinants mediating their species-dependent sweet taste recognition. Our results reveal distinct taxonomic distribution and significant characteristics (interaction, coevolution and epistasis) of specific key function-related residues, which could partly account for the previously reported behavioral results of taste perception in primates. Moreover, the prosimians Lemuriformes species, which were reported to have no sensitivity to aspartame, could be proposed to be aspartame tasters based on the present analysis. Collectively, our study provides new insights and promotes a better understanding for the diversity, function and evolution of sweet taste receptors in primates.
Collapse
Affiliation(s)
- Congrui Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yi Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States,*Correspondence: Meng Cui, ; Bo Liu,
| | - Bo Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,*Correspondence: Meng Cui, ; Bo Liu,
| |
Collapse
|
15
|
Xiang G, Acosta-Ruiz A, Radoux-Mergault A, Kristt M, Kim J, Moon JD, Broichhagen J, Inoue A, Lee FS, Stoeber M, Dittman JS, Levitz J. Control of Gα q signaling dynamics and GPCR cross-talk by GRKs. SCIENCE ADVANCES 2022; 8:eabq3363. [PMID: 36427324 PMCID: PMC9699688 DOI: 10.1126/sciadv.abq3363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/06/2022] [Indexed: 05/04/2023]
Abstract
Numerous processes contribute to the regulation of G protein-coupled receptors (GPCRs), but relatively little is known about rapid mechanisms that control signaling on the seconds time scale or regulate cross-talk between receptors. Here, we reveal that the ability of some GPCR kinases (GRKs) to bind Gαq both drives acute signaling desensitization and regulates functional interactions between GPCRs. GRK2/3-mediated acute desensitization occurs within seconds, is rapidly reversible, and can occur upon local, subcellular activation. This rapid desensitization is kinase independent, insensitive to pharmacological inhibition, and generalizable across receptor families and effectors. We also find that the ability of GRK2 to bind G proteins also enables it to regulate the extent and timing of Gαq-dependent signaling cross-talk between GPCRs. Last, we find that G protein/GRK2 interactions enable a novel form of GPCR trafficking cross-talk. Together, this work reveals potent forms of Gαq-dependent GPCR regulation with wide-ranging pharmacological and physiological implications.
Collapse
Affiliation(s)
- Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jared D. Moon
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | | | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jeremy S. Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Li C, Zhao B, Zhao C, Huang L, Liu Y. Metabotropic Glutamate Receptors 1 Regulates Rat Carotid Body Response to Acute Hypoxia via Presynaptic Mechanism. Front Neurosci 2021; 15:741214. [PMID: 34675769 PMCID: PMC8524001 DOI: 10.3389/fnins.2021.741214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The carotid body (CB) plays a critical role in oxygen sensing; however, the role of glutamatergic signaling in the CB response to hypoxia remains uncertain. We previously found that functional multiple glutamate transporters and inotropic glutamate receptors (iGluRs) are expressed in the CB. The aim of this present research is to investigate the expression of group I metabotropic glutamate receptors (mGluRs) (mGluR1 and 5) in the CB and its physiological function in rat CB response to acute hypoxia. Methods: RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of group I mGluRs in the human and rat CB. Immunofluorescence staining was performed to examine the cellular localization of mGluR1 in the rat CB. In vitro carotid sinus nerve (CSN) discharge recording was performed to detect the physiological function of mGluR1 in CB response to acute hypoxia. Results: We found that (1) mRNAs of mGluR1 and 5 were both expressed in the human and rat CB. (2) mGluR1 protein rather than mGluR5 protein was present in rat CB. (3) mGluR1 was distributed in type I cells of rat CB. (4) Activation of mGluR1 inhibited the hypoxia-induced enhancement of CSN activity (CSNA), as well as prolonged the latency time of CB response to hypoxia. (5) The inhibitory effect of mGluR1 activation on rat CB response to hypoxia could be blocked by GABAB receptor antagonist. Conclusion: Our findings reveal that mGluR1 in CB plays a presynaptic feedback inhibition on rat CB response to hypoxia.
Collapse
Affiliation(s)
- Chaohong Li
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chenlu Zhao
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lu Huang
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
17
|
Olivero G, Vergassola M, Cisani F, Roggeri A, Pittaluga A. Presynaptic Release-regulating Metabotropic Glutamate Receptors: An Update. Curr Neuropharmacol 2021; 18:655-672. [PMID: 31775600 PMCID: PMC7457419 DOI: 10.2174/1570159x17666191127112339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors represent the largest family of glutamate receptors in mammals and act as fine tuners of the chemical transmission in central nervous system (CNS). In the last decade, results concerning the expression and the subcellular localization of mGlu receptors further clarified their role in physio-pathological conditions. Concomitantly, their pharmacological characterization largely improved thanks to the identification of new compounds (chemical ligands and antibodies recognizing epitopic sequences of the receptor proteins) that allowed to decipher the protein compositions of the naive receptors. mGlu receptors are expressed at the presynaptic site of chemical synapses. Here, they modulate intraterminal enzymatic pathways controlling the migration and the fusion of vesicles to synaptic membranes as well as the phosphorylation of colocalized receptors. Both the control of transmitter exocytosis and the phosphorylation of colocalized receptors elicited by mGlu receptors are relevant events that dictate the plasticity of nerve terminals, and account for the main role of presynaptic mGlu receptors as modulators of neuronal signalling. The role of the presynaptic mGlu receptors in the CNS has been the matter of several studies and this review aims at briefly summarizing the recent observations obtained with isolated nerve endings (we refer to as synaptosomes). We focus on the pharmacological characterization of these receptors and on their receptor-receptor interaction / oligo-dimerization in nerve endings that could be relevant to the development of new therapeutic approaches for the cure of central pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Genoa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
18
|
Pfeil EM, Brands J, Merten N, Vögtle T, Vescovo M, Rick U, Albrecht IM, Heycke N, Kawakami K, Ono Y, Ngako Kadji FM, Hiratsuka S, Aoki J, Häberlein F, Matthey M, Garg J, Hennen S, Jobin ML, Seier K, Calebiro D, Pfeifer A, Heinemann A, Wenzel D, König GM, Nieswandt B, Fleischmann BK, Inoue A, Simon K, Kostenis E. Heterotrimeric G Protein Subunit Gαq Is a Master Switch for Gβγ-Mediated Calcium Mobilization by Gi-Coupled GPCRs. Mol Cell 2020; 80:940-954.e6. [PMID: 33202251 DOI: 10.1016/j.molcel.2020.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Mechanisms that control mobilization of cytosolic calcium [Ca2+]i are key for regulation of numerous eukaryotic cell functions. One such paradigmatic mechanism involves activation of phospholipase Cβ (PLCβ) enzymes by G protein βγ subunits from activated Gαi-Gβγ heterotrimers. Here, we report identification of a master switch to enable this control for PLCβ enzymes in living cells. We find that the Gαi-Gβγ-PLCβ-Ca2+ signaling module is entirely dependent on the presence of active Gαq. If Gαq is pharmacologically inhibited or genetically ablated, Gβγ can bind to PLCβ but does not elicit Ca2+ signals. Removal of an auto-inhibitory linker that occludes the active site of the enzyme is required and sufficient to empower "stand-alone control" of PLCβ by Gβγ. This dependence of Gi-Gβγ-Ca2+ on Gαq places an entire signaling branch of G-protein-coupled receptors (GPCRs) under hierarchical control of Gq and changes our understanding of how Gi-GPCRs trigger [Ca2+]i via PLCβ enzymes.
Collapse
Affiliation(s)
- Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Julian Brands
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Maddalena Vescovo
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Ulrike Rick
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Ina-Maria Albrecht
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuki Ono
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | | | - Suzune Hiratsuka
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Felix Häberlein
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany; Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jaspal Garg
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stephanie Hennen
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, 97078 Würzburg, Germany
| | - Kerstin Seier
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, 97078 Würzburg, Germany
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, 97078 Würzburg, Germany; Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, University of Birmingham, B15 2TT Birmingham, UK
| | - Alexander Pfeifer
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Akos Heinemann
- Division of Pharmacology, Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
| | - Daniela Wenzel
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Sebastianutto I, Goyet E, Andreoli L, Font-Ingles J, Moreno-Delgado D, Bouquier N, Jahannault-Talignani C, Moutin E, Di Menna L, Maslava N, Pin JP, Fagni L, Nicoletti F, Ango F, Cenci MA, Perroy J. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson's disease. J Clin Invest 2020; 130:1168-1184. [PMID: 32039920 DOI: 10.1172/jci126361] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson's disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine. In rodent models of Parkinson's disease, D1-mGlu5 nanocomplexes were strongly upregulated in the dopamine-denervated striatum, resulting in a synergistic activation of PLC signaling by D1 and mGlu5 receptor agonists. In turn, D1-mGlu5-dependent PLC signaling was causally linked with excessive activation of extracellular signal-regulated kinases in striatal neurons, leading to dyskinesia in animals treated with L-DOPA or D1 receptor agonists. The discovery of D1-mGlu5 functional heteromers mediating maladaptive molecular and motor responses in the dopamine-denervated striatum may prompt the development of new therapeutic principles for Parkinson's disease.
Collapse
Affiliation(s)
- Irene Sebastianutto
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elise Goyet
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laura Andreoli
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joan Font-Ingles
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - David Moreno-Delgado
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Nathalie Bouquier
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Enora Moutin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Luisa Di Menna
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Natallia Maslava
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Fagni
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fabrice Ango
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Julie Perroy
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
20
|
Toneatti R, Shin JM, Shah UH, Mayer CR, Saunders JM, Fribourg M, Arsenovic PT, Janssen WG, Sealfon SC, López-Giménez JF, Benson DL, Conway DE, González-Maeso J. Interclass GPCR heteromerization affects localization and trafficking. Sci Signal 2020; 13:eaaw3122. [PMID: 33082287 PMCID: PMC7717648 DOI: 10.1126/scisignal.aaw3122] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Membrane trafficking processes regulate G protein-coupled receptor (GPCR) activity. Although class A GPCRs are capable of activating G proteins in a monomeric form, they can also potentially assemble into functional GPCR heteromers. Here, we showed that the class A serotonin 5-HT2A receptors (5-HT2ARs) affected the localization and trafficking of class C metabotropic glutamate receptor 2 (mGluR2) through a mechanism that required their assembly as heteromers in mammalian cells. In the absence of agonists, 5-HT2AR was primarily localized within intracellular compartments, and coexpression of 5-HT2AR with mGluR2 increased the intracellular distribution of the otherwise plasma membrane-localized mGluR2. Agonists for either 5-HT2AR or mGluR2 differentially affected trafficking through Rab5-positive endosomes in cells expressing each component of the 5-HT2AR-mGluR2 heterocomplex alone, or together. In addition, overnight pharmacological 5-HT2AR blockade with clozapine, but not with M100907, decreased mGluR2 density through a mechanism that involved heteromerization between 5-HT2AR and mGluR2. Using TAT-tagged peptides and chimeric constructs that are unable to form the interclass 5-HT2AR-mGluR2 complex, we demonstrated that heteromerization was necessary for the 5-HT2AR-dependent effects on mGluR2 subcellular distribution. The expression of 5-HT2AR also augmented intracellular localization of mGluR2 in mouse frontal cortex pyramidal neurons. Together, our data suggest that GPCR heteromerization may itself represent a mechanism of receptor trafficking and sorting.
Collapse
MESH Headings
- Amino Acids/pharmacology
- Animals
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Membrane/metabolism
- Clozapine/pharmacology
- Endosomes/metabolism
- HEK293 Cells
- Humans
- Mice, 129 Strain
- Mice, Knockout
- Microscopy, Confocal
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Protein Multimerization
- Protein Transport/drug effects
- Receptor, Serotonin, 5-HT2A/chemistry
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Metabotropic Glutamate/chemistry
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Serotonin Antagonists/pharmacology
- Signal Transduction
Collapse
Affiliation(s)
- Rudy Toneatti
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jong M Shin
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Urjita H Shah
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carl R Mayer
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Justin M Saunders
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Miguel Fribourg
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul T Arsenovic
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - William G Janssen
- Department Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan F López-Giménez
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, E-18016 Granada, Spain
| | - Deanna L Benson
- Department Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
21
|
Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement. Sci Rep 2020; 10:16899. [PMID: 33037263 PMCID: PMC7547119 DOI: 10.1038/s41598-020-73050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Before the onset of hearing, cochlea-generated patterns of spontaneous spike activity drive the maturation of central auditory circuits. In the glycinergic sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) this spontaneous activity guides the strengthening and silencing of synapses which underlies tonotopic map refinement. However, the mechanisms by which patterned activity regulates synaptic refinement in the MNTB-LSO pathway are still poorly understood. To address this question, we recorded from LSO neurons in slices from prehearing mice while stimulating MNTB afferents with stimulation patterns that mimicked those present in vivo. We found that these semi-natural stimulation patterns reliably elicited a novel form of long-term potentiation (LTP) of MNTB-LSO synapses. Stimulation patterns that lacked the characteristic high-frequency (200 Hz) component of prehearing spike activity failed to elicit potentiation. LTP was calcium dependent, required the activation of both g-protein coupled GABAB and metabotropic glutamate receptors and involved an increase in postsynaptic glycine receptor-mediated currents. Our results provide a possible mechanism linking spontaneous spike bursts to tonotopic map refinement and further highlight the importance of the co-release of GABA and glutamate from immature glycinergic MNTB terminals.
Collapse
|
22
|
Nardone R, Sebastianelli L, Brigo F, Golaszewski S, Trinka E, Pucks-Faes E, Saltuari L, Versace V. Effects of intrathecal baclofen therapy in subjects with disorders of consciousness: a reappraisal. J Neural Transm (Vienna) 2020; 127:1209-1215. [PMID: 32710152 DOI: 10.1007/s00702-020-02233-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023]
Abstract
Baclofen is a structural analogue of gamma-amino-butyric acid (GABA), which reduces spastic hypertonia of striated muscle due to a mechanism of GABAB-ergic inhibition of mono- and polysynaptic reflexes at the spinal level. There are reports of patients with severe disorders of consciousness that presented a substantial improvement following intrathecal baclofen (ITB) administration for severe spasticity. The neural mechanisms underlying the clinical recovery after ITB have not yet been clarified. Baclofen could modulate sleep-wake cycles that may be dysregulated and thus interfere with alertness and awareness. The diminished proprioceptive and nociceptive sensory inputs may relieve thalamo-cortical neural networks involved in maintaining the consciousness of the self and the world. ITB treatment might also promote the recovery of an impaired GABAergic cortical tone, restoring the balance between excitatory and inhibitory cortical activity. Furthermore, glutamatergic synapses are directly or indirectly modulated by GABAB-ergic receptors. Neurophysiological techniques (such as transcranial magnetic stimulation, electroencephalography, or the combination of both) can be helpful to explore the effects of intrathecal or oral baclofen on the modulation of neural cortical circuits in humans with disorders of consciousness.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy. .,Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria. .,Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Austria. .,Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Centre for Cognitive Neurosciences Salzburg, Salzburg, Austria.,University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| | | | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Viviana Versace
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| |
Collapse
|
23
|
Ji B, Shang L, Wang C, Wan L, Cheng B, Chen J. Roles for heterodimerization of APJ and B2R in promoting cell proliferation via ERK1/2-eNOS signaling pathway. Cell Signal 2020; 73:109671. [PMID: 32407761 DOI: 10.1016/j.cellsig.2020.109671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
Apelin receptor (APJ) and bradykinin B2 receptor (B2R) play an important role in many physiological processes and share multiple similar characteristics in distribution and functions in the cardiovascular system. We first identified the endogenous expression of APJ and B2R in human umbilical vein endothelial cells (HUVECs) and their co-localization on human embryonic kidney (HEK) 293 cells membrane. A suite of bioluminescence and fluorescence resonance energy transfer (BRET and FRET), proximity ligation assay (PLA), and co-immunoprecipitation (Co-IP) was exploited to demonstrate formation of functional APJ and B2R heterodimer in HUVECs and transfected cells. Stimulation with apelin-13 and bradykinin (BK) increased the phosphorylation of the endothelial nitric oxide synthase (eNOS) in HUVECs, which could be inhibited by the silencing of APJ or B2R, indicating the APJ-B2R dimer is critical for eNOS phosphorylation in HUVECs. Furthermore, the increase of NOS and extracellular signal regulated kinases1/2 (ERK1/2) phosphorylation mediated by APJ/B2R dimer can be inhibited by U0126 and U73122, respectively, suggesting that the heterodimer might activate the PLC/ERK1/2/eNOS signaling pathway, and finally leading to a significant increase in cell proliferation. Thus, we uncovered for the first time the existence of APJ-B2R heterodimer and provided a promising new target in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Bingyuan Ji
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China.
| | - Liyan Shang
- Department of Nephrology, Zoucheng People's Hospital, Zoucheng 273500, China
| | - Chunmei Wang
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China
| | - Lei Wan
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China
| | - Baohua Cheng
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China
| | - Jing Chen
- Institute of Neurobiology, School of Mental Health, Jining Medical University, Jining 272067, PR China; Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
24
|
Chen M, Cecon E, Karamitri A, Gao W, Gerbier R, Ahmad R, Jockers R. Melatonin MT 1 and MT 2 receptor ERK signaling is differentially dependent on G i/o and G q/11 proteins. J Pineal Res 2020; 68:e12641. [PMID: 32080899 DOI: 10.1111/jpi.12641] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit extracellular signals into cells by activating G protein- and β-arrestin-dependent pathways. Extracellular signal-regulated kinases (ERKs) play a central role in integrating these different linear inputs coming from a variety of GPCRs to regulate cellular functions. Here, we investigated human melatonin MT1 and MT2 receptors signaling through the ERK1/2 cascade by employing different biochemical techniques together with pharmacological inhibitors and siRNA molecules. We show that ERK1/2 activation by both receptors is exclusively G protein-dependent, without any participation of β-arrestin1/2 in HEK293 cells. ERK1/2 activation by MT1 is only mediated though Gi/o proteins, while MT2 is dependent on the cooperative activation of Gi/o and Gq/11 proteins. In the absence of Gq/11 proteins, however, MT2 -induced ERK1/2 activation switches to a β-arrestin1/2-dependent mode. The signaling cascade downstream of G proteins is the same for both receptors and involves activation of the PI3K/PKCζ/c-Raf/MEK/ERK cascade. The differential G protein dependency of MT1 - and MT2 -mediated ERK activation was confirmed at the level of EGR1 and FOS gene expression, two ERK1/2 target genes. Gi/o /Gq/11 cooperativity was also observed in Neuroscreen-1 cells expressing endogenous MT2 , whereas in the mouse retina, where MT2 is engaged into MT1 /MT2 heterodimers, ERK1/2 signaling is exclusively Gi/o -dependent. Collectively, our data reveal differential signaling modes of MT1 and MT2 in terms of ERK1/2 activation, with an unexpected Gi/o /Gq/11 cooperativity exclusively for MT2 . The plasticity of ERK activation by MT2 is highlighted by the switch to a β-arrestin1/2-dependent mode in the absence of Gq/11 proteins and by the switch to a Gi/o mode when engaged into MT1 /MT2 heterodimers, revealing a new mechanism underlying tissue-specific responses to melatonin.
Collapse
Affiliation(s)
- Min Chen
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Erika Cecon
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | | | - Wenwen Gao
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Romain Gerbier
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Raise Ahmad
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| |
Collapse
|
25
|
Mizuta K, Sasaki H, Zhang Y, Matoba A, Emala CW. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1248-L1260. [PMID: 32209026 DOI: 10.1152/ajplung.00357.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that gut microbiota-derived short-chain fatty acids (SCFAs; acetate, propionate, and butyrate) are important modulators of the inflammatory state in diseases such as asthma. However, the functional expression of the Gi protein-coupled free fatty acid receptors (FFAR2/GPR43 and FFAR3/GPR41) has not been identified on airway smooth muscle (ASM). Classically, acute activation of Gi-coupled receptors inhibits cyclic AMP (cAMP) synthesis, which impairs ASM relaxation and can also induce crosstalk between Gi- and Gq-signaling pathways, potentiating increases in intracellular Ca2+ concentration ([Ca2+]i), favoring ASM contraction. In contrast, chronic activation of Gi-coupled receptors can sensitize adenylyl cyclase resulting in increased cAMP synthesis favoring relaxation. We questioned whether the Gi-coupled FFAR2 or FFAR3 is expressed in human ASM, whether they modulate cAMP and [Ca2+]i, and whether SCFAs modulate human ASM tone. We detected the protein expression of FFAR3 but not FFAR2 in native human ASM and primary cultured human airway smooth muscle (HASM) cells. In HASM cells, acute activation of FFAR3 with SCFAs inhibited forskolin-stimulated cAMP accumulation, but chronic activation did not sensitize cAMP synthesis. SCFAs induced [Ca2+]i increases that were attenuated by pertussis toxin, gallein, U73122, or xestospongin C. Acute treatment with SCFAs potentiated acetylcholine-stimulated [Ca2+]i increases and stress fiber formation in cells and contraction of ex vivo human airway tissues. In contrast, chronic pretreatment of human ASM with propionate did not potentiate airway relaxation. Together, these findings demonstrate that FFAR3 is expressed in human ASM and contributes to ASM contraction via reduced cAMP and increased [Ca2+]i.
Collapse
Affiliation(s)
- Kentaro Mizuta
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Haruka Sasaki
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yi Zhang
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Atsuko Matoba
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
26
|
Sakairi H, Kamikubo Y, Abe M, Ikeda K, Ichiki A, Tabata T, Kano M, Sakurai T. G Protein-Coupled Glutamate and GABA Receptors Form Complexes and Mutually Modulate Their Signals. ACS Chem Neurosci 2020; 11:567-578. [PMID: 31977183 DOI: 10.1021/acschemneuro.9b00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molecular networks containing various proteins mediate many types of cellular processes. Elucidation of how the proteins interact will improve our understanding of the molecular integration and physiological and pharmacological propensities of the network. One of the most complicated and unexplained interactions between proteins is the inter-G protein-coupled receptor (GPCR) interaction. Recently, many studies have suggested that an interaction between neurotransmitter GPCRs may mediate diverse modalities of neural responses. The B-type gamma-aminobutyric acid (GABA) receptor (GBR) and type-1 metabotropic glutamate receptor (mGluR1) are GPCRs for GABA and glutamate, respectively, and each plays distinct roles in controlling neurotransmission. We have previously reported the possibility of their functional interaction in central neurons. Here, we examined the interaction of these GPCRs using stable cell lines and rat cerebella. Cell-surface imaging and coimmunoprecipitation analysis revealed that these GPCRs interact on the cell surface. Furthermore, fluorometry revealed that these GPCRs mutually modulate signal transduction. These findings provide solid evidence that mGluR1 and GBR have intrinsic abilities to form complexes and to mutually modulate signaling. These findings indicate that synaptic plasticity relies on a network of proteins far more complex than previously assumed.
Collapse
Affiliation(s)
- Hakushun Sakairi
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masayoshi Abe
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Keisuke Ikeda
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Arata Ichiki
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Toshihide Tabata
- Laboratory for Biological Information Processing, Faculty of Engineering and Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
27
|
Hajj M, De Vita T, Vol C, Renassia C, Bologna JC, Brabet I, Cazade M, Pastore M, Blahos J, Labesse G, Pin JP, Prézeau L. Nonclassical Ligand-Independent Regulation of Go Protein by an Orphan Class C G-Protein-Coupled Receptor. Mol Pharmacol 2019; 96:233-246. [PMID: 31189666 DOI: 10.1124/mol.118.113019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/28/2019] [Indexed: 02/14/2025] Open
Abstract
The orphan G-protein-coupled receptor (GPCR) GPR158 is expressed in the brain, where it is involved in the osteocalcin effect on cognitive processes, and at the periphery, where it may contribute to glaucoma and cancers. GPR158 forms a complex with RGS7-β5, leading to the regulation of neighboring GPCR-induced Go protein activity. GPR158 also interacts with αo, although no canonical Go coupling has been reported. GPR158 displays three VCPWE motifs in its C-terminal domain that are putatively involved in G-protein regulation. Here, we addressed the scaffolding function of GPR158 and its VCPWE motifs on Go. We observed that GPR158 interacted with and stabilized the amount of RGS7-β5 through a 50-residue region downstream of its transmembrane domain and upstream of the VCPWE motifs. We show that two VCPWE motifs are involved in αo binding. Using a Gαo-βγ bioluminescence resonance energy transfer (BRET) sensor, we found that GPR158 decreases the BRET signal as observed upon G-protein activation; however, no constitutive activity of GPR158 could be detected through the measurement of various G-protein-mediated downstream responses. We propose that the effect of GPR158 on Go is unlikely due to a canonical activation of Go, but rather to the trapping of Gαo by the VCPWE motifs, possibly leading to its dissociation from βγ Such action of GPR158 is expected to prolong the βγ activity, as also observed with some activators of G-protein signaling. Taken together, our data revealed a complex functional scaffolding or signaling role for GPR158 controlling Go through an original mechanism.
Collapse
Affiliation(s)
- Mariana Hajj
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Teresa De Vita
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Claire Vol
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Charlotte Renassia
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Jean-Charles Bologna
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Isabelle Brabet
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Magali Cazade
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Manuela Pastore
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Jaroslav Blahos
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Gilles Labesse
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Jean-Philippe Pin
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| | - Laurent Prézeau
- Institute of Functional Genomics (M.H., T.D.V., C.V., C.R., J.-C.B., I.B., M.C., M.P., J.-P.P., L.P.) and CBS (G.L.), University of Montpellier, French National Center for Scientific Research (CNRS), French National Institute of Health and Medicine (INSERM), Montpellier, France; and Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Department of Pharmacology, 2nd Medical School, Charles University, Prague, Czech Republic (J.B.)
| |
Collapse
|
28
|
Shah UH, González-Maeso J. Serotonin and Glutamate Interactions in Preclinical Schizophrenia Models. ACS Chem Neurosci 2019; 10:3068-3077. [PMID: 30807107 DOI: 10.1021/acschemneuro.9b00044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The serotonergic and glutamatergic neurotransmitter systems have both been implicated in the pathophysiology of schizophrenia, and there are multiple lines of evidence to demonstrate that they can interact in a functionally relevant manner. Particularly, it has been demonstrated that serotonin (5-hydroxytryptamine) 2A (5-HT2A) receptors and metabotropic glutamate type 2 (mGlu2) receptors can assemble into a functional heteromeric complex and modulate each other's function. This heteromeric complex has been implicated in the mechanism of action of hallucinogens as well as antipsychotic agents, and its role has been demonstrated in both in vitro and in vivo systems. Additionally, the difference in the changes in Gi/o and Gq/11 protein activity when a ligand binds to the heteromeric complex can be used as an index to predict the pro- or antipsychotic properties of an agent. Signaling via the heteromer is dysregulated in postmortem human brain samples of schizophrenia subjects, which may be linked to altered cortical functions. Alternative routes for the functional crosstalk between mGlu2 and 5-HT2A receptors include synaptic and epigenetic mechanisms. This Review highlights the advances made over the past few years in elucidating the structural and functional mechanisms underlying crosstalk between 5-HT2A and mGlu2 receptors in preclinical models of schizophrenia.
Collapse
Affiliation(s)
- Urjita H. Shah
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| |
Collapse
|
29
|
Pin JP, Kniazeff J, Prézeau L, Liu JF, Rondard P. GPCR interaction as a possible way for allosteric control between receptors. Mol Cell Endocrinol 2019; 486:89-95. [PMID: 30849406 DOI: 10.1016/j.mce.2019.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022]
Abstract
For more than twenty years now, GPCR dimers and larger oligomers have been the subject of intense debates. Evidence for a role of such complexes in receptor trafficking to and from the plasma membrane have been provided. However, one main issue is of course to determine whether or not such a phenomenon can be responsible for an allosteric and reciprocal control (allosteric control) of the subunits. Such a possibility would indeed add to the possible ways a cell integrates various signals targeting GPCRs. Among the large GPCR family, the class C receptors that include mGlu and GABAB receptors, represent excellent models to examine such a possibility as they are mandatory dimers. In the present review, we will report on the observed allosteric interaction between the subunits of class C GPCRs, both mGluRs and GABABRs, and on the structural bases of these interactions. We will then discuss these findings for other GPCR types such as the rhodopsin-like class A receptors. We will show that many of the observations made with class C receptors have also been reported with class A receptors, suggesting that the mechanisms involved in the allosteric control between subunits in GPCR dimers may not be unique to class C GPCRs.
Collapse
Affiliation(s)
- Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jiang-Feng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
30
|
Vergassola M, Olivero G, Cisani F, Usai C, Bossi S, Puliti A, Pittaluga A. Presynaptic mGlu1 Receptors Control GABA B Receptors in an Antagonist-Like Manner in Mouse Cortical GABAergic and Glutamatergic Nerve Endings. Front Mol Neurosci 2018; 11:324. [PMID: 30279647 PMCID: PMC6153310 DOI: 10.3389/fnmol.2018.00324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 01/03/2023] Open
Abstract
Mouse cortical GABAergic synaptosomes possess presynaptic inhibitory GABAB autoreceptors. Accordingly, (±)baclofen (3 μM) inhibits in a CGP53423-sensitive manner the 12 mM KCl-evoked release of preloaded [3H]GABA. Differently, the existence of presynaptic release-regulating metabotropic glutamate type 1 (mGlu1) heteroreceptors in these terminals is still matter of discussion, although confocal microscopy unveiled the existence of mGlu1α with GABAB1 or GABAB2 proteins in cortical VGAT-positive synaptosomes. The group I mGlu agonist 3,5-DHPG failed to modify on its own the 12 mM KCl-evoked [3H]GABA exocytosis from cortical nerve endings, but, when added concomitantly to the GABAB agonist, it significantly reduced the 3 μM (±)baclofen-induced inhibition of [3H]GABA exocytosis. Conversely, the mGlu1 antagonist LY367385 (0.03–1 μM), inactive on its own on GABA exocytosis, amplified the 3 μM (±)baclofen-induced inhibition of [3H]GABA overflow. The ( ± )baclofen-induced inhibition of [3H]GABA exocytosis was more pronounced in cortical synaptosomes from Grm1crv4/crv4 mice, which bear a spontaneous mutation of the Grm1 gene leading to the functional inactivation of the mGlu1 receptor. Inasmuch, the expression of GABAB2 receptor protein in cortical synaptosomal lysates from Grm1crv4/crv4 mice was increased when compared to controls. Altogether, these observations seem best interpreted by assuming that mGlu1 coexist with GABAB receptors in GABAergic cortical synaptosomes, where they control GABA receptors in an antagonist-like manner. We then asked whether the mGlu1-mediated control of GABAB receptors is restricted to GABAergic terminals, or if it occurs also in other subpopulations of nerve endings. Release-regulating GABAB receptors also exist in glutamatergic nerve endings. (±)baclofen (1 μM) diminished the 12 mM KCl-evoked [3H]D-aspartate overflow. Also in these terminals, the concomitant presence of 1 μM LY367385, inactive on its own, significantly amplified the inhibitory effect exerted by (±)baclofen on [3H]D-aspartate exocytosis. Confocal microscopy confirmed the colocalization of mGlu1 with GABAB1 and GABAB2 labeling in vesicular glutamate type1 transporter-positive particles. Our results support the conclusion that mGlu1 receptors modulate in an antagonist-like manner presynaptic release-regulating GABAB receptors. This receptor–receptor interaction could be neuroprotective in central disease typified by hyperglutamatergicity.
Collapse
Affiliation(s)
| | | | | | - Cesare Usai
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Simone Bossi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
31
|
Rives ML, Rady B, Swanson N, Zhao S, Qi J, Arnoult E, Bakaj I, Mancini A, Breton B, Lee SP, Player MR, Pocai A. GPR40-Mediated G α12 Activation by Allosteric Full Agonists Highly Efficacious at Potentiating Glucose-Stimulated Insulin Secretion in Human Islets. Mol Pharmacol 2018; 93:581-591. [PMID: 29572336 DOI: 10.1124/mol.117.111369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
GPR40 is a clinically validated molecular target for the treatment of diabetes. Many GPR40 agonists have been identified to date, with the partial agonist fasiglifam (TAK-875) reaching phase III clinical trials before its development was terminated due to off-target liver toxicity. Since then, attention has shifted toward the development of full agonists that exhibit superior efficacy in preclinical models. Full agonists bind to a distinct binding site, suggesting conformational plasticity and a potential for biased agonism. Indeed, it has been suggested that alternative pharmacology may be required for meaningful efficacy. In this study, we described the discovery and characterization of Compound A, a newly identified GPR40 allosteric full agonist highly efficacious in human islets at potentiating glucose-stimulated insulin secretion. We compared Compound A-induced GPR40 activity to that induced by both fasiglifam and AM-1638, another allosteric full agonist previously reported to be highly efficacious in preclinical models, at a panel of G proteins. Compound A was a full agonist at both the Gαq and Gαi2 pathways, and in contrast to fasiglifam Compound A also induced Gα12 coupling. Compound A and AM-1638 displayed similar activity at all pathways tested. The Gα12/Gα13-mediated signaling pathway has been linked to protein kinase D activation as well as actin remodeling, well known to contribute to the release of insulin vesicles. Our data suggest that the pharmacology of GPR40 is complex and that Gα12/Gα13-mediated signaling, which may contribute to GPR40 agonists therapeutic efficacy, is a specific property of GPR40 allosteric full agonists.
Collapse
Affiliation(s)
- Marie-Laure Rives
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Brian Rady
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Nadia Swanson
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Shuyuan Zhao
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Jenson Qi
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Eric Arnoult
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Ivona Bakaj
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Arturo Mancini
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Billy Breton
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - S Paul Lee
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Mark R Player
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| | - Alessandro Pocai
- Molecular and Cellular Pharmacology, Janssen Research & Development, LLC, La Jolla, California (M.-L.R., N.S.); Cardiovascular and Metabolism (B.R., S.Z., J.Q., I.B., S.P.L., M.R.P., A.P.), and Computational Chemistry (E.A.), Janssen Research & Development, LLC, Spring House, Pennsylvania; and Domain Therapeutics NA Inc., Montreal, Quebec, Canada (A.M., B.B.)
| |
Collapse
|
32
|
Zhang Y, Liu Y, Wu L, Fan C, Wang Z, Zhang X, Alachkar A, Liang X, Civelli O. Receptor-specific crosstalk between prostanoid E receptor 3 and bombesin receptor subtype 3. FASEB J 2018; 32:3184-3192. [PMID: 29401613 DOI: 10.1096/fj.201700337rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bombesin receptor subtype 3 (BRS-3) is a GPCR that is expressed in the CNS, peripheral tissues, and tumors. Our understanding of BRS-3's role in physiology and pathophysiology is limited because its natural ligand is unknown. In an attempt to identify this ligand, we screened toad skin ( Bufo bufo gargarizans Cantor) extracts and identified prostaglandins as putative ligands. In BRS-3-transfected human embryonic kidney (HEK) cells, we found that prostaglandins, with prostaglandin E2 (PGE2) being the most potent, fulfill the pharmacologic criteria of affinity, selectivity, and specificity to be considered as agonists to the BRS-3 receptor. However, PGE2 is unable to activate BRS-3 in different cellular environments. We speculated that EP receptors might be the cause of this cellular selectivity, and we found that EP3 is the receptor primarily responsible for the differential PGE2 effect. Consequently, we reconstituted the HEK environment in Chinese hamster ovary (CHO) cells and found that BRS-3 and EP3 interact to potentiate PGE2 signaling. This potentiating effect is receptor specific, and it occurs only when BRS-3 is paired to EP3. Our study represents an example of functional crosstalk between two distantly related GPCRs and may be of clinical importance for BRS-3-targeted therapies.-Zhang, Y., Liu, Y., Wu, L., Fan, C., Wang, Z., Zhang, X., Alachkar, A., Liang, X., Civelli, O. Receptor-specific crosstalk between prostanoid E receptor 3 and bombesin receptor subtype 3.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lehao Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Fan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Wang
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| | - Xiuli Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Amal Alachkar
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
33
|
TERUNUMA M. Diversity of structure and function of GABA B receptors: a complexity of GABA B-mediated signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:390-411. [PMID: 30541966 PMCID: PMC6374141 DOI: 10.2183/pjab.94.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 05/24/2023]
Abstract
γ-aminobutyric acid type B (GABAB) receptors are broadly expressed in the nervous system and play an important role in neuronal excitability. GABAB receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly rectifying K+ channels, inactivating voltage-gated Ca2+ channels, and inhibiting adenylate cyclase. Functional GABAB receptors are obligate heterodimers formed by the co-assembly of R1 and R2 subunits. It is well established that GABAB receptors interact not only with G proteins and effectors but also with various proteins. This review summarizes the structure, subunit isoforms, and function of GABAB receptors, and discusses the complexity of GABAB receptors, including how receptors are localized in specific subcellular compartments, the mechanism regulating cell surface expression and mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and interacting proteins.
Collapse
Affiliation(s)
- Miho TERUNUMA
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
34
|
Di Menna L, Joffe ME, Iacovelli L, Orlando R, Lindsley CW, Mairesse J, Gressèns P, Cannella M, Caraci F, Copani A, Bruno V, Battaglia G, Conn PJ, Nicoletti F. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology 2017; 128:301-313. [PMID: 29079293 DOI: 10.1016/j.neuropharm.2017.10.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 12/19/2022]
Abstract
mGlu5 receptors are involved in mechanisms of activity-dependent synaptic plasticity, and are targeted by drugs developed for the treatment of CNS disorders. We report that mGlu3 receptors, which are traditionally linked to the control of neurotransmitter release, support mGlu5 receptor signaling in neurons and largely contribute to the robust mGlu5 receptor-mediated polyphosphoinositide hydrolysis in the early postnatal life. In cortical pyramidal neurons, mGlu3 receptor activation potentiated mGlu5 receptor-mediated somatic Ca2+ mobilization, and mGlu3 receptor-mediated long-term depression in the prefrontal cortex required the endogenous activation of mGlu5 receptors. The interaction between mGlu3 and mGlu5 receptors was also relevant to mechanisms of neuronal toxicity, with mGlu3 receptors shaping the influence of mGlu5 receptors on excitotoxic neuronal death. These findings shed new light into the complex role played by mGlu receptors in physiology and pathology, and suggest reconsideration of some of the current dogmas in the mGlu receptor field.
Collapse
Affiliation(s)
| | - Max E Joffe
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Luisa Iacovelli
- Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Jèrome Mairesse
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 1141 Paris, France
| | - Pierre Gressèns
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 1141 Paris, France; Centre for the Developing Brain, Department of Perinatal Health and Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | | | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; I.R.C.C.S. Oasi Maria SS, 94018 Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; Institute of Biostructure and Bioimaging, National Research Council, 95126 Catania, Italy
| | - Valeria Bruno
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy
| | | | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy.
| |
Collapse
|
35
|
Scholler P, Moreno-Delgado D, Lecat-Guillet N, Doumazane E, Monnier C, Charrier-Savournin F, Fabre L, Chouvet C, Soldevila S, Lamarque L, Donsimoni G, Roux T, Zwier JM, Trinquet E, Rondard P, Pin JP. HTS-compatible FRET-based conformational sensors clarify membrane receptor activation. Nat Chem Biol 2017; 13:372-380. [DOI: 10.1038/nchembio.2286] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
|
36
|
Hattori Y, Seifert R. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutants in the Sf9 Cell Expression System. Handb Exp Pharmacol 2017; 241:63-118. [PMID: 28233175 PMCID: PMC7120522 DOI: 10.1007/164_2016_124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [35S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li+, Na+, K+) and anions (Cl-, Br-, I-) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high-affinity state. A detailed characterization of affinity and activity of a series of hH4R antagonists/inverse agonists allowed first conclusions about structure/activity relationships for inverse agonists at hH4R. In summary, the Sf9 cell system permitted a successful side-by-side comparison of all four human histamine receptor subtypes. This chapter summarizes the results of pharmacological as well as medicinal chemistry/molecular modeling approaches and demonstrates that these data are not only important for a deeper understanding of HxR pharmacology, but also have significant implications for the molecular pharmacology of GPCRs in general.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Hannover, Germany
| |
Collapse
|
37
|
Abstract
The neuropsychological effects of naturally occurring psychoactive chemicals have been recognized for millennia. Hallucinogens, which include naturally occurring chemicals such as mescaline and psilocybin, as well as synthetic compounds, such as lysergic acid diethylamide (LSD), induce profound alterations of human consciousness, emotion, and cognition. The discovery of the hallucinogenic effects of LSD and the observations that LSD and the endogenous ligand serotonin share chemical and pharmacological profiles led to the suggestion that biogenic amines like serotonin were involved in the psychosis of mental disorders such as schizophrenia. Although they bind other G protein-coupled receptor (GPCR) subtypes, studies indicate that several effects of hallucinogens involve agonist activity at the serotonin 5-HT2A receptor. In this chapter, we review recent advances in understanding hallucinogen drug action through characterization of structure, neuroanatomical location, and function of the 5-HT2A receptor.
Collapse
|
38
|
Gaitonde SA, González-Maeso J. Contribution of heteromerization to G protein-coupled receptor function. Curr Opin Pharmacol 2016; 32:23-31. [PMID: 27835800 DOI: 10.1016/j.coph.2016.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a remarkably multifaceted family of transmembrane proteins that exert a variety of physiological effects. Although family A GPCRs are able to operate as monomers, there is increasing evidence that heteromerization represents a fundamental aspect of receptor function, trafficking and pharmacology. Most recently, it has been suggested that GPCR heteromers may play a crucial role as new molecular targets of heteromer-selective and bivalent ligands. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
39
|
Type-7 metabotropic glutamate receptors negatively regulate α 1-adrenergic receptor signalling. Neuropharmacology 2016; 113:343-353. [PMID: 27769854 DOI: 10.1016/j.neuropharm.2016.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 12/29/2022]
Abstract
We studied the interaction between mGlu7 and α1-adrenergic receptors in heterologous expression systems, brain slices, and living animals. L-2-Amino-4-phosphonobutanoate (L-AP4), and l-serine-O-phosphate (L-SOP), which activate group III mGlu receptors, restrained the stimulation of polyphosphoinositide (PI) hydrolysis induced by the α1-adrenergic receptor agonist, phenylephrine, in HEK 293 cells co-expressing α1-adrenergic and mGlu7 receptors. The inibitory action of L-AP4 was abrogated by (i) the mGlu7 receptor antagonist, XAP044; (ii) the C-terminal portion of type-2 G protein coupled receptor kinase; and (iii) the MAP kinase inhibitors, UO126 and PD98059. This suggests that the functional interaction between mGlu7 and α1-adrenergic receptors was mediated by the βγ-subunits of the Gi protein and required the activation of the MAP kinase pathway. Remarkably, activation of neither mGlu2 nor mGlu4 receptors reduced α1-adrenergic receptor-mediated PI hydrolysis. In mouse cortical slices, both L-AP4 and L-SOP were able to attenuate norepinephrine- and phenylephrine-stimulated PI hydrolysis at concentrations consistent with the activation of mGlu7 receptors. L-AP4 failed to affect norepinephrine-stimulated PI hydrolysis in cortical slices from mGlu7-/- mice, but retained its inhibitory activity in slices from mGlu4-/- mice. At behavioural level, i.c.v. injection of phenylephrine produced antidepressant-like effects in the forced swim test. The action of phenylephrine was attenuated by L-SOP, which was inactive per se. Finally, both phenylephrine and L-SOP increased corticosterone levels in mice, but the increase was halved when the two drugs were administered in combination. Our data demonstrate that α1-adrenergic and mGlu7 receptors functionally interact and suggest that this interaction might be targeted in the treatment of stress-related disorders.
Collapse
|
40
|
Identification of key phosphorylation sites in PTH1R that determine arrestin3 binding and fine-tune receptor signaling. Biochem J 2016; 473:4173-4192. [PMID: 27623777 PMCID: PMC5103873 DOI: 10.1042/bcj20160740] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
The parathyroid hormone receptor 1 (PTH1R) is a member of family B of G-protein-coupled receptors (GPCRs), predominantly expressed in bone and kidney where it modulates extracellular Ca2+ homeostasis and bone turnover. It is well established that phosphorylation of GPCRs constitutes a key event in regulating receptor function by promoting arrestin recruitment and coupling to G-protein-independent signaling pathways. Mapping phosphorylation sites on PTH1R would provide insights into how phosphorylation at specific sites regulates cell signaling responses and also open the possibility of developing therapeutic agents that could target specific receptor functions. Here, we have used mass spectrometry to identify nine sites of phosphorylation in the C-terminal tail of PTH1R. Mutational analysis revealed identified two clusters of serine and threonine residues (Ser489–Ser495 and Ser501–Thr506) specifically responsible for the majority of PTH(1–34)-induced receptor phosphorylation. Mutation of these residues to alanine did not affect negatively on the ability of the receptor to couple to G-proteins or activate extracellular-signal-regulated kinase 1/2. Using fluorescence resonance energy transfer and bioluminescence resonance energy transfer to monitor PTH(1–34)-induced interaction of PTH1R with arrestin3, we show that the first cluster Ser489–Ser495 and the second cluster Ser501–Thr506 operated in concert to mediate both the efficacy and potency of ligand-induced arrestin3 recruitment. We further demonstrate that Ser503 and Thr504 in the second cluster are responsible for 70% of arrestin3 recruitment and are key determinants for interaction of arrestin with the receptor. Our data are consistent with the hypothesis that the pattern of C-terminal tail phosphorylation on PTH1R may determine the signaling outcome following receptor activation.
Collapse
|
41
|
Holloway T, Moreno JL, González-Maeso J. HSV-Mediated Transgene Expression of Chimeric Constructs to Study Behavioral Function of GPCR Heteromers in Mice. J Vis Exp 2016. [PMID: 27501227 DOI: 10.3791/53717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The heteromeric receptor complex between 5-HT2A and mGlu2 has been implicated in some of the behavioral phenotypes in mouse models of psychosis(1,2). Consequently, investigation of structural details of the interaction between 5-HT2A and mGlu2 affecting schizophrenia-related behaviors represents a powerful translational tool. As previously shown, the head-twitch response (HTR) in mice is elicited by hallucinogenic drugs and this behavioral response is absent in 5-HT2A knockout (KO) mice(3,4). Additionally, by conditionally expressing the 5-HT2A receptor only in cortex, it was demonstrated that 5-HT2A receptor-dependent signaling pathways on cortical pyramidal neurons are sufficient to elicit head-twitch behavior in response to hallucinogenic drugs(3). Finally, it has been shown that the head-twitch behavioral response induced by the hallucinogens DOI and lysergic acid diethylamide (LSD) is significantly decreased in mGlu2-KO mice(5). These findings suggest that mGlu2 is at least in part necessary for the 5-HT2A receptor-dependent psychosis-like behavioral effects induced by LSD-like drugs. However, this does not provide evidence as to whether the 5-HT2A-mGlu2 receptor complex is necessary for this behavioral phenotype. To address this question, herpes simplex virus (HSV) constructs to express either mGlu2 or mGlu2ΔTM4N (mGlu2/mGlu3 chimeric construct that does not form the 5-HT2A-mGlu2 receptor complex) in the frontal cortex of mGlu2-KO mice were used to examine whether this GPCR heteromeric complex is needed for the behavioral effects induced by LSD-like drugs(6).
Collapse
Affiliation(s)
- Terrell Holloway
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Jose L Moreno
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Javier González-Maeso
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai; Department of Neurology, Icahn School of Medicine at Mount Sinai; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; Department of Physiology and Biophysics, Virginia Commonwealth University Medical School;
| |
Collapse
|
42
|
Huang YH, Su YS, Chang CJ, Sun WH. Heteromerization of G2A and OGR1 enhances proton sensitivity and proton-induced calcium signals. J Recept Signal Transduct Res 2016; 36:633-644. [PMID: 27049592 DOI: 10.3109/10799893.2016.1155064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proton-sensing G-protein-coupled receptors (GPCRs; OGR1, GPR4, G2A, TDAG8), with full activation at pH 6.4 ∼ 6.8, are important to pH homeostasis, immune responses and acid-induced pain. Although G2A mediates the G13-Rho pathway in response to acid, whether G2A activates Gs, Gi or Gq proteins remains debated. In this study, we examined the response of this fluorescence protein-tagged OGR1 family to acid stimulation in HEK293T cells. G2A did not generate detectable intracellular calcium or cAMP signals or show apparent receptor redistribution with moderate acid (pH ≥ 6.0) stimulation but reduced cAMP accumulation under strong acid stimulation (pH ≤ 5.5). Surprisingly, coexpression of OGR1- and G2A-enhanced proton sensitivity and proton-induced calcium signals. This alteration is attributed to oligomerization of OGR1 and G2A. The oligomeric potential locates receptors at a specific site, which leads to enhanced proton-induced calcium signals through channels.
Collapse
Affiliation(s)
- Ya-Han Huang
- a Department of Life Sciences , National Central University , Jhongli , Taiwan and
| | - Yeu-Shiuan Su
- a Department of Life Sciences , National Central University , Jhongli , Taiwan and
| | - Chung-Jen Chang
- a Department of Life Sciences , National Central University , Jhongli , Taiwan and
| | - Wei-Hsin Sun
- a Department of Life Sciences , National Central University , Jhongli , Taiwan and.,b Center for Biotechnology and Biomedical Engineering, National Central University , Jhongli , Taiwan
| |
Collapse
|
43
|
Baki L, Fribourg M, Younkin J, Eltit JM, Moreno JL, Park G, Vysotskaya Z, Narahari A, Sealfon SC, Gonzalez-Maeso J, Logothetis DE. Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells. Pflugers Arch 2016; 468:775-93. [PMID: 26780666 DOI: 10.1007/s00424-015-1780-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Abstract
We previously reported that co-expression of the Gi-coupled metabotropic glutamate receptor 2 (mGlu2R) and the Gq-coupled serotonin (5-HT) 2A receptor (2AR) in Xenopus oocytes (Fribourg et al. Cell 147:1011-1023, 2011) results in inverse cross-signaling, where for either receptor, strong agonists suppress and inverse agonists potentiate the signaling of the partner receptor. Importantly, through this cross-signaling, the mGlu2R/2AR heteromer integrates the actions of psychedelic and antipsychotic drugs. To investigate whether mGlu2R and 2AR can cross-signal in mammalian cells, we stably co-expressed them in HEK293 cells along with the GIRK1/GIRK4 channel, a reporter of Gi and Gq signaling activity. Crosstalk-positive clones were identified by Fura-2 calcium imaging, based on potentiation of 5-HT-induced Ca(2+) responses by the inverse mGlu2/3R agonist LY341495. Cross-signaling from both sides of the complex was confirmed in representative clones by using the GIRK channel reporter, both in whole-cell patch-clamp and in fluorescence assays using potentiometric dyes, and further established by competition binding assays. Notably, only 25-30 % of the clones were crosstalk-positive. The crosstalk-positive phenotype correlated with (a) increased colocalization of the two receptors at the cell surface, (b) lower density of mGlu2R binding sites and higher density of 2AR binding sites in total membrane preparations, and (c) higher ratios of mGlu2R/2AR normalized surface protein expression. Consistent with our results in Xenopus oocytes, a combination of ligands targeting both receptors could elicit functional crosstalk in a crosstalk-negative clone. Crosstalk-positive clones can be used in high-throughput assays for identification of antipsychotic drugs targeting this receptor heterocomplex.
Collapse
Affiliation(s)
- Lia Baki
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Miguel Fribourg
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jason Younkin
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Jose Miguel Eltit
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Jose L Moreno
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gyu Park
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Zhanna Vysotskaya
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Adishesh Narahari
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
44
|
Moreno JL, Miranda-Azpiazu P, García-Bea A, Younkin J, Cui M, Kozlenkov A, Ben-Ezra A, Voloudakis G, Fakira AK, Baki L, Ge Y, Georgakopoulos A, Morón JA, Milligan G, López-Giménez JF, Robakis NK, Logothetis DE, Meana JJ, González-Maeso J. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal 2016; 9:ra5. [PMID: 26758213 DOI: 10.1126/scisignal.aab0467] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor-GPCRs that are involved in signaling alterations associated with psychosis-assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2-5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry.
Collapse
Affiliation(s)
- José L Moreno
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patricia Miranda-Azpiazu
- Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Aintzane García-Bea
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Jason Younkin
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Meng Cui
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ariel Ben-Ezra
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgios Voloudakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amanda K Fakira
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lia Baki
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - José A Morón
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Juan F López-Giménez
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK. Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC-CSIC-UC), E-39011 Santander, Cantabria, Spain
| | - Nikolaos K Robakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain. BioCruces Health Research Institute, E-48903 Barakaldo, Bizkaia, Spain.
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
45
|
mGlu5-GABAB interplay in animal models of positive, negative and cognitive symptoms of schizophrenia. Neurochem Int 2015; 88:97-109. [DOI: 10.1016/j.neuint.2015.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
|
46
|
Vischer HF, Castro M, Pin JP. G Protein-Coupled Receptor Multimers: A Question Still Open Despite the Use of Novel Approaches. Mol Pharmacol 2015; 88:561-71. [PMID: 26138074 DOI: 10.1124/mol.115.099440] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/02/2015] [Indexed: 12/11/2022] Open
Abstract
Heteromerization of G protein-coupled receptors (GPCRs) can significantly change the functional properties of involved receptors. Various biochemical and biophysical methodologies have been developed in the last two decades to identify and functionally evaluate GPCR heteromers in heterologous cells, with recent approaches focusing on GPCR complex stoichiometry and stability. Yet validation of these observations in native tissues is still lagging behind for the majority of GPCR heteromers. Remarkably, recent studies, particularly some involving advanced fluorescence microscopy techniques, are contributing to our current knowledge of aspects that were not well known until now, such as GPCR complex stoichiometry and stability. In parallel, a growing effort is being applied to move the field forward into native systems. This short review will highlight recent developments to study the stoichiometry and stability of GPCR complexes and methodologies to detect native GPCR dimers.
Collapse
Affiliation(s)
- Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (H.F.V.); Molecular Pharmacology Laboratory, Biofarma Research Group (GI-1685), University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Santiago de Compostela, Spain (M.C.); and Centre National de la Recherche Scientifique, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France (J.-P.P.)
| | - Marián Castro
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (H.F.V.); Molecular Pharmacology Laboratory, Biofarma Research Group (GI-1685), University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Santiago de Compostela, Spain (M.C.); and Centre National de la Recherche Scientifique, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France (J.-P.P.)
| | - Jean-Philippe Pin
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (H.F.V.); Molecular Pharmacology Laboratory, Biofarma Research Group (GI-1685), University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Santiago de Compostela, Spain (M.C.); and Centre National de la Recherche Scientifique, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France (J.-P.P.)
| |
Collapse
|
47
|
Kantamneni S. Cross-talk and regulation between glutamate and GABAB receptors. Front Cell Neurosci 2015; 9:135. [PMID: 25914625 PMCID: PMC4392697 DOI: 10.3389/fncel.2015.00135] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
Brain function depends on co-ordinated transmission of signals from both excitatory and inhibitory neurotransmitters acting upon target neurons. NMDA, AMPA and mGluR receptors are the major subclasses of glutamate receptors that are involved in excitatory transmission at synapses, mechanisms of activity dependent synaptic plasticity, brain development and many neurological diseases. In addition to canonical role of regulating presynaptic release and activating postsynaptic potassium channels, GABAB receptors also regulate glutamate receptors. There is increasing evidence that metabotropic GABAB receptors are now known to play an important role in modulating the excitability of circuits throughout the brain by directly influencing different types of postsynaptic glutamate receptors. Specifically, GABAB receptors affect the expression, activity and signaling of glutamate receptors under physiological and pathological conditions. Conversely, NMDA receptor activity differentially regulates GABAB receptor subunit expression, signaling and function. In this review I will describe how GABAB receptor activity influence glutamate receptor function and vice versa. Such a modulation has widespread implications for the control of neurotransmission, calcium-dependent neuronal function, pain pathways and in various psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sriharsha Kantamneni
- Bradford School of Pharmacy, School of Life Sciences, University of Bradford Bradford, West Yorkshire, UK
| |
Collapse
|
48
|
Faklaris O, Cottet M, Falco A, Villier B, Laget M, Zwier JM, Trinquet E, Mouillac B, Pin JP, Durroux T. Multicolor time-resolved Förster resonance energy transfer microscopy reveals the impact of GPCR oligomerization on internalization processes. FASEB J 2015; 29:2235-46. [PMID: 25690655 DOI: 10.1096/fj.14-260059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/20/2015] [Indexed: 11/11/2022]
Abstract
Identifying the interacting partners and the dynamics of the molecular networks constitutes the key point in understanding cellular processes. Different methods often based on energy transfer strategies have been developed to examine the molecular dynamics of protein complexes. However, these methods suffer a couple of drawbacks: a single complex can be studied at a time, and its localization and tracking cannot generally be investigated. Here, we report a multicolor time-resolved Förster resonance energy transfer microscopy method that allows the identification of up to 3 different complexes simultaneously, their localization in cells, and their tracking after activation. Using this technique, we studied GPCR oligomerization and internalization in human embryonic kidney 293 cells. We definitively show that receptors can internalize as oligomers and that receptor coexpression deeply impacts oligomer internalization processes.
Collapse
Affiliation(s)
- Orestis Faklaris
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| | - Martin Cottet
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| | - Amandine Falco
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| | - Brice Villier
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| | - Michel Laget
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| | - Jurriaan M Zwier
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| | - Eric Trinquet
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| | - Bernard Mouillac
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| | - Jean-Philippe Pin
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| | - Thierry Durroux
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale, Montpellier, France; Université Montpellier, Montpellier, France; Hamamastu Photonics France 19, Parc du Moulin de Massy, Massy, France; and Cisbio Bioassays, Codolet, France
| |
Collapse
|
49
|
Laletin V, Bykov Y. General anesthetics as a factor of effective neuroprotection in ischemic stroke models. ACTA ACUST UNITED AC 2015; 61:440-8. [DOI: 10.18097/pbmc20156104440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stroke is the second leading cause of death in the world. Unfortunately, only a few drugs have been proved in clinical trials. Drug development of the last decade has been focused substantially on a promising and heterogeneous group of neuroprotective drugs. Hundreds of compounds were suggested as new putative neuroprotectors, which effectiveness was confirmed in preclinical trials only. At the present time discrepancy between results of preclinical studies and clinical trials requires careful analysis. One of the least evaluated and probably the most noticeable reasons is general anesthesia - an obligatory component of an overwhelming majority of existing animal stroke models. The aim of the review is to describe known mechanisms of common general anesthetics influence on ionotropic and metabotropic plasma membrane receptors, and key signal pathways involved in neuronal hypoxic-ischemic injury and survival
Collapse
Affiliation(s)
- V.S. Laletin
- Irkutsk State Medical University, Irkutsk, Russia
| | - Y.N. Bykov
- Irkutsk State Medical University, Irkutsk, Russia
| |
Collapse
|
50
|
Terunuma M, Haydon PG, Pangalos MN, Moss SJ. Purinergic receptor activation facilitates astrocytic GABAB receptor calcium signalling. Neuropharmacology 2014; 88:74-81. [PMID: 25261019 DOI: 10.1016/j.neuropharm.2014.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 12/11/2022]
Abstract
Gamma-aminobutyric acid B receptors (GABABRs) are heterodimeric G-protein coupled receptors, which mediate slow synaptic inhibition in the brain. Emerging evidence suggests astrocytes also express GABABRs, although their physiological significance remains unknown. To begin addressing this issue, we have used imaging and biochemical analysis to examine the role GABABRs play in regulating astrocytic Ca(2+) signalling. Using live imaging of cultured cortical astrocytes loaded with calcium indicator Fluo-4/AM, we found that astrocytic GABABRs are able to induce astrocytic calcium transients only if they are pre-activated by P2 purinoceptors (P2YRs). The GABABR-mediated calcium transients were attenuated by the removal of extracellular calcium. Furthermore, P2YRs enhance the phosphorylation of astrocytic GABABR R2 subunits on both serine 783 (S783) and serine 892 (S892), two phosphorylation sites that are well known to regulate the activity and the cell surface stability of GABABRs. Collectively these results suggest that P2YR mediated signalling is an important determinant of GABABR activity and phosphorylation in astrocytes.
Collapse
Affiliation(s)
- Miho Terunuma
- Department of Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and Psychology, University of Leicester, University Road, Leicester LE1 9HN, UK.
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Menelas N Pangalos
- Innovative Medicines, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|