1
|
Renaudin X, Al Ahmad Nachar B, Mancini B, Gueiderikh A, Louis-Joseph N, Maczkowiak-Chartois F, Rosselli F. Contribution of p53-dependent and -independent mechanisms to upregulation of p21 in Fanconi anemia. PLoS Genet 2024; 20:e1011474. [PMID: 39509458 PMCID: PMC11575784 DOI: 10.1371/journal.pgen.1011474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Abnormal expression of the cell cycle inhibitor and p53 target CDKN1A/p21 has been associated with paradoxical outcomes, such as hyperproliferation in p53-deficient cancer cells or hypoproliferation that affects hematopoietic stem cell behavior, leading to bone marrow failure (BMF). Notably, p21 is known to be overexpressed in Fanconi anemia (FA), which is a rare syndrome that predisposes patients to BMF and cancer. However, why p21 is overexpressed in FA and how it contributes to the FA phenotype(s) are still poorly understood. Here, we revealed that while the upregulation of p21 is largely dependent on p53, it also depends on the transcription factor microphthalmia (MITF) as well as on its interaction with the nucleolar protein NPM1. Upregulation of p21 expression in FA cells leads to p21 accumulation in the chromatin fraction, p21 immunoprecipitation with PCNA, S-phase lengthening and genetic instability. p21 depletion in FA cells rescues the S-phase abnormalities and reduces their genetic instability. In addition, we observed that reactive oxygen species (ROS) accumulation, another key feature of FA cells, is required to trigger an increase in PCNA/chromatin-associated p21 and to impact replication progression. Therefore, we propose a mechanism by which p21 and ROS cooperate to induce replication abnormalities that fuel genetic instability.
Collapse
Affiliation(s)
- Xavier Renaudin
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Baraah Al Ahmad Nachar
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Benedetta Mancini
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Anna Gueiderikh
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Noémie Louis-Joseph
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Frédérique Maczkowiak-Chartois
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| |
Collapse
|
2
|
Ramirez-Otero MA, Costanzo V. "Bridging the DNA divide": Understanding the interplay between replication- gaps and homologous recombination proteins RAD51 and BRCA1/2. DNA Repair (Amst) 2024; 141:103738. [PMID: 39084178 DOI: 10.1016/j.dnarep.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51's bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.
Collapse
Affiliation(s)
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Abbouche L, Bythell-Douglas R, Deans AJ. FANCM branchpoint translocase: Master of traverse, reverse and adverse DNA repair. DNA Repair (Amst) 2024; 140:103701. [PMID: 38878565 DOI: 10.1016/j.dnarep.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
4
|
Liu Z, Jiang H, Lee SY, Kong N, Chan YW. FANCM promotes PARP inhibitor resistance by minimizing ssDNA gap formation and counteracting resection inhibition. Cell Rep 2024; 43:114464. [PMID: 38985669 DOI: 10.1016/j.celrep.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) exhibit remarkable anticancer activity in tumors with homologous recombination (HR) gene mutations. However, the role of other DNA repair proteins in PARPi-induced lethality remains elusive. Here, we reveal that FANCM promotes PARPi resistance independent of the core Fanconi anemia (FA) complex. FANCM-depleted cells retain HR proficiency, acting independently of BRCA1 in response to PARPis. FANCM depletion leads to increased DNA damage in the second S phase after PARPi exposure, driven by elevated single-strand DNA (ssDNA) gap formation behind replication forks in the first S phase. These gaps arise from both 53BP1- and primase and DNA directed polymerase (PRIMPOL)-dependent mechanisms. Notably, FANCM-depleted cells also exhibit reduced resection of collapsed forks, while 53BP1 deletion restores resection and mitigates PARPi sensitivity. Our results suggest that FANCM counteracts 53BP1 to repair PARPi-induced DNA damage. Furthermore, FANCM depletion leads to increased chromatin bridges and micronuclei formation after PARPi treatment, elucidating the mechanism underlying extensive cell death in FANCM-depleted cells.
Collapse
Affiliation(s)
- Zeyuan Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Yuen Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
5
|
Lorite NP, Apostolova S, Guasch-Vallés M, Pryer A, Unzueta F, Freire R, Solé-Soler R, Pedraza N, Dolcet X, Garí E, Agell N, Taylor EM, Colomina N, Torres-Rosell J. Crucial role of the NSE1 RING domain in Smc5/6 stability and FANCM-independent fork progression. Cell Mol Life Sci 2024; 81:251. [PMID: 38847937 PMCID: PMC11335289 DOI: 10.1007/s00018-024-05275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 08/22/2024]
Abstract
The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.
Collapse
Affiliation(s)
- Neus P Lorite
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Sonia Apostolova
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marta Guasch-Vallés
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Aaron Pryer
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Fernando Unzueta
- Departament Biomedicina, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Universidad de La Laguna, Campus Ciencias de la Salud, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Roger Solé-Soler
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Neus Pedraza
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Xavier Dolcet
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Eloi Garí
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain
| | - Neus Agell
- Departament Biomedicina, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elaine M Taylor
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neus Colomina
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain.
| | - Jordi Torres-Rosell
- Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain.
| |
Collapse
|
6
|
Nusawardhana A, Pale LM, Nicolae CM, Moldovan GL. USP1-dependent nucleolytic expansion of PRIMPOL-generated nascent DNA strand discontinuities during replication stress. Nucleic Acids Res 2024; 52:2340-2354. [PMID: 38180818 PMCID: PMC10954467 DOI: 10.1093/nar/gkad1237] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
DNA replication stress-induced fork arrest represents a significant threat to genomic integrity. One major mechanism of replication restart involves repriming downstream of the arrested fork by PRIMPOL, leaving behind a single-stranded DNA (ssDNA) gap. Accumulation of nascent strand ssDNA gaps has emerged as a possible determinant of the cellular hypersensitivity to genotoxic agents in certain genetic backgrounds such as BRCA deficiency, but how gaps are converted into cytotoxic structures is still unclear. Here, we investigate the processing of PRIMPOL-dependent ssDNA gaps upon replication stress induced by hydroxyurea and cisplatin. We show that gaps generated in PRIMPOL-overexpressing cells are expanded in the 3'-5' direction by the MRE11 exonuclease, and in the 5'-3' direction by the EXO1 exonuclease. This bidirectional exonucleolytic gap expansion ultimately promotes their conversion into DSBs. We moreover identify the de-ubiquitinating enzyme USP1 as a critical regulator of PRIMPOL-generated ssDNA gaps. USP1 promotes gap accumulation during S-phase, and their expansion by the MRE11 and EXO1 nucleases. This activity of USP1 is linked to its role in de-ubiquitinating PCNA, suggesting that PCNA ubiquitination prevents gap accumulation during replication. Finally, we show that USP1 depletion suppresses DSB formation in PRIMPOL-overexpressing cells, highlighting an unexpected role for USP1 in promoting genomic instability under these conditions.
Collapse
Affiliation(s)
- Alexandra Nusawardhana
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Lindsey M Pale
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Badra Fajardo N, Taraviras S, Lygerou Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends Cancer 2022; 8:467-481. [DOI: 10.1016/j.trecan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
8
|
Cantor SB. Revisiting the BRCA-pathway through the lens of replication gap suppression: "Gaps determine therapy response in BRCA mutant cancer". DNA Repair (Amst) 2021; 107:103209. [PMID: 34419699 PMCID: PMC9049047 DOI: 10.1016/j.dnarep.2021.103209] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
The toxic lesion emanating from chemotherapy that targets the DNA was initially debated, but eventually the DNA double strand break (DSB) ultimately prevailed. The reasoning was in part based on the perception that repairing a fractured chromosome necessitated intricate processing or condemned the cell to death. Genetic evidence for the DSB model was also provided by the extreme sensitivity of cells that were deficient in DSB repair. In particular, sensitivity characterized cells harboring mutations in the hereditary breast/ovarian cancer genes, BRCA1 or BRCA2, that function in the repair of DSBs by homologous recombination (HR). Along with functions in HR, BRCA proteins were found to prevent DSBs by protecting stalled replication forks from nuclease degradation. Coming full-circle, BRCA mutant cancer cells that gained resistance to genotoxic chemotherapy often displayed restored DNA repair by HR and/or restored fork protection (FP) implicating that the therapy was tolerated when DSB repair was intact or DSBs were prevented. Despite this well-supported paradigm that has been the impetus for targeted cancer therapy, here we argue that the toxic DNA lesion conferring response is instead single stranded DNA (ssDNA) gaps. We discuss the evidence that persistent ssDNA gaps formed in the wake of DNA replication rather than DSBs are responsible for cell killing following treatment with genotoxic chemotherapeutic agents. We also highlight that proteins, such as BRCA1, BRCA2, and RAD51 known for canonical DSB repair also have critical roles in normal replication as well as replication gap suppression (RGS) and repair. We review the literature that supports the idea that widespread gap induction proximal to treatment triggers apoptosis in a process that does not need or stem from DSB induction. Lastly, we discuss the clinical evidence for gaps and how to exploit them to enhance genotoxic chemotherapy response.
Collapse
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, LRB 415, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
9
|
Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, Krais J, VanderVere-Carozza PS, Pawelczak KS, Calvo J, Panzarino NJ, Turchi JJ, Johnson N, Jonkers J, Rothenberg E, Cantor SB. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell 2021; 81:3128-3144.e7. [PMID: 34216544 PMCID: PMC9089372 DOI: 10.1016/j.molcel.2021.06.011] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023]
Abstract
Mutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.
Collapse
Affiliation(s)
- Ke Cong
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Min Peng
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arne Nedergaard Kousholt
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Silviana Lee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sumeet Nayak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | - Jennifer Calvo
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas J Panzarino
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; NERx Biosciences, 212 W. 10th St., Suite A480, Indianapolis, IN 46202, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
10
|
Li Q, Dudás K, Tick G, Haracska L. Coordinated Cut and Bypass: Replication of Interstrand Crosslink-Containing DNA. Front Cell Dev Biol 2021; 9:699966. [PMID: 34262911 PMCID: PMC8275186 DOI: 10.3389/fcell.2021.699966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) are covalently bound DNA lesions, which are commonly induced by chemotherapeutic drugs, such as cisplatin and mitomycin C or endogenous byproducts of metabolic processes. This type of DNA lesion can block ongoing RNA transcription and DNA replication and thus cause genome instability and cancer. Several cellular defense mechanism, such as the Fanconi anemia pathway have developed to ensure accurate repair and DNA replication when ICLs are present. Various structure-specific nucleases and translesion synthesis (TLS) polymerases have come into focus in relation to ICL bypass. Current models propose that a structure-specific nuclease incision is needed to unhook the ICL from the replication fork, followed by the activity of a low-fidelity TLS polymerase enabling replication through the unhooked ICL adduct. This review focuses on how, in parallel with the Fanconi anemia pathway, PCNA interactions and ICL-induced PCNA ubiquitylation regulate the recruitment, substrate specificity, activity, and coordinated action of certain nucleases and TLS polymerases in the execution of stalled replication fork rescue via ICL bypass.
Collapse
Affiliation(s)
- Qiuzhen Li
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Kata Dudás
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
11
|
McKie SJ, Neuman KC, Maxwell A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 2021; 43:e2000286. [PMID: 33480441 PMCID: PMC7614492 DOI: 10.1002/bies.202000286] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
Collapse
Affiliation(s)
- Shannon J. McKie
- Department Biological Chemistry, John Innes Centre, Norwich, UK
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich, UK
| |
Collapse
|
12
|
Panzarino NJ, Krais JJ, Cong K, Peng M, Mosqueda M, Nayak SU, Bond SM, Calvo JA, Doshi MB, Bere M, Ou J, Deng B, Zhu LJ, Johnson N, Cantor SB. Replication Gaps Underlie BRCA Deficiency and Therapy Response. Cancer Res 2021; 81:1388-1397. [PMID: 33184108 PMCID: PMC8026497 DOI: 10.1158/0008-5472.can-20-1602] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Defects in DNA repair and the protection of stalled DNA replication forks are thought to underlie the chemosensitivity of tumors deficient in the hereditary breast cancer genes BRCA1 and BRCA2 (BRCA). Challenging this assumption are recent findings that indicate chemotherapies, such as cisplatin used to treat BRCA-deficient tumors, do not initially cause DNA double-strand breaks (DSB). Here, we show that ssDNA replication gaps underlie the hypersensitivity of BRCA-deficient cancer and that defects in homologous recombination (HR) or fork protection (FP) do not. In BRCA-deficient cells, ssDNA gaps developed because replication was not effectively restrained in response to stress. Gap suppression by either restoration of fork restraint or gap filling conferred therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored FP and HR could be uncoupled from therapy resistance when gaps were present. Moreover, DSBs were not detected after therapy when apoptosis was inhibited, supporting a framework in which DSBs are not directly induced by genotoxic agents, but rather are induced from cell death nucleases and are not fundamental to the mechanism of action of genotoxic agents. Together, these data indicate that ssDNA replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose they are fundamental to the mechanism of action of genotoxic chemotherapies. SIGNIFICANCE: This study suggests that ssDNA replication gaps are fundamental to the toxicity of genotoxic agents and underlie the BRCA-cancer phenotype "BRCAness," yielding promising biomarkers, targets, and opportunities to resensitize refractory disease.See related commentary by Canman, p. 1214.
Collapse
Affiliation(s)
| | - John J Krais
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ke Cong
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Min Peng
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Michelle Mosqueda
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sumeet U Nayak
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Samuel M Bond
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jennifer A Calvo
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mihir B Doshi
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Matt Bere
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jianhong Ou
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Bin Deng
- The University of Vermont, Burlington, Vermont
| | - Lihua J Zhu
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Neil Johnson
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sharon B Cantor
- University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
13
|
Albert E, Laimins L. Regulation of the Human Papillomavirus Life Cycle by DNA Damage Repair Pathways and Epigenetic Factors. Viruses 2020; 12:E744. [PMID: 32664381 PMCID: PMC7412114 DOI: 10.3390/v12070744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Human papillomaviruses are the causative agents of cervical and other anogenital cancers along with approximately 60% of oropharyngeal cancers. These small double-stranded DNA viruses infect stratified epithelia and link their productive life cycles to differentiation. HPV proteins target cellular factors, such as those involved in DNA damage repair, as well as epigenetic control of host and viral transcription to regulate the productive life cycle. HPVs constitutively activate the ATM and ATR DNA repair pathways and preferentially recruit these proteins to viral genomes to facilitate productive viral replication. In addition, the sirtuin deacetylases along with histone acetyltransferases, including Tip60, are targeted in HPV infections to regulate viral transcription and replication. These pathways provide potential targets for drug therapy to treat HPV-induced disease.
Collapse
Affiliation(s)
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA;
| |
Collapse
|
14
|
The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes (Basel) 2020; 11:genes11050585. [PMID: 32466131 PMCID: PMC7288313 DOI: 10.3390/genes11050585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death—particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs. However, ICLs are also generated in cells as byproducts of normal metabolic activities. Therefore, every cell must be capable of rescuing lCL-stalled replication forks while maintaining the genetic stability of the daughter cells in order to survive, replicate DNA and segregate chromosomes at mitosis. Inactivation of the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway by inherited mutations leads to Fanconi anemia (FA), a rare developmental, cancer-predisposing and chromosome-fragility syndrome. FANC/BRCA is the key hub for a complex and wide network of proteins that—upon rescuing ICL-stalled DNA replication forks—allows cell survival. Understanding how cells cope with ICLs is mandatory to ameliorate ICL-based anticancer therapies and provide the molecular basis to prevent or bypass cancer drug resistance. Here, we review our state-of-the-art understanding of the mechanisms involved in ICL resolution during DNA synthesis, with a major focus on how the FANC/BRCA pathway ensures DNA strand opening and prevents genomic instability.
Collapse
|
15
|
Huselid E, Bunting SF. The Regulation of Homologous Recombination by Helicases. Genes (Basel) 2020; 11:genes11050498. [PMID: 32369918 PMCID: PMC7290689 DOI: 10.3390/genes11050498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination is essential for DNA repair, replication and the exchange of genetic material between parental chromosomes during meiosis. The stages of recombination involve complex reorganization of DNA structures, and the successful completion of these steps is dependent on the activities of multiple helicase enzymes. Helicases of many different families coordinate the processing of broken DNA ends, and the subsequent formation and disassembly of the recombination intermediates that are necessary for template-based DNA repair. Loss of recombination-associated helicase activities can therefore lead to genomic instability, cell death and increased risk of tumor formation. The efficiency of recombination is also influenced by the ‘anti-recombinase’ effect of certain helicases, which can direct DNA breaks toward repair by other pathways. Other helicases regulate the crossover versus non-crossover outcomes of repair. The use of recombination is increased when replication forks and the transcription machinery collide, or encounter lesions in the DNA template. Successful completion of recombination in these situations is also regulated by helicases, allowing normal cell growth, and the maintenance of genomic integrity.
Collapse
|
16
|
Basbous J, Aze A, Chaloin L, Lebdy R, Hodroj D, Ribeyre C, Larroque M, Shepard C, Kim B, Pruvost A, Moreaux J, Maiorano D, Mechali M, Constantinou A. Dihydropyrimidinase protects from DNA replication stress caused by cytotoxic metabolites. Nucleic Acids Res 2020; 48:1886-1904. [PMID: 31853544 PMCID: PMC7038975 DOI: 10.1093/nar/gkz1162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/28/2023] Open
Abstract
Imbalance in the level of the pyrimidine degradation products dihydrouracil and dihydrothymine is associated with cellular transformation and cancer progression. Dihydropyrimidines are degraded by dihydropyrimidinase (DHP), a zinc metalloenzyme that is upregulated in solid tumors but not in the corresponding normal tissues. How dihydropyrimidine metabolites affect cellular phenotypes remains elusive. Here we show that the accumulation of dihydropyrimidines induces the formation of DNA-protein crosslinks (DPCs) and causes DNA replication and transcriptional stress. We used Xenopus egg extracts to recapitulate DNA replication invitro. We found that dihydropyrimidines interfere directly with the replication of both plasmid and chromosomal DNA. Furthermore, we show that the plant flavonoid dihydromyricetin inhibits human DHP activity. Cellular exposure to dihydromyricetin triggered DPCs-dependent DNA replication stress in cancer cells. This study defines dihydropyrimidines as potentially cytotoxic metabolites that may offer an opportunity for therapeutic-targeting of DHP activity in solid tumors.
Collapse
Affiliation(s)
- Jihane Basbous
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Antoine Aze
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, 34293 Montpellier Cedex 5, France
| | - Rana Lebdy
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Dana Hodroj
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France.,Cancer Research Center of Toulouse (CRCT), 31037 Toulouse Cedex 1, France
| | - Cyril Ribeyre
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Marion Larroque
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France.,Institut du Cancer de Montpellier (ICM),34298 Montpellier Cedex 5, France
| | - Caitlin Shepard
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Baek Kim
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Alain Pruvost
- Service de Pharmacologie et Immunoanalyse (SPI), Plateforme SMArt-MS, CEA, INRA, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Jérôme Moreaux
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Domenico Maiorano
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Marcel Mechali
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), CNRS, Université de Montpellier, 34396 Montpellier Cedex 5, France
| |
Collapse
|
17
|
Wu Z, Li S, Tang X, Wang Y, Guo W, Cao G, Chen K, Zhang M, Guan M, Yang D. Copy Number Amplification of DNA Damage Repair Pathways Potentiates Therapeutic Resistance in Cancer. Am J Cancer Res 2020; 10:3939-3951. [PMID: 32226530 PMCID: PMC7086350 DOI: 10.7150/thno.39341] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/22/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Loss of DNA damage repair (DDR) in the tumor is an established hallmark of sensitivity to DNA damaging agents such as chemotherapy. However, there has been scant investigation into gain-of-function alterations of DDR genes in cancer. This study aims to investigate to what extent copy number amplification of DDR genes occurs in cancer, and what are their impacts on tumor genome instability, patient prognosis and therapy outcome. Methods: Retrospective analysis was performed on the clinical, genomics, and pharmacogenomics data from 10,489 tumors, matched peripheral blood samples, and 1,005 cancer cell lines. The key discoveries were verified by an independent patient cohort and experimental validations. Results: This study revealed that 13 of the 80 core DDR genes were significantly amplified and overexpressed across the pan-cancer scale. Tumors harboring DDR gene amplification exhibited decreased global mutation load and mechanism-specific mutation signature scores, suggesting an increased DDR proficiency in the DDR amplified tumors. Clinically, patients with DDR gene amplification showed poor prognosis in multiple cancer types. The most frequent Nibrin (NBN) gene amplification in ovarian cancer tumors was observed in 15 out of 31 independent ovarian cancer patients. NBN overexpression in breast and ovarian cancer cells leads to BRCA1-dependent olaparib resistance by promoting the phosphorylation of ATM-S1981 and homology-dependent recombination efficiency. Finally, integration of the cancer pharmacogenomics database of 37 genome-instability targeting drugs across 505 cancer cell lines revealed significant correlations between DDR gene copy number amplification and DDR drug resistance, suggesting candidate targets for increasing patient treatment response. Principal Conclusions: DDR gene amplification can lead to chemotherapy resistance and poor overall survival by augmenting DDR. These amplified DDR genes may serve as actionable clinical biomarkers for cancer management.
Collapse
|
18
|
Wong IN, Neo JPS, Oehler J, Schafhauser S, Osman F, Carr SB, Whitby MC. The Fml1-MHF complex suppresses inter-fork strand annealing in fission yeast. eLife 2019; 8:e49784. [PMID: 31855181 PMCID: PMC6952179 DOI: 10.7554/elife.49784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Previously we reported that a process called inter-fork strand annealing (IFSA) causes genomic deletions during the termination of DNA replication when an active replication fork converges on a collapsed fork (Morrow et al., 2017). We also identified the FANCM-related DNA helicase Fml1 as a potential suppressor of IFSA. Here, we confirm that Fml1 does indeed suppress IFSA, and show that this function depends on its catalytic activity and ability to interact with Mhf1-Mhf2 via its C-terminal domain. Finally, a plausible mechanism of IFSA suppression is demonstrated by the finding that Fml1 can catalyse regressed fork restoration in vitro.
Collapse
Affiliation(s)
- Io Nam Wong
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | | | - Judith Oehler
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | | | - Fekret Osman
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton LaboratoryHarwellUnited Kingdom
| | - Matthew C Whitby
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
19
|
Kocak E, Dykstra S, Nemeth A, Coughlin CG, Rodgers K, McVey M. The Drosophila melanogaster PIF1 Helicase Promotes Survival During Replication Stress and Processive DNA Synthesis During Double-Strand Gap Repair. Genetics 2019; 213:835-847. [PMID: 31537623 PMCID: PMC6827366 DOI: 10.1534/genetics.119.302665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022] Open
Abstract
PIF1 is a 5' to 3' DNA helicase that can unwind double-stranded DNA and disrupt nucleic acid-protein complexes. In Saccharomyces cerevisiae, Pif1 plays important roles in mitochondrial and nuclear genome maintenance, telomere length regulation, unwinding of G-quadruplex structures, and DNA synthesis during break-induced replication. Some, but not all, of these functions are shared with other eukaryotes. To gain insight into the evolutionarily conserved functions of PIF1, we created pif1 null mutants in Drosophila melanogaster and assessed their phenotypes throughout development. We found that pif1 mutant larvae exposed to high concentrations of hydroxyurea, but not other DNA damaging agents, experience reduced survival to adulthood. Embryos lacking PIF1 fail to segregate their chromosomes efficiently during early nuclear divisions, consistent with a defect in DNA replication. Furthermore, loss of the BRCA2 protein, which is required for stabilization of stalled replication forks in metazoans, causes synthetic lethality in third instar larvae lacking either PIF1 or the polymerase delta subunit POL32. Interestingly, pif1 mutants have a reduced ability to synthesize DNA during repair of a double-stranded gap, but only in the absence of POL32. Together, these results support a model in which Drosophila PIF1 functions with POL32 during times of replication stress but acts independently of POL32 to promote synthesis during double-strand gap repair.
Collapse
Affiliation(s)
- Ece Kocak
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Sarah Dykstra
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Alexandra Nemeth
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | | | - Kasey Rodgers
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
20
|
Lu R, O'Rourke JJ, Sobinoff AP, Allen JAM, Nelson CB, Tomlinson CG, Lee M, Reddel RR, Deans AJ, Pickett HA. The FANCM-BLM-TOP3A-RMI complex suppresses alternative lengthening of telomeres (ALT). Nat Commun 2019; 10:2252. [PMID: 31138797 PMCID: PMC6538672 DOI: 10.1038/s41467-019-10180-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
The collapse of stalled replication forks is a major driver of genomic instability. Several committed mechanisms exist to resolve replication stress. These pathways are particularly pertinent at telomeres. Cancer cells that use Alternative Lengthening of Telomeres (ALT) display heightened levels of telomere-specific replication stress, and co-opt stalled replication forks as substrates for break-induced telomere synthesis. FANCM is a DNA translocase that can form independent functional interactions with the BLM-TOP3A-RMI (BTR) complex and the Fanconi anemia (FA) core complex. Here, we demonstrate that FANCM depletion provokes ALT activity, evident by increased break-induced telomere synthesis, and the induction of ALT biomarkers. FANCM-mediated attenuation of ALT requires its inherent DNA translocase activity and interaction with the BTR complex, but does not require the FA core complex, indicative of FANCM functioning to restrain excessive ALT activity by ameliorating replication stress at telomeres. Synthetic inhibition of FANCM-BTR complex formation is selectively toxic to ALT cancer cells.
Collapse
Affiliation(s)
- Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher G Tomlinson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Michael Lee
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia.
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia.
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia.
| |
Collapse
|
21
|
|
22
|
Basbous J, Constantinou A. A tumor suppressive DNA translocase named FANCM. Crit Rev Biochem Mol Biol 2019; 54:27-40. [DOI: 10.1080/10409238.2019.1568963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jihane Basbous
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
23
|
Pasero P, Vindigni A. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annu Rev Genet 2018; 51:477-499. [PMID: 29178820 DOI: 10.1146/annurev-genet-120116-024745] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a lifetime, a human being synthesizes approximately 2×1016 meters of DNA, a distance that corresponds to 130,000 times the distance between the Earth and the Sun. This daunting task is executed by thousands of replication forks, which progress along the chromosomes and frequently stall when they encounter DNA lesions, unusual DNA structures, RNA polymerases, or tightly-bound protein complexes. To complete DNA synthesis before the onset of mitosis, eukaryotic cells have evolved complex mechanisms to process and restart arrested forks through the coordinated action of multiple nucleases, topoisomerases, and helicases. In this review, we discuss recent advances in understanding the role and regulation of nucleases acting at stalled forks with a focus on the nucleolytic degradation of nascent DNA, a process commonly referred to as fork resection. We also discuss the effects of deregulated fork resection on genomic instability and on the unscheduled activation of the interferon response under replication stress conditions.
Collapse
Affiliation(s)
- Philippe Pasero
- Institute of Human Genetics, CNRS UMR9002, University of Montpellier, 34396 Montpellier, France;
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA;
| |
Collapse
|
24
|
Cantor SB, Calvo JA. Fork Protection and Therapy Resistance in Hereditary Breast Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:339-348. [PMID: 29472318 PMCID: PMC6041132 DOI: 10.1101/sqb.2017.82.034413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The BRCA-Fanconi anemia (FA) pathway preserves the genome and suppresses cancer and is a main determinant of chemotherapeutic efficacy. The hereditary breast cancer genes BRCA1 and BRCA2 function in DNA double-strand break repair mediating distinct steps of homologous recombination (HR). More recently, independent of DNA repair, functions in the replication stress response have come to light, providing insight as to how the BRCA-FA pathway also balances genome preservation with proliferation. The BRCA-FA proteins associate with the replisome and contribute to the efficiency and recovery of replication following perturbations that slow or arrest DNA replication. Although the full repertoire of functions in the replication stress response remains to be elucidated, the function of BRCA1 and BRCA2 in protecting stalled replication forks contributes along with HR to the sensitivity of BRCA-associated tumors to chemotherapy. Moreover, chemoresistance evolves from restoration of either HR and/or fork protection. Although mechanisms underlying the restoration of HR have been characterized, it remains less clear how restoration of fork protection is achieved. Here, we outline mechanisms of “rewired” fork protection and chemotherapy resistance in BRCA cancer. We propose that mechanisms are linked to permissive replication that limits fork remodeling and therefore opportunities for fork degradation. Combating this chemoresistance mechanism will require drugs that inactivate replication bypass mechanisms.
Collapse
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605
| | - Jennifer A Calvo
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605
| |
Collapse
|
25
|
Sabatinos SA, Green MD. A Chromatin Fiber Analysis Pipeline to Model DNA Synthesis and Structures in Fission Yeast. Methods Mol Biol 2018; 1672:509-526. [PMID: 29043645 DOI: 10.1007/978-1-4939-7306-4_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chromatin fibers, first described by Jackson and Pombo (J Cell Biol 140(6):1285-1295, 1998) are prepared from cells lysed on glass coverslips, and require minimal equipment to produce. Since the DNA is not previously treated with denaturing agents, proteins are left intact and may be used to model other DNA-based processes. Such an analysis can be daunting, without a rigorous method for analysis. We describe a pipeline for chromatin fiber use to model DNA replication complexes. Full protocols for chromatin fiber preparation and staining are presented. Further, we have developed an analysis algorithm for One Dimensional Data-Boolean Logic Operations Binning System (ODD-BLOBS). This freely available software defines replication and protein tracts, measures their lengths, and then correlates replicated areas with protein distributions. Our methods and analysis are tested in Schizosaccharomyces pombe (fission yeast) but may be applied to model replication structures across multiple organisms.
Collapse
Affiliation(s)
- Sarah A Sabatinos
- Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3.
| | - Marc D Green
- Royal Ontario Museum, 100 Queen's Park, Toronto, ON, Canada, M5S 2C6
| |
Collapse
|
26
|
Lafuente-Barquero J, Luke-Glaser S, Graf M, Silva S, Gómez-González B, Lockhart A, Lisby M, Aguilera A, Luke B. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genet 2017; 13:e1007136. [PMID: 29281624 PMCID: PMC5760084 DOI: 10.1371/journal.pgen.1007136] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/09/2018] [Accepted: 11/28/2017] [Indexed: 01/08/2023] Open
Abstract
RNA-DNA hybrids are naturally occurring obstacles that must be overcome by the DNA replication machinery. In the absence of RNase H enzymes, RNA-DNA hybrids accumulate, resulting in replication stress, DNA damage and compromised genomic integrity. We demonstrate that Mph1, the yeast homolog of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids accumulate, e.g. in RNase H or THO-complex mutants and at short telomeres. Mph1, however is a double-edged sword, whose action at hybrids must be regulated by the Smc5/6 complex. This is underlined by the observation that simultaneous inactivation of RNase H2 and Smc5/6 results in Mph1-dependent synthetic lethality, which is likely due to an accumulation of toxic recombination intermediates. The data presented here support a model, where Mph1’s helicase activity plays a crucial role in responding to persistent RNA-DNA hybrids. DNA damage can either occur exogenously through DNA damaging agents such as UV light and exposure to chemotherapeutics, or endogenously via metabolic, cellular processes. The RNA product of transcription, for example, can engage in the formation of RNA-DNA hybrids. Such RNA-DNA hybrids can impede replication fork progression and cause genomic instability, a hallmark of cancer. The misregulation of RNA-DNA hybrids has also been implicated in several neurological disorders. Recently, it has become evident that RNA-DNA hybrids may also have beneficial roles and therefore, these structures have to be tightly controlled. We found that Mph1 (mutator phenotype 1), the budding yeast homolog of Fanconi Anemia protein M, counteracts the accumulation of RNA-DNA hybrids. The inactivation of MPH1 results in a severe growth defect when combined with mutations in the well-characterized RNase H enzymes, that degrade the RNA moiety of an RNA-DNA hybrid. Based on the data presented here, we propose a model, where Mph1 itself has to be kept in check by the SMC (structural maintenance of chromosome) 5/6 complex at replication forks stalled by RNA-DNA hybrids. Mph1 acts as a double-edged sword, as both its deletion and the inability to control its helicase activity cause DNA damage and growth arrest when RNA-DNA hybrids accumulate.
Collapse
Affiliation(s)
- Juan Lafuente-Barquero
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | - Sarah Luke-Glaser
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marco Graf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Sonia Silva
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Belén Gómez-González
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | | | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Andrés Aguilera
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- * E-mail: (BL); (AA)
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Neurobiology and Developmental Biology, JGU Mainz, Mainz, Germany
- * E-mail: (BL); (AA)
| |
Collapse
|
27
|
Abstract
One major challenge during genome duplication is the stalling of DNA replication forks by various forms of template blockages. As these barriers can lead to incomplete replication, multiple mechanisms have to act concertedly to correct and rescue stalled replication forks. Among these mechanisms, replication fork regression entails simultaneous annealing of nascent and template strands, which leads to regression of replication forks and formation of four-way DNA junctions. In principle, this process can lead to either positive outcomes, such as DNA repair and replication resumption, or less desirable outcomes, such as misalignment between nascent and template DNA and DNA cleavage. While our understanding of replication fork regression and its various possible outcomes is still at an early stage, recent studies using combinational approaches in multiple organisms have begun to identify the enzymes that catalyze this DNA transaction and how these enzymes are regulated, as well as the specific manners by which fork regression can influence replication. This review summarizes these recent progresses. In keeping with the theme of this series of reviews, we focus on studies in yeast and compare to findings in higher eukaryotes. It is anticipated that these findings will form the basis for future endeavors to further elucidate replication fork remodeling and its implications for genome maintenance.
Collapse
|
28
|
FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres. Proc Natl Acad Sci U S A 2017; 114:E5940-E5949. [PMID: 28673972 DOI: 10.1073/pnas.1708065114] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the mammalian genome, certain genomic loci/regions pose greater challenges to the DNA replication machinery (i.e., the replisome) than others. Such known genomic loci/regions include centromeres, common fragile sites, subtelomeres, and telomeres. However, the detailed mechanism of how mammalian cells cope with the replication stress at these loci/regions is largely unknown. Here we show that depletion of FANCM, or of one of its obligatory binding partners, FAAP24, MHF1, and MHF2, induces replication stress primarily at the telomeres of cells that use the alternative lengthening of telomeres (ALT) pathway as their telomere maintenance mechanism. Using the telomere-specific single-molecule analysis of replicated DNA technique, we found that depletion of FANCM dramatically reduces the replication efficiency at ALT telomeres. We further show that FANCM, BRCA1, and BLM are actively recruited to the ALT telomeres that are experiencing replication stress and that the recruitment of BRCA1 and BLM to these damaged telomeres is interdependent and is regulated by both ATR and Chk1. Mechanistically, we demonstrated that, in FANCM-depleted ALT cells, BRCA1 and BLM help to resolve the telomeric replication stress by stimulating DNA end resection and homologous recombination (HR). Consistent with their roles in resolving the replication stress induced by FANCM deficiency, simultaneous depletion of BLM and FANCM, or of BRCA1 and FANCM, leads to increased micronuclei formation and synthetic lethality in ALT cells. We propose that these synthetic lethal interactions can be explored for targeting the ALT cancers.
Collapse
|
29
|
Ling C, Huang J, Yan Z, Li Y, Ohzeki M, Ishiai M, Xu D, Takata M, Seidman M, Wang W. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discov 2016; 2:16047. [PMID: 28058110 PMCID: PMC5167996 DOI: 10.1038/celldisc.2016.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022] Open
Abstract
The recruitment of FANCM, a conserved DNA translocase and key component of several DNA repair protein complexes, to replication forks stalled by DNA interstrand crosslinks (ICLs) is a step upstream of the Fanconi anemia (FA) repair and replication traverse pathways of ICLs. However, detection of the FANCM recruitment has been technically challenging so that its mechanism remains exclusive. Here, we successfully observed recruitment of FANCM at stalled forks using a newly developed protocol. We report that the FANCM recruitment depends upon its intrinsic DNA translocase activity, and its DNA-binding partner FAAP24. Moreover, it is dependent on the replication checkpoint kinase, ATR; but is independent of the FA core and FANCD2-FANCI complexes, two essential components of the FA pathway, indicating that the FANCM recruitment occurs downstream of ATR but upstream of the FA pathway. Interestingly, the recruitment of FANCM requires its direct interaction with Bloom syndrome complex composed of BLM helicase, Topoisomerase 3α, RMI1 and RMI2; as well as the helicase activity of BLM. We further show that the FANCM-BLM complex interaction is critical for replication stress-induced FANCM hyperphosphorylation, for normal activation of the FA pathway in response to ICLs, and for efficient traverse of ICLs by the replication machinery. Epistasis studies demonstrate that FANCM and BLM work in the same pathway to promote replication traverse of ICLs. We conclude that FANCM and BLM complex work together at stalled forks to promote both FA repair and replication traverse pathways of ICLs.
Collapse
Affiliation(s)
- Chen Ling
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Jing Huang
- Lab of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Zhijiang Yan
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Yongjiang Li
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Mioko Ohzeki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Dongyi Xu
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Michael Seidman
- Lab of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Weidong Wang
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| |
Collapse
|
30
|
Kiiski JI, Fagerholm R, Tervasmäki A, Pelttari LM, Khan S, Jamshidi M, Mantere T, Pylkäs K, Bartek J, Bartkova J, Mannermaa A, Tengström M, Kosma VM, Winqvist R, Kallioniemi A, Aittomäki K, Blomqvist C, Nevanlinna H. FANCM c.5101C>T mutation associates with breast cancer survival and treatment outcome. Int J Cancer 2016; 139:2760-2770. [PMID: 27542569 PMCID: PMC5095781 DOI: 10.1002/ijc.30394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 01/16/2023]
Abstract
Breast cancer (BC) is a heterogeneous disease, and different tumor characteristics and genetic variation may affect the clinical outcome. The FANCM c.5101C > T nonsense mutation in the Finnish population associates with increased risk of breast cancer, especially for triple‐negative breast cancer patients. To investigate the association of the mutation with disease prognosis, we studied tumor phenotype, treatment outcome, and patient survival in 3,933 invasive breast cancer patients, including 101 FANCM c.5101C > T mutation carriers and 3,832 non‐carriers. We also examined association of the mutation with nuclear immunohistochemical staining of DNA repair markers in 1,240 breast tumors. The FANCM c.5101C > T mutation associated with poor 10‐year breast cancer‐specific survival (hazard ratio (HR)=1.66, 95% confidence interval (CI) 1.09–2.52, p = 0.018), with a more pronounced survival effect among familial cases (HR = 2.93, 95% CI 1.5–5.76, p = 1.80 × 10−3). Poor disease outcome of the carriers was also found among the estrogen receptor (ER) positive subgroup of patients (HR = 1.8, 95% CI 1.09–2.98, p = 0.021). Reduced survival was seen especially among patients who had not received radiotherapy (HR = 3.43, 95% CI 1.6–7.34, p = 1.50 × 10−3) but not among radiotherapy treated patients (HR = 1.35, 95% CI 0.82–2.23, p = 0.237). Significant interaction was found between the mutation and radiotherapy (p = 0.040). Immunohistochemical analyses show that c.5101C > T carriers have reduced PAR‐activity. Our results suggest that FANCM c.5101C > T nonsense mutation carriers have a reduced breast cancer survival but postoperative radiotherapy may diminish this survival disadvantage. What's new? Variations in DNA repair genes can predispose individuals to breast cancer, with one example being FANCM c.5101C > T, a nonsense mutation in the Fanconi Anemia DNA repair pathway. In previous work, FANCM c.5101C > T was associated with increased breast cancer risk in the Finnish population. Here, the mutation is further shown to be associated with adverse breast cancer outcome. Mutation‐positive Finnish patients exhibited reduced long‐term survival and increased risk of disease recurrence. Survival was worse particularly for patients who were not treated with radiotherapy, indicating that FANCM c.5101C>T may interact with radiotherapy to improve disease outcome in mutation carriers.
Collapse
Affiliation(s)
- Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maral Jamshidi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Tengström
- School of Medicine, Institute of Clinical Medicine, Oncology, Kuopio, Finland.,Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.,Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland.,Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, NordLab, Oulu, Finland
| | - Anne Kallioniemi
- BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
31
|
Barthelemy J, Hanenberg H, Leffak M. FANCJ is essential to maintain microsatellite structure genome-wide during replication stress. Nucleic Acids Res 2016; 44:6803-16. [PMID: 27179029 PMCID: PMC5001596 DOI: 10.1093/nar/gkw433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
Microsatellite DNAs that form non-B structures are implicated in replication fork stalling, DNA double strand breaks (DSBs) and human disease. Fanconi anemia (FA) is an inherited disorder in which mutations in at least nineteen genes are responsible for the phenotypes of genome instability and cancer predisposition. FA pathway proteins are active in the resolution of non-B DNA structures including interstrand crosslinks, G quadruplexes and DNA triplexes. In FANCJ helicase depleted cells, we show that hydroxyurea or aphidicolin treatment leads to loss of microsatellite polymerase chain reaction signals and to chromosome recombination at an ectopic hairpin forming CTG/CAG repeat in the HeLa genome. Moreover, diverse endogenous microsatellite signals were also lost upon replication stress after FANCJ depletion, and in FANCJ null patient cells. The phenotype of microsatellite signal instability is specific for FANCJ apart from the intact FA pathway, and is consistent with DSBs at microsatellites genome-wide in FANCJ depleted cells following replication stress.
Collapse
Affiliation(s)
- Joanna Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany Department of Otorhinolaryngology & Head/Neck Surgery, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
32
|
Michl J, Zimmer J, Tarsounas M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 2016; 35:909-23. [PMID: 27037238 PMCID: PMC4865030 DOI: 10.15252/embj.201693860] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error-free pathway for double-strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication-associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.
Collapse
Affiliation(s)
- Johanna Michl
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Jutta Zimmer
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Xue X, Papusha A, Choi K, Bonner JN, Kumar S, Niu H, Kaur H, Zheng XF, Donnianni RA, Lu L, Lichten M, Zhao X, Ira G, Sung P. Differential regulation of the anti-crossover and replication fork regression activities of Mph1 by Mte1. Genes Dev 2016; 30:687-99. [PMID: 26966246 PMCID: PMC4803054 DOI: 10.1101/gad.276139.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/17/2016] [Indexed: 02/03/2023]
Abstract
Xue et al. identified Mte1 as a multifunctional regulator of S. cerevisiae Mph1. Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1–MHF and exerts a procrossover role in mitotic recombination. We identified Mte1 (Mph1-associated telomere maintenance protein 1) as a multifunctional regulator of Saccharomyces cerevisiae Mph1, a member of the FANCM family of DNA motor proteins important for DNA replication fork repair and crossover suppression during homologous recombination. We show that Mte1 interacts with Mph1 and DNA species that resemble a DNA replication fork and the D loop formed during recombination. Biochemically, Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Consistent with this activity, genetic analysis reveals that Mte1 functions with Mph1 and the associated MHF complex in replication fork repair. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1–MHF and exerts a procrossover role in mitotic recombination. We further show that the influence of Mte1 on Mph1 activities requires its binding to Mph1 and DNA. Thus, Mte1 differentially regulates Mph1 activities to achieve distinct outcomes in recombination and replication fork repair.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Alma Papusha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Xiao-Feng Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Roberto A Donnianni
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
34
|
Berti M, Vindigni A. Replication stress: getting back on track. Nat Struct Mol Biol 2016; 23:103-9. [PMID: 26840898 PMCID: PMC5125612 DOI: 10.1038/nsmb.3163] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022]
Abstract
The replication-stress response enables the DNA replication machinery to overcome DNA lesions or intrinsic replication-fork obstacles, and it is essential to ensure faithful transmission of genetic information to daughter cells. Multiple replication stress–response pathways have been identified in recent years, thus raising questions about the specific and possibly redundant functions of these pathways. Here, we review the emerging mechanisms of the replication-stress response in mammalian cells and consider how they may influence the dynamics of the core DNA replication complex.
Collapse
Affiliation(s)
- Matteo Berti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
35
|
Abstract
Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. In this review, Xue et al. provide an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
36
|
Somyajit K, Saxena S, Babu S, Mishra A, Nagaraju G. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res 2015; 43:9835-55. [PMID: 26354865 PMCID: PMC4787763 DOI: 10.1093/nar/gkv880] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/23/2015] [Indexed: 12/22/2022] Open
Abstract
Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sneha Saxena
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sharath Babu
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Anup Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
37
|
Xue X, Choi K, Bonner JN, Szakal B, Chen YH, Papusha A, Saro D, Niu H, Ira G, Branzei D, Sung P, Zhao X. Selective modulation of the functions of a conserved DNA motor by a histone fold complex. Genes Dev 2015; 29:1000-5. [PMID: 25956905 PMCID: PMC4441048 DOI: 10.1101/gad.259143.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/14/2015] [Indexed: 01/10/2023]
Abstract
Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Here, Xue et al. show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Elucidating the mechanisms that regulate these motor proteins is central to understanding genome maintenance processes. Here, we show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Mechanistically, scMHF relieves the inhibition imposed by the structural maintenance of chromosome protein Smc5 on Mph1 activities relevant to replication-associated repair through binding to Mph1 but not DNA. Thus, scMHF is a function-specific enhancer of Mph1 that enables flexible response to different genome repair situations.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Barnabas Szakal
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Yu-Hung Chen
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Alma Papusha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dorina Saro
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dana Branzei
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA;
| |
Collapse
|
38
|
Sommers JA, Suhasini AN, Brosh RM. Protein degradation pathways regulate the functions of helicases in the DNA damage response and maintenance of genomic stability. Biomolecules 2015; 5:590-616. [PMID: 25906194 PMCID: PMC4496686 DOI: 10.3390/biom5020590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022] Open
Abstract
Degradation of helicases or helicase-like proteins, often mediated by ubiquitin-proteasomal pathways, plays important regulatory roles in cellular mechanisms that respond to DNA damage or replication stress. The Bloom’s syndrome helicase (BLM) provides an example of how helicase degradation pathways, regulated by post-translational modifications and protein interactions with components of the Fanconi Anemia (FA) interstrand cross-link (ICL) repair pathway, influence cell cycle checkpoints, DNA repair, and replication restart. The FANCM DNA translocase can be targeted by checkpoint kinases that exert dramatic effects on FANCM stability and chromosomal integrity. Other work provides evidence that degradation of the F-box DNA helicase (FBH1) helps to balance translesion synthesis (TLS) and homologous recombination (HR) repair at blocked replication forks. Degradation of the helicase-like transcription factor (HLTF), a DNA translocase and ubiquitylating enzyme, influences the choice of post replication repair (PRR) pathway. Stability of the Werner syndrome helicase-nuclease (WRN) involved in the replication stress response is regulated by its acetylation. Turning to transcription, stability of the Cockayne Syndrome Group B DNA translocase (CSB) implicated in transcription-coupled repair (TCR) is regulated by a CSA ubiquitin ligase complex enabling recovery of RNA synthesis. Collectively, these studies demonstrate that helicases can be targeted for degradation to maintain genome homeostasis.
Collapse
Affiliation(s)
- Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| | - Avvaru N Suhasini
- Department of Medicine, Division of Hematology & Medical Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
39
|
Neelsen KJ, Lopes M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 2015; 16:207-20. [PMID: 25714681 DOI: 10.1038/nrm3935] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The remodelling of replication forks into four-way junctions following replication perturbation, known as fork reversal, was hypothesized to promote DNA damage tolerance and repair during replication. Albeit conceptually attractive, for a long time fork reversal in vivo was found only in prokaryotes and specific yeast mutants, calling its evolutionary conservation and physiological relevance into question. Based on the recent visualization of replication forks in metazoans, fork reversal has emerged as a global, reversible and regulated process, with intriguing implications for replication completion, chromosome integrity and the DNA damage response. The study of the putative in vivo roles of recently identified eukaryotic factors in fork remodelling promises to shed new light on mechanisms of genome maintenance and to provide novel attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Kai J Neelsen
- 1] Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. [2] The Novo Nordisk Foundation Center for Protein Research, 2200 Copenhagen, Denmark
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
40
|
Kotsantis P, Jones RM, Higgs MR, Petermann E. Cancer therapy and replication stress: forks on the road to perdition. Adv Clin Chem 2015; 69:91-138. [PMID: 25934360 DOI: 10.1016/bs.acc.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deregulated DNA replication occurs in cancer where it contributes to genomic instability. This process is a target of cytotoxic therapies. Chemotherapies exploit high DNA replication in cancer cells by modifying the DNA template or by inhibiting vital enzymatic activities that lead to slowing or stalling replication fork progression. Stalled replication forks can be converted into toxic DNA double-strand breaks resulting in cell death, i.e., replication stress. While likely crucial for many cancer treatments, replication stress is poorly understood due to its complexity. While we still know relatively little about the role of replication stress in cancer therapy, technical advances in recent years have shed new light on the effect that cancer therapeutics have on replication forks and the molecular mechanisms that lead from obstructed fork progression to cell death. This chapter will give an overview of our current understanding of replication stress in the context of cancer therapy.
Collapse
Affiliation(s)
- Panagiotis Kotsantis
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Rebecca M Jones
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martin R Higgs
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Eva Petermann
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| |
Collapse
|
41
|
Stoepker C, Faramarz A, Rooimans MA, van Mil SE, Balk JA, Velleuer E, Ameziane N, te Riele H, de Winter JP. DNA helicases FANCM and DDX11 are determinants of PARP inhibitor sensitivity. DNA Repair (Amst) 2015; 26:54-64. [DOI: 10.1016/j.dnarep.2014.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 01/28/2023]
|
42
|
Lu X, Lin Q, Lin M, Duan P, Ye L, Chen J, Chen X, Zhang L, Xue X. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer. PLoS One 2014; 9:e97588. [PMID: 24992025 PMCID: PMC4081011 DOI: 10.1371/journal.pone.0097588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/21/2014] [Indexed: 12/29/2022] Open
Abstract
The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT). We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa) are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL) and high-grade squamous intraepithelial lesions (HSIL). Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.
Collapse
Affiliation(s)
- Xulian Lu
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pathology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Qiaoai Lin
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mao Lin
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Fuda Cancer Hospital Affiliated to the Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lulu Ye
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Chen
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangmin Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
43
|
León-Ortiz AM, Svendsen J, Boulton SJ. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst) 2014; 19:152-62. [PMID: 24815912 DOI: 10.1016/j.dnarep.2014.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA secondary structures are largely advantageous for numerous cellular processes but can pose specific threats to the progression of the replication machinery and therefore genome duplication and cell division. A number of specialized enzymes dismantle these structures to allow replication fork progression to proceed faithfully. In this review, we discuss the in vitro and in vivo data that has lead to the identification of these enzymes in eukaryotes, and the evidence that suggests that they act specifically at replication forks to resolve secondary structures. We focus on the role of helicases, which catalyze the dissociation of nucleotide complexes, and on the role of nucleases, which cleave secondary structures to allow replication fork progression at the expense of local rearrangements. Finally, we discuss outstanding questions in terms of dismantling DNA secondary structures, as well as the interplay between diverse enzymes that act upon specific types of structures.
Collapse
Affiliation(s)
- Ana María León-Ortiz
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Jennifer Svendsen
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK.
| |
Collapse
|
44
|
The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability. Cell Res 2014; 24:560-75. [PMID: 24699063 DOI: 10.1038/cr.2014.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 01/19/2023] Open
Abstract
Histone-fold proteins typically assemble in multiprotein complexes to bind duplex DNA. However, one histone-fold complex, MHF, associates with Fanconi anemia (FA) protein FANCM to form a branched DNA remodeling complex that senses and repairs stalled replication forks and activates FA DNA damage response network. How the FANCM-MHF complex recognizes branched DNA is unclear. Here, we solved the crystal structure of MHF and its complex with the MHF-interaction domain (referred to as MID) of FANCM, and performed structure-guided mutagenesis. We found that the MID-MHF complex consists of one histone H3-H4-like MHF heterotetramer wrapped by a single polypeptide of MID. We identified a zinc atom-liganding structure at the central interface between MID and MHF that is critical for stabilization of the complex. Notably, the DNA-binding surface of MHF was altered by MID in both electrostatic charges and allosteric conformation. This leads to a switch in the DNA-binding preference - from duplex DNA by MHF alone, to branched DNA by the MID-MHF complex. Mutations that disrupt either the composite DNA-binding surface or the protein-protein interface of the MID-MHF complex impaired activation of the FA network and genome stability. Our data provide the structural basis of how FANCM and MHF work together to recognize branched DNA, and suggest a novel mechanism by which histone-fold complexes can be remodeled by their partners to bind special DNA structures generated during DNA metabolism.
Collapse
|
45
|
Interplay between the cell cycle and double-strand break response in mammalian cells. Methods Mol Biol 2014; 1170:41-59. [PMID: 24906308 DOI: 10.1007/978-1-4939-0888-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cell cycle is intimately associated with the ability of cells to sense and respond to and repair DNA damage. Understanding how cell cycle progression, particularly DNA replication and cell division, are regulated and how DNA damage can affect these processes has been the subject of intense research. Recent evidence suggests that the repair of DNA damage is regulated by the cell cycle, and that cell cycle factors are closely associated with repair factors and participate in cellular decisions regarding how to respond to and repair damage. Precise regulation of cell cycle progression in the presence of DNA damage is essential to maintain genomic stability and avoid the accumulation of chromosomal aberrations that can promote tumor formation. In this review, we discuss the current understanding of how mammalian cells induce cell cycle checkpoints in response to DNA double-strand breaks. In addition, we discuss how cell cycle factors modulate DNA repair pathways to facilitate proper repair of DNA lesions.
Collapse
|
46
|
Abstract
DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.
Collapse
Affiliation(s)
- Nimrat Chatterjee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
47
|
Lossaint G, Larroque M, Ribeyre C, Bec N, Larroque C, Décaillet C, Gari K, Constantinou A. FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol Cell 2013; 51:678-90. [PMID: 23993743 DOI: 10.1016/j.molcel.2013.07.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/20/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Proteins disabled in Fanconi anemia (FA) are necessary for the maintenance of genome stability during cell proliferation. Upon replication stress signaling by ATR, the FA core complex monoubiquitinates FANCD2 and FANCI in order to activate DNA repair. Here, we identified FANCD2 and FANCI in a proteomic screen of replisome-associated factors bound to nascent DNA in response to replication arrest. We found that FANCD2 can interact directly with minichromosome maintenance (MCM) proteins. ATR signaling promoted the transient association of endogenous FANCD2 with the MCM2-MCM7 replicative helicase independently of FANCD2 monoubiquitination. FANCD2 was necessary for human primary cells to restrain DNA synthesis in the presence of a reduced pool of nucleotides and prevented the accumulation of single-stranded DNA, the induction of p21, and the entry of cells into senescence. These data reveal that FANCD2 is an effector of ATR signaling implicated in a general replisome surveillance mechanism that is necessary for sustaining cell proliferation and attenuating carcinogenesis.
Collapse
Affiliation(s)
- Gérald Lossaint
- Institute of Human Genetics, UPR 1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Du W, Erden O, Pang Q. TNF-α signaling in Fanconi anemia. Blood Cells Mol Dis 2013; 52:2-11. [PMID: 23890415 DOI: 10.1016/j.bcmd.2013.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 12/16/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contributing to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA.
Collapse
Affiliation(s)
- Wei Du
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
49
|
Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 2013; 134:1013-23. [PMID: 23613359 DOI: 10.1002/ijc.28226] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/11/2013] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved DNA damage response (DDR) and cell cycle checkpoints preserve genome integrity. Central to these genome surveillance pathways is a protein kinase, Chk1. DNA damage induces activation of Chk1, which then transduces the checkpoint signal and facilitates cell cycle arrest and DNA damage repair. Significant progress has been made recently toward our understanding of Chk1 regulation and its implications in cancer etiology and therapy. Specifically, a model that involves both spatiotemporal and conformational changes of proteins has been proposed for Chk1 activation. Further, emerging evidence suggests that Chk1 does not appear to be a tumor suppressor; instead, it promotes tumor growth and may contribute to anticancer therapy resistance. Recent data from our laboratory suggest that activating, but not inhibiting, Chk1 in the absence of chemotherapy might represent an innovative approach to suppress tumor growth. These findings suggest unique regulation of Chk1 in cell biology and cancer etiology, pointing to novel strategies for targeting Chk1 in cancer therapy.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
50
|
Singh TR, Ali AM, Paramasivam M, Pradhan A, Wahengbam K, Seidman MM, Meetei AR. ATR-dependent phosphorylation of FANCM at serine 1045 is essential for FANCM functions. Cancer Res 2013; 73:4300-10. [PMID: 23698467 DOI: 10.1158/0008-5472.can-12-3976] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fanconi anemia (FA) is a genome instability syndrome that has been associated with both cancer predisposition and bone marrow failure. FA proteins are involved in cellular response to replication stress in which they coordinate DNA repair with DNA replication and cell-cycle progression. One regulator of the replication stress response is the ATP-dependent DNA translocase FANCM, which we have shown to be hyperphosphorylated in response to various genotoxic agents. However, the significance of this phosphorylation remained unclear. Here, we show that genotoxic stress-induced FANCM phosphorylation is ATR-dependent and that this modification is highly significant for the cellular response to replication stress. We identified serine (S1045) residue of FANCM that is phosphorylated in response to genotoxic stress and this effect is ATR-dependent. We show that S1045 is required for FANCM functions including its role in FA pathway integrity, recruiting FANCM to the site of interstrand cross links, preventing the cells from entering mitosis prematurely, and efficient activation of the CHK1 and G2-M checkpoints. Overall, our data suggest that an ATR-FANCM feedback loop is present in the FA and replication stress response pathways and that it is required for both efficient ATR/CHK1 checkpoint activation and FANCM function.
Collapse
Affiliation(s)
- Thiyam Ramsing Singh
- Division of Experimental Hematology & Cancer Biology and Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|