1
|
Mizuno K, Sugahara M, Kutomi O, Kato R, Itoh T, Fujita S, Yamada M. Direct observation of importin α family member KPNA1 in axonal transport with or without a schizophrenia-related mutation. J Biol Chem 2025; 301:108343. [PMID: 40010609 PMCID: PMC11982482 DOI: 10.1016/j.jbc.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Karyopherin α1 (KPNA1)/(human importin α5; mouse importin α1) facilitates cargo transport into the nucleus by forming a complex with a nuclear localization sequence containing cargo and importin β1 (IPOB1). The elevated KPNA1 expression in neurons and the correlation between mutations and psychiatric disorders suggest its broader significance beyond nucleocytoplasmic transport. Although KPNA1 is localized in the neurites of neurons, its role in axonal transport mechanisms remains unclear, and data on the connection between psychiatric disorders and signaling at the periphery of neurons remain limited. To address this knowledge gap, we investigated the dynamics of KPNA1 and related factors within axons. Our results showed that many of the axonal KPNA1 did not form a complex with IPOB1 in noninjured steady-state neurons. Axonal KPNA1 exhibited relatively stationary mobility and some showed bidirectional motility with fluctuating motion. KPNA1 partly comigrated with endosome/lysosome-associated factors, suggesting the presence of novel mechanisms underlie axonal transport and nucleocytoplasmic shuttling involving KPNA1 and IPOB1. Mutated KPNA1, which has been shown to be associated with psychiatric disorders (KPNA1E448X), was predominantly localized to the nucleus and lost from the axon. Incorporating a nuclear export signal (KPNA1E448X-NES) enhanced its subcellular localization and dynamics in the axon. Our findings demonstrate that KPNA1 functions not only as a shuttle between the cytoplasm and nucleus but also as a transporter in neuronal axons, relying on the endosomes for movement away from the nucleus with relatively slow net motions. Furthermore, a mutation in the Kpna1 gene can affect the dynamics of axonal transport. The insights from these mutations provide valuable knowledge for expanding our understanding of psychiatric disorders and facilitate the development of novel treatment strategies.
Collapse
Affiliation(s)
- Katsutoshi Mizuno
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Masaki Sugahara
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Osamu Kutomi
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Ryota Kato
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-gun, Fukui Prefecture, Japan
| | - Satoshi Fujita
- Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan.
| |
Collapse
|
2
|
Zhang J, Qiu R, Xie S, Rasmussen M, Xiang X. VezA/vezatin facilitates proper assembly of the dynactin complex in vivo. Cell Rep 2024; 43:114943. [PMID: 39487986 PMCID: PMC11661459 DOI: 10.1016/j.celrep.2024.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, the cellular factors involved in dynactin assembly remain unexplored. Here, we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo-adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components, including p150, p50, and an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with the Arp1 mini-filament either directly or indirectly. Loss of VezA significantly decreases the amount of Arp1 pulled down with pointed-end proteins, as well as the protein levels of p50 and p150 in cell extract. Using various dynactin mutants, we further revealed that the dynactin assembly process must be highly coordinated. Together, these results shed light on dynactin assembly in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Sean Xie
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA; Montgomery Blair High School, Silver Spring, MD, USA
| | - Megan Rasmussen
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
3
|
Zhang J, Qiu R, Xie S, Rasmussen M, Xiang X. VezA/vezatin facilitates proper assembly of the dynactin complex in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590248. [PMID: 38659795 PMCID: PMC11042379 DOI: 10.1101/2024.04.19.590248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, cellular factors involved in dynactin assembly remain unexplored. Here we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components including an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with dynactin either directly or indirectly via the Arp1 mini-filament and its pointed-end sub-complex. Loss of VezA causes a defect in dynactin integrity, most likely by affecting the connection between the Arp1 mini-filament and its pointed-end sub-complex. Using various dynactin mutants, we further revealed that assembly of the dynactin complex must be highly coordinated. Together, these results shed important new light on dynactin assembly in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Sean Xie
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
- Montgomery Blair High School, Silver Spring, Maryland, USA
| | - Megan Rasmussen
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| |
Collapse
|
4
|
Nomiya H, Sakurai K, Miyamoto Y, Oka M, Yoneda Y, Hikida T, Yamada M. A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene-environment interactions. Sci Rep 2024; 14:3376. [PMID: 38336912 PMCID: PMC10858057 DOI: 10.1038/s41598-024-53237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.
Collapse
Affiliation(s)
- Hirotaka Nomiya
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases Osaka University, Integrated Life Science Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1, Bunkyo, Fukui-City, Fukui, 910-8507, Japan.
| |
Collapse
|
5
|
Qiu R, Zhang J, Xiang X. Kinesin-1 autoinhibition facilitates the initiation of dynein cargo transport. J Cell Biol 2023; 222:e202205136. [PMID: 36524956 PMCID: PMC9802684 DOI: 10.1083/jcb.202205136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The functional significance of Kinesin-1 autoinhibition has been unclear. Kinesin-1 transports multiple cargoes including cytoplasmic dynein to microtubule plus ends. From a genetic screen for Aspergillus mutants defective in dynein-mediated early endosome transport, we identified a kinesin-1 mutation kinAK895* at the C-terminal IAK motif involved in autoinhibition. The kinA∆IAK and kinAK895E mutants exhibited a similar defect in dynein-mediated early endosome transport, verifying the importance of kinesin-1 autoinhibition in dynein-mediated transport. Kinesin-1 autoinhibition is not critical for dynein accumulation at microtubule plus ends or for the secretory vesicle cargoes of kinesin-1 to reach the hyphal tip. However, it facilitates dynein to initiate early endosome transport. This is unrelated to a direct competition between dynein and kinesin-1 on early endosomes because kinesin-3 rather than kinesin-1 drives the plus-end-directed early endosome movement. This effect of kinesin-1 autoinhibition on dynein-mediated early endosome transport is related to cargo adapter-mediated dynein activation but at a step beyond the switching of dynein from its autoinhibited conformation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| |
Collapse
|
6
|
Kawano D, Pinter K, Chlebowski M, Petralia RS, Wang YX, Nechiporuk AV, Drerup CM. NudC regulated Lis1 stability is essential for the maintenance of dynamic microtubule ends in axon terminals. iScience 2022; 25:105072. [PMID: 36147950 PMCID: PMC9485903 DOI: 10.1016/j.isci.2022.105072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In the axon terminal, microtubule stability is decreased relative to the axon shaft. The dynamic microtubule plus ends found in the axon terminal have many functions, including serving as a docking site for the Cytoplasmic dynein motor. Here, we report an unexplored function of dynein in microtubule regulation in axon terminals: regulation of microtubule stability. Using a forward genetic screen, we identified a mutant with an abnormal axon terminal structure owing to a loss of function mutation in NudC. We show that, in the axon terminal, NudC is a chaperone for the protein Lis1. Decreased Lis1 in nudc axon terminals causes dynein/dynactin accumulation and increased microtubule stability. Microtubule dynamics can be restored by pharmacologically inhibiting dynein, implicating excess dynein motor function in microtubule stabilization. Together, our data support a model in which local NudC-Lis1 modulation of the dynein motor is critical for the regulation of microtubule stability in the axon terminal. NudC, a dynein regulator, is crucial for axon terminal structure NudC mutation leads to a near complete loss of Lis1 protein in axon terminals Lis1 deficits cause accumulation of dynein and cargo in axon terminals Local elevation of dynein increases axon terminal microtubule stability
Collapse
Affiliation(s)
- Dane Kawano
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Pinter
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madison Chlebowski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex V Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine M Drerup
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Glukhova AA, Kurshakova MM, Nabirochkina EN, Georgieva SG, Kopytova DV. PCID2, a subunit of the Drosophila TREX-2 nuclear export complex, is essential for both mRNA nuclear export and its subsequent cytoplasmic trafficking. RNA Biol 2021; 18:1969-1980. [PMID: 33602059 DOI: 10.1080/15476286.2021.1885198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The TREX-2 complex is essential for the general nuclear mRNA export in eukaryotes. TREX-2 interacts with the nuclear pore and transcriptional apparatus and links transcription to the mRNA export. However, it remains poorly understood how the TREX-2-dependent nuclear export is connected to the subsequent stages of mRNA trafficking. Here, we show that the PCID2 subunit of Drosophila TREX-2 is present in the cytoplasm of the cell. The cytoplasmic PCID2 directly interacts with the NudC protein and this interaction maintains its stability in the cytoplasm. Moreover, PCID2 is associated with the cytoplasmic mRNA and microtubules. The PCID2 knockdown blocks nuclear export of mRNA and also affects the general mRNA transport into the cytoplasm. These data suggest that PCID2 could be the link between the nuclear TREX-2-dependent export and the subsequent cytoplasmic trafficking of mRNA.
Collapse
Affiliation(s)
- A A Glukhova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - M M Kurshakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - E N Nabirochkina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - S G Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D V Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
9
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|
10
|
UNC-16/JIP3 and UNC-76/FEZ1 limit the density of mitochondria in C. elegans neurons by maintaining the balance of anterograde and retrograde mitochondrial transport. Sci Rep 2018; 8:8938. [PMID: 29895958 PMCID: PMC5997755 DOI: 10.1038/s41598-018-27211-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
We investigate the role of axonal transport in regulating neuronal mitochondrial density. We show that the density of mitochondria in the touch receptor neuron (TRN) of adult Caenorhabditis elegans is constant. Mitochondrial density and transport are controlled both by the Kinesin heavy chain and the Dynein-Dynactin complex. However, unlike in other models, the presence of mitochondria in C. elegans TRNs depends on a Kinesin light chain as well. Mutants in the three C. elegans miro genes do not alter mitochondrial density in the TRNs. Mutants in the Kinesin-1 associated proteins, UNC-16/JIP3 and UNC-76/FEZ1, show increased mitochondrial density and also have elevated levels of both the Kinesin Heavy and Light Chains in neurons. Genetic analyses suggest that, the increased mitochondrial density at the distal end of the neuronal process in unc-16 and unc-76 depends partly on Dynein. We observe a net anterograde bias in the ratio of anterograde to retrograde mitochondrial flux in the neuronal processes of unc-16 and unc-76, likely due to both increased Kinesin-1 and decreased Dynein in the neuronal processes. Our study shows that UNC-16 and UNC-76 indirectly limit mitochondrial density in the neuronal process by maintaining a balance in anterograde and retrograde mitochondrial axonal transport.
Collapse
|
11
|
Wu YK, Umeshima H, Kurisu J, Kengaku M. Nesprins and opposing microtubule motors generate a point force that drives directional nuclear motion in migrating neurons. Development 2018. [PMID: 29519888 DOI: 10.1242/dev.158782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nuclear migration of newly born neurons is essential for cortex formation in the brain. The nucleus is translocated by actin and microtubules, yet the actual force generated by the interplay of these cytoskeletons remains elusive. High-resolution time-lapse observation of migrating murine cerebellar granule cells revealed that the nucleus actively rotates along the direction of its translocation, independently of centrosome motion. Pharmacological and molecular perturbation indicated that spin torque is primarily generated by microtubule motors through the LINC complex in the absence of actomyosin contractility. In contrast to the prevailing view that microtubules are uniformly oriented around the nucleus, we observed that the perinuclear microtubule arrays are of mixed polarity and both cytoplasmic dynein complex and kinesin-1 are required for nuclear rotation. Kinesin-1 can exert a point force on the nuclear envelope via association with nesprins, and loss of kinesin-1 causes failure in neuronal migration in vivo Thus, microtubules steer the nucleus and drive its rotation and translocation via a dynamic, focal interaction of nesprins with kinesin-1 and dynein, and this is necessary for neuronal migration during brain development.
Collapse
Affiliation(s)
- You Kure Wu
- Graduate School of Biostudies, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroki Umeshima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mineko Kengaku
- Graduate School of Biostudies, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan .,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
KENGAKU M. Cytoskeletal control of nuclear migration in neurons and non-neuronal cells. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:337-349. [PMID: 30416174 PMCID: PMC6275330 DOI: 10.2183/pjab.94.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 06/09/2023]
Abstract
Cell migration is a complex molecular event that requires translocation of a large, stiff nucleus, oftentimes through interstitial pores of submicron size in tissues. Remarkable progress in the past decade has uncovered an ever-increasing array of diverse nuclear dynamics and underlying cytoskeletal control in various cell models. In many cases, the microtubule motors dynein and kinesin directly interact with the nucleus via the LINC complex and steer directional nuclear movement, while actomyosin contractility and its global flow exert forces to deform and move the nucleus. In this review, I focus on the synergistic interplay of the cytoskeletal motors and spatiotemporal sites of force transmission in various nuclear migration models, with a special focus on neuronal migration in the vertebrate brain.
Collapse
Affiliation(s)
- Mineko KENGAKU
- Kyoto University Institute for Advanced Study, Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Japan
| |
Collapse
|
13
|
Milev MP, Yao X, Berthoux L, Mouland AJ. Impacts of virus-mediated manipulation of host Dynein. DYNEINS 2018. [PMCID: PMC7150161 DOI: 10.1016/b978-0-12-809470-9.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In general viruses' modus operandi to propagate is achieved by the co-opting host cell components, membranes, proteins, and machineries to their advantage. This is true for virtually every aspect of a virus' replication cycle from virus entry to the budding or release of progeny virus particles. In this chapter, we will discuss new information on the impacts of virus-mediated manipulation of Dynein motor complexes and associated machineries and factors. We will highlight how these host cell components impact on pathogenicity and immune responses, as many of the virus-mediated hijacked components also play pivotal roles in immune responses to pathogen insult. There are several comprehensive reviews that define virus–Dynein interactions including the first edition of this book that describes how viruses manipulate the host cell machineries their advantage. An updated table is included to summarize these virus–host interactions. Notably, barriers to intracellular translocation represent major hurdles to viral components during de novo infection and during active replication and the generation of progeny virus particles. Clearly, the subversion of host cell molecular motor protein activities takes advantage of constitutive and regulated membrane trafficking events and will target virus components to intracytoplasmic locales and membrane assembly. Broadening our understanding of the interplay between viruses, Dynein and the cytoskeleton will likely inform on new types of therapies. Continual enhancement of the breadth of new information on how viruses manipulate host cell biology will inevitably aid in the identification of new targets that can be poisoned to block old, new, and emerging viruses alike in their tracks.
Collapse
|
14
|
Toba S, Jin M, Yamada M, Kumamoto K, Matsumoto S, Yasunaga T, Fukunaga Y, Miyazawa A, Fujita S, Itoh K, Fushiki S, Kojima H, Wanibuchi H, Arai Y, Nagai T, Hirotsune S. Alpha-synuclein facilitates to form short unconventional microtubules that have a unique function in the axonal transport. Sci Rep 2017; 7:16386. [PMID: 29180624 PMCID: PMC5703968 DOI: 10.1038/s41598-017-15575-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
Although α-synuclein (αSyn) has been linked to Parkinson’s disease (PD), the mechanisms underlying the causative role in PD remain unclear. We previously proposed a model for a transportable microtubule (tMT), in which dynein is anchored to a short tMT by LIS1 followed by the kinesin-dependent anterograde transport; however the mechanisms that produce tMTs have not been determined. Our in vitro investigations of microtubule (MT) dynamics revealed that αSyn facilitates the formation of short MTs and preferentially binds to MTs carrying 14 protofilaments (pfs). Live-cell imaging showed that αSyn co-transported with dynein and mobile βIII-tubulin fragments in the anterograde transport. Furthermore, bi-directional axonal transports are severely affected in αSyn and γSyn depleted dorsal root ganglion neurons. SR-PALM analyses further revealed the fibrous co-localization of αSyn, dynein and βIII-tubulin in axons. More importantly, 14-pfs MTs have been found in rat femoral nerve tissue, and they increased approximately 19 fold the control in quantify upon nerve ligation, indicating the unconventional MTs are mobile. Our findings indicate that αSyn facilitates to form short, mobile tMTs that play an important role in the axonal transport. This unexpected and intriguing discovery related to axonal transport provides new insight on the pathogenesis of PD.
Collapse
Affiliation(s)
- Shiori Toba
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka, 545-8585, Japan
| | - Mingyue Jin
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka, 545-8585, Japan
| | - Masami Yamada
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka, 545-8585, Japan
| | - Kanako Kumamoto
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka, 545-8585, Japan
| | - Sakiko Matsumoto
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka, 545-8585, Japan
| | - Takuo Yasunaga
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka, 820-850, Japan.,JST-SENTAN, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan.,JST-CREST, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yuko Fukunaga
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan.,RSC-University of Hyogo Leading Program Center, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Atsuo Miyazawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan.,RSC-University of Hyogo Leading Program Center, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Sakiko Fujita
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Sciences, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Sciences, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroaki Kojima
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, 651-2492, Japan
| | - Hideki Wanibuchi
- Department of Pathology, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka, 545-8586, Japan
| | - Yoshiyuki Arai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka, 567-0047, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka, 567-0047, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka, 545-8585, Japan.
| |
Collapse
|
15
|
Kumamoto K, Iguchi T, Ishida R, Uemura T, Sato M, Hirotsune S. Developmental downregulation of LIS1 expression limits axonal extension and allows axon pruning. Biol Open 2017. [PMID: 28630356 PMCID: PMC5550919 DOI: 10.1242/bio.025999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The robust axonal growth and regenerative capacities of young neurons decrease substantially with age. This developmental downregulation of axonal growth may facilitate axonal pruning and neural circuit formation but limits functional recovery following nerve damage. While external factors influencing axonal growth have been extensively investigated, relatively little is known about the intrinsic molecular changes underlying the age-dependent reduction in regeneration capacity. We report that developmental downregulation of LIS1 is responsible for the decreased axonal extension capacity of mature dorsal root ganglion (DRG) neurons. In contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated GSK-3β at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 regulation may coordinate the balance between axonal growth and pruning during maturation of neuronal circuits. Summary: Developmental downregulation of LIS1 coordinates the balance between axonal elongation and pruning, which is essential for proper neuronal circuit formation but limits nerve regeneration.
Collapse
Affiliation(s)
- Kanako Kumamoto
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ryuichi Ishida
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
16
|
Bakula D, Müller AJ, Zuleger T, Takacs Z, Franz-Wachtel M, Thost AK, Brigger D, Tschan MP, Frickey T, Robenek H, Macek B, Proikas-Cezanne T. WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat Commun 2017; 8:15637. [PMID: 28561066 PMCID: PMC5460038 DOI: 10.1038/ncomms15637] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Autophagy is controlled by AMPK and mTOR, both of which associate with ULK1 and control the production of phosphatidylinositol 3-phosphate (PtdIns3P), a prerequisite for autophagosome formation. Here we report that WIPI3 and WIPI4 scaffold the signal control of autophagy upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes. In response to LKB1-mediated AMPK stimulation, WIPI4-ATG2 is released from a WIPI4-ATG2/AMPK-ULK1 complex and translocates to nascent autophagosomes, controlling their size, to which WIPI3, in complex with FIP200, also contributes. Upstream, WIPI3 associates with AMPK-activated TSC complex at lysosomes, regulating mTOR. Our WIPI interactome analysis reveals the scaffold functions of WIPI proteins interconnecting autophagy signal control and autophagosome formation. Our functional kinase screen uncovers a novel regulatory link between LKB1-mediated AMPK stimulation that produces a direct signal via WIPI4, and we show that the AMPK-related kinases NUAK2 and BRSK2 regulate autophagy through WIPI4. During autophagy, AMPK and mTOR associate with ULK1 and regulate phosphatidylinositol 3-phosphate (PtdIns3P) production that mediates autophagosome formation via WIPI proteins. Here the authors show WIPI3 and WIPI4 have a scaffolding function upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes.
Collapse
Affiliation(s)
- Daniela Bakula
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Amelie J Müller
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Theresia Zuleger
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Zsuzsanna Takacs
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Ann-Katrin Thost
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Daniel Brigger
- Division of Experimental Pathology, Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Tancred Frickey
- Department of Biology, Applied Bioinformatics, Konstanz University, D-78457 Konstanz, Germany
| | - Horst Robenek
- Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, D-48149 Muenster, Germany
| | - Boris Macek
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,Proteome Center Tuebingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Tassula Proikas-Cezanne
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| |
Collapse
|
17
|
Phosphorylation of FEZ1 by Microtubule Affinity Regulating Kinases regulates its function in presynaptic protein trafficking. Sci Rep 2016; 6:26965. [PMID: 27247180 PMCID: PMC4887895 DOI: 10.1038/srep26965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/11/2016] [Indexed: 12/28/2022] Open
Abstract
Adapters bind motor proteins to cargoes and therefore play essential roles in Kinesin-1 mediated intracellular transport. The regulatory mechanisms governing adapter functions and the spectrum of cargoes recognized by individual adapters remain poorly defined. Here, we show that cargoes transported by the Kinesin-1 adapter FEZ1 are enriched for presynaptic components and identify that specific phosphorylation of FEZ1 at its serine 58 regulatory site is mediated by microtubule affinity-regulating kinases (MARK/PAR-1). Loss of MARK/PAR-1 impairs axonal transport, with adapter and cargo abnormally co-aggregating in neuronal cell bodies and axons. Presynaptic specializations are markedly reduced and distorted in FEZ1 and MARK/PAR-1 mutants. Strikingly, abnormal co-aggregates of unphosphorylated FEZ1, Kinesin-1 and its putative cargoes are present in brains of transgenic mice modelling aspects of Alzheimer's disease, a neurodegenerative disorder exhibiting impaired axonal transport and altered MARK activity. Our findings suggest that perturbed FEZ1-mediated synaptic delivery of proteins arising from abnormal signalling potentially contributes to the process of neurodegeneration.
Collapse
|
18
|
Weiderhold KN, Fadri-Moskwik M, Pan J, Nishino M, Chuang C, Deeraksa A, Lin SH, Yu-Lee LY. Dynamic Phosphorylation of NudC by Aurora B in Cytokinesis. PLoS One 2016; 11:e0153455. [PMID: 27074040 PMCID: PMC4830538 DOI: 10.1371/journal.pone.0153455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
Nuclear distribution protein C (NudC) is a mitotic regulator that plays a role in cytokinesis. However, how NudC is regulated during cytokinesis remains unclear. Here, we show that NudC is phosphorylated by Aurora B, a kinase critical for cell abscission. NudC is co-localized with Aurora B at the midbody and co-immunoprecipitated with Aurora B in mitosis. Inhibition of Aurora B by ZM447439 reduced NudC phosphorylation, suggesting that NudC is an Aurora B substrate in vivo. We identified T40 on NudC as an Aurora B phosphorylation site. NudC depletion resulted in cytokinesis failure with a dramatic elongation of the intercellular bridge between daughter cells, sustained Aurora B activity at the midbody, and reduced cell abscission. These cytokinetic defects can be rescued by the ectopic expression of wild-type NudC. Reconstitution with T40A phospho-defective NudC was found to rescue the cytokinesis defect. In contrast, reconstitution with the T40D phospho-mimetic NudC was inefficient in supporting the completion of cytokinesis. These results suggest that that dynamic phosphorylation of NudC by Aurora B regulates cytokinesis.
Collapse
Affiliation(s)
- Kimberly N. Weiderhold
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Fadri-Moskwik
- Department of Medicine, Section of Allergy Immunology and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jing Pan
- Department of Medicine, Section of Allergy Immunology and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michiya Nishino
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States of America
| | - Carol Chuang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arpaporn Deeraksa
- Department of Medicine, Section of Allergy Immunology and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Li-Yuan Yu-Lee
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Section of Allergy Immunology and Rheumatology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
19
|
Chen D, Ito S, Yuan H, Hyodo T, Kadomatsu K, Hamaguchi M, Senga T. EML4 promotes the loading of NUDC to the spindle for mitotic progression. Cell Cycle 2016; 14:1529-39. [PMID: 25789526 DOI: 10.1080/15384101.2015.1026514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Echinoderm microtubule-associated protein (EMAP)-like (EML) family proteins are microtubule-associated proteins that have a conserved hydrophobic EMAP-like protein (HELP) domain and multiple WD40 domains. In this study, we examined the role of EML4, which is a member of the EML family, in cell division. Time-lapse microscopy analysis demonstrated that EML4 depletion induced chromosome misalignment during metaphase and delayed anaphase initiation. Further analysis by immunofluorescence showed that EML4 was required for the organization of the mitotic spindle and for the proper attachment of kinetochores to microtubules. We searched for EML4-associating proteins by mass spectrometry analysis and found that the nuclear distribution gene C (NUDC) protein, which is a critical factor for the progression of mitosis, was associated with EML4. This interaction was mediated by the WD40 repeat of EML4 and by the C-terminus of NUDC. In the absence of EML4, NUDC was no longer able to localize to the mitotic spindle, whereas NUDC was dispensable for EML4 localization. Our results show that EML4 is critical for the loading of NUDC onto the mitotic spindle for mitotic progression.
Collapse
Affiliation(s)
- Dan Chen
- a Division of Cancer Biology; Nagoya University Graduate School of Medicine ; Nagoya , Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Yagensky O, Kalantary Dehaghi T, Chua JJE. The Roles of Microtubule-Based Transport at Presynaptic Nerve Terminals. Front Synaptic Neurosci 2016; 8:3. [PMID: 26903856 PMCID: PMC4748046 DOI: 10.3389/fnsyn.2016.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 01/19/2023] Open
Abstract
Targeted intracellular movement of presynaptic proteins plays important roles during synapse formation and, later, in the homeostatic maintenance of mature synapses. Movement of these proteins, often as vesicular packages, is mediated by motor complexes travelling along intracellular cytoskeletal networks. Presynaptic protein transport by kinesin motors in particular plays important roles during synaptogenesis to bring newly synthesized proteins to establish nascent synaptic sites. Conversely, movement of proteins away from presynaptic sites by Dynein motors enables synapse-nuclear signaling and allows for synaptic renewal through degradation of unwanted or damaged proteins. Remarkably, recent data has indicated that synaptic and protein trafficking machineries can modulate each other's functions. Here, we survey the mechanisms involved in moving presynaptic components to and away from synapses and how this process supports presynaptic function.
Collapse
Affiliation(s)
- Oleksandr Yagensky
- Research Group Protein Trafficking in Synaptic Development and Function, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry Göttingen, Germany
| | - Tahere Kalantary Dehaghi
- Research Group Protein Trafficking in Synaptic Development and Function, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry Göttingen, Germany
| | - John Jia En Chua
- Research Group Protein Trafficking in Synaptic Development and Function, Department of Neurobiology, Max-Planck-Institute for Biophysical ChemistryGöttingen, Germany; Interactomics and Intracellular Trafficking Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSingapore; Neurobiology/Ageing Programme, National University of Singapore, SingaporeSingapore
| |
Collapse
|
21
|
Toba S, Koyasako K, Yasunaga T, Hirotsune S. Lis1 restricts the conformational changes in cytoplasmic dynein on microtubules. Microscopy (Oxf) 2015; 64:419-27. [PMID: 26371280 DOI: 10.1093/jmicro/dfv055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/19/2015] [Indexed: 11/12/2022] Open
Abstract
Cytoplasmic dynein is a microtubule-based motor protein that transports intracellular cargo and performs various functions during cell division. We previously reported that Lis1 suppressed dynein motility on microtubules in an idling state. Recently, a model showed that Lis1 prevents the ATPase domain of dynein from transmitting a detachment signal to its microtubule-binding domain. However, conformational information on dynein is limited. We used electron microscopy to investigate the conformation of dynein and nucleotide-induced conformational changes on microtubules. The conformation of dynein differed depending on the presence or absence of a nucleotide. In the presence of the nucleotide ADP-vanadate, dynein displayed an extended form on microtubules (extended form), whereas in the absence of a nucleotide, dynein lay along microtubules (compact form). This conformational change reflects chemomechanical coupling in dynein walking on microtubules. We also found that Lis1 fixed the conformation of dynein in the compact form regardless of the nucleotide condition. Removal of the Lis1 dimerization motif abolished Lis1-dependent fixation of dynein in the compact form. This suggests that the idling state of dynein on microtubules induced by Lis1 occurs through the Lis1-dependent arrest of dynein chemomechanical coupling.
Collapse
Affiliation(s)
- Shiori Toba
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka 545-8585, Japan
| | - Kotaro Koyasako
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan JST-SENTAN, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuo Yasunaga
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan JST-SENTAN, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan JST-CREST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka 545-8585, Japan
| |
Collapse
|
22
|
Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T, Kaibuchi K. Extracellular and Intracellular Signaling for Neuronal Polarity. Physiol Rev 2015; 95:995-1024. [PMID: 26133936 DOI: 10.1152/physrev.00025.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chundi Xu
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
23
|
Watt D, Dixit R, Cavalli V. JIP3 Activates Kinesin-1 Motility to Promote Axon Elongation. J Biol Chem 2015; 290:15512-15525. [PMID: 25944905 DOI: 10.1074/jbc.m115.651885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
Kinesin-1 is a molecular motor responsible for cargo transport along microtubules and plays critical roles in polarized cells, such as neurons. Kinesin-1 can function as a dimer of two kinesin heavy chains (KHC), which harbor the motor domain, or as a tetramer in combination with two accessory light chains (KLC). To ensure proper cargo distribution, kinesin-1 activity is precisely regulated. Both KLC and KHC subunits bind cargoes or regulatory proteins to engage the motor for movement along microtubules. We previously showed that the scaffolding protein JIP3 interacts directly with KHC in addition to its interaction with KLC and positively regulates dimeric KHC motility. Here we determined the stoichiometry of JIP3-KHC complexes and observed approximately four JIP3 molecules binding per KHC dimer. We then determined whether JIP3 activates tetrameric kinesin-1 motility. Using an in vitro motility assay, we show that JIP3 binding to KLC engages kinesin-1 with microtubules and that JIP3 binding to KHC promotes kinesin-1 motility along microtubules. We tested the in vivo relevance of these findings using axon elongation as a model for kinesin-1-dependent cellular function. We demonstrate that JIP3 binding to KHC, but not KLC, is essential for axon elongation in hippocampal neurons as well as axon regeneration in sensory neurons. These findings reveal that JIP3 regulation of kinesin-1 motility is critical for axon elongation and regeneration.
Collapse
Affiliation(s)
- Dana Watt
- Department of Anatomy and Neurobiology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Ram Dixit
- Department of Biology, Washington University, St. Louis, Missouri 63110
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, School of Medicine, Washington University, St. Louis, Missouri 63110.
| |
Collapse
|
24
|
Jin M, Yamada M, Arai Y, Nagai T, Hirotsune S. Arl3 and LC8 regulate dissociation of dynactin from dynein. Nat Commun 2014; 5:5295. [PMID: 25342295 DOI: 10.1038/ncomms6295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. However, the regulatory mechanism underlying release of dynactin bound cargoes from dynein motor remains largely unknown. Here we report that ADP-ribosylation factor-like 3 (Arl3) and dynein light chain LC8 induce dissociation of dynactin from dynein. Immunoprecipitation and microtubule pull-down assays revealed that Arl3(Q71L) and LC8 facilitated detachment of dynactin from dynein. We also demonstrated Arl3(Q71L) or LC8-mediated dynactin release from a dynein-dynactin complex through trace experiments using quantum dot (Qdot)-conjugated proteins. Furthermore, we disclosed interactions of Arl3 and LC8 with dynactin and dynein, respectively, by live-cell imaging. Finally, knockdown (KD) of Arl3 and LC8 by siRNA induced abnormal localizations of dynein, dynactin and related organelles. Our findings uncovered the surprising functional relevance of GTP-bound Arl3 and LC8 for the unloading regulation of dynactin-bound cargo from dynein motor.
Collapse
Affiliation(s)
- Mingyue Jin
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Masami Yamada
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Yoshiyuki Arai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka 567-0047, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka 567-0047, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
25
|
Abstract
Axon development and elongation require strictly controlled new membrane addition. Previously, we have shown the involvement of Rab10 in directional membrane insertion of plasmalemmal precursor vesicles (PPVs) during neuronal polarization and axonal growth. However, the mechanism responsible for PPV transportation remains unclear. Here we show that c-Jun N-terminal kinase-interacting protein 1 (JIP1) interacts with GTP-locked active form of Rab10 and directly connects Rab10 to kinesin-1 light chain (KLC). The kinesin-1/JIP1/Rab10 complex is required for anterograde transport of PPVs during axonal growth. Downregulation of JIP1 or KLC or disrupting the formation of this complex reduces anterograde transport of PPVs in developing axons and causes neuronal polarity defect. Furthermore, this complex plays an important role in neocortical neuronal polarization of rats in vivo. Thus, this study has demonstrated a mechanism underlying directional membrane trafficking involved in axon development.
Collapse
|
26
|
Daou P, Hasan S, Breitsprecher D, Baudelet E, Camoin L, Audebert S, Goode BL, Badache A. Essential and nonredundant roles for Diaphanous formins in cortical microtubule capture and directed cell migration. Mol Biol Cell 2014; 25:658-68. [PMID: 24403606 PMCID: PMC3937091 DOI: 10.1091/mbc.e13-08-0482] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Diaphanous formins mDia1, mDia2, and mDia3 are involved in the capture of cortical microtubules and ErbB2-dependent directed migration. These functions are independent of actin. They are mediated by mDia FH2 domains, which associate with distinct sets of proteins. Rab6IP2 is a novel interactor of mDia1 that contributes to microtubule tethering. Formins constitute a large family of proteins that regulate the dynamics and organization of both the actin and microtubule cytoskeletons. Previously we showed that the formin mDia1 helps tether microtubules at the cell cortex, acting downstream of the ErbB2 receptor tyrosine kinase. Here we further study the contributions of mDia1 and its two most closely related formins, mDia2 and mDia3, to cortical microtubule capture and ErbB2-dependent breast carcinoma cell migration. We find that depletion of each of these three formins strongly disrupts chemotaxis without significantly affecting actin-based structures. Further, all three formins are required for formation of cortical microtubules in a nonredundant manner, and formin proteins defective in actin polymerization remain active for microtubule capture. Using affinity purification and mass spectrometry analysis, we identify differential binding partners of the formin-homology domain 2 (FH2) of mDia1, mDia2, and mDia3, which may explain their nonredundant roles in microtubule capture. The FH2 domain of mDia1 specifically interacts with Rab6-interacting protein 2 (Rab6IP2). Further, mDia1 is required for cortical localization of Rab6IP2, and concomitant depletion of Rab6IP2 and IQGAP1 severely disrupts cortical capture of microtubules, demonstrating the coinvolvement of mDia1, IQGAP1, and Rab6IP2 in microtubule tethering at the leading edge.
Collapse
Affiliation(s)
- Pascale Daou
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, 13009 Marseille, France Institut Paoli-Calmettes, 13009 Marseille, France Aix-Marseille Université, 13009 Marseille, France Centre National de la Recherche Scientifique UMR7258, 13009 Marseille, France Department of Biology, Brandeis University, Waltham, MA 02454
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rab6a releases LIS1 from a dynein idling complex and activates dynein for retrograde movement. Nat Commun 2013; 4:2033. [PMID: 23783758 DOI: 10.1038/ncomms3033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/21/2013] [Indexed: 12/25/2022] Open
Abstract
Cytoplasmic dynein drives the movement of a wide range of cargoes towards the minus ends of microtubules. We previously demonstrated that LIS1 forms an idling complex with dynein, which is transported to the plus ends of microtubules by kinesin motors. Here we report that the small GTPase Rab6a is essential for activation of idling dynein. Immunoprecipitation and microtubule pull-down assays reveal that the GTP bound mutant, Rab6a(Q72L), dissociates LIS1 from a LIS1-dynein complex, activating dynein movement in in vitro microtubule gliding assays. We monitor transient interaction between Rab6a(Q72L) and dynein in vivo using dual-colour fluorescence cross-correlation spectroscopy in dorsal root ganglion (DRG) neurons. Finally, we demonstrate that Rab6a(Q72L) mediates LIS1 release from a LIS1-dynein complex followed by dynein activation through an in vitro single-molecule assay using triple-colour quantum dots. Our findings reveal a surprising function for GTP bound Rab6a as an activator of idling dynein.
Collapse
|
28
|
Witze ES, Connacher MK, Houel S, Schwartz MP, Morphew MK, Reid L, Sacks DB, Anseth KS, Ahn NG. Wnt5a directs polarized calcium gradients by recruiting cortical endoplasmic reticulum to the cell trailing edge. Dev Cell 2013; 26:645-57. [PMID: 24091015 DOI: 10.1016/j.devcel.2013.08.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 06/10/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022]
Abstract
Wnt5a directs the assembly of the Wnt-receptor-actin-myosin-polarity (WRAMP) structure, which integrates cell-adhesion receptors with F-actin and myosin to form a microfilament array associated with multivesicular bodies (MVBs). The WRAMP structure is polarized to the cell posterior, where it directs tail-end membrane retraction, driving forward translocation of the cell body. Here we define constituents of the WRAMP proteome, including regulators of microfilament and microtubule dynamics, protein interactions, and enzymatic activity. IQGAP1, a scaffold for F-actin nucleation and crosslinking, is necessary for WRAMP structure formation, potentially bridging microfilaments and MVBs. Vesicle coat proteins, including coatomer-I subunits, localize to and are required for the WRAMP structure. Electron microscopy and live imaging demonstrate movement of the ER to the WRAMP structure and plasma membrane, followed by elevation of intracellular Ca2+. Thus, Wnt5a controls directional movement by recruiting cortical ER to mobilize a rear-directed, localized Ca2+ signal, activating actomyosin contraction and adhesion disassembly for membrane retraction.
Collapse
Affiliation(s)
- Eric S Witze
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Mitosis is largely driven by posttranslational modifications of proteins. Recent studies suggest that protein acetylation is prevalent in mitosis, but how protein acetylation/deacetylation regulates mitotic progression remains unclear. Nuclear distribution protein C (NudC), a conserved protein that regulates cell division, was previously shown to be acetylated. We found that NudC acetylation was decreased during mitosis. Using mass spectrometry analysis, we identified K39 to be an acetylation site on NudC. Reconstitution of NudC-deficient cells with wild-type or K39R acetylation-defective NudC rescued mitotic phenotypes, including chromosome misalignment, chromosome missegregation, and reduced spindle width, observed after NudC protein knockdown. In contrast, the K39Q acetylation-mimetic NudC was unable to rescue these mitotic phenotypes, suggesting that NudC deacetylation is important for mitotic progression. To examine proteins that may play a role in NudC deacetylation during mitosis, we found that NudC co-localizes on the mitotic spindle with the histone deacetylase HDAC3, an HDAC shown to regulate mitotic spindle stability. Further, NudC co-immunoprecipitates with HDAC3 and loss of function of HDAC3 either by protein knockdown or inhibition with a small molecule inhibitor increased NudC acetylation. These observations suggest that HDAC3 may be involved in NudC deacetylation during mitosis. Cells with NudC or HDAC3 knockdown exhibited overlapping mitotic abnormalities, including chromosomes arranged in a “dome-like” configuration surrounding a collapsed mitotic spindle. Our studies suggest that NudC acetylation/deacetylation regulates mitotic progression and NudC deacetylation, likely through HDAC3, is critical for spindle function and chromosome congression.
Collapse
|
30
|
Shao CY, Zhu J, Xie YJ, Wang Z, Wang YN, Wang Y, Su LD, Zhou L, Zhou TH, Shen Y. Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport. Traffic 2013; 14:785-97. [PMID: 23551859 DOI: 10.1111/tra.12070] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 11/27/2022]
Abstract
Neurons critically depend on the long-distance transport of mitochondria. Motor proteins kinesin and dynein control anterograde and retrograde mitochondrial transport, respectively in axons. The regulatory molecules that link them to mitochondria need to be better characterized. Nuclear distribution (Nud) family proteins LIS1, Ndel1 and NudCL are critical components of cytoplasmic dynein complex. Roles of these Nud proteins in neuronal mitochondrial transport are unknown. Here we report distinct functions of LIS1, Ndel1 and NudCL on axonal mitochondrial transport in cultured hippocampal neurons. We found that LIS1 interacted with kinsein family protein KIF5b. Depletion of LIS1 enormously suppressed mitochondrial motility in both anterograde and retrograde directions. Inhibition of either Ndel1 or NudCL only partially reduced retrograde mitochondrial motility. However, knocking down both Ndel1 and NudCL almost blocked retrograde mitochondrial transport, suggesting these proteins may work together to regulate retrograde mitochondrial transport through linking dynein-LIS1 complex. Taken together, our results uncover novel roles of LIS1, Ndel1 and NudCL in the transport of mitochondria in axons.
Collapse
Affiliation(s)
- Chong-Yu Shao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yan J, Chao DL, Toba S, Koyasako K, Yasunaga T, Hirotsune S, Shen K. Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. eLife 2013; 2:e00133. [PMID: 23482306 PMCID: PMC3591006 DOI: 10.7554/elife.00133] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
In neurons, microtubules (MTs) span the length of both axons and dendrites, and the molecular motors use these intracellular ‘highways' to transport diverse cargo to the appropriate subcellular locations. Whereas axonal MTs are organized such that the plus-end is oriented out from the cell body, dendrites exhibit a mixed MTs polarity containing both minus-end-out and plus-end-out MTs. The molecular mechanisms underlying this differential organization, as well as its functional significance, are unknown. Here, we show that kinesin-1 is critical in establishing the characteristic minus-end-out MT organization of the dendrite in vivo. In unc-116 (kinesin-1/kinesin heavy chain) mutants, the dendritic MTs adopt an axonal-like plus-end-out organization. Kinesin-1 protein is able to cross-link anti-paralleled MTs in vitro. We propose that kinesin-1 regulates the dendrite MT polarity through directly gliding the plus-end-out MTs out of the dendrite using both the motor domain and the C-terminal MT-binding domain. DOI:http://dx.doi.org/10.7554/eLife.00133.001 Neurons, or nerve cells, are excitable cells that transmit information using electrical and chemical signals. Nerve cells are generally composed of a cell body, multiple dendrites, and a single axon. The dendrites are responsible for receiving inputs and for transferring these signals to the cell body, whereas the axon carries signals away from the cell body and relays them to other cells. Like all cells, nerve cells have a cytoskeleton made up of microtubules, which help to determine cellular shape and which act as ‘highways' for intracellular transport. Microtubules are long hollow fibers composed of alternating α- and β-tubulin proteins: each microtubule has a ‘plus'-end, where the β subunits are exposed, and a ‘minus'-end, where the α subunits are exposed. Nerve cells are highly polarized: within the axon, the microtubules are uniformly oriented with their plus-ends pointing outward, whereas in dendrites, there are many microtubules with their minus-ends pointing outward. This arrangement is conserved across the animal kingdom, but the mechanisms that establish it are largely unknown. Yan et al. use the model organism Caenorhabditis elegans (the nematode worm) to conduct a detailed in vivo analysis of dendritic microtubule organization. They find that a motor protein called kinesin-1 is critical for generating the characteristic minus-end-out pattern in dendrites: when the gene that codes for this protein is knocked out, the dendrites in microtubules undergo a dramatic polarity shift and adopt the plus-end-out organization that is typical of axons. The mutant dendrites also show other axon-like features: for example, they lack many of the proteins that are usually found in dendrites. Based on these and other data, Yan et al. propose that kinesin-1 determines microtubule polarity in dendrites by moving plus-end-out microtubules out of dendrites. These first attempts to explain, at the molecular level, how dendritic microtubule polarity is achieved in vivo could lead to new insights into the structure and function of the neuronal cytoskeleton. DOI:http://dx.doi.org/10.7554/eLife.00133.002
Collapse
Affiliation(s)
- Jing Yan
- Department of Biology , Howard Hughes Medical Institute, Stanford University , Stanford , United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions? Biochem Soc Trans 2013; 40:1095-101. [PMID: 22988872 DOI: 10.1042/bst20120123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) are associated with both familial and sporadic PD (Parkinson's disease). LRRK1 (leucine-rich repeat kinase 1) shares a similar domain structure with LRRK2, but it is not linked to PD. LRRK proteins belong to a gene family known as ROCO, which codes for large proteins with several domains. All ROCO proteins have a ROC (Ras of complex proteins) GTPase domain followed by a domain of unknown function [COR (C-terminal of ROC)]. LRRK2, LRRK1 and other ROCO proteins also possess a kinase domain. To date, the function of LRRK1 and both the physiological and the pathological roles of LRRK2 are only beginning to unfold. The comparative analysis of these two proteins is a strategy to single out the specific properties of LRRKs to understand their cellular physiology. This comparison is the starting point to unravel the pathways that may lead to PD and eventually to develop therapeutic strategies for its treatment. In the present review, we discuss recently published results on LRRK2 and its paralogue LRRK1 concerning their evolutionary significance, biochemical properties and potential functional roles.
Collapse
|
33
|
Activation of Aurora-A is essential for neuronal migration via modulation of microtubule organization. J Neurosci 2012; 32:11050-66. [PMID: 22875938 DOI: 10.1523/jneurosci.5664-11.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Neuronal migration is a critical feature to ensure proper location and wiring of neurons during cortical development. Postmitotic neurons migrate from the ventricular zone into the cortical plate to establish neuronal lamina in an "inside-out" gradient of maturation. Here, we report that the mitotic kinase Aurora-A is critical for the regulation of microtubule organization during neuronal migration via an Aurora-A-NDEL1 pathway in the mouse. Suppression of Aurora-A activity by inhibitors or siRNA resulted in severe impairment of neuronal migration of granular neurons. In addition, in utero injection of the Aurora-A kinase-dead mutant provoked defective migration of cortical neurons. Furthermore, we demonstrated that suppression of Aurora-A impaired microtubule modulation in migrating neurons. Interestingly, suppression of CDK5 by an inhibitor or siRNA reduced Aurora-A activity and NDEL1 phosphorylation by Aurora-A, which led to defective neuronal migration. We found that CDK5RAP2 is a key molecule that mediates functional interaction and is essential for centrosomal targeting of Aurora-A. Our observations demonstrated novel and surprising cross talk between Aurora-A and CDK5 during neuronal migration.
Collapse
|
34
|
Kawaguchi K. Role of kinesin-1 in the pathogenesis of SPG10, a rare form of hereditary spastic paraplegia. Neuroscientist 2012; 19:336-44. [PMID: 22785106 DOI: 10.1177/1073858412451655] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Molecular protein motors play key roles in processes such as intracellular cargo transport and brain wiring, and failure of function can give rise to serious diseases. Kinesin-1, a member of the kinesin superfamily (also known as KIFs) is a two-headed motor protein that uses energy derived from ATP hydrolysis to transport diverse types of intracellular cargo toward the plus-ends of microtubules within axons. Recent studies at the level of a single molecule have provided extensive knowledge on how kinesin-1 moves along microtubules. Further elucidation of kinesin-1 movement may shed light on its influence on axon generation, thereby leading to therapies for diseases such as spastic paraplegia type 10 (SPG10), the subject of this review. SPG10 is an autosomal dominant form of hereditary spastic paraplegia caused by mutations in KIF5A, which encodes one of the isoforms of kinesin-1 (KIF5A, KIF5B, and KIF5C). Although little is known about the cargo of KIF5A, a recent study revealed an axonal transport defect of mitochondria in a KIF5A (-/-) mouse model. This review discusses the consensus moving model of kinesin-1 and the pathogenicity of SPG10 caused by defective KIF5A function.
Collapse
Affiliation(s)
- Kenji Kawaguchi
- Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
35
|
Abstract
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder preferentially affecting the longest corticospinal axons. More than 40 HSP genetic loci have been identified, among them SPG10, an autosomal dominant HSP caused by point mutations in the neuronal kinesin heavy chain protein KIF5A. Constitutive KIF5A knockout (KIF5A–/–) mice die early after birth. In these mice, lungs were unexpanded, and cell bodies of lower motor neurons in the spinal cord swollen, but the pathomechanism remained unclear. To gain insights into the pathophysiology, we characterized survival, outgrowth, and function in primary motor and sensory neuron cultures from KIF5A–/– mice. Absence of KIF5A reduced survival in motor neurons, but not in sensory neurons. Outgrowth of axons and dendrites was remarkably diminished in KIF5A–/– motor neurons. The number of axonal branches was reduced, whereas the number of dendrites was not altered. In KIF5A–/– sensory neurons, neurite outgrowth was decreased but the number of neurites remained unchanged. In motor neurons maximum and average velocity of mitochondrial transport was reduced both in anterograde and retrograde direction. Our results point out a role of KIF5A in process outgrowth and axonal transport of mitochondria, affecting motor neurons more severely than sensory neurons. This gives pathophysiological insights into KIF5A associated HSP, and matches the clinical findings of predominant degeneration of the longest axons of the corticospinal tract.
Collapse
|
36
|
|
37
|
Wu J, Misra G, Russell RJ, Ladd AJC, Lele TP, Dickinson RB. Effects of dynein on microtubule mechanics and centrosome positioning. Mol Biol Cell 2011; 22:4834-41. [PMID: 22013075 PMCID: PMC3237626 DOI: 10.1091/mbc.e11-07-0611] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
When microtubules are severed by laser ablation, newly created minus ends increase in curvature, but they straighten when dynein is inhibited. It is found that cytoplasmic dynein generates tension and friction along microtubule lengths and that these forces govern the dynamics of centrosome centering. To determine forces on intracellular microtubules, we measured shape changes of individual microtubules following laser severing in bovine capillary endothelial cells. Surprisingly, regions near newly created minus ends increased in curvature following severing, whereas regions near new microtubule plus ends depolymerized without any observable change in shape. With dynein inhibited, regions near severed minus ends straightened rapidly following severing. These observations suggest that dynein exerts a pulling force on the microtubule that buckles the newly created minus end. Moreover, the lack of any observable straightening suggests that dynein prevents lateral motion of microtubules. To explain these results, we developed a model for intracellular microtubule mechanics that predicts the enhanced buckling at the minus end of a severed microtubule. Our results show that microtubule shapes reflect a dynamic force balance in which dynein motor and friction forces dominate elastic forces arising from bending moments. A centrosomal array of microtubules subjected to dynein pulling forces and resisted by dynein friction is predicted to center on the experimentally observed time scale, with or without the pushing forces derived from microtubule buckling at the cell periphery.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
38
|
Wu J, Lee KC, Dickinson RB, Lele TP. How dynein and microtubules rotate the nucleus. J Cell Physiol 2011; 226:2666-74. [PMID: 21792925 DOI: 10.1002/jcp.22616] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In living cells, a fluctuating torque is exerted on the nuclear surface but the origin of the torque is unclear. In this study, we found that the nuclear rotation angle is directionally persistent on a time scale of tens of minutes, but rotationally diffusive on longer time scales. Rotation required the activity of the microtubule motor dynein. We formulated a model based on microtubules undergoing dynamic instability, with tensional forces between a stationary centrosome and the nuclear surface mediated by dynein. Model simulations suggest that the persistence in rotation angle is due to the transient asymmetric configuration of microtubules exerting a net torque in one direction until the configuration is again randomized by dynamic instability. The model predicts that the rotational magnitude must depend on the distance between the nucleus and the centrosome. To test this prediction, rotation was quantified in patterned cells in which the cell's centrosome was close to the projected nuclear centroid. Consistent with the prediction, the angular displacement was found to decrease in these cells relative to unpatterned cells. This work provides the first mechanistic explanation for how nuclear dynein interactions with discrete microtubules emanating from a stationary centrosome cause rotational torque on the nucleus.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
39
|
Sunday Driver/JIP3 binds kinesin heavy chain directly and enhances its motility. EMBO J 2011; 30:3416-29. [PMID: 21750526 DOI: 10.1038/emboj.2011.229] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/21/2011] [Indexed: 01/03/2023] Open
Abstract
Neuronal development, function and repair critically depend on axonal transport of vesicles and protein complexes, which is mediated in part by the molecular motor kinesin-1. Adaptor proteins recruit kinesin-1 to vesicles via direct association with kinesin heavy chain (KHC), the force-generating component, or via the accessory light chain (KLC). Binding of adaptors to the motor is believed to engage the motor for microtubule-based transport. We report that the adaptor protein Sunday Driver (syd, also known as JIP3 or JSAP1) interacts directly with KHC, in addition to and independently of its known interaction with KLC. Using an in vitro motility assay, we show that syd activates KHC for transport and enhances its motility, increasing both KHC velocity and run length. syd binding to KHC is functional in neurons, as syd mutants that bind KHC but not KLC are transported to axons and dendrites similarly to wild-type syd. This transport does not rely on syd oligomerization with itself or other JIP family members. These results establish syd as a positive regulator of kinesin activity and motility.
Collapse
|
40
|
Namba T, Nakamuta S, Funahashi Y, Kaibuchi K. The role of selective transport in neuronal polarization. Dev Neurobiol 2011; 71:445-57. [DOI: 10.1002/dneu.20876] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Zheng M, Cierpicki T, Burdette AJ, Utepbergenov D, Janczyk PŁ, Derewenda U, Stukenberg PT, Caldwell KA, Derewenda ZS. Structural features and chaperone activity of the NudC protein family. J Mol Biol 2011; 409:722-41. [PMID: 21530541 DOI: 10.1016/j.jmb.2011.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 11/19/2022]
Abstract
The NudC family consists of four conserved proteins with representatives in all eukaryotes. The archetypal nudC gene from Aspergillus nidulans is a member of the nud gene family that is involved in the maintenance of nuclear migration. This family also includes nudF, whose human orthologue, Lis1, codes for a protein essential for brain cortex development. Three paralogues of NudC are known in vertebrates: NudC, NudC-like (NudCL), and NudC-like 2 (NudCL2). The fourth distantly related member of the family, CML66, contains a NudC-like domain. The three principal NudC proteins have no catalytic activity but appear to play as yet poorly defined roles in proliferating and dividing cells. We present crystallographic and NMR studies of the human NudC protein and discuss the results in the context of structures recently deposited by structural genomics centers (i.e., NudCL and mouse NudCL2). All proteins share the same core CS domain characteristic of proteins acting either as cochaperones of Hsp90 or as independent small heat shock proteins. However, while NudC and NudCL dimerize via an N-terminally located coiled coil, the smaller NudCL2 lacks this motif and instead dimerizes as a result of unique domain swapping. We show that NudC and NudCL, but not NudCL2, inhibit the aggregation of several target proteins, consistent with an Hsp90-independent heat shock protein function. Importantly, and in contrast to several previous reports, none of the three proteins is able to form binary complexes with Lis1. The availability of structural information will be of help in further studies on the cellular functions of the NudC family.
Collapse
Affiliation(s)
- Meiying Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. J Neurosci 2011; 31:2216-24. [PMID: 21307258 DOI: 10.1523/jneurosci.2653-10.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kinesin-1 is a microtubule plus-end-directed motor that transports various cargos along the axon. Previous studies have elucidated the physical and genetic interactions between kinesin-1 and cytoplasmic dynein, a microtubule minus-end-directed motor, in neuronal cells. However, the physiological importance of kinesin-1 in the dynein-dependent retrograde transport of cargo molecules remains obscure. Here, we show that Caenorhabditis elegans kinesin-1 forms a complex with dynein via its interaction with UNC-16, which binds to the dynein light intermediate (DLI) chain. Both kinesin-1 and UNC-16 are required for localization of DLI-1 at the plus ends of nerve process microtubules. In addition, retrograde transport of APL-1 depends on kinesin-1, UNC-16, and dynein. These results suggest that kinesin-1 mediates the anterograde transport of dynein using UNC-16 as a scaffold and that dynein in turn mediates the retrograde transport of cargo molecules in vivo. Thus, UNC-16 functions as an adaptor for kinesin-1-mediated transport of dynein.
Collapse
|
43
|
Hanafusa H, Ishikawa K, Kedashiro S, Saigo T, Iemura SI, Natsume T, Komada M, Shibuya H, Nara A, Matsumoto K. Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor. Nat Commun 2011; 2:158. [PMID: 21245839 PMCID: PMC3105304 DOI: 10.1038/ncomms1161] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/08/2010] [Indexed: 01/01/2023] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) not only initiates multiple signal-transduction pathways, including the MAP kinase (MAPK) pathway, but also triggers trafficking events that relocalize receptors from the cell surface to intracellular endocytic compartments. In this paper, we demonstrate that leucine-rich repeat kinase LRRK1, which contains a MAPKKK-like kinase domain, forms a complex with activated EGFR through an interaction with Grb2. Subsequently, LRRK1 and epidermal growth factor (EGF) are internalized and co-localized in early endosomes. LRRK1 regulates EGFR transport from early to late endosomes and regulates the motility of EGF-containing early endosomes in a manner dependent on its kinase activity. Furthermore, LRRK1 serves as a scaffold facilitating the interaction of EGFR with the endosomal sorting complex required for transport-0 complex, thus enabling efficient sorting of EGFR to the inner vesicles of multivesicular bodies. Our findings provide the first evidence that a MAPKKK-like protein regulates the endosomal trafficking of EGFR. Activation of the epidermal growth factor receptor can result in its internalization and subsequent intracellular trafficking. In this study, the authors show that leucine-rich repeat kinase-1 can bind to the receptor and regulate its trafficking between different endosomal compartments.
Collapse
Affiliation(s)
- Hiroshi Hanafusa
- Department of Molecular Biology, Graduate school of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hirokawa N. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions. Microscopy (Oxf) 2011; 60 Suppl 1:S63-S92. [PMID: 21844601 DOI: 10.1093/jmicro/dfr051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Cells transport and sort various proteins and lipids following synthesis as distinct types of membranous organelles and protein complexes to the correct destination at appropriate velocities. This intracellular transport is fundamental for cell morphogenesis, survival and functioning not only in highly polarized neurons but also in all types of cells in general. By developing quick-freeze electron microscopy (EM), new filamentous structures associated with cytoskeletons are uncovered. The characterization of chemical structures and functions of these new filamentous structures led us to discover kinesin superfamily molecular motors, KIFs. In this review, I discuss the identification of these new structures and characterization of their functions using molecular cell biology and molecular genetics. KIFs not only play significant roles by transporting various cargoes along microtubule rails, but also play unexpected fundamental roles on various important physiological processes such as learning and memory, brain wiring, development of central nervous system and peripheral nervous system, activity-dependent neuronal survival, development of early embryo, left-right determination of our body and tumourigenesis. Furthermore, by combining single-molecule biophysics with structural biology such as cryo-electrom microscopy and X-ray crystallography, atomic structures of KIF1A motor protein of almost all states during ATP hydrolysis have been determined and a common mechanism of motility has been proposed. Thus, this type of studies could be a good example of really integrative multidisciplinary life science in the twenty-first century.
Collapse
Affiliation(s)
- Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, 7-3-1, Bunkyo-ku, Tokyo, Japan 113-0033.
| |
Collapse
|
45
|
Hirokawa N, Niwa S, Tanaka Y. Molecular Motors in Neurons: Transport Mechanisms and Roles in Brain Function, Development, and Disease. Neuron 2010; 68:610-38. [DOI: 10.1016/j.neuron.2010.09.039] [Citation(s) in RCA: 668] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2010] [Indexed: 12/11/2022]
|
46
|
Deng W, Garrett C, Dombert B, Soura V, Banks G, Fisher EMC, van der Brug MP, Hafezparast M. Neurodegenerative mutation in cytoplasmic dynein alters its organization and dynein-dynactin and dynein-kinesin interactions. J Biol Chem 2010; 285:39922-34. [PMID: 20889981 PMCID: PMC3000974 DOI: 10.1074/jbc.m110.178087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A single amino acid change, F580Y (Legs at odd angles (Loa), Dync1h1Loa), in the highly conserved and overlapping homodimerization, intermediate chain, and light intermediate chain binding domain of the cytoplasmic dynein heavy chain can cause severe motor and sensory neuron loss in mice. The mechanism by which the Loa mutation impairs the neuron-specific functions of dynein is not understood. To elucidate the underlying molecular mechanisms of neurodegeneration arising from this mutation, we applied a cohort of biochemical methods combined with in vivo assays to systemically study the effects of the mutation on the assembly of dynein and its interaction with dynactin. We found that the Loa mutation in the heavy chain leads to increased affinity of this subunit of cytoplasmic dynein to light intermediate and a population of intermediate chains and a suppressed association of dynactin to dynein. These data suggest that the Loa mutation drives the assembly of cytoplasmic dynein toward a complex with lower affinity to dynactin and thus impairing transport of cargos that tether to the complex via dynactin. In addition, we detected up-regulation of kinesin light chain 1 (KLC1) and its increased association with dynein but reduced microtubule-associated KLC1 in the Loa samples. We provide a model describing how up-regulation of KLC1 and its interaction with cytoplasmic dynein in Loa could play a regulatory role in restoring the retrograde and anterograde transport in the Loa neurons.
Collapse
Affiliation(s)
- Wenhan Deng
- From School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang J, Zhuang L, Lee Y, Abenza JF, Peñalva MA, Xiang X. The microtubule plus-end localization of Aspergillus dynein is important for dynein-early-endosome interaction but not for dynein ATPase activation. J Cell Sci 2010; 123:3596-604. [PMID: 20876661 DOI: 10.1242/jcs.075259] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic dynein in filamentous fungi accumulates at microtubule plus-ends near the hyphal tip, which is important for minus-end-directed transport of early endosomes. It was hypothesized that dynein is switched on at the plus-end by cargo association. Here, we show in Aspergillus nidulans that kinesin-1-dependent plus-end localization is not a prerequisite for dynein ATPase activation. First, the Walker A and Walker B mutations in the dynein heavy chain AAA1 domain implicated in blocking different steps of the ATPase cycle cause different effects on dynein localization to microtubules, arguing against the suggestion that ATPase is inactive before arriving at the plus-end. Second, dynein from ΔkinA (kinesin 1) mutant cells has normal ATPase activity despite the absence of dynein plus-end accumulation. In ΔkinA hyphae, dynein localizes along microtubules and does not colocalize with abnormally accumulated early endosomes at the hyphal tip. This is in contrast to the colocalization of dynein and early endosomes in the absence of NUDF/LIS1. However, the Walker B mutation allows dynein to colocalize with the hyphal-tip-accumulated early endosomes in the ΔkinA background. We suggest that the normal ability of dyenin to interact with microtubules as an active minus-end-directed motor demands kinesin-1-mediated plus-end accumulation for effective interactions with early endosomes.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, USUHS, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
48
|
Wynshaw-Boris A, Pramparo T, Youn YH, Hirotsune S. Lissencephaly: mechanistic insights from animal models and potential therapeutic strategies. Semin Cell Dev Biol 2010; 21:823-30. [PMID: 20688183 DOI: 10.1016/j.semcdb.2010.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/25/2010] [Indexed: 12/11/2022]
Abstract
Lissencephaly is a severe human neuronal migration defect characterized by a smooth cerebral surface, mental retardation and seizures. The two most common genes mutated in patients with lissencephaly are LIS1 and DCX. LIS1 was the first gene cloned that was important for neuronal migration in any organism, and heterozygous mutations or deletions of LIS1 are found in the majority of patients with lissencephaly, while DCX mutations were found in males with X-linked lissencephaly. In this review, we will discuss how an understanding of the molecular and cellular pathways disrupted in model organisms with Lis1 and Dcx mutations or knock-down not only provide insights into the normal processes of neuronal migration, including neurogenesis, but they also may lead to potential novel therapeutic strategies for these severe cortical malformations.
Collapse
|
49
|
Zhu XJ, Liu X, Jin Q, Cai Y, Yang Y, Zhou T. The L279P mutation of nuclear distribution gene C (NudC) influences its chaperone activity and lissencephaly protein 1 (LIS1) stability. J Biol Chem 2010; 285:29903-10. [PMID: 20675372 DOI: 10.1074/jbc.m110.105494] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LIS1, a gene mutated in classical lissencephaly, plays essential roles in cytoplasmic dynein regulation, mitosis and cell migration. However, the regulation of LIS1 (lissencephaly protein 1) protein remains largely unknown. Genetic studies in Aspergillus nidulans have uncovered that the Nud (nuclear distribution) pathway is involved in the regulation of cytoplasmic dynein complex and a temperature-sensitive mutation in the nudC gene (L146P) greatly reduces the protein levels of NudF, an Aspergillus ortholog of LIS1. Here, we showed that L146 in Aspergillus NudC and its flanking region were highly conservative during evolution. The similar mutation in human NudC (L279P) obviously led to reduced LIS1 and cellular phenotypes similar to those of LIS1 down-regulation. To explore the underlying mechanism, we found that the p23 domain-containing protein NudC bound to the molecular chaperone Hsp90, which is also associated with LIS1. Inhibition of Hsp90 chaperone function by either geldanamycin or radicicol resulted in a decrease in LIS1 levels. Ectopic expression of Hsp90 partially reversed the degradation of LIS1 caused by overexpression of NudC-L279P. Furthermore, NudC was found to regulate the ATPase activity of Hsp90, which was repressed by the mutation of L279P. Interestingly, NudC itself was shown to possess a chaperone function, which also was suppressed by the L279P mutation. Together, these data suggest that NudC may be involved in the regulation of LIS1 stability by its chaperone function.
Collapse
Affiliation(s)
- Xiao-Jing Zhu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
50
|
Yamada M, Hirotsune S, Wynshaw-Boris A. A novel strategy for therapeutic intervention for the genetic disease: preventing proteolytic cleavage using small chemical compound. Int J Biochem Cell Biol 2010; 42:1401-7. [PMID: 20541031 DOI: 10.1016/j.biocel.2010.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 05/28/2010] [Accepted: 05/28/2010] [Indexed: 11/24/2022]
Abstract
Haploinsufficiency is a state of genetic disease, which is caused by hemizygous mutations of functional alleles. Lissencephaly is a typical example of haploinsufficiency disorders characterized by a smooth cerebral surface, thick cortex and dilated lateral ventricules associated with mental retardation and seizures due to defective neuronal migration. LIS1 was the first gene cloned in an organism, which was deleted or mutated in patients with lissencephaly in a heterozygous fashion. Series of studies uncovered that LIS1 is an essential regulator of cytoplasmic dynein. In particular, we reported that LIS1 is essential for dynein transport to the plus-end of microtubules by kinesin, which is essential for maintaining proper distribution of cytoplasmic dynein within the cell. Fortuitously, we found that a substantial fraction of LIS1 is degraded by the cystein protease, calpain after reaching the plus-end of microtubules. We further demonstrated that inhibition of calpain-mediated LIS1 degradation increased LIS1 level at the cortex of the cell, resulting in therapeutic benefit using genetic mouse models with reduced levels of LIS1. Our work might provide a potential therapeutic approach for the treatment of a fraction of haploinsufficiency disorders through augmenting reduced proteins by the targeting inhibition of degradation machinery.
Collapse
Affiliation(s)
- Masami Yamada
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3 Abeno, Osaka 545-8585, Japan
| | | | | |
Collapse
|