1
|
Cao L, Ma J, Chen P, Hou X, Yang N, Lu Y, Huang H. Exploring the influence of DNA methylation and single nucleotide polymorphisms of the Myostatin gene on growth traits in the hybrid grouper ( Epinephelus fuscoguttatus (female) × Epinephelus polyphekadion (male)). Front Genet 2024; 14:1277647. [PMID: 38259615 PMCID: PMC10801740 DOI: 10.3389/fgene.2023.1277647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Investigations into the correlation between growth characteristics and DNA methylation levels, along with genetic variations, can provide fundamental insights to enhance growth performance in groupers. The Myostatin (mstn) gene plays a vital role in regulating skeletal muscle development and growth. This study scrutinized the DNA methylation levels of the mstn gene across hybrid groupers (E. fuscoguttatus (♀) × E. polyphekadion (♂)) and their parental species, to evaluate its impact on growth attributes in grouper fish. The nucleotide sequence of the mstn gene was directly sequenced in the hybrid grouper, exhibiting different growth performance to identify the single nucleotide polymorphisms (SNPs) of the mstn gene and explore their correlation with growth characteristics. The findings revealed no significant differences in global DNA methylation levels within muscle tissue among the hybrid grouper and parents. However, significant differences in DNA methylation sites were discovered between the hybrid grouper and E. polyphekadion at sites 824 and 1521 (located at exon 2 and intron 2, respectively), and between E. fuscoguttatus and E. polyphekadion at site 1521. These variations could potentially influence the mRNA expression of the mstn gene. The study also identified that SNP g.1003 T > C in exon 2 of the mstn gene was significantly associated with various growth traits including body weight, total length, body length, head length, caudal peduncle height, and body height (p < 0.01). Specimens with the TT genotype at site 1003 demonstrated superior growth performance compared to those with the TC genotype. Furthermore, microstructural analyses of muscle tissue showed that the average area and diameter of muscle fibers in TT genotype individuals were significantly greater than those in TC genotype individuals. Therefore, this research provides robust evidence linking the DNA methylation level and polymorphisms of the mstn gene with growth traits, which could be beneficial for grouper breeding programs.
Collapse
Affiliation(s)
- Liu Cao
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Pan Chen
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Xingrong Hou
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Ning Yang
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Yan Lu
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
2
|
Akcan TS, Vilov S, Heinig M. Predictive model of transcriptional elongation control identifies trans regulatory factors from chromatin signatures. Nucleic Acids Res 2023; 51:1608-1624. [PMID: 36727445 PMCID: PMC9976927 DOI: 10.1093/nar/gkac1272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Promoter-proximal Polymerase II (Pol II) pausing is a key rate-limiting step for gene expression. DNA and RNA-binding trans-acting factors regulating the extent of pausing have been identified. However, we lack a quantitative model of how interactions of these factors determine pausing, therefore the relative importance of implicated factors is unknown. Moreover, previously unknown regulators might exist. Here we address this gap with a machine learning model that accurately predicts the extent of promoter-proximal Pol II pausing from large-scale genome and transcriptome binding maps and gene annotation and sequence composition features. We demonstrate high accuracy and generalizability of the model by validation on an independent cell line which reveals the model's cell line agnostic character. Model interpretation in light of prior knowledge about molecular functions of regulatory factors confirms the interconnection of pausing with other RNA processing steps. Harnessing underlying feature contributions, we assess the relative importance of each factor, quantify their predictive effects and systematically identify previously unknown regulators of pausing. We additionally identify 16 previously unknown 7SK ncRNA interacting RNA-binding proteins predictive of pausing. Our work provides a framework to further our understanding of the regulation of the critical early steps in transcriptional elongation.
Collapse
Affiliation(s)
- Toray S Akcan
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany
| | - Sergey Vilov
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| |
Collapse
|
3
|
Elucidation of the Landscape of Alternatively Spliced Genes and Features in the Dorsal Striatum of Aggressive/Aggression-Deprived Mice in the Model of Chronic Social Conflicts. Genes (Basel) 2023; 14:genes14030599. [PMID: 36980872 PMCID: PMC10048575 DOI: 10.3390/genes14030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) individuals represent pathological cases extensively studied in psychiatry and substance abuse disciplines. We employed the animal model of chronic social conflicts curated in our laboratory for over 30 years. In the study, we pursued the task of evaluation of the key events in the dorsal striatum transcriptomes of aggression-experienced mice and AD species, as compared with the controls, using RNA-seq profiling. We evaluated the alternative splicing-mediated transcriptome dynamics based on the RNA-seq data. We confined our attention to the exon skipping (ES) events as the major AS type for animals. We report the concurrent posttranscriptional and posttranslational regulation of the ES events observed in the phosphorylation cycles (in phosphoproteins and their targets) in the neuron-specific genes of the striatum. Strikingly, we found that major neurospecific splicing factors (Nova1, Ptbp1, 2, Mbnl1, 2, and Sam68) related to the alternative splicing regulation of cAMP genes (Darpp-32, Grin1, Ptpn5, Ppp3ca, Pde10a, Prkaca, Psd95, and Adora1) are upregulated specifically in aggressive individuals as compared with the controls and specifically AD animals, assuming intense switching between isoforms in the cAMP-mediated (de)phosphorylation signaling cascade. We found that the coding alternative splicing events were mostly attributed to synaptic plasticity and neural development-related proteins, while the nonsense-mediated decay-associated splicing events are mostly attributed to the mRNA processing of genes, including the spliceosome and splicing factors. In addition, considering the gene families, the transporter (Slc) gene family manifested most of the ES events. We found out that the major molecular systems employing AS for their plasticity are the ‘spliceosome’, ‘chromatin rearrangement complex’, ‘synapse’, and ‘neural development/axonogenesis’ GO categories. Finally, we state that approximately 35% of the exon skipping variants in gene coding regions manifest the noncoding variants subject to nonsense-mediated decay, employed as a homeostasis-mediated expression regulation layer and often associated with the corresponding gene expression alteration.
Collapse
|
4
|
Adverse maternal environment affects hippocampal HTR2c variant expression and epigenetic characteristics in mouse offspring. Pediatr Res 2022; 92:1299-1308. [PMID: 35121849 DOI: 10.1038/s41390-022-01962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND An adverse maternal environment (AME) predisposes progeny towards cognitive impairment in humans and mice. Cognitive impairment associates with hippocampal dysfunction. An important regulator of hippocampal function is the hippocampal serotonergic system. Dysregulation of hippocampal serotonin receptor 2c (HTR2c) expression is linked with cognitive impairment. HTR2c contains multiple mRNA variants and isoforms that are epigenetically regulated including DNA methylation, histone modifications, and small nucleolar RNA MBII-52. We tested the hypotheses that AME increases HTR2c variant expression and alters epigenetic modifications along the HTR2c gene locus. METHODS We create an AME through maternal Western diet and prenatal environmental stress in the mouse. We analyzed hippocampal HTR2c and variants' expression, DNA methylation and histone modifications along the gene locus, and MBII-52 levels in postnatal day 21 offspring. RESULTS AME significantly increased the expressions of total HTR2c and full-length variants (V201 and V202) concurrently with an altered epigenetic profile along the HTR2c gene locus in male offspring hippocampi. Moreover, increased full-length variants' expression in AME males was in line with increased MBII-52 levels. CONCLUSIONS AME affects male offspring hippocampal expression of HTR2c and full-length variants via epigenetic mechanisms. Altered hippocampal HTR2c expression may contribute to cognitive impairment seen in adult males in this model. IMPACT The key message of our article is that an adverse maternal environment increases expression of total HTR2c mRNA and protein, alters proportions of HTR2c mRNA variants, and impacts HTR2c epigenetic modifications in male offspring hippocampi relative to controls. Our findings add to the literature by providing the first report of altered HTR2c mRNA variant expression in association with altered epigenetic modifications in the hippocampus of offspring mice exposed to an adverse maternal environment. Our findings suggest that an adverse maternal environment affects the expression of genes previously determined to regulate cognitive function through an epigenetic mechanism in a sex-specific manner.
Collapse
|
5
|
PARP1′s Involvement in RNA Polymerase II Elongation: Pausing and Releasing Regulation through the Integrator and Super Elongation Complex. Cells 2022; 11:cells11203202. [PMID: 36291070 PMCID: PMC9600911 DOI: 10.3390/cells11203202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
RNA polymerase elongation along the gene body is tightly regulated to ensure proper transcription and alternative splicing events. Understanding the mechanism and factors critical in regulating the rate of RNA polymerase II elongation and processivity is clearly important. Recently we showed that PARP1, a well-known DNA repair protein, when bound to chromatin, regulates RNA polymerase II elongation. However, the mechanism by which it does so is not known. In the current study, we aimed to tease out how PARP1 regulates RNAPII elongation. We show, both in vivo and in vitro, that PARP1 binds directly to the Integrator subunit 3 (IntS3), a member of the elongation Integrator complex. The association between the two proteins is mediated via the C-terminal domain of PARP1 to the C-terminal domain of IntS3. Interestingly, the occupancy of IntS3 along two PARP1 target genes mimicked that of PARP1, suggesting a role in its recruitment/assembly of elongation factors. Indeed, the knockdown of PARP1 resulted in differential chromatin association and gene occupancy of IntS3 and other key elongation factors. Most of these PARP1-mediated effects were due to the physical presence of PARP1 rather than its PARylation activity. These studies argue that PARP1 controls the progressive RNAPII elongation complexes. In summary, we present a platform to begin to decipher PARP1′s role in recruiting/scaffolding elongation factors along the gene body regions during RNA polymerase II elongation and gene regulation.
Collapse
|
6
|
Imbriano C, Belluti S. Histone Marks-Dependent Effect on Alternative Splicing: New Perspectives for Targeted Splicing Modulation in Cancer? Int J Mol Sci 2022; 23:ijms23158304. [PMID: 35955433 PMCID: PMC9368390 DOI: 10.3390/ijms23158304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing (AS) is a tightly regulated mechanism that generates the complex human proteome from a small number of genes. Cis-regulatory RNA motifs in exons and introns control AS, recruiting positive and negative trans-acting splicing regulators. At a higher level, chromatin affects splicing events. Growing evidence indicates that the popular histone code hypothesis can be extended to RNA-level processes, such as AS. In addition to nucleosome positioning, which can generate transcriptional barriers to shape the final splicing outcome, histone post-translational modifications can contribute to the detailed regulation of single exon inclusion/exclusion. A histone-based system can identify alternatively spliced chromatin stretches, affecting RNAPII elongation locally or recruiting splicing components via adaptor complexes. In tumor cells, several mechanisms trigger misregulated AS events and produce cancer-associated transcripts. On a genome-wide level, aberrant AS can be the consequence of dysfunctional epigenetic splicing code, including altered enrichment in histone post-translational modifications. This review describes the main findings related to the effect of histone modifications and variants on splicing outcome and how a dysfunctional epigenetic splicing code triggers aberrant AS in cancer. In addition, it highlights recent advances in programmable DNA-targeting technologies and their possible application for AS targeted epigenetic modulation.
Collapse
|
7
|
Gañez-Zapater A, Mackowiak SD, Guo Y, Tarbier M, Jordán-Pla A, Friedländer MR, Visa N, Östlund Farrants AK. The SWI/SNF subunit BRG1 affects alternative splicing by changing RNA binding factor interactions with nascent RNA. Mol Genet Genomics 2022; 297:463-484. [PMID: 35187582 PMCID: PMC8960663 DOI: 10.1007/s00438-022-01863-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/23/2022] [Indexed: 11/29/2022]
Abstract
BRG1 and BRM are ATPase core subunits of the human SWI/SNF chromatin remodelling complexes mainly associated with transcriptional initiation. They also have a role in alternative splicing, which has been shown for BRM-containing SWI/SNF complexes at a few genes. Here, we have identified a subset of genes which harbour alternative exons that are affected by SWI/SNF ATPases by expressing the ATPases BRG1 and BRM in C33A cells, a BRG1- and BRM-deficient cell line, and analysed the effect on splicing by RNA sequencing. BRG1- and BRM-affected sub-sets of genes favouring both exon inclusion and exon skipping, with only a minor overlap between the ATPase. Some of the changes in alternative splicing induced by BRG1 and BRM expression did not require the ATPase activity. The BRG1-ATPase independent included exons displayed an exon signature of a high GC content. By investigating three genes with exons affected by the BRG-ATPase-deficient variant, we show that these exons accumulated phosphorylated RNA pol II CTD, both serine 2 and serine 5 phosphorylation, without an enrichment of the RNA polymerase II. The ATPases were recruited to the alternative exons, together with both core and signature subunits of SWI/SNF complexes, and promoted the binding of RNA binding factors to chromatin and RNA at the alternative exons. The interaction with the nascent RNP, however, did not reflect the association to chromatin. The hnRNPL, hnRNPU and SAM68 proteins associated with chromatin in cells expressing BRG1 and BRM wild type, but the binding of hnRNPU to the nascent RNP was excluded. This suggests that SWI/SNF can regulate alternative splicing by interacting with splicing-RNA binding factor and influence their binding to the nascent pre-mRNA particle.
Collapse
Affiliation(s)
- Antoni Gañez-Zapater
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
- Center for Genomic Regulation, 08003, Barcelona, Spain
| | - Sebastian D Mackowiak
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Yuan Guo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Antonio Jordán-Pla
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencies Biológicas, Valencia University, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Sperm Methylome Profiling Can Discern Fertility Levels in the Porcine Biomedical Model. Int J Mol Sci 2021; 22:ijms22052679. [PMID: 33800945 PMCID: PMC7961483 DOI: 10.3390/ijms22052679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
A combined Genotyping By Sequencing (GBS) and methylated DNA immunoprecipitation (MeDIP) protocol was used to identify—in parallel—genetic variation (Genomic-Wide Association Studies (GWAS) and epigenetic differences of Differentially Methylated Regions (DMR) in the genome of spermatozoa from the porcine animal model. Breeding boars with good semen quality (n = 11) and specific and well-documented differences in fertility (farrowing rate, FR) and prolificacy (litter size, LS) (n = 7) in artificial insemination programs, using combined FR and LS, were categorized as High Fertile (HF, n = 4) or Low Fertile (LF, n = 3), and boars with Unknown Fertility (UF, n = 4) were tested for eventual epigenetical similarity with those fertility-proven. We identified 165,944 Single Nucleotide Polymorphisms (SNPs) that explained 14–15% of variance among selection lines. Between HF and LF individuals (n = 7, 4 HF and 3 LF), we identified 169 SNPs with p ≤ 0.00015, which explained 58% of the variance. For the epigenetic analyses, we considered fertility and period of ejaculate collection (late-summer and mid-autumn). Approximately three times more DMRs were observed in HF than in LF boars across these periods. Interestingly, UF boars were clearly clustered with one of the other HF or LF groups. The highest differences in DMRs between HF and LF experimental groups across the pig genome were located in the chr 3, 9, 13, and 16, with most DMRs being hypermethylated in LF boars. In both HF and LF boars, DMRs were mostly hypermethylated in late-summer compared to mid-autumn. Three overlaps were detected between SNPs (p ≤ 0.0005, n = 1318) and CpG sites within DMRs. In conclusion, fertility levels in breeding males including FR and LS can be discerned using methylome analyses. The findings in this biomedical animal model ought to be applied besides sire selection for andrological diagnosis of idiopathic sub/infertility.
Collapse
|
9
|
Pértille F, Ibelli AMG, Sharif ME, Poleti MD, Fröhlich AS, Rezaei S, Ledur MC, Jensen P, Guerrero-Bosagna C, Coutinho LL. Putative Epigenetic Biomarkers of Stress in Red Blood Cells of Chickens Reared Across Different Biomes. Front Genet 2020; 11:508809. [PMID: 33240310 PMCID: PMC7667380 DOI: 10.3389/fgene.2020.508809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Production animals are constantly subjected to early adverse environmental conditions that influence the adult phenotype and produce epigenetic effects. CpG dinucleotide methylation in red blood cells (RBC) could be a useful epigenetic biomarker to identify animals subjected to chronic stress in the production environment. Here we compared a reduced fraction of the RBC methylome of chickens exposed to social isolation to non-exposed. These experiments were performed in two different locations: Brazil and Sweden. The aim was to identify stress-associated DNA methylation profiles in RBC across these populations, in spite of the variable conditions to which birds are exposed in each facility and their different lineages. Birds were increasingly exposed to a social isolation treatment, combined with food and water deprivation, at random periods of the day from weeks 1-4 after hatching. We then collected the RBC DNA from individuals and compared a reduced fraction of their methylome between the experimental groups using two bioinformatic approaches to identify differentially methylated regions (DMRs): one using fixed-size windows and another that preselected differential peaks with MACS2. Three levels of significance were used (P ≤ 0.05, P ≤ 0.005, and P ≤ 0.0005) to identify DMRs between experimental groups, which were then used for different analyses. With both of the approaches more DMRs reached the defined significance thresholds in BR individuals compared to SW. However, more DMRs had higher fold change values in SW compared to BR individuals. Interestingly, ChrZ was enriched above expectancy for the presence of DMRs. Additionally, when analyzing the locations of these DMRs in relation to the transcription starting site (TSS), we found three peaks with high DMR presence: 10 kb upstream, the TSS itself, and 20-40 kb downstream. Interestingly, these peaks had DMRs with a high presence (>50%) of specific transcription factor binding sites. Three overlapping DMRs were found between the BR and SW population using the most relaxed p-value (P ≤ 0.05). With the most stringent p-value (P ≤ 0.0005), we found 7 and 4 DMRs between treatments in the BR and SW populations, respectively. This study is the first approximation to identify epigenetic biomarkers of long-term exposure to stress in different lineages of production animals.
Collapse
Affiliation(s)
- Fábio Pértille
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/"Luiz de Queiroz" College of Agriculture (ESALQ), Piracicaba, Brazil.,Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | | | - Maj El Sharif
- Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Mirele Daiana Poleti
- Animal Science Program, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, Brazil
| | - Anna Sophie Fröhlich
- Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Shiva Rezaei
- Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | | | - Per Jensen
- Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Carlos Guerrero-Bosagna
- Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden.,Evolutionary Biology Centre, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/"Luiz de Queiroz" College of Agriculture (ESALQ), Piracicaba, Brazil
| |
Collapse
|
10
|
Kim DS, Challa S, Jones A, Kraus WL. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev 2020; 34:302-320. [PMID: 32029452 PMCID: PMC7050490 DOI: 10.1101/gad.334433.119] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Kim et al. discuss the importance of PARP family members and ADPRylation in gene regulation, mRNA processing, and protein abundance. ADP-ribosylation (ADPRylation) is a posttranslational modification of proteins discovered nearly six decades ago, but many important questions remain regarding its molecular functions and biological roles, as well as the activity of the ADP-ribose (ADPR) transferase enzymes (PARP family members) that catalyze it. Growing evidence indicates that PARP-mediated ADPRylation events are key regulators of the protein biosynthetic pathway, leading from rDNA transcription and ribosome biogenesis to mRNA synthesis, processing, and translation. In this review we describe the role of PARP proteins and ADPRylation in all facets of this pathway. PARP-1 and its enzymatic activity are key regulators of rDNA transcription, which is a critical step in ribosome biogenesis. An emerging role of PARPs in alternative splicing of mRNAs, as well as direct ADPRylation of mRNAs, highlight the role of PARP members in RNA processing. Furthermore, PARP activity, stimulated by cellular stresses, such as viral infections and ER stress, leads to the regulation of mRNA stability and protein synthesis through posttranscriptional mechanisms. Dysregulation of PARP activity in these processes can promote disease states. Collectively, these results highlight the importance of PARP family members and ADPRylation in gene regulation, mRNA processing, and protein abundance. Future studies in these areas will yield new insights into the fundamental mechanisms and a broader utility for PARP-targeted therapeutic agents.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Aarin Jones
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
11
|
Xu B, Shi Y, Wu Y, Meng Y, Jin Y. Role of RNA secondary structures in regulating Dscam alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194381. [DOI: 10.1016/j.bbagrm.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
|
12
|
Siam A, Baker M, Amit L, Regev G, Rabner A, Najar RA, Bentata M, Dahan S, Cohen K, Araten S, Nevo Y, Kay G, Mandel-Gutfreund Y, Salton M. Regulation of alternative splicing by p300-mediated acetylation of splicing factors. RNA (NEW YORK, N.Y.) 2019; 25:813-824. [PMID: 30988101 PMCID: PMC6573785 DOI: 10.1261/rna.069856.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 05/23/2023]
Abstract
Splicing of precursor mRNA (pre-mRNA) is an important regulatory step in gene expression. Recent evidence points to a regulatory role of chromatin-related proteins in alternative splicing regulation. Using an unbiased approach, we have identified the acetyltransferase p300 as a key chromatin-related regulator of alternative splicing. p300 promotes genome-wide exon inclusion in both a transcription-dependent and -independent manner. Using CD44 as a paradigm, we found that p300 regulates alternative splicing by modulating the binding of splicing factors to pre-mRNA. Using a tethering strategy, we found that binding of p300 to the CD44 promoter region promotes CD44v exon inclusion independently of RNAPII transcriptional elongation rate. Promoter-bound p300 regulates alternative splicing by acetylating splicing factors, leading to exclusion of hnRNP M from CD44 pre-mRNA and activation of Sam68. p300-mediated CD44 alternative splicing reduces cell motility and promotes epithelial features. Our findings reveal a chromatin-related mechanism of alternative splicing regulation and demonstrate its impact on cellular function.
Collapse
Affiliation(s)
- Ahmad Siam
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Leah Amit
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gal Regev
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Alona Rabner
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Rauf Ahmad Najar
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sara Dahan
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Klil Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sarah Araten
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Yuval Nevo
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
13
|
RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts with the Spliceosome during Co-transcriptional Splicing. Mol Cell 2019; 72:369-379.e4. [PMID: 30340024 PMCID: PMC6201815 DOI: 10.1016/j.molcel.2018.09.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 07/23/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023]
Abstract
The highly intronic nature of protein coding genes in mammals necessitates a co-transcriptional splicing mechanism as revealed by mNET-seq analysis. Immunoprecipitation of MNase-digested chromatin with antibodies against RNA polymerase II (Pol II) shows that active spliceosomes (both snRNA and proteins) are complexed to Pol II S5P CTD during elongation and co-transcriptional splicing. Notably, elongating Pol II-spliceosome complexes form strong interactions with nascent transcripts, resulting in footprints of approximately 60 nucleotides. Also, splicing intermediates formed by cleavage at the 5′ splice site are associated with nearly all spliced exons. These spliceosome-bound intermediates are frequently ligated to upstream exons, implying a sequential, constitutive, and U12-dependent splicing process. Finally, lack of detectable spliced products connected to the Pol II active site in human HeLa or murine lymphoid cells suggests that splicing does not occur immediately following 3′ splice site synthesis. Our results imply that most mammalian splicing requires exon definition for completion. S5P CTD Pol II associates with the catalytic spliceosome Elongating Pol II complexes protect about 60 newly synthesized nucleotides Co-transcriptional splicing associated with dominant 5′ ss intermediate U12-dependent introns are sequentially spliced in association with Pol II
Collapse
|
14
|
Maslon MM, Braunschweig U, Aitken S, Mann AR, Kilanowski F, Hunter CJ, Blencowe BJ, Kornblihtt AR, Adams IR, Cáceres JF. A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes. EMBO J 2019; 38:embj.2018101244. [PMID: 30988016 PMCID: PMC6484407 DOI: 10.15252/embj.2018101244] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
The rate of RNA polymerase II (RNAPII) elongation has an important role in the control of alternative splicing (AS); however, the in vivo consequences of an altered elongation rate are unknown. Here, we generated mouse embryonic stem cells (ESCs) knocked in for a slow elongating form of RNAPII We show that a reduced transcriptional elongation rate results in early embryonic lethality in mice. Focusing on neuronal differentiation as a model, we observed that slow elongation impairs development of the neural lineage from ESCs, which is accompanied by changes in AS and in gene expression along this pathway. In particular, we found a crucial role for RNAPII elongation rate in transcription and splicing of long neuronal genes involved in synapse signaling. The impact of the kinetic coupling of RNAPII elongation rate with AS is greater in ESC-differentiated neurons than in pluripotent cells. Our results demonstrate the requirement for an appropriate transcriptional elongation rate to ensure proper gene expression and to regulate AS during development.
Collapse
Affiliation(s)
- Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ulrich Braunschweig
- Donnelly Centre, Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Abigail R Mann
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris J Hunter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin J Blencowe
- Donnelly Centre, Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ian R Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Matveeva EA, Al-Tinawi QMH, Rouchka EC, Fondufe-Mittendorf YN. Coupling of PARP1-mediated chromatin structural changes to transcriptional RNA polymerase II elongation and cotranscriptional splicing. Epigenetics Chromatin 2019; 12:15. [PMID: 30777121 PMCID: PMC6378753 DOI: 10.1186/s13072-019-0261-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/12/2019] [Indexed: 01/02/2023] Open
Abstract
Background Recently, we showed that PARP1 is involved in cotranscriptional splicing, possibly by bridging chromatin to RNA and recruiting splicing factors. It also can influence alternative splicing decisions through the regulation of RNAPII elongation. In this study, we investigated the effect of PARP1-mediated chromatin changes on RNAPII movement, during transcription and alternative splicing. Results We show that RNAPII pauses at PARP1–chromatin structures within the gene body. Knockdown of PARP1 abolishes this RNAPII pausing, suggesting that PARP1 may regulate RNAPII elongation. Additionally, PARP1 alters nucleosome deposition and histone post-translational modifications at specific exon–intron boundaries, thereby affecting RNAPII movement. Lastly, genome-wide analyses confirmed that PARP1 influences changes in RNAPII elongation by either reducing or increasing the rate of RNAPII elongation depending on the chromatin context. Conclusions These studies suggest a context-specific effect of PARP1–chromatin binding on RNA polymerase movement and provide a platform to delineate PARP1’s role in RNA biogenesis and processing. Electronic supplementary material The online version of this article (10.1186/s13072-019-0261-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena A Matveeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Qamar M H Al-Tinawi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.,Alfaisal University, Al Maather' Riyadh, 12714, Saudi Arabia
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, 522 East Gray Street, Louisville, KY, 40292, USA.,Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| | | |
Collapse
|
16
|
Yu X, Meng X, Liu Y, Wang X, Wang TJ, Zhang A, Li N, Qi X, Liu B, Xu ZY. The chromatin remodeler ZmCHB101 impacts alternative splicing contexts in response to osmotic stress. PLANT CELL REPORTS 2019; 38:131-145. [PMID: 30443733 DOI: 10.1007/s00299-018-2354-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/07/2018] [Indexed: 05/16/2023]
Abstract
Maize SWI3-type chromatin remodeler impacts alternative splicing contexts in response to osmotic stress by altering nucleosome density and affecting transcriptional elongation rate. Alternative splicing (AS) is commonly found in higher eukaryotes and is an important posttranscriptional regulatory mechanism to generate transcript diversity. AS has been widely accepted as playing essential roles in different biological processes including growth, development, signal transduction and responses to biotic and abiotic stresses in plants. However, whether and how chromatin remodeling complex functions in AS in plant under osmotic stress remains unknown. Here, we show that a maize SWI3D protein, ZmCHB101, impacts AS contexts in response to osmotic stress. Genome-wide analysis of mRNA contexts in response to osmotic stress using ZmCHB101-RNAi lines reveals that ZmCHB101 impacts alternative splicing contexts of a subset of osmotic stress-responsive genes. Intriguingly, ZmCHB101-mediated regulation of gene expression and AS is largely uncoupled, pointing to diverse molecular functions of ZmCHB101 in transcriptional and posttranscriptional regulation. We further found ZmCHB101 impacts the alternative splicing contexts by influencing alteration of chromatin and histone modification status as well as transcriptional elongation rates mediated by RNA polymerase II. Taken together, our findings suggest a novel insight of how plant chromatin remodeling complex impacts AS under osmotic stress .
Collapse
Affiliation(s)
- Xiaoming Yu
- School of Agronomy, Jilin Agricultural Science and Technology University, Jilin, 132301, People's Republic of China
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
- Department of Agronomy, Purdue University, West Lafayette, USA
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Xin Qi
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
17
|
Dynamic alterations in methylation of global DNA and growth-related genes in large yellow croaker (Larimichthys crocea) in response to starvation stress. Comp Biochem Physiol B Biochem Mol Biol 2019; 227:98-105. [DOI: 10.1016/j.cbpb.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
|
18
|
Briggs E, Hamilton G, Crouch K, Lapsley C, McCulloch R. Genome-wide mapping reveals conserved and diverged R-loop activities in the unusual genetic landscape of the African trypanosome genome. Nucleic Acids Res 2018; 46:11789-11805. [PMID: 30304482 PMCID: PMC6294496 DOI: 10.1093/nar/gky928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/25/2018] [Accepted: 10/05/2018] [Indexed: 01/09/2023] Open
Abstract
R-loops are stable RNA-DNA hybrids that have been implicated in transcription initiation and termination, as well as in telomere maintenance, chromatin formation, and genome replication and instability. RNA Polymerase (Pol) II transcription in the protozoan parasite Trypanosoma brucei is highly unusual: virtually all genes are co-transcribed from multigene transcription units, with mRNAs generated by linked trans-splicing and polyadenylation, and transcription initiation sites display no conserved promoter motifs. Here, we describe the genome-wide distribution of R-loops in wild type mammal-infective T. brucei and in mutants lacking RNase H1, revealing both conserved and diverged functions. Conserved localization was found at centromeres, rRNA genes and retrotransposon-associated genes. RNA Pol II transcription initiation sites also displayed R-loops, suggesting a broadly conserved role despite the lack of promoter conservation or transcription initiation regulation. However, the most abundant sites of R-loop enrichment were within the regions between coding sequences of the multigene transcription units, where the hybrids coincide with sites of polyadenylation and nucleosome-depletion. Thus, instead of functioning in transcription termination the most widespread localization of R-loops in T. brucei suggests a novel correlation with pre-mRNA processing. Finally, we find little evidence for correlation between R-loop localization and mapped sites of DNA replication initiation.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Rd, Bearsden, G61 1QH, UK
| | - Kathryn Crouch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
19
|
Zhu LY, Zhu YR, Dai DJ, Wang X, Jin HC. Epigenetic regulation of alternative splicing. Am J Cancer Res 2018; 8:2346-2358. [PMID: 30662796 PMCID: PMC6325479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023] Open
Abstract
Alternative splicing (AS) serves as an additional regulatory process for gene expression after transcription, and it generates distinct mRNA species, and even noncoding RNAs (ncRNAs), from one primary transcript. Generally, AS can be coupled with transcription and subjected to epigenetic regulation, such as DNA methylation and histone modifications. In addition, ncRNAs, especially long noncoding RNAs (lncRNAs), can be generated from AS and function as splicing factors ("interactors" or "hijackers") in AS. Recently, RNA modifications, such as the RNA N6-methyladenosine (m6A) modification, have been found to regulate AS. In this review, we summarize recent achievements related to the epigenetic regulation of AS.
Collapse
Affiliation(s)
- Li-Yuan Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Yi-Ran Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Dong-Jun Dai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Hong-Chuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| |
Collapse
|
20
|
Biamonti G, Maita L, Montecucco A. The Krebs Cycle Connection: Reciprocal Influence Between Alternative Splicing Programs and Cell Metabolism. Front Oncol 2018; 8:408. [PMID: 30319972 PMCID: PMC6168629 DOI: 10.3389/fonc.2018.00408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a pervasive mechanism that molds the transcriptome to meet cell and organism needs. However, how this layer of gene expression regulation is coordinated with other aspects of the cell metabolism is still largely undefined. Glucose is the main energy and carbon source of the cell. Not surprisingly, its metabolism is finely tuned to satisfy growth requirements and in response to nutrient availability. A number of studies have begun to unveil the connections between glucose metabolism and splicing programs. Alternative splicing modulates the ratio between M1 and M2 isoforms of pyruvate kinase in this way determining the choice between aerobic glycolysis and complete glucose oxidation in the Krebs cycle. Reciprocally, intermediates in the Krebs cycle may impact splicing programs at different levels by modulating the activity of 2-oxoglutarate-dependent oxidases. In this review we discuss the molecular mechanisms that coordinate alternative splicing programs with glucose metabolism, two aspects with profound implications in human diseases.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Lucia Maita
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | |
Collapse
|
21
|
Abstract
Nucleosomal modifications have been implicated in fundamental epigenetic regulation, whereas the roles of nucleosome binding in shaping changes through evolution remain to be addressed. Here we performed a comparative study to clarify the roles of nucleosome occupancy in exon origination. By profiling a high-resolution, cross-species mononucleosome landscape for mammalian tissues, we found nucleosome occupancy profiles are conserved across tissues and species. Further, through a phylogenetic approach, we found that the feature of differential nucleosome occupancy appears prior to the origination of new exons and, presumably, facilitates the origin of new exons by increasing the splice strength of the ancestral nonexonic regions through driving a local difference in GC content, which suggests the function of nucleosome binding in exonization. Nucleosomal modifications have been implicated in fundamental epigenetic regulation, but the roles of nucleosome occupancy in shaping changes through evolution remain to be addressed. Here we present high-resolution nucleosome occupancy profiles for multiple tissues derived from human, macaque, tree shrew, mouse, and pig. Genome-wide comparison reveals conserved nucleosome occupancy profiles across both different species and tissue types. Notably, we found significantly higher levels of nucleosome occupancy in exons than in introns, a pattern correlated with the different exon–intron GC content. We then determined whether this biased occupancy may play roles in the origination of new exons through evolution, rather than being a downstream effect of exonization, through a comparative approach to sequentially trace the order of the exonization and biased nucleosome binding. By identifying recently evolved exons in human but not in macaque using matched RNA sequencing, we found that higher exonic nucleosome occupancy also existed in macaque regions orthologous to these exons. Presumably, such biased nucleosome occupancy facilitates the origination of new exons by increasing the splice strength of the ancestral nonexonic regions through driving a local difference in GC content. These data thus support a model that sites bound by nucleosomes are more likely to evolve into exons, which we term the “nucleosome-first” model.
Collapse
|
22
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
23
|
Regulation of Gene Expression, Transcription, Splicing, and RNA Metabolism. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Nissen KE, Homer CM, Ryan CJ, Shales M, Krogan NJ, Patrick KL, Guthrie C. The histone variant H2A.Z promotes splicing of weak introns. Genes Dev 2017; 31:688-701. [PMID: 28446597 PMCID: PMC5411709 DOI: 10.1101/gad.295287.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
In this study, Nissen et al. investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast S. pombe. The findings suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Multiple lines of evidence implicate chromatin in the regulation of premessenger RNA (pre-mRNA) splicing. However, the influence of chromatin factors on cotranscriptional splice site usage remains unclear. Here we investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast Schizosaccharomyces pombe. Using epistatic miniarray profiles (EMAPs) to survey the genetic interaction landscape of the Swr1 nucleosome remodeling complex, which deposits H2A.Z, we uncovered evidence for functional interactions with components of the spliceosome. In support of these genetic connections, splicing-specific microarrays show that H2A.Z and the Swr1 ATPase are required during temperature stress for the efficient splicing of a subset of introns. Notably, affected introns are enriched for H2A.Z occupancy and more likely to contain nonconsensus splice sites. To test the significance of the latter correlation, we mutated the splice sites in an affected intron to consensus and found that this suppressed the requirement for H2A.Z in splicing of that intron. These data suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Consistent with this model, we show that overexpression of splicing ATPase Prp16 suppresses both the growth and splicing defects seen in the absence of H2A.Z.
Collapse
Affiliation(s)
- Kelly E Nissen
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Christina M Homer
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA.,J. David Gladstone Institutes, San Francisco 94158, California, USA
| | - Kristin L Patrick
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| |
Collapse
|
25
|
Wedel C, Förstner KU, Derr R, Siegel TN. GT-rich promoters can drive RNA pol II transcription and deposition of H2A.Z in African trypanosomes. EMBO J 2017; 36:2581-2594. [PMID: 28701485 PMCID: PMC5579346 DOI: 10.15252/embj.201695323] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/25/2023] Open
Abstract
Genome‐wide transcription studies are revealing an increasing number of “dispersed promoters” that, unlike “focused promoters”, lack well‐conserved sequence motifs and tight regulation. Dispersed promoters are nevertheless marked by well‐defined chromatin structures, suggesting that specific sequence elements must exist in these unregulated promoters. Here, we have analyzed regions of transcription initiation in the eukaryotic parasite Trypanosoma brucei, in which RNA polymerase II transcription initiation occurs over broad regions without distinct promoter motifs and lacks regulation. Using a combination of site‐specific and genome‐wide assays, we identified GT‐rich promoters that can drive transcription and promote the targeted deposition of the histone variant H2A.Z in a genomic context‐dependent manner. In addition, upon mapping nucleosome occupancy at high resolution, we find nucleosome positioning to correlate with RNA pol II enrichment and gene expression, pointing to a role in RNA maturation. Nucleosome positioning may thus represent a previously unrecognized layer of gene regulation in trypanosomes. Our findings show that even highly dispersed, unregulated promoters contain specific DNA elements that are able to induce transcription and changes in chromatin structure.
Collapse
Affiliation(s)
- Carolin Wedel
- Research Center for Infectious Diseases, Universität Würzburg, Würzburg, Germany
| | | | - Ramona Derr
- Research Center for Infectious Diseases, Universität Würzburg, Würzburg, Germany
| | - T Nicolai Siegel
- Research Center for Infectious Diseases, Universität Würzburg, Würzburg, Germany .,Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, München, Germany.,Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
26
|
RNA splicing in human disease and in the clinic. Clin Sci (Lond) 2017; 131:355-368. [PMID: 28202748 DOI: 10.1042/cs20160211] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023]
Abstract
Defects at the level of the pre-mRNA splicing process represent a major cause of human disease. Approximately 15-50% of all human disease mutations have been shown to alter functioning of basic and auxiliary splicing elements. These elements are required to ensure proper processing of pre-mRNA splicing molecules, with their disruption leading to misprocessing of the pre-mRNA molecule and disease. The splicing process is a complex process, with much still to be uncovered before we are able to accurately predict whether a reported genomic sequence variant (GV) represents a splicing-associated disease mutation or a harmless polymorphism. Furthermore, even when a mutation is correctly identified as affecting the splicing process, there still remains the difficulty of providing an exact evaluation of the potential impact on disease onset, severity and duration. In this review, we provide a brief overview of splicing diagnostic methodologies, from in silico bioinformatics approaches to wet lab in vitro and in vivo systems to evaluate splicing efficiencies. In particular, we provide an overview of how the latest developments in high-throughput sequencing can be applied to the clinic, and are already changing clinical approaches.
Collapse
|
27
|
Chang WH, Niu DM, Lu CY, Lin SY, Liu TC, Chang JG. Modulation the alternative splicing of GLA (IVS4+919G>A) in Fabry disease. PLoS One 2017; 12:e0175929. [PMID: 28430823 PMCID: PMC5400244 DOI: 10.1371/journal.pone.0175929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
While a base substitution in intron 4 of GLA (IVS4+919G>A) that causes aberrant alternative splicing resulting in Fabry disease has been reported, its molecular mechanism remains unclear. Here we reported that upon IVS4+919G>A transversion, H3K36me3 was enriched across the alternatively spliced region. PSIP1, an adapter of H3K36me3, together with Hsp70 and NONO were recruited and formed a complex with SF2/ASF and SRp20, which further promoted GLA splicing. Amiloride, a splicing regulator in cancer cells, could reverse aberrant histone modification patterns and disrupt the association of splicing complex with GLA. It could also reverse aberrant GLA splicing in a PP1-dependant manner. Our findings revealed the alternative splicing mechanism of GLA (IVS4+919G>A), and a potential treatment for this specific genetic type of Fabry disease by amiloride in the future.
Collapse
Affiliation(s)
- Wen-Hsin Chang
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyr-Yi Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (SYL); (TCL); (JGC)
| | - Ta-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (SYL); (TCL); (JGC)
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- * E-mail: (SYL); (TCL); (JGC)
| |
Collapse
|
28
|
Li Y, Xu Y, Ma Z. Comparative Analysis of the Exon-Intron Structure in Eukaryotic Genomes. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ym.2017.11006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Barbon E, Ferrarese M, van Wittenberghe L, Sanatine P, Ronzitti G, Collaud F, Colella P, Pinotti M, Mingozzi F. Transposon-mediated Generation of Cellular and Mouse Models of Splicing Mutations to Assess the Efficacy of snRNA-based Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e392. [PMID: 27898092 PMCID: PMC5155329 DOI: 10.1038/mtna.2016.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
Disease-causing splicing mutations can be rescued by variants of the U1 small nuclear RNA (U1snRNAs). However, the evaluation of the efficacy and safety of modified U1snRNAs as therapeutic tools is limited by the availability of cellular and animal models specific for a given mutation. Hence, we exploited the hyperactive Sleeping Beauty transposon system (SB100X) to integrate human factor IX (hFIX) minigenes into genomic DNA in vitro and in vivo. We generated stable HEK293 cell lines and C57BL/6 mice harboring splicing-competent hFIX minigenes either wild type (SChFIX-wt) or mutated (SChFIXex5-2C). In both models the SChFIXex5-2C variant, found in patients affected by Hemophilia B, displayed an aberrant splicing pattern characterized by exon 5 skipping. This allowed us to test, for the first time in a genomic DNA context, the efficacy of the snRNA U1-fix9, delivered with an adeno-associated virus (AAV) vector. With this approach, we showed rescue of the correct splicing pattern of hFIX mRNA, leading to hFIX protein expression. These data validate the SB100X as a versatile tool to quickly generate models of human genetic mutations, to study their effect in a stable DNA context and to assess mutation-targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Federico Mingozzi
- Genethon, Evry, France
- INSERM U951, Evry, France
- Institute of Myology, University Pierre and Marie Curie – Paris 6, Paris, France
| |
Collapse
|
30
|
Abstract
Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny. Finally, a direct assessment of the impact of chromatin on splicing using an in vitro co-transcriptional splicing assay with pre-mRNAs transcribed from a nucleosomal template, demonstrated that chromatin impacts nascent pre-mRNP in their competence for splicing. Altogether, our data show that numerous chromatin factors associated or not with the spliceosome can affect the outcome of splicing, possibly as a function of the local chromatin environment that by default interferes with the efficiency of splicing. Splicing is an RNA editing step allowing to produce multiple transcripts from a single gene. The gene itself is organized in chromatin, associating DNA and multiple proteins. Some proteins regulating the compaction of the chromatin also affect RNA splicing. Yet, it was unclear whether these chromatin proteins were exceptions or whether chromatin very generally affected the outcome of splicing. Here, we show that a subset of chromatin proteins is physically in interaction with the enzyme responsible for RNA splicing. In addition, several chromatin proteins not found directly associated with the splicing machinery were also able to influence RNA splicing, suggesting that chromatin compaction very globally plays a role in splicing. This finding was confirmed using the first in vitro assay combining transcription and splicing in the context of chromatin; this assay showed that assembling DNA with chromatin proteins influences the efficiency of splicing.
Collapse
|
31
|
Involvement of PARP1 in the regulation of alternative splicing. Cell Discov 2016; 2:15046. [PMID: 27462443 PMCID: PMC4860959 DOI: 10.1038/celldisc.2015.46] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/11/2015] [Indexed: 12/18/2022] Open
Abstract
Specialized chromatin structures such as nucleosomes with specific histone modifications decorate exons in eukaryotic genomes, suggesting a functional connection between chromatin organization and the regulation of pre-mRNA splicing. Through profiling the functional location of Poly (ADP) ribose polymerase, we observed that it is associated with the nucleosomes at exon/intron boundaries of specific genes, suggestive of a role for this enzyme in alternative splicing. Poly (ADP) ribose polymerase has previously been implicated in the PARylation of splicing factors as well as regulation of the histone modification H3K4me3, a mark critical for co-transcriptional splicing. In light of these studies, we hypothesized that interaction of the chromatin-modifying factor, Poly (ADP) ribose polymerase with nucleosomal structures at exon–intron boundaries, might regulate pre-mRNA splicing. Using genome-wide approaches validated by gene-specific assays, we show that depletion of PARP1 or inhibition of its PARylation activity results in changes in alternative splicing of a specific subset of genes. Furthermore, we observed that PARP1 bound to RNA, splicing factors and chromatin, suggesting that Poly (ADP) ribose polymerase serves as a gene regulatory hub to facilitate co-transcriptional splicing. These studies add another function to the multi-functional protein, Poly (ADP) ribose polymerase, and provide a platform for further investigation of this protein’s function in organizing chromatin during gene regulatory processes.
Collapse
|
32
|
Yamauchi K, Kondo S, Hamamoto M, Suzuki Y, Nishida H. Genome-wide maps of nucleosomes of the trichostatin A treated and untreated archiascomycetous yeast <em>Saitoella complicata</em>. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.1.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Gracida X, Norris AD, Calarco JA. Regulation of Tissue-Specific Alternative Splicing: C. elegans as a Model System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:229-61. [DOI: 10.1007/978-3-319-29073-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Guintivano J, Kaminsky ZA. Role of epigenetic factors in the development of mental illness throughout life. Neurosci Res 2016; 102:56-66. [DOI: 10.1016/j.neures.2014.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/15/2022]
|
35
|
Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 2015; 84:165-98. [PMID: 26034889 DOI: 10.1146/annurev-biochem-060614-034242] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative precursor messenger RNA (pre-mRNA) splicing plays a pivotal role in the flow of genetic information from DNA to proteins by expanding the coding capacity of genomes. Regulation of alternative splicing is as important as regulation of transcription to determine cell- and tissue-specific features, normal cell functioning, and responses of eukaryotic cells to external cues. Its importance is confirmed by the evolutionary conservation and diversification of alternative splicing and the fact that its deregulation causes hereditary disease and cancer. This review discusses the multiple layers of cotranscriptional regulation of alternative splicing in which chromatin structure, DNA methylation, histone marks, and nucleosome positioning play a fundamental role in providing a dynamic scaffold for interactions between the splicing and transcription machineries. We focus on evidence for how the kinetics of RNA polymerase II (RNAPII) elongation and the recruitment of splicing factors and adaptor proteins to chromatin components act in coordination to regulate alternative splicing.
Collapse
Affiliation(s)
- Shiran Naftelberg
- Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel;
| | | | | | | |
Collapse
|
36
|
Deng W, Babu IR, Su D, Yin S, Begley TJ, Dedon PC. Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation. PLoS Genet 2015; 11:e1005706. [PMID: 26670883 PMCID: PMC4689569 DOI: 10.1371/journal.pgen.1005706] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022] Open
Abstract
Post-transcriptional modifications of transfer RNAs (tRNAs) have long been recognized to play crucial roles in regulating the rate and fidelity of translation. However, the extent to which they determine global protein production remains poorly understood. Here we use quantitative proteomics to show a direct link between wobble uridine 5-methoxycarbonylmethyl (mcm5) and 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modifications catalyzed by tRNA methyltransferase 9 (Trm9) in tRNAArg(UCU) and tRNAGlu(UUC) and selective translation of proteins from genes enriched with their cognate codons. Controlling for bias in protein expression and alternations in mRNA expression, we find that loss of Trm9 selectively impairs expression of proteins from genes enriched with AGA and GAA codons under both normal and stress conditions. Moreover, we show that AGA and GAA codons occur with high frequency in clusters along the transcripts, which may play a role in modulating translation. Consistent with these results, proteins subject to enhanced ribosome pausing in yeast lacking mcm5U and mcm5s2U are more likely to be down-regulated and contain a larger number of AGA/GAA clusters. Together, these results suggest that Trm9-catalyzed tRNA modifications play a significant role in regulating protein expression within the cell. Here we present evidence for a more complicated role for transfer RNAs (tRNAs) than as mere adapters that link the genetic code in messenger RNA (mRNA) to the amino acid sequence of a protein during translation. tRNAs have long been known to be modified with dozens of different chemical structures other than the 4 canonical ribonucleosides, though the role of these modifications in controlling translation is poorly understood. By quantifying the expression of thousands of proteins in the yeast S. cerevisiae, we identified a mechanistic link between modified ribonucleosides located at the wobble position of two tRNAs, tRNAArg(UCU) and tRNAGlu(UUC), and the translation of proteins derived from genes enriched with codons read by these tRNAs: AGA and GAA. In cells lacking the enzyme that inserts these modifications, tRNA methyltransferase 9 (Trm9), we found a significant reduction in proteins from genes enriched with AGA and GAA codons and with runs of these codons. Also, mRNAs enriched with runs of AGA and GAA codons are subject to stalled translation on ribosomes in yeast lacking mcm5U and mcm5s2U. Together, these results reveal a distinct role for Trm9-catalyzed tRNA modifications in selectively regulating the expression of proteins enriched with AGA and GAA codons.
Collapse
Affiliation(s)
- Wenjun Deng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - I. Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dan Su
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shanye Yin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas J. Begley
- SUNY College of Nanoscale Science and Engineering, Albany, New York, United States of America
- RNA Institute and Cancer Research Center, University at Albany, State University of New York, Albany, New York, United States of America
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore-MIT Alliance for Research and Technology, Singapore
- * E-mail:
| |
Collapse
|
37
|
Cole BS, Tapescu I, Allon SJ, Mallory MJ, Qiu J, Lake RJ, Fan HY, Fu XD, Lynch KW. Global analysis of physical and functional RNA targets of hnRNP L reveals distinct sequence and epigenetic features of repressed and enhanced exons. RNA (NEW YORK, N.Y.) 2015; 21:2053-66. [PMID: 26437669 PMCID: PMC4647460 DOI: 10.1261/rna.052969.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/24/2015] [Indexed: 05/27/2023]
Abstract
HnRNP L is a ubiquitous splicing-regulatory protein that is critical for the development and function of mammalian T cells. Previous work has identified a few targets of hnRNP L-dependent alternative splicing in T cells and has described transcriptome-wide association of hnRNP L with RNA. However, a comprehensive analysis of the impact of hnRNP L on mRNA expression remains lacking. Here we use next-generation sequencing to identify transcriptome changes upon depletion of hnRNP L in a model T-cell line. We demonstrate that hnRNP L primarily regulates cassette-type alternative splicing, with minimal impact of hnRNP L depletion on transcript abundance, intron retention, or other modes of alternative splicing. Strikingly, we find that binding of hnRNP L within or flanking an exon largely correlates with exon repression by hnRNP L. In contrast, exons that are enhanced by hnRNP L generally lack proximal hnRNP L binding. Notably, these hnRNP L-enhanced exons share sequence and context features that correlate with poor nucleosome positioning, suggesting that hnRNP may enhance inclusion of a subset of exons via a cotranscriptional or epigenetic mechanism. Our data demonstrate that hnRNP L controls inclusion of a broad spectrum of alternative cassette exons in T cells and suggest both direct RNA regulation as well as indirect mechanisms sensitive to the epigenetic landscape.
Collapse
Affiliation(s)
- Brian S Cole
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Iulia Tapescu
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Samuel J Allon
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jinsong Qiu
- Department of Cell and Molecular Medicine, University of California San Diego, San Diego, California 92093, USA
| | - Robert J Lake
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hua-Ying Fan
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiang-Dong Fu
- Department of Cell and Molecular Medicine, University of California San Diego, San Diego, California 92093, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Splicing Regulation: A Molecular Device to Enhance Cancer Cell Adaptation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:543067. [PMID: 26273627 PMCID: PMC4529921 DOI: 10.1155/2015/543067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/23/2015] [Indexed: 01/23/2023]
Abstract
Alternative splicing (AS) represents a major resource for eukaryotic cells to expand the coding potential of their genomes and to finely regulate gene expression in response to both intra- and extracellular cues. Cancer cells exploit the flexible nature of the mechanisms controlling AS in order to increase the functional diversity of their proteome. By altering the balance of splice isoforms encoded by human genes or by promoting the expression of aberrant oncogenic splice variants, cancer cells enhance their ability to adapt to the adverse growth conditions of the tumoral microenvironment. Herein, we will review the most relevant cancer-related splicing events and the underlying regulatory mechanisms allowing tumour cells to rapidly adapt to the harsh conditions they may face during the occurrence and development of cancer.
Collapse
|
39
|
Conrad NK. New insights into the expression and functions of the Kaposi's sarcoma-associated herpesvirus long noncoding PAN RNA. Virus Res 2015; 212:53-63. [PMID: 26103097 DOI: 10.1016/j.virusres.2015.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) is a clinically relevant pathogen associated with several human diseases that primarily affect immunocompromised individuals. KSHV encodes a noncoding polyadenylated nuclear (PAN) RNA that is essential for viral propagation and viral gene expression. PAN RNA is the most abundant viral transcript produced during lytic replication. The accumulation of PAN RNA depends on high levels of transcription driven by the Rta protein, a KSHV transcription factor necessary and sufficient for latent-to-lytic phase transition. In addition, KSHV uses several posttranscriptional mechanisms to stabilize PAN RNA. A cis-acting element, called the ENE, prevents PAN RNA decay by forming a triple helix with its poly(A) tail. The viral ORF57 and the cellular PABPC1 proteins further contribute to PAN RNA stability during lytic phase. PAN RNA functions are only beginning to be uncovered, but PAN RNA has been proposed to control gene expression by several different mechanisms. PAN RNA associates with the KSHV genome and may regulate gene expression by recruiting chromatin-modifying factors. Moreover, PAN RNA binds the viral latency-associated nuclear antigen (LANA) protein and decreases its repressive activity by sequestering it from the viral genome. Surprisingly, PAN RNA was found to associate with translating ribosomes, so this noncoding RNA may be additionally used to produce viral peptides. In this review, I highlight the mechanisms of PAN RNA accumulation and describe recent insights into potential functions of PAN RNA.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, United States.
| |
Collapse
|
40
|
Tejedor JR, Tilgner H, Iannone C, Guigó R, Valcárcel J. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing. RNA (NEW YORK, N.Y.) 2015; 21:1187-1202. [PMID: 25904137 PMCID: PMC4436670 DOI: 10.1261/rna.049890.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease.
Collapse
Affiliation(s)
- J Ramón Tejedor
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Hagen Tilgner
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Camilla Iannone
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Roderic Guigó
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08020 Barcelona, Spain
| |
Collapse
|
41
|
Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet 2015; 31:274-80. [DOI: 10.1016/j.tig.2015.03.002] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022]
|
42
|
Acetylation of intragenic histones on HPV16 correlates with enhanced HPV16 gene expression. Virology 2015; 482:244-59. [PMID: 25900886 DOI: 10.1016/j.virol.2015.02.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/23/2015] [Accepted: 02/25/2015] [Indexed: 11/21/2022]
Abstract
We report that many histone modifications are unevenly distributed over the HPV16 genome in cervical cancer cells as well as in HPV16-immortalized keratinocytes. For example, H3K36me3 and H3K9Ac that are common in highly expressed cellular genes and over exons, were more common in the early than in the late region of the HPV16 genome. In contrast, H3K9me3, H4K20me3, H2BK5me1 and H4K16Ac were more frequent in the HPV16 late region. Furthermore, a region encompassing the HPV16 early polyadenylation signal pAE displayed high levels of histone H3 acetylation. Histone deacetylase (HDAC) inhibitors caused a 2- to 8-fold induction of HPV16 early and late mRNAs in cervical cancer cells and in immortalized keratinocytes, while at the same time increasing the levels of acetylated histones in the cells and on the HPV16 genome specifically. We concluded that increased histone acetylation on the HPV16 genome correlates with increased HPV16 gene expression.
Collapse
|
43
|
Bitton DA, Atkinson SR, Rallis C, Smith GC, Ellis DA, Chen YYC, Malecki M, Codlin S, Lemay JF, Cotobal C, Bachand F, Marguerat S, Mata J, Bähler J. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast. Genome Res 2015; 25:884-96. [PMID: 25883323 PMCID: PMC4448684 DOI: 10.1101/gr.185371.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/31/2015] [Indexed: 12/31/2022]
Abstract
Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5′-3′ exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼0.24% in wild type and ∼1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.
Collapse
Affiliation(s)
- Danny A Bitton
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sophie R Atkinson
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Graeme C Smith
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - David A Ellis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Yuan Y C Chen
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sandra Codlin
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - François Bachand
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Samuel Marguerat
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jürg Bähler
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| |
Collapse
|
44
|
Kfir N, Lev-Maor G, Glaich O, Alajem A, Datta A, Sze S, Meshorer E, Ast G. SF3B1 Association with Chromatin Determines Splicing Outcomes. Cell Rep 2015; 11:618-29. [DOI: 10.1016/j.celrep.2015.03.048] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 02/25/2015] [Accepted: 03/22/2015] [Indexed: 01/08/2023] Open
|
45
|
Kaminsky Z, Jones I, Verma R, Saleh L, Trivedi H, Guintivano J, Akman R, Zandi P, Lee RS, Potash JB. DNA methylation and expression of KCNQ3 in bipolar disorder. Bipolar Disord 2015; 17:150-9. [PMID: 25041603 DOI: 10.1111/bdi.12230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Accumulating evidence implicates the potassium voltage-gated channel, KQT-like subfamily, member 2 and 3 (KCNQ2 and KCNQ3) genes in the etiology of bipolar disorder (BPD). Reduced KCNQ2 or KCNQ3 gene expression might lead to a loss of inhibitory M-current and an increase in neuronal hyperexcitability in disease. The goal of the present study was to evaluate epigenetic and gene expression associations of the KCNQ2 and KCNQ3 genes with BPD. METHODS DNA methylation and gene expression levels of alternative transcripts of KCNQ2 and KCNQ3 capable of binding the ankyrin G (ANK3) gene were evaluated using bisulfite pyrosequencing and the quantitative real-time polymerase chain reaction in the postmortem prefrontal cortex of subjects with BPD and matched controls from the McLean Hospital. Replication analyses of DNA methylation findings were performed using prefrontal cortical DNA obtained from the Stanley Medical Research Institute. RESULTS Significantly lower expression was observed in KCNQ3, but not KCNQ2. DNA methylation analysis of CpGs within an alternative exonic region of KCNQ3 exon 11 demonstrated significantly lower methylation in BPD, and correlated significantly with KCNQ3 mRNA levels. Lower KCNQ3 exon 11 DNA methylation was observed in the Stanley Medical Research Institute replication cohort, although only after correcting for mood stabilizer status. Mood stabilizer treatment in rats resulted in a slight DNA methylation increase at the syntenic KCNQ3 exon 11 region, which subsequent analyses suggested could be the result of alterations in neuronal proportion. CONCLUSION The results of the present study suggest that epigenetic alterations in the KCNQ3 gene may be important in the etiopathogenesis of BPD and highlight the importance of controlling for medication and cellular composition-induced heterogeneity in psychiatric studies of the brain.
Collapse
Affiliation(s)
- Zachary Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ryu JY, Kim JY, Park CM. Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e1093715. [PMID: 26452406 PMCID: PMC4883874 DOI: 10.1080/15592324.2015.1093715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce 2 protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats.
Collapse
Affiliation(s)
- Jae Yong Ryu
- Department of Chemistry; Seoul National University; Seoul, Korea
| | - Joo-Young Kim
- Department of Chemistry; Seoul National University; Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry; Seoul National University; Seoul, Korea
- Plant Genomics and Breeding Institute; Seoul National University; Seoul, Korea
| |
Collapse
|
47
|
Soemedi R, Vega H, Belmont JM, Ramachandran S, Fairbrother WG. Genetic variation and RNA binding proteins: tools and techniques to detect functional polymorphisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:227-66. [PMID: 25201108 DOI: 10.1007/978-1-4939-1221-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At its most fundamental level the goal of genetics is to connect genotype to phenotype. This question is asked at a basic level evaluating the role of genes and pathways in genetic model organism. Increasingly, this question is being asked in the clinic. Genomes of individuals and populations are being sequenced and compared. The challenge often comes at the stage of analysis. The variant positions are analyzed with the hope of understanding human disease. However after a genome or exome has been sequenced, the researcher is often deluged with hundreds of potentially relevant variations. Traditionally, amino-acid changing mutations were considered the tractable class of disease-causing mutations; however, mutations that disrupt noncoding elements are the subject of growing interest. These noncoding changes are a major avenue of disease (e.g., one in three hereditary disease alleles are predicted to affect splicing). Here, we review some current practices of medical genetics, the basic theory behind biochemical binding and functional assays, and then explore technical advances in how variations that alter RNA protein recognition events are detected and studied. These advances are advances in scale-high-throughput implementations of traditional biochemical assays that are feasible to perform in any molecular biology laboratory. This chapter utilizes a case study approach to illustrate some methods for analyzing polymorphisms. The first characterizes a functional intronic SNP that deletes a high affinity PTB site using traditional low-throughput biochemical and functional assays. From here we demonstrate the utility of high-throughput splicing and spliceosome assembly assays for screening large sets of SNPs and disease alleles for allelic differences in gene expression. Finally we perform three pilot drug screens with small molecules (G418, tetracycline, and valproic acid) that illustrate how compounds that rescue specific instances of differential pre-mRNA processing can be discovered.
Collapse
Affiliation(s)
- Rachel Soemedi
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
48
|
Zhou K, Kuo A, Grigoriev IV. Reverse transcriptase and intron number evolution. Stem Cell Investig 2014; 1:17. [PMID: 27358863 DOI: 10.3978/j.issn.2306-9759.2014.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/04/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. METHODS Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. RESULTS The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota's ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss. There was a down trend of EPG from more conserved to less conserved genes. Moreover, species-specific genes have higher exon-densities, shorter exons, and longer introns when compared to genes conserved at the phylum level. However, intron length in species-specific genes became shorter than that of genes conserved in all species after genomes experiencing drastic intron loss. The estimated EPG from the most frequent exon length is more than double that from the RIL method. CONCLUSIONS This implies significant intron loss during the very early period of eukaryotic evolution. De novo gene-birth contributes to shorter exons, longer introns, and higher exon-density in species-specific genes relative to conserved genes.
Collapse
Affiliation(s)
- Kemin Zhou
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Alan Kuo
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
49
|
Lhoumaud P, Hennion M, Gamot A, Cuddapah S, Queille S, Liang J, Micas G, Morillon P, Urbach S, Bouchez O, Severac D, Emberly E, Zhao K, Cuvier O. Insulators recruit histone methyltransferase dMes4 to regulate chromatin of flanking genes. EMBO J 2014; 33:1599-613. [PMID: 24916307 DOI: 10.15252/embj.201385965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chromosomal domains in Drosophila are marked by the insulator-binding proteins (IBPs) dCTCF/Beaf32 and cofactors that participate in regulating long-range interactions. Chromosomal borders are further enriched in specific histone modifications, yet the role of histone modifiers and nucleosome dynamics in this context remains largely unknown. Here, we show that IBP depletion impairs nucleosome dynamics specifically at the promoters and coding sequence of genes flanked by IBP binding sites. Biochemical purification identifies the H3K36 histone methyltransferase NSD/dMes-4 as a novel IBP cofactor, which specifically co-regulates the chromatin accessibility of hundreds of genes flanked by dCTCF/Beaf32. NSD/dMes-4 presets chromatin before the recruitment of transcriptional activators including DREF that triggers Set2/Hypb-dependent H3K36 trimethylation, nucleosome positioning, and RNA splicing. Our results unveil a model for how IBPs regulate nucleosome dynamics and gene expression through NSD/dMes-4, which may regulate H3K27me3 spreading. Our data uncover how IBPs dynamically regulate chromatin organization depending on distinct cofactors.
Collapse
Affiliation(s)
- Priscillia Lhoumaud
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS Université de Toulouse (UPS), Toulouse, France
| | - Magali Hennion
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS Université de Toulouse (UPS), Toulouse, France
| | - Adrien Gamot
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS Université de Toulouse (UPS), Toulouse, France
| | - Suresh Cuddapah
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sophie Queille
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS Université de Toulouse (UPS), Toulouse, France
| | - Jun Liang
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS Université de Toulouse (UPS), Toulouse, France
| | - Gael Micas
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS Université de Toulouse (UPS), Toulouse, France
| | - Pauline Morillon
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS Université de Toulouse (UPS), Toulouse, France
| | - Serge Urbach
- Mass-Spectrometry Facility, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Olivier Bouchez
- UMR444-Laboratoire de Génétique Cellulaire & GeT-PlaGe, INRA Genotoul, Auzeville, Toulouse, France
| | - Dany Severac
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Eldon Emberly
- Physics Department, Simon Fraser University (SFU), Burnaby, BC, Canada
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health (NIH), Bethesda, MD, USA
| | - Olivier Cuvier
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), CNRS Université de Toulouse (UPS), Toulouse, France
| |
Collapse
|
50
|
Chang CY, Lin WD, Tu SL. Genome-Wide Analysis of Heat-Sensitive Alternative Splicing in Physcomitrella patens. PLANT PHYSIOLOGY 2014; 165:826-840. [PMID: 24777346 PMCID: PMC4044832 DOI: 10.1104/pp.113.230540] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant growth and development are constantly influenced by temperature fluctuations. To respond to temperature changes, different levels of gene regulation are modulated in the cell. Alternative splicing (AS) is a widespread mechanism increasing transcriptome complexity and proteome diversity. Although genome-wide studies have revealed complex AS patterns in plants, whether AS impacts the stress defense of plants is not known. We used heat shock (HS) treatments at nondamaging temperature and messenger RNA sequencing to obtain HS transcriptomes in the moss Physcomitrella patens. Data analysis identified a significant number of novel AS events in the moss protonema. Nearly 50% of genes are alternatively spliced. Intron retention (IR) is markedly repressed under elevated temperature but alternative donor/acceptor site and exon skipping are mainly induced, indicating differential regulation of AS in response to heat stress. Transcripts undergoing heat-sensitive IR are mostly involved in specific functions, which suggests that plants regulate AS with transcript specificity under elevated temperature. An exonic GAG-repeat motif in these IR regions may function as a regulatory cis-element in heat-mediated AS regulation. A conserved AS pattern for HS transcription factors in P. patens and Arabidopsis (Arabidopsis thaliana) reveals that heat regulation for AS evolved early during land colonization of green plants. Our results support that AS of specific genes, including key HS regulators, is fine-tuned under elevated temperature to modulate gene regulation and reorganize metabolic processes.
Collapse
Affiliation(s)
- Chiung-Yun Chang
- Institute of Plant and Microbial Biology (C.-Y.C., W.-D.L., S.-L.T.) and Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program (C.-Y.C., S.-L.T.), Academia Sinica, Taipei 11529, Taiwan; andGraduate Institute of Biotechnology (C.-Y.C.) and Biotechnology Center (S.-L.T.), National Chung-Hsing University, Taichung 402, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology (C.-Y.C., W.-D.L., S.-L.T.) and Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program (C.-Y.C., S.-L.T.), Academia Sinica, Taipei 11529, Taiwan; andGraduate Institute of Biotechnology (C.-Y.C.) and Biotechnology Center (S.-L.T.), National Chung-Hsing University, Taichung 402, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology (C.-Y.C., W.-D.L., S.-L.T.) and Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program (C.-Y.C., S.-L.T.), Academia Sinica, Taipei 11529, Taiwan; andGraduate Institute of Biotechnology (C.-Y.C.) and Biotechnology Center (S.-L.T.), National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|